Safe Concurrency for Aggregate Objects with Invariants: Soundness Proof

Bart Jacobs K. Rustan M. Leind Frank Piessefis Wolfram Schulté

°Dept. of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium
{bartj,frank }@cs.kuleuven.be

'Microsoft Research
One Microsoft Way
Redmond, WA 98052, USA
{leino,schulte }@microsoft.com

Abstract programming system ensures that each read or write of a
field is atomic, the interleavings might cause the invariant

Developing safe multithreaded software systems is diffi- to be violated. For example, consider two threads that both
cult due to the potential unwanted interference among con- perform a transfer on the same dual accounts. If one transfer
current threads. This paper presents a flexible methodol- occurs either at point O or 1 during the other transfer, then
ogy for object-oriented programs that protects object struc- the invariant is not maintained.
tures against inconsistency due to race conditions. It is In a concurrent setting, consistency of an object can be
based on a recent methodology for single-threaded pro- ensured by exclusion at a level coarser than individual reads
grams where developers define aggregate object structuresand writes. For example, while one thread updates an ob-
using an ownership system and declare invariants over ject, another is not allowed to perform any operation on the
them. The methodology is supported by a set of languageobject. In contemporary object-oriented languages, exclu-
elements and by both a sound modular static verification sion is implemented via locking.
method and run-time checking support. The paper reports Guaranteed exclusion simplifies the automatic verifica-
on preliminary experience with a prototype implementation. tion of multithreaded code greatly. It means that we can

simply split the proof of the concurrent program into a proof

for exclusion and a proof for a sequential program [24].

In this paper, we present a new programming methodol-

0 Introduction ogy for multithreaded object-oriented programs with object
invariants. The methodology not only guarantees that every
object protects itself from consistency violations, but it also
allows aggregates of objects to deflaak-proof ownership
domains These domains guarantee that only one thread at
a time can access an object of the aggregate.

The methodology achieves sound modular static verifi-
cation by requiring methods to be annotated with simple
ownership requirements; as an alternative, it also provides
run-time checking support that does not require any method
annotations. The methodology is an extension of the Spec#
methodology for sequential code, as described in our previ-

A primary aim of a reliable software system is ensur-
ing that all objects in the system mainta@ionsistenstates:
states in which all fields, and all fields of other objects on
which they depend, contain legal meaningful values. In
this paper, we formalize consistency constraintolject
invariants which are predicates over fields.

It is hard to maintain object invariants in sequential pro-
grams, and it is even harder in concurrent programs. For
example, consider the following method:

void Transfer(DualAccounts o, int amount) { ous work [3]. .
int o = o0.a; /%0%/ 0.a:= a — amount ; We see the proposed methodology as a basis for a com-
int b= o0.b; /+1%/ 0.b:= b+ amount ; prehensive approach to the specification and verification of
} multithreaded programs. In this paper, we focus on the core

safe concurrency methodology; we are also investigating
Suppose this method is to maintain the invariant that for all extensions for increased parallelism and deadlock preven-
dual accountsl: d.a + d.b = 0. In a concurrent setting, tion, but we do not consider those in this paper
this invariant can be violated in several ways. Even if the The paper proceeds as follows. The next four sections

A new object is initially mutable.
class DualAccounts {

int a, b; Packing an object takes it from a mutable state to a
invariant ¢ + 0 =0 ; consistent state, provided its invariant holds.
void Transfer(int amount)

requires inv ; Unpacking an object takes it from a consistent state to
{ a mutable state.

unpack (this) ;

int a = this.a ; this.a:= a — amount ;

A field assignment is allowed only if the target object

int b = this.b ; this.b:= b + amount : is mutable.
k (this) ; .
) pack (this) ; We formalize these rules as follows, whdvey (o) stands
} for the invariant of clas§” applied to instance.t
pack; 0o =
Figure 0. A DualAccounts class in the object assert 0 # null A —o.inv A Invr (o) ;
invariant methodology of Section 1. 0.inv — true

unpack, o =
assert o # null A 0.inv ;

gradually introduce our methodology: Section 1 introduces 0.inv — false

object invariants, Section 2 introduces confinement within

objects. Section 3 adds confinement within threads to offer of:=E
a methodology for safe concurrency of aggregate objects assert o #£ null A —0.inv ;

with invariants. In Section 4, we show how to apply our of — E

methodology to Java and C#. In Section 5, we explain how

the methodology can be enforced through static verification |n this formalization, amssert statement checks the given

and through run-time checking. Sections 6 and 7 mentioncondition and aborts program execution if the condition
related work and conclude. We include a proof of soundnessdoes not hold.

in the Appendix. Our methodology guarantees the following program in-
variant for all reachable states, for each cldss
1 Object Invariants Program Invariant 0.
We consider an object-oriented programming language (Vo: T e o.inv = Invr(o))

with classes, for example like the class in Figure 0. Each
class can declare an invariant, which is a predicate on the Here and throughout, quantifications are over non-null
fields of an object of the class. allocated objects.

To allow a program temporarily to violate an object’s in-
variant, the Boogie methodology [3] introduces into each
object an auxiliary boolean field callédv.’ We say that an
objecto is consistentf o.inv = true, otherwise we say the] o)
object ismutable Only in the mutable state is the object's Consider the clasgccount in Figure 1, which uses an
invariant allowed to be violated. Thew field can be men- [ntList object to represent the history of all deposits ever
tioned in method contractsé., pre- and postconditions). It made to a bank account. A bank account also holds the
cannot be mentioned in invariants or in program code. The currentbalance, whichis the same as the sum of the deposits
inv field can be changed only by two special statements,reFordeq in the hlstory, as is captured by the invariant. In
unpack andpack. These statements delineate the scope thiS section, we introduce measures that alldwcount’s
in which an object is allowed to enter a state where its in- invariant to mention fields ofiist.

