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Abstract

Developing safe multithreaded software systems is diffi-
cult due to the potential unwanted interference among con-
current threads. This paper presents a flexible methodol-
ogy for object-oriented programs that protects object struc-
tures against inconsistency due to race conditions. It is
based on a recent methodology for single-threaded pro-
grams where developers define aggregate object structures
using an ownership system and declare invariants over
them. The methodology is supported by a set of language
elements and by both a sound modular static verification
method and run-time checking support. The paper reports
on preliminary experience with a prototype implementation.

0 Introduction

A primary aim of a reliable software system is ensur-
ing that all objects in the system maintainconsistentstates:
states in which all fields, and all fields of other objects on
which they depend, contain legal meaningful values. In
this paper, we formalize consistency constraints asobject
invariants, which are predicates over fields.

It is hard to maintain object invariants in sequential pro-
grams, and it is even harder in concurrent programs. For
example, consider the following method:

void Transfer(DualAccounts o, int amount) {
int a = o.a ; /∗0∗/ o.a := a − amount ;
int b = o.b ; /∗1∗/ o.b := b + amount ;

}

Suppose this method is to maintain the invariant that for all
dual accountsd : d .a + d .b = 0. In a concurrent setting,
this invariant can be violated in several ways. Even if the

programming system ensures that each read or write of a
field is atomic, the interleavings might cause the invariant
to be violated. For example, consider two threads that both
perform a transfer on the same dual accounts. If one transfer
occurs either at point 0 or 1 during the other transfer, then
the invariant is not maintained.

In a concurrent setting, consistency of an object can be
ensured by exclusion at a level coarser than individual reads
and writes. For example, while one thread updates an ob-
ject, another is not allowed to perform any operation on the
object. In contemporary object-oriented languages, exclu-
sion is implemented via locking.

Guaranteed exclusion simplifies the automatic verifica-
tion of multithreaded code greatly. It means that we can
simply split the proof of the concurrent program into a proof
for exclusion and a proof for a sequential program [24].

In this paper, we present a new programming methodol-
ogy for multithreaded object-oriented programs with object
invariants. The methodology not only guarantees that every
object protects itself from consistency violations, but it also
allows aggregates of objects to defineleak-proof ownership
domains. These domains guarantee that only one thread at
a time can access an object of the aggregate.

The methodology achieves sound modular static verifi-
cation by requiring methods to be annotated with simple
ownership requirements; as an alternative, it also provides
run-time checking support that does not require any method
annotations. The methodology is an extension of the Spec#
methodology for sequential code, as described in our previ-
ous work [3].

We see the proposed methodology as a basis for a com-
prehensive approach to the specification and verification of
multithreaded programs. In this paper, we focus on the core
safe concurrency methodology; we are also investigating
extensions for increased parallelism and deadlock preven-
tion, but we do not consider those in this paper

The paper proceeds as follows. The next four sections
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class DualAccounts {
int a, b ;
invariant a + b = 0 ;
void Transfer(int amount)

requires inv ;
{

unpack (this) ;
int a = this.a ; this.a := a − amount ;
int b = this.b ; this.b := b + amount ;
pack (this) ;
}
}

Figure 0. A DualAccounts class in the object
invariant methodology of Section 1.

gradually introduce our methodology: Section 1 introduces
object invariants, Section 2 introduces confinement within
objects. Section 3 adds confinement within threads to offer
a methodology for safe concurrency of aggregate objects
with invariants. In Section 4, we show how to apply our
methodology to Java and C#. In Section 5, we explain how
the methodology can be enforced through static verification
and through run-time checking. Sections 6 and 7 mention
related work and conclude. We include a proof of soundness
in the Appendix.

1 Object Invariants

We consider an object-oriented programming language
with classes, for example like the class in Figure 0. Each
class can declare an invariant, which is a predicate on the
fields of an object of the class.

To allow a program temporarily to violate an object’s in-
variant, the Boogie methodology [3] introduces into each
object an auxiliary boolean field calledinv .0 We say that an
objecto is consistentif o.inv = true, otherwise we say the
object ismutable. Only in the mutable state is the object’s
invariant allowed to be violated. Theinv field can be men-
tioned in method contracts (i.e., pre- and postconditions). It
cannot be mentioned in invariants or in program code. The
inv field can be changed only by two special statements,
unpack andpack. These statements delineate the scope
in which an object is allowed to enter a state where its in-
variant does not hold.

