
Interactive Algorithms 2005

Yuri Gurevich
Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA

Technical Report MSR-TR-2005-73, June 5, 2005

Abstract

A sequential algorithm just follows its instructions and thus cannot
make a nondeterministic choice all by itself, but it can be instructed
to solicit outside help to make a choice. Similarly, an object-oriented
program cannot create a new object all by itself; a create-a-new-object
command solicits outside help. These are but two examples of intra-
step interaction of an algorithm with its environment. Here we mo-
tivate and survey recent work on interactive algorithms within the
Behavioral Computation Theory project.

Contents

1 Introduction 2

2 Explication of Algorithms 4

3 Isolated-Step Algorithms 5

4 Interaction 9
4.1 Inter-Step Interaction . 9
4.2 Intra-Step Interaction . 9
4.3 The Ubiquity of Interaction 10
4.4 Interaction Mechanisms . 11

5 Ordinary Interactive Small-Step Algorithms 12

6 General Interactive Algorithms 14

7 Finale 15

1

1 Introduction

In 1982, the University of Michigan hired this logician on his promise to
become a computer scientist. The logician eagerly wanted to become a
computer scientist. But what is computer science? Is it really a science?
What is it about?

After thinking a while, we concluded that computer science is largely
about algorithms. Operating systems, compilers, programming languages,
etc. are all algorithms, in a wide sense of the word. For example, a pro-
gramming language can be seen as a universal algorithm that applies the
given program to the given data. In practice, you may need a compiler
and a machine to run the compiled program on, but this is invisible on the
abstraction level of the programming language.

A problem arises: What is an algorithm? To us, this is a fundamental
problem of computer science, and we have been working on it ever since.

But didn’t Turing solve the problem? The answer to this question de-
pends on how you think of algorithms. If all you care is the input-to-output
function of the algorithm, then yes, Turing solved the problem. But the
behavior of an algorithm may be much richer than its input-to-output func-
tion. An algorithm has its natural abstraction level, and the data structures
employed by an algorithm are intrinsic to its behavior. The parallelism of
a parallel algorithm is an inherent part of its behavior. Similarly, the in-
teractivity of an interactive algorithm is an inherent part of its behavior as
well.

Is there a solution à la Turing to the problem what an algorithm is?
In other words, is there a state-machine model that captures the notion of
algorithm up to behavioral equivalence? Our impression was, and still is,
that the answer is yes. In [13], we defined sequential abstract state machines
(ASMs) and put forward a sequential ASM thesis: for every sequential al-
gorithm, there is a sequential ASM with the same behavior. In particular,
the ASM is supposed to simulate the given algorithm step-for-step. In [14],
we defined parallel and distributed abstract state machines and generalized
the ASM thesis for parallel and distributed algorithms. Parallel ASMs gave
rise to a specification (and high-level programming) language AsmL [2] de-
veloped by the group of Foundations of Software Engineering of Microsoft
Research.

At this point, the story forks. One branch leads to experimental evidence
for the ASM thesis and to applications of ASMs [1, 2, 12]. Another branch
leads to behavioral computation theory. We take the second branch here and
restrict attention to sequential time algorithms that compute in a sequence

2

of discrete steps.
In § 2 we discuss a newer approach to the explication of the notion of

algorithm. The new approach is axiomatic, but it also involves a machine
characterization of algorithms. This newer approach is used in the rest of
the article.

In § 3 we sketch our explication of sequential (or small-step) algorithms
[15]. We mention also the explication of parallel (or wide-step) algorithms
in [3] but briefly. In either case, the algorithms in questions are isolated step
algorithms that abstain from intra-step interaction with the environment.
They can interact with the environment in the inter-step manner, however.

§ 4 is a quick introduction to the study of intra-step interaction of an
algorithm with its environment; much of the section reflects [5]. We mo-
tivate the study of intra-step interaction and attempt to demonstrate how
ubiquitous intra-step interaction is. Numerous disparate phenomena are
best understood as special cases of intra-step interaction. We discuss var-
ious forms of intra-step interaction, introduce the query mechanism of [5]
and attempt to demonstrate the universality of the query mechanism: the
atomic interactions of any mechanism are queries. In the rest of the arti-
cle, we concentrate on intra-step interaction; by default interaction means
intra-step interaction. To simplify the exposition, we consider primarily
the small-step (rather than wide-step) algorithms; by default algorithms are
small-step algorithms.