2 Confinement within Objects

variant does not hold. We say anAccount object is anaggregate its part
The rules for maintaining object invariants are as fol- IS the object referenced through the figidst. Part ob-
lows: jects are also known aepresentation objectsWe qualify

OThe Boogie methodology also deals with subclasses, but for brevity ~ 1The restrictions ow.inv in the preconditions opack andunpack
we here consider only classes without inheritance. Extending what we sayare not necessary for soundness, but omitting them would not enable more
to subclasses is straightforward. use cases and the stricter rules are helpful to readers of annotated programs.

the fields markedtep in classT.
class Account {

rep IntList hist := new IntList() ; unpacky 0o =
int bal:=0; assert o # null A\ o.owner = null A o.inv ;
invariant bal = ", (. hist.elems]i] ; 0.inv « false ;
nOstshst count foreach (f € RepFieldst where o.f # null)
void Deposit(int amount) { o.f.owner « null ; }
requires o.owner = null A inv ; _
(packr o =

assert o # null A =o.inv A Invr(0) ;

foreach (f € RepFieldsy where o.f # null)
{ assert o.f.inv A o.f.owner = null ; }

foreach (f € RepFieldst where o.f # null)
{o.f.ouner—o; }

unpack (this) ;
hist.Add(amount) ;
bal := bal + amount ;
pack (this) ;

) 1 0.1nv «— true
For illustration purposes, let us inspect a trace of the in-
. . _ vocationacct. Deposit(100) for a non-null Account object
Figure 1. An example illustrating the aggre- acct that satisfies the precondition @feposit, where we
gate objects methodology of Section 2. focus only on the involvednv and owner fields of the in-

volved objects. FirstDeposit unpacksacct: acct is made

mutable,hist is made free. Nextddd is called, which first

unpackshist and makes it mutable. Next, the updates hap-
fields holding representation objects withrep modifier pen. On return from theldd method,hist is packed again:
(cf.[23]).2 the invariant ofhist is checked andist is made consistent.

A part is said to bdeakedif it is accessible outside the ~Finally, the Deposit method packsicct: the invariant of
aggregate. In a sequential setting, leaking is not considered?cct iS checkedacct is made consistent, aridst is sealed.

harmful, as long as the parts are leaked only for reading [22,And that's exactly our pre-state restrictedit@ andowner
3], fields of the objects in the ownership domain.

Generalizing from this example, we observe that the

An aggregateownsits parts. Object ownership, here o4 qq010gy ensures the following program invariant, for
technically defined viarep fields, establishes a hierarchy each clasg™

among obj_ects._ Invariants apd ownership are related as f0|'Program Invariant 1.
lows: the invariant of an objeat can depend only on the

fields of o and on the fields of objects reachable frorby (Vo: T e o.inv = Invr(o)) A

dereferencing onlyep fields. (We don’t allow an invariant (Vf € RepFieldsp,0: T o

to mention any quantification over objects.) 0.inv => o.f = null V o.f.owner = 0) A
To formulate ownership properly, we introduce for each (Vo: T e o.owner # null = o.inv)

object anowner field. Like inv, the owner field cannot

be mentioned in program code. We say an objeistfree 3 Confinement within Threads

if o.owner = null. An object issealedif it has a non-

null owner object. Th@wnership domaiwf an objecto is In this section, we combine the object ownership scheme
the set collecting and all objects thad transitively owns. of the previous section with a simple notion @ivnership
The rules forpack and unpack enforce that ownership of an object by a threadto achieve confinement within
domains are packed and unpacked only according to theirthreads.
order in the ownership hierarchy. Furthermopack and We assume that the execution platform provides a prim-
unpack change the ownership of representation objects asitive synchronization construct, in the form 8f) and V()
described by the following rules, which extend the ones operations on objects, whef() and V() are the classic
given earlief We use the functiorRepFieldst to denote semaphore operations. We assume that the semaphores are
initialized at object creation time to a closed state. & P()
operation will block). In Java and C#, the platform primi-

| %A Claslsd mfly alio h?ve nC:feP fields. f_Fti(fj exa_mpleyt hﬂLmkecllList . tive synchronization constructs are based on monitors, but
e e e, o1ee 152 fafs'® i easy lo mplemenP() and V() ontop of these.
LinkedList itself. In the object ownership scheme above, objects are ei-

3This is a slightly different use of thewner field than in [20]. ther part of an aggregate object or they are free, and if they

are free it means they do not have any owner. For mod-
ular verification of multithreaded code, we now refine this
scheme again. We say that an object can eithdrdze it
can beowned by an aggregate objear it can beowned
by a thread Correspondingly, the owner field isull, an
object, or a thread.

To support sequential reasoning about field accesses, we
require a thread to have exclusive access to the fields during

o created by
thread t

o modified
by thread t

o free and
consistent

o released by
thread t

o owned by
thread t and
mutable

o acquired

by thread t
o unpacked

by thread t

o packed
by thread t

the execution of the program fragment to which the sequen-
tial reasoning applies. We require a thread to transitively
own an object whenever it accesses,, reads or writes,
one of its fields. Since no two threads can transitively own
the same object concurrently, this guarantees exclusion.

The rules for ownership of objects by threads are as fol-
lows:

thread t packs
object pand p.f =0
and fis a rep field

o owned by

thread t and
consistent

0 owned by
object p and
consistent
and sealed

thread t
unpacks o's
owner p

¢ A thread owns any object that it creates, and the new

objectis initially mutable. Figure 2. Object lifecycle for an arbitrary ob-

e A thread can additionally attempt tazquire any ob- ject o.
ject. This operation will block until the object is free.
At that point, we know that the object is consistent and
the thread gains ownership of the object.
e A thread can relinquish ownership of a consistent ob- Legal[z] true

ject using therel statement. =
J 9 clease Legal] opy, (Eo, - .., Ex-1)] = /\0§i<k Legal[E;]

e A thread that owns a consistent aggregate object can Legal[E.g] = Confined[E]

gain ownership of its sealed representation objects by
unpacking the aggregate object using thepack
statement. This transfers ownership of the represen-

Confined[E] = Legal[E] N E # null A
(E.owner = tid vV
((E has the formE’.f) A E’.inv A f iSrep))

tation objects from the aggregate object to the thread.]
Now let us extend our running example, so that we can

e A thread can, via pack statement, transfer owner- verify it in a multithreaded environment. We have to make
ship of a consistent object that it owns to an aggregatesure thatdccount objects are accessed only when they are
object. owned by the current thread. Figurtilustrates two ways

]) N to achieve this, known adient-side lockingand provider-

» Athread can perform a field assignmentonly ifitowns gjqe |ocking Client-side locking, exemplified by method
the target object and the target object is mutable. Deposit, means that responsibility of exclusion is relegated

to the client. We indicate this by including the requirement

owner = tid in the precondition. A program is allowed to
ﬁnention theowner field only in the formo.owner = tid

and only in method contracts.