The rules for maintaining object invariants are as fol-
lows:

0The Boogie methodology also deals with subclasses, but for brevity
we here consider only classes without inheritance. Extending what we say
to subclasses is straightforward.

• A new object is initially mutable.

• Packing an object takes it from a mutable state to a
consistent state, provided its invariant holds.

• Unpacking an object takes it from a consistent state to
a mutable state.

• A field assignment is allowed only if the target object
is mutable.

We formalize these rules as follows, whereInvT (o) stands
for the invariant of classT applied to instanceo.1

packT o ≡
assert o 6= null ∧ ¬o.inv ∧ InvT (o) ;
o.inv← true

unpackT o ≡
assert o 6= null ∧ o.inv ;
o.inv← false

o.f := E ≡
assert o 6= null ∧ ¬o.inv ;
o.f ← E

In this formalization, anassert statement checks the given
condition and aborts program execution if the condition
does not hold.

Our methodology guarantees the following program in-
variant for all reachable states, for each classT :

Program Invariant 0.

(∀ o:T • o.inv =⇒ InvT (o) )

Here and throughout, quantifications are over non-null
allocated objects.

2 Confinement within Objects

Consider the classAccount in Figure 1, which uses an
IntList object to represent the history of all deposits ever
made to a bank account. A bank account also holds the
current balance, which is the same as the sum of the deposits
recorded in the history, as is captured by the invariant. In
this section, we introduce measures that allowAccount ’s
invariant to mention fields ofhist .

We say anAccount object is anaggregate: its part
is the object referenced through the fieldhist . Part ob-
jects are also known asrepresentation objects. We qualify

1The restrictions ono.inv in the preconditions ofpack andunpack
are not necessary for soundness, but omitting them would not enable more
use cases and the stricter rules are helpful to readers of annotated programs.
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class Account {
rep IntList hist := new IntList() ;
int bal := 0 ;
invariant bal =

∑
i: 0≤i<hist.count hist .elems[i ] ;

void Deposit(int amount)
requires o.owner = null ∧ inv ;
{

unpack (this) ;
hist .Add(amount) ;
bal := bal + amount ;
pack (this) ;

}
}

Figure 1. An example illustrating the aggre-
gate objects methodology of Section 2.

fields holding representation objects with arep modifier
(cf. [23]).2

A part is said to beleakedif it is accessible outside the
aggregate. In a sequential setting, leaking is not considered
harmful, as long as the parts are leaked only for reading [22,
3].

An aggregateowns its parts. Object ownership, here
technically defined viarep fields, establishes a hierarchy
among objects. Invariants and ownership are related as fol-
lows: the invariant of an objecto can depend only on the
fields ofo and on the fields of objects reachable fromo by
dereferencing onlyrep fields. (We don’t allow an invariant
to mention any quantification over objects.)

To formulate ownership properly, we introduce for each
object anowner field. Like inv , the owner field cannot
be mentioned in program code. We say an objecto is free
if o.owner = null . An object issealedif it has a non-
null owner object. Theownership domainof an objecto is
the set collectingo and all objects thato transitively owns.
The rules forpack and unpack enforce that ownership
domains are packed and unpacked only according to their
order in the ownership hierarchy. Furthermore,pack and
unpack change the ownership of representation objects as
described by the following rules, which extend the ones
given earlier.3 We use the functionRepFieldsT to denote

2A class may also have non-rep fields. For example, aLinkedList
class would store its elements in non-rep fields, since these elements
would typically be owned by the owner of theLinkedList , not by the
LinkedList itself.

3This is a slightly different use of theowner field than in [20].

the fields markedrep in classT .

unpackT o ≡
assert o 6= null ∧ o.owner = null ∧ o.inv ;
o.inv← false ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← null ; }

packT o ≡
assert o 6= null ∧ ¬o.inv ∧ InvT (o) ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ assert o.f .inv ∧ o.f .owner = null ; }

foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← o ; }

o.inv← true

For illustration purposes, let us inspect a trace of the in-
vocationacct .Deposit(100) for a non-nullAccount object
acct that satisfies the precondition ofDeposit , where we
focus only on the involvedinv andowner fields of the in-
volved objects. First,Deposit unpacksacct : acct is made
mutable,hist is made free. Next,Add is called, which first
unpackshist and makes it mutable. Next, the updates hap-
pen. On return from theAdd method,hist is packed again:
the invariant ofhist is checked andhist is made consistent.
Finally, theDeposit method packsacct : the invariant of
acct is checked,acct is made consistent, andhist is sealed.
And that’s exactly our pre-state restricted toinv andowner
fields of the objects in the ownership domain.