§ 5 is devoted to the explication of ordinary interactive algorithms [5,
6, 7]. Ordinary algorithms never complete a step until all queries from
that step have been answered. Furthermore, the only information from the
environment that an ordinary algorithm uses during a step is answers to its
queries.

§ 6 is devoted to the explication of general interactive algorithms [8,
9, 10]. Contrary to ordinary interactive algorithms, a general interactive
algorithm can be impatient and complete a step without waiting for all
queries from that step to have been answered. It also can be time sensitive,
so that its actions during a step depend not only on the answers to its queries
but also on the order in which the answers have arrived. We mention also
the explication of general wide-step algorithms [11] but briefly.

§ 7 is a concluding remark.
Much of this article reflects joint work with Andreas Blass, Benjamin

Rossman and Dean Rosenzweig.

3

2 Explication of Algorithms

The theses mentioned in the introduction equate an informal, intuitive no-
tion with a formal, mathematical notion. You cannot prove such a thesis
mathematically but you can argue for it. Both Church and Turing argued
for their theses. While their theses are equivalent, their arguments were
quite different [4]. The ASM theses, mentioned in the introduction, have
the following form.

ASM Thesis Form

1. Describe informally a class A of algorithms.

2. Describe the behavioral equivalence of A algorithms. Intuitively two
algorithms are behaviorally equivalent if they do the same thing in all
circumstances. Since A is defined informally, the behavioral equiva-
lence may be informal as well.

3. Define a class M of abstract state machines.

4. Claim that M ⊆ A and that every A ∈ A is behaviorally equivalent
to some M ∈ M.

The thesis for a class A of algorithms explicates algorithms in A as abstract
state machines in M. For example, sequential algorithms are explicated as
sequential ASMs. The thesis is open to criticism. One can try to construct
an ASM in M that falls off A or an algorithm in A that is not behaviorally
equivalent to any ASM in M.

Since the ASM thesis for A cannot be proven mathematically, experi-
mental confirmation of the thesis is indispensable; this partially explains the
interest in applications of ASMs in the ASM community. But one can argue
for the thesis, and we looked for the best way to do that. Eventually we
arrived at a newer and better explication procedure.

Algorithm Explication Procedure

1. Axiomatize the class A of the algorithms of interest. This is the hard-
est part. You try to find the most convincing axioms (or postulates)
possible.

2. Define precisely the notion of behavioral equivalence. If there is al-
ready an ASM thesis T for A, you may want to use the behavioral

4

equivalence of T or a precise version of the behavioral equivalence of
T .

3. Define a class M of abstract state machines. If there is already an
ASM thesis T for A, you may want to use the abstract state machines
of T .

4. Prove the following characterization theorem for A: M ⊆ A and every
A ∈ M is behaviorally equivalent to some M ∈ M.

The characterization provides a theoretical programming language for A
and opens a way for more practical languages for A. Any instance of the
explication procedure is open to criticism of course. In particular, one may
criticize the axiomatization and the behavioral equivalence relation.

If an explication procedure for A uses (a precise version of) the be-
havioral equivalence and the machines of the ASM thesis for A, then the
explication procedure can be viewed as a proof of the thesis given the ax-
iomatization.

A priori it is not obvious at all that a convincing axiomatization is possi-
ble. But our experience seems to be encouraging. The explication procedure
was used for the first time in [15] where sequential algorithms were axiom-
atized and the sequential ASM thesis proved; see more about that in the
next section. In [3], parallel algorithms were axiomatized and the parallel
ASM thesis was proved, except that we slightly modified the notion of par-
allel ASM. Additional uses of the explication procedure will be addressed in
§ 4–6.

In both, [15] and [3], two algorithms are behaviorally equivalent if they
have the same states, initial states and transition function. It follows that
behaviorally equivalent algorithms simulate each other step-for-step. We
have been criticized that this behavioral equivalence is too fine, that step-
for-step simulation is too much to require, that appropriate bisimulation
may be a better behavioral equivalence. We agree that in some applications
bisimulation is the right equivalence notion. But notice this: the finer the
behavioral equivalence, the stronger the characterization theorem.

3 Isolated-Step Algorithms

As we mentioned above, sequential algorithms were explicated in [15]. Here
we recall and motivate parts of that explication needed to make our story
self-contained.