The Transaction method is a case of provider-side lock-
ing. The method has no precondition, which means the
client has no obligations. There is a drawback to provider-

These rules are an extension of the rules presented irside locking, however. Whereas methbéposit can guar-
the previous section. They give rise to the object lifecycle antee that the caller will find the account’s balance increased
shown in Figure 2. Fully spelled out, they are formalized by amount after the method returns, methddansaction
as given in Figure 3, where we denote the currently exe-can provide no such guarantee, since by the time the caller
cuting thread bytid. The operations use th() and V() inspects the balance (and before it can do this, it must ac-
semaphore operations to synchronize access todher
field; also, the invariant is maintained that whenever the . 'he postcondition does not repeatner = tid A inv because this

’ T . . is implied by the default modifies clause, which effectively says that only
semaphore is in the open state, thener field is null. The

ek i : the user-declared fields ohis (but notinv or owner) and the fields of
definitions uselegal[E], which is defined as follows: transitively owned or newly allocated objects may change (see [3]).

e Athread canread a field only if it transitively owns the
target object. We actually enforce this rule by a slightly
stricter rule: a thread can evaluate an access expressio
o.g only if it owns o, and an expression.f;. - - - .f,.g
only if it owns o, o is consistent, and eaghis arep
field.

pack; 0o =

assert o # null A o.owner = tid A —o.inv ;

foreach (f € RepFieldst where o.f # null)
{ assert o.f.owner = tid A o.f.inv ; }

assert Invr (o) ;

foreach (f € RepFieldst where o.f # null)
{o.f.ouner—o; }

0.1nV «— true ;

unpack, o =
assert o £ null A o.owner = tid A o.inv ;
0.1V — false ;
foreach (f € RepFieldst where o.f # null)
{ o.f.owner —tid ; }

class Account {
rep IntList hist := new IntList() ;
int bal:=0;

invariant bal = Y hist.elems]i] ;

i: 0<i<hist.count
void Deposit(int amount)
requires owner = tid A inv ;
ensures bal = old(bal) + amount ;
{
unpack (this) ;
hist.Add(amount) ;
bal := bal + amount ;
pack (this) ;
}

acquire o = void Transaction(int amount) {
assert o # null ; acquire (this) ;
0.P(); Deposit(amount) ;
o.owner « tid ; release (this) ;
}
release o = }

assert o £ null A o.owner = tid A o.inv ;

o.owner < null; . .
0.V(); Figure 4. Account example, modified for the

multithreaded methodology of Section 3.

of =z =
assert o # null A o.owner = tid A —o.inv ;
o.f — v .
4 Application to Java and C#
r=F =
assert Legal[F] ;)) o
e B In this section, we look at the application of our method-

ology to the popular concurrent object-oriented program-
ming languages Java and C#.

Figure 3. Confinement within threads Clearly, theacquire and release operations are se-

mantically different from entering and exiting a synchro-

quire the account) other threads may have performed fur-Nized block. Hence, there are essen'FiaIIy two ways to.apply
ther transactions. Therefore, client-side locking is generally ©Ur @pproach to Java and C#: by using semaphores instead
preferable. In any case, our methodology ensures that eithePf Synchronized blocks (Section 4.0) or by modifying the
the client or the provider performs the necessary locking. Methodology (Section 4.1). Finally, in Section 4.2, we dis-
Also, our methodology requires that preconditions and post- €USS Important memory consistency issues.
conditions perform only legal field accesses, which would
for example prevent metho@ransaction from declaring
the postconditiorbal = old(bal) + amount.

Our methodology ensures the following program invari-
ant, for each clas§’:

4.0 Using semaphores

Perhaps the most powerful option is to use some
Program Invariant 2. semaphore implementation. Acquiring an objeatvould
correspond to performing & operation on the semaphore
object associated with objeot The latter association can
(Vf € RepFicldsr, 0: T o be achieved using.g.a hash table, or, depending on plat-

0.inv == o0.f = null V o.f.owner = o) A form constraints, more efficient methods, such as merging
(Vo: T e o.owner & thread = o.inv) the semaphore implementation into cla¥sect.

(Vo: T e o.inv = Invr(o)) A

4.1 Unshared Objects

In this subsection, we present a modified methodology
that maps directly to the Jaggnchronized statement and
the equivalent C#ock statement.

In the methodology of Section 3, as soon as an object ref-
erence is leaked from its creating threatt another thread
u, u May attempt to acquire the object. It will block until
has finished its initialization and releases the object. In Java
and C#, however, objects are initially free, so an attempt by
u to acquire the object would succeed, causing it to interfere
with the object’s initialization.

In the modified methodology presented in this subsec-
tion, we protect the initial ownership of an object by its cre-
ating thread, by disallowing that other threads even attempt
to acquire an object until its creating thread releases own-
ership of it. Specifically, we distinguish objects that have

never been released from objects that have been released at

least once. We call the former thumsharedstate, and the
latter thesharedstate.

An object indicates its state through a new boolean
shared field. Itis initialized tofalse when the object is cre-
ated, and it becomesue upon the initial release of the ob-
ject. Before attempting to acquire an object, a thread must
first check theshared field, and only if the field igrue is the
thread allowed to proceed. A thread is allowed to update the
shared field only through the newhare command, which
sets ittotrue. Itfollows that ashared flag, once set, is never
cleared again. A thread uses this command for the initial re-
lease of an object. There are no restrictions on reading the
field in program code. However, in object invariants and
method contracts, a field shared may be mentioned in an
assertionQ(o.shared) only if Q(false) implies Q(true),
so that the predicate is invariant under updates oftlaeed
field.

In the absence of special measures, this system would
suffer from a data race between a thread that sets an ob-
ject’s shared field and a thread that checks it. The practical
effect of this would be that even after a thread successfully
acquired an object, it would not necessarily see the initial-
izations performed on the object. To avoid this problem, we
declare theshared field asvolatile.

Another feature of the Jaw@ynchronized statement

pack; o =
assert o # null A\ o.owner = tid A —o.inv ;
assert Legal[Invr(0)] A Invy (o) ;
foreach (f € RepFieldsy where o.f # null) {
assert o.f.owner = tid A o.f.inv ;
assert —o.f.shared ;

foreach (f € RepFieldst where o.f # null)
{o.f.ouner—o; }
0.1V «+— true ;

share o =
assert o # null A o.owner = tid A 0.inv ;
assert —o.shared ;
o.owner < null ;
o.shared < true

acquire o =
assert o # null A\ o.shared N o.owner # tid ;
monitorenter o ;
o.owner « tid

release 0 =
assert o # null A o.owner = tid A 0.inv ;
assert o.shared ;
o.owner < null ;
monitorexit o

synchronizex (0) S =
assert o # null A o.shared N\ o.owner # tid ;
synchronize (o) {
o.owner + tid ;
N
assert o.owner = tid A o.inv ;
o.owner < null ;

}

Figure 5. The modified methodology

ments and the newhare statement are defined formally
in Figure 5. Theacquire andrelease statements now

that necessitates the methodology to be adapted is the fadtse the Javamonitorenter and monitorexit byte-

that it isre-entrant This is significant since aficquire o
statement sets.owner <+ tid . Without further adapta-

code instructions instead of thfe() and V() instructions.
monitorenter andmonitorexit correspond to entering

tions, unsoundness could be obtained by acquiring an ob-and exiting asynchronized block. In the same figure
ject, packing it into some other object, and then acquiring it we also define theynchronized+ statement, which com-
again. We render re-entrancy impossible by (a) not allow- bines the modifiedcquire andrelease statements. Apart
ing shared objects to become owned by other objects, androm the additional checks that help enforce the data-race-

(b) asserting thab.owner # tid as part of aracquire o
operation.
The modifiedpack, , acquire and release state-

freedom and the object invariants, this statement is equiva-
lent to a regulasynchronized statement.