Generalizing from this example, we observe that the
methodology ensures the following program invariant, for
each classT :
Program Invariant 1.

(∀ o:T • o.inv =⇒ InvT (o) ) ∧
(∀ f ∈ RepFieldsT , o:T •

o.inv =⇒ o.f = null ∨ o.f .owner = o ) ∧
(∀ o:T • o.owner 6= null =⇒ o.inv )

3 Confinement within Threads

In this section, we combine the object ownership scheme
of the previous section with a simple notion ofownership
of an object by a thread, to achieve confinement within
threads.

We assume that the execution platform provides a prim-
itive synchronization construct, in the form ofP() andV ()
operations on objects, whereP() andV () are the classic
semaphore operations. We assume that the semaphores are
initialized at object creation time to a closed state (i.e.aP()
operation will block). In Java and C#, the platform primi-
tive synchronization constructs are based on monitors, but
it is easy to implementP() andV () on top of these.

In the object ownership scheme above, objects are ei-
ther part of an aggregate object or they are free, and if they
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are free it means they do not have any owner. For mod-
ular verification of multithreaded code, we now refine this
scheme again. We say that an object can either befree, it
can beowned by an aggregate object, or it can beowned
by a thread. Correspondingly, the owner field isnull , an
object, or a thread.

To support sequential reasoning about field accesses, we
require a thread to have exclusive access to the fields during
the execution of the program fragment to which the sequen-
tial reasoning applies. We require a thread to transitively
own an object whenever it accesses,i.e., reads or writes,
one of its fields. Since no two threads can transitively own
the same object concurrently, this guarantees exclusion.

The rules for ownership of objects by threads are as fol-
lows:

• A thread owns any object that it creates, and the new
object is initially mutable.

• A thread can additionally attempt toacquire any ob-
ject. This operation will block until the object is free.
At that point, we know that the object is consistent and
the thread gains ownership of the object.

• A thread can relinquish ownership of a consistent ob-
ject using therelease statement.

• A thread that owns a consistent aggregate object can
gain ownership of its sealed representation objects by
unpacking the aggregate object using theunpack
statement. This transfers ownership of the represen-
tation objects from the aggregate object to the thread.

• A thread can, via apack statement, transfer owner-
ship of a consistent object that it owns to an aggregate
object.

• A thread can perform a field assignment only if it owns
the target object and the target object is mutable.

• A thread can read a field only if it transitively owns the
target object. We actually enforce this rule by a slightly
stricter rule: a thread can evaluate an access expression
o.g only if it owns o, and an expressiono.f1. · · · .fn .g
only if it owns o, o is consistent, and eachfi is arep
field.

These rules are an extension of the rules presented in
the previous section. They give rise to the object lifecycle
shown in Figure 2. Fully spelled out, they are formalized
as given in Figure 3, where we denote the currently exe-
cuting thread bytid. The operations use theP() andV ()
semaphore operations to synchronize access to theowner
field; also, the invariant is maintained that whenever the
semaphore is in the open state, theowner field isnull . The
definitions useLegalJEK, which is defined as follows:

o owned by 
thread t and 
consistent

o created by 
thread t

o owned by 
object p and 
consistent 
and sealed

o free and 
consistent

o owned by 
thread t and 

mutable

thread t packs 
object p and p.f = o
and f is a rep field

thread t
unpacks o’s

owner p

o unpacked 
by thread t

o packed 
by thread t

o released by 
thread t

o acquired 
by thread t

o modified 
by thread t

Figure 2. Object lifecycle for an arbitrary ob-
ject o.

LegalJxK ≡ true
LegalJopk (E0, . . . ,Ek−1)K ≡

∧
0≤i<k LegalJEiK

LegalJE .gK ≡ ConfinedJEK
ConfinedJEK ≡ LegalJEK ∧ E 6= null ∧

(E .owner = tid ∨
((E has the formE ′.f ) ∧ E ′.inv ∧ f is rep))

Now let us extend our running example, so that we can
verify it in a multithreaded environment. We have to make
sure thatAccount objects are accessed only when they are
owned by the current thread. Figure 44 illustrates two ways
to achieve this, known asclient-side lockingandprovider-
side locking. Client-side locking, exemplified by method
Deposit , means that responsibility of exclusion is relegated
to the client. We indicate this by including the requirement
owner = tid in the precondition. A program is allowed to
mention theowner field only in the formo.owner = tid
and only in method contracts.