5

Imagine that you have some entity E. What does it mean that E is a
sequential algorithm? A part of the answer is easy: every algorithm is a
(not necessarily finite-state) automaton.

Postulate 3.1 (Sequential Time). The entity E determines

• a nonempty collection of states,

• a nonempty collection of initial states, and

• a state-transition function.

The postulate does not say anything about final states; we refer the inter-
ested reader to [15, § 3.3.2] in this connection. This single postulate allows
us to define behavioral equivalence of sequential algorithms.

Definition 3.2. Two sequential algorithms are behaviorally equivalent if
they have the same states, initial states and transition function.

It is harder to see what else can be said about sequential algorithms in
full generality. Of course, every algorithm has a program of one kind or
another, but we don’t know how to turn this into a postulate or postulates.
There are so many different programming notations in use already, and it is
bewildering to imagine all possible programming notations.

Some logicians, notably Andrey A. Markov [17], insisted that the input
to an algorithm should be constructive, like a string or matrix, so that
you can actually write it down. This excludes abstract finite graphs for
example. How would you put an abstract graph on the Turing machine
tape? It turned out, however, that the constructive input requirement is too
restrictive. Relational databases for example represent abstract structures,
in particular graphs, and serve as inputs to important algorithms.

Remark 3.3. You can represent an abstract graph by an adjacency matrix.
But this representation is not unique. Note also that it is not known whether
there is a polynomial-time algorithm that, given two adjacency matrices,
determines whether they represent the same graph.

A characteristic property of sequential algorithms is that they change
their state only locally in any one step. Andrey N. Kolmogorov, who looked
into this problem, spoke about “steps whose complexity is bounded in ad-
vance” [16]. We prefer to speak about bounded work instead; the amount
of work done by a sequential algorithm in any one step is bounded, and the
bound depends only on the algorithm and not on the state or the input. But

6

we don’t know how to measure the complexity of a step or the work done
during a step. Fortunately we found a way around this difficulty. To this
end, we need two additional postulates.

According to the abstract state postulate, all states of the entity E are
structures (that is first-order structures) of a fixed vocabulary. If X is an
(initial) state of A and a structure Y is isomorphic to X then Y is an
(initial) state of A. The abstract state postulate allows us to introduce an
abstract notion of location and to mark locations explored by an algorithm
during a given step. The bounded exploration postulate bounds the number
of locations explored by an algorithm during any step; the bound depends
only on the algorithm and not on the state or the input. See details in [15].

Definition 3.4. A sequential algorithm is any entity that satisfies the
sequential-time, abstract-state and bounded-exploration postulates.

A sequential abstract state machine is given is by a program, a nonempty
isomorphism-closed collection of states and a nonempty isomorphism-closed
subcollection of initial states. The program determines the state transition
function.

Like a Turing machine program, a sequential ASM program describes
only one step of the ASM. It is presumed that this step is executed over
and over again. The machine halts when the execution of a step does not
change the state of the machine. The simplest sequential ASM programs
are assignments:

f(t1, . . . , tj) := t0

Here f is a j-ary dynamic function and every ti is a ground first-order term.
To execute such a program, evaluate every ti at the given state; let the
result be ai. Then set the value of f(a1, . . . , aj) to a0. Any other sequential
ASM program is constructed from assignments by means of two constructs:
if-then-else and do-in-parallel. Here is a sequential ASM program for the
Euclidean algorithm: given two natural numbers a and b, it computes their
greatest common divisor d.

Example 3.5 (Euclidean Algorithm 1).

if a = 0 then d := b
else do in-parallel

a := b mod a
b := a

7

The do-in-parallel constructs allows us to compose and execute in parallel
two or more programs. In the case when every component is an assignment,
the parallel composition can be written as a simultaneous assignment. Ex-
ample 3.5 can be rewritten as

if a = 0 then d := b
else a, b := b mod a, a

A question arises what happens if the components perform contradictory
actions in parallel, for example,

do in-parallel
x := 7
x := 11

The ASM breaks down in such a case. One can argue that there are better
solutions for such situations that guarantee that sequential ASMs do not
break down. In the case of the program above, for example, one of the two
values, 7 or 11, can be chosen in one way or another and assigned to x.
Note, however, that some sequential algorithms do break down. That is a
part of their behavior. If sequential ASMs do not ever break down, then
no sequential ASM can be behaviorally equivalent to a sequential algorithm
that does break down.