The statements in Figure 5, combined with the state-

ments in Figure 3 that remain unchanged, can now be usedoo weak for programmers and too strong for implementers
to annotate a plain Java program. Two methods can then b§25]. Recently, an attempt was made to fix Java’s memory
used to verify that the annotated program complies with the model for the third edition of the Java Language Specifi-
methodology: cation (JLS3) [14]. We designed our methodology to be
o i sound under the memory model of JLS3. Specifically, in

e The auxiliaryinv, owner, andshared fields, the as- o, soundness proof, we assume a property called DRFO

signme_nts to those fields, and thesert stater_ne_nts [2], which is guaranteed explicitly by JLS3 [14, 21].
are emitted as part of the program. When this instru-

mented program is run, each execution either compliesProperty 0 (DRFO). If a program is correctly synchronized,
with the methodology or is aborted immediately when then all executions are sequentially consistent.

a violation is detected. . . -
This property depends on the following definition:

e The program, including the auxiliary fields, assign-
ments, andassert statements are translated into the
language of a theorem prover for sequential programs.
Additional constructs are inserted atquire state-
ments to make sure the theorem prover does not as- Thjs definition can be rephrased as follows:
sume anything about the state of the acquired aggre-
gate object, other than that its object invariant holds. Property 1. A program is correctly synchronized iff there
The verifier is then executed on the program. If verifi- is no sequentially consistent execution that includes two ad-
cation succeeds, all auxiliary fields, assignments, andjacent accesses of the same field by different threads, where
assert statements are removed from the program. All at least one access is a write.
executions of the stripped program are known to com-
ply with the methodology and therefore to be data-
race-free and to maintain their object invariants.

Definition 0 (Correctly Synchronized)A program is cor-
rectly synchronized iff all sequentially consistent executions
are data-race-free.

We conclude that, in order to obtain results that are sound
for Java, we are permitted to assume an interleaving se-
mantics, provided that we prove the absence of data races.
(And we may assume an interleaving semantics for the lat-

4.2 Memory Consistency ter proof.)

When multiple threads access shared memory, the ques-)
tion arises of how writes performed by one thread affectthe © Enforcing the Methodology
values yielded by reads performed by another thread. This
is known as memory consistency. The reality of an ever 5.0 Static Verification
growing gap between the speed of processors on the one
hand and memory on the other hand has given rise to code The methodology guarantees that Program Invariant 2
transformations by compilers and processors and multipleholds in each state. This invariant can therefore be assumed
levels of memory caches, to reduce the number of accesseby a static program verifier at any point in the program.
to main memory. As a result, programmers cannot assume The absence of data races implies that the values read by
the most intuitive memory consistency model, known as se-a thread are stable with respect to other threads. That is,
guential consistency, where there is a single total order onas long as an object remains in the thread’s ownership do-
the field accesses performed by all threads, such that eacimain, the fields of the object are controlled exactly in the
read operation yields the value written by the most recentsame way that fields of objects are controlled in a sequen-
preceding write operation. This is exactly the requirement tial program. Therefore, static verification proceeds as for a
for using aninterleaving semanti¢cavhere operations per- sequential program.
formed by threads are seen as transitions from one global For objects outside the thread’s ownership domain, all
state to another, and where a global state includes a singldets are off (as we alluded to in the discussion of the
global heap that determines the value yielded by a read op-Transaction method in Figure 4). But since a thread cannot
eration. read fields of such objects, static verification is unaffected
The challenge faced by a programming language de-by the values of those fields.
signer is to devise a memory consistency model which can When an objecb enters a thread’s ownership domain,
be implemented efficiently on existing hardware on the one we know that the invariants of all objects s owner-
hand, and which is easy for programmers to reason about orship domain hold. In particular, due to our non-reentrant
the other hand. This challenge was taken up in the first edi-acquire statement and the third component of Program In-
tion of the Java Language Specification [13], but the mem- variant 2, we have.inv. To model the intervention of other
ory model specified there has since been shown to be bottthreads between exclusive regions, a static verifier plays

havoc on (e. forgets all knowledge about) the fields of all objects and thread identifiers (which in Java are references

objects ino’s ownership domain after eacttquire o op- to objects of class Thread) in a single field is ambiguous in

eration. The static verifier can then assuméw. By re- principle, but this ambiguity can be resolved by requiring

peated applications of the second and third components othat Thread objects have mep fields.

Program Invariant 2, the verifier infegsinv for all other

objectsp in the ownership domain of. Thus, by the first 5.2 Preliminary Experience

component, the verifier infers that the invariants of all of

these objects hold. We have implemented our methodology as an extension
As will be described below, to check our methodology to the compiler and the static verifier of the Spec# pro-

at run time, we only need to check the assertions prescribedgramming language research project [4, 29] developed at

in Section 3. However, to reason modularly about a pro- Microsoft Research. Spec# extends C# with method con-

gram, as in static modular verification, one needs methodtracts, non-null types, checked exceptions, and other relia-

contracts. We have already seen examples of pre- and posthility features.

conditions, but method contracts also need to incimdel- We have applied our methodology to a few small test
ifies clauseswhich frame the possible effects a method can programs and verified them using both run-time checking
have within the thread’s ownership domain, see [3]. and static verification. The annotation overhead is reason-