TheTransaction method is a case of provider-side lock-
ing. The method has no precondition, which means the
client has no obligations. There is a drawback to provider-
side locking, however. Whereas methodDeposit can guar-
antee that the caller will find the account’s balance increased
by amount after the method returns, methodTransaction
can provide no such guarantee, since by the time the caller
inspects the balance (and before it can do this, it must ac-

4The postcondition does not repeatowner = tid ∧ inv because this
is implied by the default modifies clause, which effectively says that only
the user-declared fields ofthis (but notinv or owner ) and the fields of
transitively owned or newly allocated objects may change (see [3]).
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packT o ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.inv ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ assert o.f .owner = tid ∧ o.f .inv ; }

assert InvT (o) ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← o ; }

o.inv← true ;

unpackT o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
o.inv← false ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← tid ; }

acquire o ≡
assert o 6= null ;
o.P();
o.owner← tid ;

release o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
o.owner← null ;
o.V ();

o.f := x ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.inv ;
o.f ← v

x := E ≡
assert LegalJEK ;
x← E

Figure 3. Confinement within threads

quire the account) other threads may have performed fur-
ther transactions. Therefore, client-side locking is generally
preferable. In any case, our methodology ensures that either
the client or the provider performs the necessary locking.
Also, our methodology requires that preconditions and post-
conditions perform only legal field accesses, which would
for example prevent methodTransaction from declaring
the postconditionbal = old(bal) + amount .

Our methodology ensures the following program invari-
ant, for each classT :

Program Invariant 2.

(∀ o:T • o.inv =⇒ InvT (o) ) ∧
(∀ f ∈ RepFieldsT , o:T •

o.inv =⇒ o.f = null ∨ o.f .owner = o ) ∧
(∀ o:T • o.owner 6∈ thread =⇒ o.inv )

class Account {
rep IntList hist := new IntList() ;
int bal := 0 ;
invariant bal =

∑
i: 0≤i<hist.count hist .elems[i ] ;

void Deposit(int amount)
requires owner = tid ∧ inv ;
ensures bal = old(bal) + amount ;

{
unpack (this) ;
hist .Add(amount) ;
bal := bal + amount ;
pack (this) ;

}

void Transaction(int amount) {
acquire (this) ;
Deposit(amount) ;
release (this) ;

}
}

Figure 4. Account example, modified for the
multithreaded methodology of Section 3.

4 Application to Java and C#

In this section, we look at the application of our method-
ology to the popular concurrent object-oriented program-
ming languages Java and C#.

Clearly, theacquire and release operations are se-
mantically different from entering and exiting a synchro-
nized block. Hence, there are essentially two ways to apply
our approach to Java and C#: by using semaphores instead
of synchronized blocks (Section 4.0) or by modifying the
methodology (Section 4.1). Finally, in Section 4.2, we dis-
cuss important memory consistency issues.

4.0 Using semaphores

Perhaps the most powerful option is to use some
semaphore implementation. Acquiring an objecto would
correspond to performing aP operation on the semaphore
object associated with objecto. The latter association can
be achieved usinge.g.a hash table, or, depending on plat-
form constraints, more efficient methods, such as merging
the semaphore implementation into classObject .
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4.1 Unshared Objects

In this subsection, we present a modified methodology
that maps directly to the Javasynchronized statement and
the equivalent C#lock statement.

In the methodology of Section 3, as soon as an object ref-
erence is leaked from its creating threadt to another thread
u, u may attempt to acquire the object. It will block untilt
has finished its initialization and releases the object. In Java
and C#, however, objects are initially free, so an attempt by
u to acquire the object would succeed, causing it to interfere
with the object’s initialization.

In the modified methodology presented in this subsec-
tion, we protect the initial ownership of an object by its cre-
ating thread, by disallowing that other threads even attempt
to acquire an object until its creating thread releases own-
ership of it. Specifically, we distinguish objects that have
never been released from objects that have been released at
least once. We call the former theunsharedstate, and the
latter thesharedstate.