In the Euclidean algorithm, all dynamic functions are nullary. Here
is a version of the algorithm where some of dynamic functions are unary.
Initially mode = s = 0.

Example 3.6 (Euclidean Algorithm 2).

if mode = 0 then a(s), b(s), mode := Input1(s), Input2(s), 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

Theorem 3.7 (Sequential Characterization Theorem). Every sequen-
tial ASM is a sequential algorithm, and every sequential algorithm is behav-
iorally equivalent to a sequential ASM.

We turn our attention to parallel algorithms and quote from [4]: “The
term ‘parallel algorithm’ is used for a number of different notions in the
literature. We have in mind sequential-time algorithms that can exhibit
unbounded parallelism but only bounded sequentiality within a single step.
Bounded sequentiality means that there is an a priori bound on the lengths
of sequences of events within any one step of the algorithm that must occur

8

in a specified order. To distinguish this notion of parallel algorithms, we
call such parallel algorithms wide-step. Intuitively the width is the amount
of parallelism. The ‘step’ in ‘wide-step’ alludes to sequential time.” Taking
into account the bounded sequentiality of wide-step algorithms, they could
be called “wide and shallow step algorithms”.

4 Interaction

4.1 Inter-Step Interaction

One may have the impression that the algorithms of the previous section do
not interact at all with the environment during the computation. This is
not necessarily so. They do not interact with the environment during a step;
we call such algorithm isolated step algorithms. But the environment can
intervene between the steps of an algorithm. The environment preserves the
vocabulary of the state but otherwise it can change the state in any way.
It makes no difference in the proofs of the two characterization theorems
whether inter-step interaction with the environment is or is not permitted.

In particular, Euclidean Algorithm 2 could be naturally inter-step inter-
active; the functions Input1 and Input2 do not have to be given ahead of
time. Think of a machine that repeatedly applies the Euclidean algorithm
and keeps track of the number s of the current session. At the beginning
of session s, the user provides numbers Input1(s) and Input2(s), so that the
functions Input1(s) and Input2(s) are external. The inter-step interactive
character of the algorithm becomes obvious if we make the functions Input1,
Input2 nullary.

Example 4.1 (Euclidean Algorithm 3).

if mode = 0 then a(s), b(s), mode := Input1, Input2, 1
elseif mode = 1 then

if a(s) = 0 then d(s), s, mode := b(s), s+1, 0
else a(s), b(s) := b(s) mod a(s), a(s)

4.2 Intra-Step Interaction

In applications, however, much of the interaction of an algorithm with its
environment is intra-step. Consider for example an assignment

x := g(f(7))

9

where f(7) is a remote procedure call whose result is used to form another
remote procedure call. It is natural to view the assignment being done
within one step. Of course, we can break the assignment into several steps
so that interaction is inter-step but this forces us to a lower abstraction level.
Another justification of intra-step interaction is related to parallelism.

Example 4.2. This example reflects a real-world AsmL experience. To
paint a picture, an AsmL application calls an outside paint applications.
A paint agent is created, examines the picture and repeatedly calls the
algorithm back: what color for such and such detail? The AsmL application
can make two or more such paint calls in parallel. It is natural to view
parallel conversations with paint agents happening intra-step.

Proviso 4.3. In the rest of this article, we concentrate on intra-step inter-
action and ignore inter-step interaction. By default, interaction is intra-step
interaction.

4.3 The Ubiquity of Interaction

Intra-step interaction is ubiquitous. Here are some examples.

• Remote procedure calls.

• Doing the following as a part of expression evaluation: getting input,
receiving a message, printing output, sending a message, using an
oracle.

• Making nondeterministic choices among two or more alternatives.

• Creating new objects in the object-oriented and other paradigms.

The last two items require explanation. First we address nondeterminis-
tic choices. Recall that we do not consider distributed algorithms here. A
sequential-step algorithm just follows instructions and cannot nondetermin-
istically choose all by itself. But it can solicit help from the environment,
and the environment may be able to make a choice for the algorithm. For
example, to evaluate an expression

any x | x in {0, 1, 2, 3, 4, 5} where x > 1

an AsmL program computes the set {2, 3, 4, 5} and then uses an outside
pseudo-random number generator to choose an element of that set. Of
course an implementation of a nondeterministic algorithm may incorporate

10

a choosing mechanism, so that there is no choice on the level of the imple-
mentation.