The flexibility of our ownership system compared to able.
ownership type systems such as [6] might seem to make We are working to extend the toolset with additional fea-
it unrealistic to hope to be able to statically verify programs tures, such as support for arrays and specifications for the
written in this system. However, to the extent that the own- system libraries, so as to be able to gain experience with
ership types of these type systems can be encoded as agarger, more realistic programs.
sertions on thewner field in our system, which definitely
seems to be the case, the verification power of our systemg Related Work
is in fact strictly greater than that of these type systems, due

to our use of a general-purpose theorem prover, as opposed The Extended Static Checkers for Modula-3 [8] and for

to atype checker with a fixed set of |n.ference rules. In fa(.:t’ Java [10] attempt to statically find errors in object-oriented
our system can be used as a very flexible system for proving

just the absence of data races, by not declaring any objeCprograms. These tools include support for the prevention of
invariants ’ data races and deadlocks. For each field, a programmer can

designate which lock protects it. However, these two tools
. . trade soundness for ease of use; for example, they do not
5.1 Run-Time Checking take into consideration the effects of other threads between
regions of exclusion. Moreover, various engineering trade-
Our methodology supports both static verification and offs in the tools notwithstanding, the methodology used by
run-time checking. The advantage of static verification the tools was never formalized enough to allow a soundness
is that it decides the correctness of the program for all proof.
possible executions, whereas run-time checking decides Method specifications in our methodology pertain only
whether the running execution complies with the methodol- to the pre-state and post-state of method calls. Some sys-
ogy. The disadvantage of static verification is that it requires tems [26, 12] additionally support specification and ver-
method contracts, including preconditions, postconditions, ification of the atomic transactions performed during a
and modifies clauses, whereas run-time checking does not.method call. We focus on verification of object invariants,
If a program has been found to be correct through sta-which does not require such specifications.
tic verification, no run-time checks would ever fail and they A number of type systems have been proposed that pre-
can be omitted. When running a program without run-time vent data races in object-oriented programs. For example,
checks, the only run-time cost imposed by our methodology Boyapatiet al. [6] parameterize classes by the protection
is the implementation of the semaphore operations; none ofmechanism that will protect their objects against data races.
the fields or other data structures introduced by our method-The type system supports thread-local objects, objects pro-
ology need to be present, and none ofdksert statements tected by a lock (its own lock or its root owner’s lock), read-
need to be executed. In particular, theck andunpack only objects, and unique pointers. However, the ownership
statements become no-ops. relationship that relates objects to their protection mecha-
For run-time checking, two fields, th@v field and the nism is fixed. Also, the type system does not support object
owner field, need to be inserted into each object. Checking invariants.
o.owner = tid does introduce a data race, but thisis a Quite similar to ours is the methodology used by Vault
benign one in both Java and C#. Storing both references td(cf. [7]), which can be applied in a concurrent setting. In

Vault, linear types guarantee that objects are owned by awritten.

single thread only. Theack andunpack operations are Abraram-Mummet al. [1] propose an assertional proof
implicit in Vault. Theacquire operation is not supported, system for Java’s reentrant monitors. It supports object in-
because the object to be acquired may have been deletedjariants, but these can depend only on the fieldhdd. No
however, it would be possible to add thelease acquire claim of modular verification is made.

operation pair to a version of Vault for a garbage-collected The rules in our methodology that an object must be con-
language. Vault's methodology is enforced by a static type sistent when it is released, and that it can be assumed to be
system, which has advantages but limits its supported in-consistent when it is acquired, are taken from Hoare's work
variants. For example, Vault supports neither general pred-on monitors and monitor invariants [15].

icates on the fields of an object nor relations on the fields of ~ There are also tools that try dynamically to detect viola-
more than one object in an aggregate. tions of safe concurrency. A notable example is Eraser [28].

We enable sequential reasoning and ensure consistenc? finds data races by looking for locking-discipline vio-
of aggregate objects by preventing data races. Some aulations. Thg tool has been effective in practice, but does
thors propose pursuing a different property, catiomic- not come with guarantees about the completeness nor the
ity, either through dynamic checking [9] or by way of a type Soundness of the method.

system [11]. An atomic method can be reasoned about se- 1 Ne basic object-invariant methodology that we have
quentially. However, we enable sequential reasoning evenPUilt on [3] has also been extended in other ways for se-
for non-atomic methods, by assuming only the object in- quential programs [20, 5, 19]. .

variant for a newly acquired object (see Section 5.0). Also, [N the straightforward implementation proposed in this
in [11] the authors claim that data-race-freedom is unneces-Paper, mutual exclusion is achieved through coarse-grained
sary for sequential reasoning. It is true that some data racedocking. However, the methodology allows one to use other
are benign, even in the Java and C# memory models; how_semqntlcally equ.|valent techmgues that may pe more ap-
ever, the data races allowed in [11] are generally not benignPropriate for particular contention patterns, while preserv-
in these memory models; indeed, the authors prove sounding the same reasoning framework and safety guarantees.
ness only for sequentially consistent systems, whereas wd>ossible alternatives include fine-grained locking of the ob-

prove soundness for the Java memory model, which is conJ€cts within an ownership domain, or a form of optimistic
siderably weaker. concurrency, such as transactional monitors [30].

Another effort based on atomicity, and perhaps the most .
closely related work to ours is the work on extending the / Conclusions
Java Modeling Language to support multithreaded pro-
grams [27]. As in our methodology, there is support for ~ Our new sound, modular, and simple locking methodol-
object invariants and aggregate objects. A distinction is thatogy helps in defining leak-proof ownership domains. Sev-
[27] advocates marking methodsa@&®micor independent eral aspects of this new approach are noteworthy. First, it
Both annotations imply that the method can be reasonedallows one to obtain data-race-freedom through sequential
about as if it was executing in isolation. We are not inclined reasoning. Due to the necessary preconditions for reading
to adopt similar features, since we feel that these propertiesand writing, only one thread at a time can access the objects
do not abstract away sufficiently the non-observable inter- of an ownership domain. Second, the owner of an object
nal behavior of the method. For example, a call to a sorting can change over time. In particular, an object may move
routine of a private data structure is not atomic if the im- between ownership domains. Third, our methodology can
plementation of the sorting routine is done in parallel using be efficient; it requires only one lock acquisition per own-
multiple threads, an implementation decision of the sorting ership domain, even when the domain consists of many ob-
routine that we would rather not have impacting the rea- jects. Further, at run time, we only need to keep track of
soning of the caller. We allow sequential reasoning abouta bit per object that says whether or not the corresponding
methods and method calls without restricting internal lock- semaphore is open or closéa. whether the object is free
ing behavior, by weakening the proof rules appropriately on the one hand, or owned by a thread or another object on
(see Section 5.0). Another distinction is the type of owner- the other hand.
ship system used. The type system used by [27] has a fixed We have implemented support for this methodology as
notion of where objects are packed and unpacked (to usean extension of Spec#, which is itself an extension of C#
our terminology), whereas our theorem prover-based sys-with contracts [4]. Spec# performs both run-time checking
tem allows more flexibility. A general observation is that and static verification.
[27] seems to strive to be able to verify as many existing Much more work remains to be done. One important
programs as possible, whereas our aim is rather to develorea of work is the assessment and optimization of the effi-
a methodology that prescribes how new programs should beciency of both static verification and run-time checking on

realistic examples. Also, we have begun extending the ap-12]
proach to deal with other design patterns, like traversals,
wait and notification, condition variables, multiple reader
writers, fine-grained lockinggtc. In fact, our ambition is

to cover many of the design patterns described by Doug
Lea [18]. Another area of future work is the treatment of [14]
liveness properties, such as deadlock freedom.