An object indicates its state through a new boolean
shared field. It is initialized tofalse when the object is cre-
ated, and it becomestrue upon the initial release of the ob-
ject. Before attempting to acquire an object, a thread must
first check theshared field, and only if the field istrue is the
thread allowed to proceed. A thread is allowed to update the
shared field only through the newshare command, which
sets it totrue. It follows that ashared flag, once set, is never
cleared again. A thread uses this command for the initial re-
lease of an object. There are no restrictions on reading the
field in program code. However, in object invariants and
method contracts, a fieldo.shared may be mentioned in an
assertionQ(o.shared) only if Q(false) implies Q(true),
so that the predicate is invariant under updates of theshared
field.

In the absence of special measures, this system would
suffer from a data race between a thread that sets an ob-
ject’s shared field and a thread that checks it. The practical
effect of this would be that even after a thread successfully
acquired an object, it would not necessarily see the initial-
izations performed on the object. To avoid this problem, we
declare theshared field asvolatile.

Another feature of the Javasynchronized statement
that necessitates the methodology to be adapted is the fact
that it is re-entrant. This is significant since anacquire o
statement setso.owner← tid . Without further adapta-
tions, unsoundness could be obtained by acquiring an ob-
ject, packing it into some other object, and then acquiring it
again. We render re-entrancy impossible by (a) not allow-
ing shared objects to become owned by other objects, and
(b) asserting thato.owner 6= tid as part of anacquire o
operation.

The modifiedpackT , acquire and release state-

packT o ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.inv ;
assert LegalJInvT (o)K ∧ InvT (o) ;
foreach (f ∈ RepFieldsT where o.f 6= null) {

assert o.f .owner = tid ∧ o.f .inv ;
assert ¬o.f .shared ;
}
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← o ; }

o.inv← true ;

share o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
assert ¬o.shared ;
o.owner← null ;
o.shared← true

acquire o ≡
assert o 6= null ∧ o.shared ∧ o.owner 6= tid ;
monitorenter o ;
o.owner← tid

release o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
assert o.shared ;
o.owner← null ;
monitorexit o

synchronize∗ (o) S ≡
assert o 6= null ∧ o.shared ∧ o.owner 6= tid ;
synchronize (o) {

o.owner← tid ;
S
assert o.owner = tid ∧ o.inv ;
o.owner← null ;
}

Figure 5. The modified methodology

ments and the newshare statement are defined formally
in Figure 5. Theacquire and release statements now
use the Javamonitorenter and monitorexit byte-
code instructions instead of theP() andV () instructions.
monitorenter andmonitorexit correspond to entering
and exiting asynchronized block. In the same figure
we also define thesynchronized∗ statement, which com-
bines the modifiedacquire andrelease statements. Apart
from the additional checks that help enforce the data-race-
freedom and the object invariants, this statement is equiva-
lent to a regularsynchronized statement.

The statements in Figure 5, combined with the state-
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ments in Figure 3 that remain unchanged, can now be used
to annotate a plain Java program. Two methods can then be
used to verify that the annotated program complies with the
methodology:

• The auxiliaryinv , owner , andshared fields, the as-
signments to those fields, and theassert statements
are emitted as part of the program. When this instru-
mented program is run, each execution either complies
with the methodology or is aborted immediately when
a violation is detected.

• The program, including the auxiliary fields, assign-
ments, andassert statements are translated into the
language of a theorem prover for sequential programs.
Additional constructs are inserted atacquire state-
ments to make sure the theorem prover does not as-
sume anything about the state of the acquired aggre-
gate object, other than that its object invariant holds.
The verifier is then executed on the program. If verifi-
cation succeeds, all auxiliary fields, assignments, and
assert statements are removed from the program. All
executions of the stripped program are known to com-
ply with the methodology and therefore to be data-
race-free and to maintain their object invariants.

4.2 Memory Consistency

When multiple threads access shared memory, the ques-
tion arises of how writes performed by one thread affect the
values yielded by reads performed by another thread. This
is known as memory consistency. The reality of an ever
growing gap between the speed of processors on the one
hand and memory on the other hand has given rise to code
transformations by compilers and processors and multiple
levels of memory caches, to reduce the number of accesses
to main memory. As a result, programmers cannot assume
the most intuitive memory consistency model, known as se-
quential consistency, where there is a single total order on
the field accesses performed by all threads, such that each
read operation yields the value written by the most recent
preceding write operation. This is exactly the requirement
for using aninterleaving semantics, where operations per-
formed by threads are seen as transitions from one global
state to another, and where a global state includes a single
global heap that determines the value yielded by a read op-
eration.