Re new object creation. An object-oriented program does not have the
means necessary to create a new object all by itself: to allocate a portion
of the memory and format it appropriately. A create-a-new-object com-
mand solicits outside help. This phenomenon is not restricted to the object-
oriented paradigm. We give a non-object-oriented example. Consider an
ASM rule
import v

NewLeaf := v

that creates a new leaf say of a tree. The import command is really a query
to the environment. In the ASM paradigm, a state comes with an infinite
set of so-called reserve elements. The environment chooses such a reserve
elements and returns it as a reply to the query.

4.4 Interaction Mechanisms

One popular interaction form is exemplified by the Remote Procedure Call
(RPC) mechanism. One can think of a remote procedure call as a query to
the environment where the caller waits for a reply to its query in order to
complete a step and continue the computation. This interaction form is often
called synchronous or blocking. Another popular interaction form is message
passing. After sending a message, the sender proceeds with its computation;
this interaction form is often called asynchronous or nonblocking. The syn-
chronous/asynchronous and blocking/nonblocking terminologies may create
an impression that every atomic intra-step interaction is in one of the two
form. This is not the case. There is a spectrum of possible interaction forms.
For example, a query may require two replies: first an acknowledgment and
then an informative reply. One can think of queries with three, four or
arbitrarily many replies.

Nevertheless, according to [5], there a universal form of atomic intra-step
interaction: not-necessarily-blocking single-reply queries. In the previous
paragraph, we have already represented a remote procedure call as a query.
Sending a message can be thought of as a query that gets an immediate
automatic reply, an acknowledgment that the query has been issued. Pro-
ducing an output is similar. In fact, from the point of view of an algorithm
issuing queries, there is no principal difference between sending a message
and producing an output; in a particular application of course messages and
outputs may have distinct formats.

11

What about two-reply queries mentioned above? It takes two single-reply
queries to get two answers. Consider an algorithm A issuing a two-reply
query q and think of q as a single-reply query. When the acknowledgment
comes back, A goes to a mode where it expects an informative answer to
q. This expectation can be seen as implicitly issuing a new query q′. The
informative reply ostensibly to q is a usual reply to q′. In a similar way, one
can explain receiving a message. It may seem that the incoming message
is not provoked by any query. What query is it a reply to? An implicit
query. That implicit query manifests itself in A’s readiness to accept the
incoming message. Here is an analogy. You sleep and then wake up because
of the alarm clock buzz. Have you been expecting the buzz? In a way you
were, in an implicit sort of way. Imagine that, instead of producing a buzz,
the alarm clock quietly produces a sign “Wake up!” This will not have the
desired effect, would it?

In general we do not assume that the query issuer has to wait for a reply
to a query in order to resume its computation. More about that in § 6.

What are potential queries precisely? This question is discussed at length
in [5]. It is presumed that potential answers to a query are elements of the
state of the algorithm that issued the query, so that an answer makes sense
to the algorithm.

5 Ordinary Interactive Small-Step Algorithms

Proviso 5.1. To simplify the exposition, in the rest of the paper we speak
primarily about small-step algorithms. By default, algorithms are small-step
algorithms.

Informally speaking, an interactive algorithm is ordinary if it has the
following two properties.

• The algorithm cannot successfully complete a step while there is an
unanswered query from that step.

• The only information that the algorithm receives from the environment
during a step consists of the replies to the queries issued during the
step.

Ordinary interactive algorithms are axiomatized in [5]. Some postulates of
[5] refactor those of [15]. One of the new postulates is this:

Postulate 5.2 (Interaction Postulate). An interactive algorithm deter-
mines, for each state X, a causality relation `X between finite answer func-
tions and potential queries.

12

Here an answer function is a function from potential queries to potential
replies. An answer function α is closed under a causality relation `X if
every query caused by α or by a subfunction of α is already in the domain
of α. Minimal answer functions closed under `X are contexts at X.

As before, behaviorally equivalent algorithms do the same thing in all
circumstances. To make this precise, we need a couple of additional defini-
tions. Given a causality relation `X and an answer function α, define an
α-trace to be a sequence 〈q1, . . . , qn〉 of potential queries such that each qi

is caused by the restriction αi of α to {qj : j < k} or by some subfunction
of αi. A potential query q is reachable from α under `X if it occurs in some
α-trace. Two causality relations are equivalent if, for every answer function
α, they make the same potential queries reachable from α.