Since our methodology is an extension of an object- [15]
invariant methodology for sequential programs, it would be
interesting to automatically infer for given sequential pro- [16]
grams the additional contracts necessary for concurrency.

Acknowledgments We thank Manuel &hndrich, Tony
Hoare, and the members of the Boogie team for insight-
ful remarks and suggestions. We are also grateful for thel?
feedback we received from presenting a previous version of
this paper at the SAVCBS workshop [17]. Bart Jacobs is a
Research Assistant of the Research Foundation - Flanders
(FWO - Vlaanderen).

(13]

7]

(18]

References (19]

Erika Abraram-Mumm, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. Verification for Java’s reentrant multithread-
ing concept. IFF0SSaCS 20QZolume 2303 oLNCS pages 5-20.
Springer, April 2002.

Sarita V. Adve and Mark D. Hill. Weak ordering—a new definition.
In ICSA 1990Qpages 2—-14. IEEE Computer Society Press, June 1990.

Mike Barnett, Robert DeLine, Manueldhndrich, K. Rustan M.
Leino, and Wolfram Schulte. Verification of object-oriented pro-
grams with invariants.Journal of Object Technologyd(6):27-56,
2004.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. BASSISvolume 3362 of
LNCS Springer, 2004.

Mike Barnett and David Naumann. Friends need a bit more: Main-
taining invariants over shared state. In Dexter Kozen, ediathe-
matics of Program ConstructiphNCS, pages 54—84. Springer, July
2004.

Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: Preventing data races and deadlocks. In[26]
OOPSLA 2002volume 37, number 11 iSIGPLAN Noticespages
211-230. ACM, November 2002.

Robert DeLine and Manueld&hndrich. Enforcing high-level proto-
cols in low-level software. IiPLDI 2001, volume 36, number 5 in
SIGPLAN Noticespages 59-69. ACM, May 2001.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B.
Saxe. Extended static checking. Research Report 159, Compaq Sys-
tems Research Center, December 1998. [2

(1]
(20]

(2] (21]
(3]
(22]

[4] [23]

(5] [24]

(25]
(6]

[[27]

(8]

[9] Cormac Flanagan and Stephen N. Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. A®PL 2004 vol-
ume 39, number 1 iBIGPLAN Noticespages 256-267. ACM, Jan-

uary 2004.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended static checkindzg]
for Java. InPLDI 2002 volume 37, number 5 iSIGPLAN Notices
pages 234-245. ACM, May 2002.

Cormac Flanagan and Shaz Qadeer. A type and effect system for
atomicity. InPLDI 2003 pages 338—-349. ACM, 2003.

(20]

(30]
(11]

10

Stephen N. Freund and Shaz Qadeer. Checking concise specifications
for multithreaded softwareJournal of Object Technolog(6):81—
101, June 2004.

James Gosling, Bill Joy, and Guy Steeléhe Java Language Speci-
fication Addison-Wesley, 1996.

James Gosling, Bill Joy, Guy Steele, and Gilad Brachihe Java
Language Specification (3rd EditianAddison-Wesley, 2005.

C. A. R. Hoare. Monitors: An operating system structuring concept.
Communications of the ACM7(10):549-557, October 1974.

Bart Jacobs, K. Rustan M. Leino, Frank Piessens, and Wolfram
Schulte. Safe concurrency for aggregate objects with invariants:
Soundness proof. Technical Report MSR-TR-2005-85, Microsoft
Research, June 2005.

Bart Jacobs, K. Rustan M. Leino, and Wolfram Schulte. Verification
of multithreaded object-oriented programs with invariants. In Mike
Barnett, Stephen H. Edwards, Dimitra Giannakopoulou, Gary T.
Leavens, and Natasha Sharygina, edit&AyYCBS 2004 Workshop
Proceedings 2004. Technical Report 04-09, Computer Science,
lowa State University.

Doug Lea.Concurrent Programming in Jav&ddison Wesley, 2000.

K. Rustan M. Leino and Peterdler. Modular verification of global
module invariants in object-oriented programs. Technical Report
459, ETH Zirich, 2004.

K. Rustan M. Leino and Peter iller. Object invariants in dynamic
contexts. In Martin Odersky, editdECOOP 2004 volume 3086 of
LNCS pages 491-516. Springer-Verlag, 2004.

Jeremy Manson, William Pugh, and Sarita Adve. The Java Memory
Model. InPOPL 2005 volume 40, number 1 iSIGPLAN Notices
pages 378-391. ACM, January 2005.

Peter Miller. Modular Specification and Verification of Object-
Oriented Programsvolume 2262 oLNCS Springer-Verlag, 2002.
PhD thesis, FernUniversit Hagen.

James Noble, Jan Vitek, and John Potter. Flexible alias protection. In
Eric Jul, editor ECOOP’98 volume 1445 oL NCS pages 158-185.
Springer, July 1998.

S. S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs.Acta Informatica 6:319-340, 1976.

William Pugh. Fixing the Java memory model. ACM Java Grande
ConferenceJune 1999.

Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing
procedures in concurrent programsP@PL 2004 volume 39, num-
ber 1 inSIGPLAN Noticespages 245-255. ACM, January 2004.

Edwin Rodiguez, Matthew Dwyer, Cormac Flanagan, John Hat-
cliff, Gary T. Leavens, and Robby. Extending sequential specifica-
tion techniques for modular specification and verification of multi-
threaded programs. BCOOP 2005July 2005. To appear.

] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,

and Thomas E. Anderson. Eraser: A dynamic data race detector for
multi-threaded programs#ACM Transactions on Computer Systems
15(4):391-411, November 1997. Also appearBiioceedings of the
Sixteenth ACM Symposium on Operating System Principges
27-37, Operating System Review 31(5), 1997.

Spect# project web page. URL:
http://research.microsoft.com/specsharp/.

Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Trans-
actional monitors for concurrent objects. BECOOP 2004 volume
3086 ofLNCS June 2004.

Appendix. Soundness proof

In this appendix we re-introduce our multithreading
methodology in two steps, proving a number of properties
after each step. The end result is a definition and a proof of
a data-race-free methodology for sequential reasoning and
enforcement of object invariants. Subsequently, we explain
how the methodology in the paper is a refactoring of this
latter methodology, that introduces the benign data races on
the owner fields, in exchange for a simpler formulation.

Throughout the proof, we use aémerleaving semantics
This is permitted under the Java memory model, provided
that we prove data-race-freedom. (See Section 4.2.) We do
so in Lemma 1.

In Section A.0, we introduce an abstract execution model
where a thread’s interaction with the heap is represented as
a manipulation of tree structures defined by an ownership
relation between objects. The structure ensures mutual ex-
clusion.

In Section A.1, we build on this execution model to de-
fine a programming methodology that, in addition to mutual
exclusion, provides enforcement of object invariants.

A.0. Mutual exclusion

The object ownership scheme of Section 2 with the
andowner fields structures the heap as a forest, where each
tree is the ownership domain of the root object of that tree,
and where root objects are free. We show in this subsec-
tion how this structure can be exploited to provide mutual
exclusion on ownership domains. The basic idea is to im-
pose some constraints on the interaction of threads with the

heap, that ensure that threads can gain exclusive access to

an ownership domain by acquiring a semaphore on the root
object of that domain.
Every thread maintains a thread-local set of object ref-

primacquire o
0.P();

tid . Owns.Add(0)

primrelease o
assertx o € tid . Owns;
tid . Owns.Remove(0);

0.V()

disconnect o
assertx o € tid .Owns A o € tid . TransOwns;
o.owner = null;
tid .Owns.Add (o)

connect (0,z) =
assert* o € tid .Owns A z € tid .Owns A 0 # z;
x.owner = o,
tid . Owns. Remove(x)

Creation of a new object=
z =new C();
tid . Owns.Add(x)

Reading afiel of o (with f # owner) =
assertx o € tid . TransOwns;
z— o.f

Writing a fieldf of o (with f # owner) =

assertx o € tid . TransOwns;
o.f — v

Figure 6. Primitive operations

state.

We assume that theew operator initializes the per ob-
ject owner field to null. Note that each of these operations
can be considered to be atomic: they perform one atomic
operation on the shared heap, and some thread local state
update.

Now, consider a system consisting of a number of

erenceg. Owns. Think of t. Owns as the set of root objects
in the ownership forest thathas exclusive access to. We
say the thread owns the objectstiwns.

For any given system stateq. state of the heap, and
thread local state for all threads), and for a given thread

:‘;g%ﬁ)i\;?gﬁtifé gransgg[nbs dfiﬂg:;iithiivseergg objects threads interacting with a shared object heap by perform-
wns y 9 WNer — ing the seven atomic operations defined above.

references. We say the thread transitively owns these ob- The intuition underlying the atomic operations is as fol-

JecItz'the previous section, an object is considered to be freelows' AS ment_|oned before, the heap is seen as a for-
. i RO ;) est, partitioned into a sub-forest of free trees and, for each
if and only_lf |ts_ owner f'eld. 'S n_uII. In this §e_ct|on, WeSaAY thread t, a sub-forest of trees owned by thread A
that an object is a root object if and only if itauner field threadt uses the operationsrimacquire, primrelease,

is null, and we say that an object is free if and only if its disconnect, andconnect to manipulate the shape of this
semaphore is open. forest, as follows:

The pseudovariableid denotes the current thread.
Consider the primitive operations in Figure 6. The
assertx keyword denotes preconditions on the system

e primacquire moves a tree from the sub-forest of free
trees into the sub-forest of trees owned by thread

11

e primrelease moves atree from the sub-forest of trees
owned by thread into the sub-forest of free trees

e disconnect prunes a sub-tree from a tree and makes
it into a separate tree

e connect takes a tree and grafts it into another tree

We say that a sequentially consistent execution of the
system iswell-behavedff each of the atomic operations

e primrelease o by threadt: this operation atomically

moveso from t.Owns to Free. By the invariant,o
must be a root object. Hence, the ownership domain of
o is transferred atomically from. TransOwns to the
TransFree set.

disconnect o by thread:: turnso into a new root ob-
jectand inserts it in the. Owns set. Thet. TransOwns
set does not change. No cycles in the ownership hier-

happens only in a state where its precondition is satisfied. archy are created.

iven m w fine the followin : .
Given a system state, we define the following sets e connect (o0, z) by threadt: removes root object.

Thet. TransOwns set does not change. Singendz
were different root objects, no cycles are created in the
ownership hierarchy.

e Free is the set of all objects whose semaphore is in the
open state.

e TransFree is the set of all objects transitively owned
by objects inFree. e Field reads and writes of other object fields: do not

. o touch the invariants.
Lemma 1. For a well-behaved execution, the following in-

variants hold: Next, observe that the TransOwns set can only change
as the result of operations performed by thredith partic-
ular, when the thread releases or acquires objects, or creates
new objects).

Now, suppose there are two accesses by different threads
t, andt, to the same object field. At the time thregdac-
cesses the field, the object must be;ifil’ransOwns. When
t, accesses the field, the object must be,irfransOwns,
and hence, because of the second invariant, it cannot be
in t.TransOwns anymore. Since only; can change
o t;. TransOwns, this means there must be a releasetpy
ItIS @ petween the two accesses, and hence the two accesses do

not constitute a data race. O

0. The sets. Owns for each thread;, and Free partition
the root objects in the ownership hierarchy. (This im-
plies that, for all objects in these sets, the owner field
is null.)

1. The setst.TransOwns for each thread ¢, and
TransFree partition the set of all objects. More-
over, this partition changes only gtrimacquire and
primrelease operations.

2. The ownership graph does not contain cycles:
forest.
Moreover, there are no data races. Corrollary 1. In any well-behaved execution, any predi-
Proof. The proof of the 3 invariants is an induction over the cate that holds on an ownership domain right before any
atomic actions in the execution. primrelease , also holds right after anprimacquire .

After the empty prefix, the invariant holds: allOwns
sets and théree set are empty. Also all. TransOwns and
the TransFree set are empty. Since the set of existing ob-
jects is also empty, the invariants are true.

For the induction step, we extend a well-behaved execu- A predicateP (o) on the ownership domain of an object
tion that satisfies the invariants with a new Operation per-, is afree-object-invarianif all threads in the System en-
formed by some thread sure thatP (o) holds before any release of any objectAs
a consequence, it is true on all objects in ffreec set.