Definition 5.3. Two ordinary interactive algorithms are behaviorally equiv-
alent if

• they have the same states and initial states,

• for every state, they have equivalent causality relations, and

• for every state and context, they both fail or they both succeed and
produce the same next state.

We turn our attention to ordinary abstract state machines. Again, a
machine is given by a program, a collection of states and a subcollection of
initial states. We need only to describe programs.

The syntax of ordinary ASM programs is nearly the same as that of
isolated state algorithms, the algorithms of [15]. The crucial difference is in
the semantics of external functions. In the case of isolated step algorithms,
an invocation of an external function is treated as a usual state-location
lookup; see Euclidean Algorithm 2 or 3 in this connection. In the case of
interactive algorithms, an invocation of an external function is a query.

The new interpretation of external functions gives rise to a problem.
Suppose that you have two distinct invocations f(3) of an external function
f() in your program. Should the replies be necessarily the same? In the case
of an isolated-step program, the answer is yes. Indeed, the whole program
describes one step of an algorithm, and the state does not change during the
step. Two distinct lookups of f(3) will give you the same result. In the case
of an interactive program, the replies don’t have to be the same. Consider

Example 5.4 (Euclidean Algorithm 4).

13

if mode = 0 then a, b, mode := Input, Input, 1
elseif mode = 1 then

if a = 0 then d, mode := b, 0
else a, b := b mod a, a

The two invocations of Input are different queries that may have different
results. Furthermore, in the object-oriented paradigm, two distinct invoca-
tions of the same create-a-new-object command with the same parameters
necessarily result in two distinct objects. We use a mechanism of template
assignment to solve the problem in question [6, 7].

The study of ordinary interactive algorithms in [5, 6, 7] culminates in

Theorem 5.5 (Ordinary Interactive Characterization Theorem).
Every ordinary interactive ASM is an ordinary interactive algorithm, and
every ordinary interactive algorithm is behaviorally equivalent to an ordinary
interactive ASM.

6 General Interactive Algorithms

Call an interactive algorithm patient if it cannot finish a step without having
the replies to all queries issued during the step. While ordinary interactive
algorithms are patient, this does not apply to all interactive algorithms. The
algorithm

Example 6.1 (Impatience).

do in parallel
if α or β then x:=1
if ¬α and ¬β then x:=2

issues two Boolean queries α and β. If one of the queries returns “true”
while the other query is unanswered, then the other query can be aborted.

Call an interactive algorithm time insensitive if the only information
that it receives from the environment during a step consists of the replies
to the queries issued during the step. Ordinary algorithms are time insen-
sitive. Since our algorithms interact with the environment only by means
of queries, it is not immediately obvious what information the algorithm
can get from the environment in addition to the replies. For example, time
stamps, reflecting the times when the replies were issued, can be considered
to be parts of the replies.

14

The additional information is the order in which the replies come in.
Consider for example an automated financial broker with a block of shares
to sell and two clients bidding for the block of shares. If the bid of client 1
reaches the broker first, then the broker sells the shares to client 1, even if
client 2 happened to issue a bid a tad earlier.

An algorithm can be impatient and time sensitive at the same time.
Consider for example a one-step algorithm that issues two queries, q1 and
q2, and then does the following. If qi is answered while q2−i is not, then it
sets x to i and aborts q2−i. And if the queries are answered at the same
time, then it sets x to 0.

The following key observation allowed us to axiomatize general inter-
active algorithms. Behind any sequential-step algorithm there is a single
executor of the algorithm. In particular, it is the executor who gets query
replies from the environment, in batches, one after another. It follows that
the replies are linearly preordered according to the time or arrival. In [8], we
successfully execute the algorithm explication procedure of § 2 in the case of
general interactive algorithms.

Theorem 6.2 (Interactive Characterization Theorem). Every inter-
active ASM is an interactive algorithm, and every interactive algorithm is
behaviorally equivalent to an interactive ASM.

A variant of this theorem is proved in [9]. The twist is that, instead of
interactive algorithms, we speak about their components there.

Patient (but possibly time sensitive) interactive algorithms as well as
time insensitive (but possibly impatient) interactive algorithms are charac-
terized in [10].

These variants of the interactive characterization theorem as well as the
theorem itself are about small-step algorithms. The interactive characteri-
zation theorem is generalized to wide-step algorithms in [11].

7 Finale

The behavioral theory of small-isolated-step algorithms [15] was an after-
the-fact explanation of what those algorithms were. Small-isolated-step al-
gorithms had been studied for a long time.