The interactions that threads have with the heap are of
course driven by the program code the threads are execut-
ing. We show that well-behavedness of a system can be
ensured by verifying the program code for each thread in a
sequential setting.

First we need some terminology. We say the stéible
to a thread: consists of the thread-local state iofand all
fields of objects int. TransOwns.

We say a program isvell-behaved with free-object-
invariant P (o) if one can show by sequential reasoning.(
assuming exclusive access),

Proof. After a primrelease , the released object goes to
the Free set, and hence its ownership domain is not touched
by any thread until the nexirimacquire . O

e Creation of a new object by threadnaintains the in-
variants: the set$.Owns and t. TransOwns gain a
new element, the element inOwns is indeed a root
element.

e primacquire o by thread:: By definition, o must
be in theFree set before this operation (otherwise the
P() operation would block). After the operation,is
removed fromFree, and is now an element 6fOwns.
Sinceo was inFree, it was a root object, and hence the
ownership domain ob is also transferred atomically
from TransFree to t. TransOwns.

12

e relying only on visible state

pack; o =
e and assuming only?(o) on acquired ownership do- assert o # null A o € tid .Owns A —o.inv ;
mains, foreach (f € RepFieldst where o.f # null)
{ assert o.f € tid .Owns A o.f.inv ; }
that P(o0) holds before any release ofand that all precon- assert Invp(0) ;
ditions required for well-behavedness of executions hold. foreach (distinct non-nullo.f where f € RepFieldsy)

{ connect (0,0.f); }

Lemma 2. If all threads in a system run well-behaved pro-)
0.1V <+ true

grams, all executions are well-behaved.

unpack, o =
assert o # null A o € tid .Owns A o0.inv ;
0.inv «— false ;

0. The assumption of exclusive access is clearly valid for ~ foreach (distinct non-nullo.f where f € RepFieldst)
the empty prefix. { disconnect (o0.f) ; }

Proof. The proof is a straightforward induction over the ac-
tions in a sequentially consistent execution.

1. Suppose we can assume that deriving properties un- acquire o =
der the assumption of exclusive access was sound for assert o # null A o € tid .Owns ;
a given prefix. Then, for a well-behaved program, the primacquire o
precondition for the next atomic operation will hold.
Hence, the execution extended with one new operation release o =
is still well-behaved. By Lemma 1, we know that the assert o # null A o € tid .Owns A 0.inv ;
assumption of exclusive access is again valid for the primrelease o
extended execution.
of:=v =
assert o # null A o € tid .Owns A —o.inv ;

o.f —w
In the next subsection, we build on the model introduced

here to define and prove a programming methodology that ,,._ g =
guarantees well-behaved programs. Subsequently, we ex- assert Legal[E] ;
plain how from this result we obtain the soundness of the ,. g
methodology that we propose in this paper.

Figure 7. The multithreaded methodology, re-

A.1l. Programming methodology formulated

We can now reformulate our methodology’s commands,
given in Figure 3, in terms of the above-introduced primitive
commands; this results in the definitions of Figure 7. Proof. The proof proceeds in two stages. First we show

We show that Program Invariant 1 from the sequential that PI(¢) holds for the thread executing the program.
methodology is also maintained in this multithreaded set- This follows immediately from the corresponding invariant
ting. For this, we need to consider two weakened versionsfor the sequential methodology. Only a (straightforward)
of Program Invariant 1: verification that the proof for the sequential methodology
relies only on visible state is needed.

Second, relying orPI(t), we show that the conditions
for well-behavedness are always fulfilled. For this, we have
to show thatPI (r)’ always holds before primrelease r,

e PI(t) for a thread¢ is Program Invariant 1 where ar‘1d that the precc_)nditions fqrrimrglease , counect ,
quantification is done over all objects visible to a disconnect andfield reads and writes always hold.
threadt. It is obvious thatPI(r)" holds before primrelease r,

since the ownership domain efis visible tot¢ before the
Lemma 3. Programs developed in accordance with the pre- release, and’/(t) holds, and-.inv is asserted.
sented methodology are always well-behaved with a free- We now consider the preconditions.

object-invariantPI’(r). disconnect is only used inunpack, . The precon-

e PI(r) for a root object- is Program Invariant 1 where
quantification is done over all objects in the ownership
domain ofr. Also, we definePI’(r) asPI(r) A r.inv

13

dition follows from PI(t), together with the fact that.inv
was true upon enteringnpack .

connect is used only inpack, . The precondition
follows immediately from the asserts pack .

primrelease is only used inrelease . The precondi-
tion follows immediately from the asserts.

Field reads and writes: reads and writes to #he field

Additionally, our commands are defined such that a thread
t is the only thread ever to write the valuénto anowner
field.

Together, these properties mean that while the value of a
read ofo.owner might be determined by a race, the value
of an evaluation ob.owner = tid is stable and not deter-
mined by a race. Therefore we may still assume sequential

always occur guarded by an assert. If we assume a shortconsistency for this methodology.

circuit evaluation of the assert, the precondition is always
satisfied. For other object fields, the preconditions follow
from the asserts on assignment and evaluation, together
with PI(t). O

Theorem 0 (Soundness) The methodology ensures that
Program Invariant 1 holds in all reachable states.

Proof. From the previous lemma, we know that a system
consisting of threads executing programs developed accord-
ing to the methodology is a well-behaved system with a
free-object-invarianPI’(r). From the proof of that lemma,

we know thatPI(t) holds for each threatd From the proof

of lemma 1, we know that in any system state, the objects
are partitioned in free objects and objects visible to each of
the threads. FronPI’(r) on the free root objects, and
from PI(t) on each thread, the full program invariant fol-
lows for all allocated objects. O

The methodology introduced here is phrased in terms of
a sett. Owns of objects owned by, for each thread. A
more straightforward alternative is to extend the meaning of
the o.owner field, so that its value is either

e null, to indicate that the object fsee
e some objecp, to indicate thab is owned byp, or
e some thread, to indicate thab is owned byt.

The latter approach was adopted in Section 3. It is not
strictly data-race-free, since a check of ownership of some
object by one thread might occur concurrently with an up-
date of the ownership of that object by another thread. How-
ever, this data race does not invalidate the methodology un-
der the Java memory model. Specifically, Java guarantees
a property known abappens-before consistenioy object
references. Applied to this case, it means two things:

e Aread of anowner field always yields a value written
to that field by some write operation; that is, it never
yields a garbled value.

e A thread does not see writes eclipsed by other writes.
For example, after a thread writes/! into anowner
field, no subsequent read by that thread ever sees an
earlier write by the same thread.

14