The behavioral theory of wide-isolated-step algorithms was developed in
[3]. Wide-isolated-step algorithms had been studied primarily in computa-
tional complexity where a number of wide-isolated-step computation mod-
els had been known. But the class of wide-isolated-step algorithms of [3] is

15

wider. The theory was used to develop a number of tools [1], most notably
the specification language AsmL [2]. Because of the practical considerations
of industrial environment, intra-step interaction plays a considerable role in
AsmL. That helped us to realize the importance and indeed inevitability of
intra-step interaction.

The behavioral theory of intra-step interactive algorithms is developed
in [5]–[11]. While intra-step interaction is ubiquitous, it has been studied
very little if at all. We hope that the research described above will put
intra-step interaction on the map and will give rise to further advances in
specification and high-level programming of interactive algorithms.

References

[1] ASM Michigan Webpage, http://www.eecs.umich.edu/gasm/,
maintained by James K. Huggins.

[2] The AsmL webpage, http://research.microsoft.com/foundations/AsmL/.

[3] Andreas Blass and Yuri Gurevich, “Abstract state machines cap-
ture parallel algorithms,” ACM Trans. on Computational Logic,
4:4 (2003), 578–651.

[4] Andreas Blass and Yuri Gurevich, “Algorithms: A Quest for Abso-
lute Definitions,” Bull. Euro. Assoc. for Theor. Computer Science
Number 81, October 2003, pages 195–225. Reprinted in Current
Trends in Theoretical Computer Science: The Challenge of the
New Century, Vol. 2, eds. G. Paun et al., World Scientific, 2004,
283–312.

[5] Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-
Step Algorithms, I”, ACM Trans. on Computational Logic, to ap-
pear. Microsoft Research Tech. Report MSR-TR-2004-16.

[6] Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-
Step Algorithms, II”, ACM Trans. on Computational Logic, to ap-
pear. Microsoft Research Tech. Report MSR-TR-2004-88.

[7] Andreas Blass and Yuri Gurevich, “Ordinary Interactive Small-
Step Algorithms, III”, ACM Trans. on Computational Logic, to
appear. Microsoft Research Tech. Report MSR-TR-2004-88, men-
tioned above, covers this article as well; the material was split into
two pieces by the journal because of its article-length restriction.

16

[8] Andreas Blass, Yuri Gurevich, Dean Rosenzweig and Benjamin
Rossman, “General Interactive Small-Step Algorithms”, in prepa-
ration.

[9] Andreas Blass, Yuri Gurevich, Dean Rosenzweig and Benjamin
Rossman, “Composite Interactive Algorithms” (tentative title), in
preparation.

[10] Andreas Blass, Yuri Gurevich, Dean Rosenzweig and Benjamin
Rossman, “Interactive Algorithms: Impatience and Time Sensitiv-
ity” (tentative title), in preparation.

[11] Andreas Blass, Yuri Gurevich, Dean Rosenzweig and Benjamin
Rossman, “Interactive Wide-Step Algorithms”, in preparation.

[12] Egon Börger and Robert Stärk, “Abstract State Machines: A
Method for High-Level System Design and Analysis”, Springer-
Verlag, 2003.

[13] Yuri Gurevich, “Evolving Algebras: An Introductory Tutorial”,
Bull. Euro. Assoc. for Theor. Computer Science 43, February 1991,
264–284. A slightly revised version is published in Current Trends
in Theoretical Computer Science, eds. G. Rozenberg and A. Salo-
maa, World Scientific, 1993, 266-292.

[14] Yuri Gurevich, “Evolving Algebra 1993: Lipari Guide,” in Speci-
fication and Validation Methods, ed. E. Börger, Oxford University
Press, 1995, 9–36.

[15] Yuri Gurevich, “Sequential Abstract State Machines Capture Se-
quential Algorithms,” ACM Trans. on Computational Logic 1:1
(2000), 77–111.

[16] Andrey N. Kolmogorov, “On the Concept of Algorithm”, Uspekhi
Mat. Nauk 8:4 (1953), 175–176, Russian.

[17] Andrey A. Markov, “Theory of Algorithms”, Transactions of the
Steklov Institute of Mathematics, vol. 42 (1954), Russian. Trans-
lated to English by the Israel Program for Scientific Translations,
Jerusalem, 1962.

17