The challenge faced by a programming language de-
signer is to devise a memory consistency model which can
be implemented efficiently on existing hardware on the one
hand, and which is easy for programmers to reason about on
the other hand. This challenge was taken up in the first edi-
tion of the Java Language Specification [13], but the mem-
ory model specified there has since been shown to be both

too weak for programmers and too strong for implementers
[25]. Recently, an attempt was made to fix Java’s memory
model for the third edition of the Java Language Specifi-
cation (JLS3) [14]. We designed our methodology to be
sound under the memory model of JLS3. Specifically, in
our soundness proof, we assume a property called DRF0
[2], which is guaranteed explicitly by JLS3 [14, 21].

Property 0 (DRF0). If a program is correctly synchronized,
then all executions are sequentially consistent.

This property depends on the following definition:

Definition 0 (Correctly Synchronized). A program is cor-
rectly synchronized iff all sequentially consistent executions
are data-race-free.

This definition can be rephrased as follows:

Property 1. A program is correctly synchronized iff there
is no sequentially consistent execution that includes two ad-
jacent accesses of the same field by different threads, where
at least one access is a write.

We conclude that, in order to obtain results that are sound
for Java, we are permitted to assume an interleaving se-
mantics, provided that we prove the absence of data races.
(And we may assume an interleaving semantics for the lat-
ter proof.)

5 Enforcing the Methodology

5.0 Static Verification

The methodology guarantees that Program Invariant 2
holds in each state. This invariant can therefore be assumed
by a static program verifier at any point in the program.

The absence of data races implies that the values read by
a thread are stable with respect to other threads. That is,
as long as an object remains in the thread’s ownership do-
main, the fields of the object are controlled exactly in the
same way that fields of objects are controlled in a sequen-
tial program. Therefore, static verification proceeds as for a
sequential program.

For objects outside the thread’s ownership domain, all
bets are off (as we alluded to in the discussion of the
Transaction method in Figure 4). But since a thread cannot
read fields of such objects, static verification is unaffected
by the values of those fields.

When an objecto enters a thread’s ownership domain,
we know that the invariants of all objects ino’s owner-
ship domain hold. In particular, due to our non-reentrant
acquire statement and the third component of Program In-
variant 2, we haveo.inv . To model the intervention of other
threads between exclusive regions, a static verifier plays
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havoc on (i.e. forgets all knowledge about) the fields of all
objects ino’s ownership domain after eachacquire o op-
eration. The static verifier can then assumeo.inv . By re-
peated applications of the second and third components of
Program Invariant 2, the verifier infersp.inv for all other
objectsp in the ownership domain ofo. Thus, by the first
component, the verifier infers that the invariants of all of
these objects hold.

As will be described below, to check our methodology
at run time, we only need to check the assertions prescribed
in Section 3. However, to reason modularly about a pro-
gram, as in static modular verification, one needs method
contracts. We have already seen examples of pre- and post-
conditions, but method contracts also need to includemod-
ifies clauses, which frame the possible effects a method can
have within the thread’s ownership domain, see [3].

The flexibility of our ownership system compared to
ownership type systems such as [6] might seem to make
it unrealistic to hope to be able to statically verify programs
written in this system. However, to the extent that the own-
ership types of these type systems can be encoded as as-
sertions on theowner field in our system, which definitely
seems to be the case, the verification power of our system
is in fact strictly greater than that of these type systems, due
to our use of a general-purpose theorem prover, as opposed
to a type checker with a fixed set of inference rules. In fact,
our system can be used as a very flexible system for proving
just the absence of data races, by not declaring any object
invariants.

5.1 Run-Time Checking

Our methodology supports both static verification and
run-time checking. The advantage of static verification
is that it decides the correctness of the program for all
possible executions, whereas run-time checking decides
whether the running execution complies with the methodol-
ogy. The disadvantage of static verification is that it requires
method contracts, including preconditions, postconditions,
and modifies clauses, whereas run-time checking does not.

If a program has been found to be correct through sta-
tic verification, no run-time checks would ever fail and they
can be omitted. When running a program without run-time
checks, the only run-time cost imposed by our methodology
is the implementation of the semaphore operations; none of
the fields or other data structures introduced by our method-
ology need to be present, and none of theassert statements
need to be executed. In particular, thepack andunpack
statements become no-ops.

For run-time checking, two fields, theinv field and the
owner field, need to be inserted into each object. Checking
o.owner = tid does introduce a data race, but this is a
benign one in both Java and C#. Storing both references to

objects and thread identifiers (which in Java are references
to objects of class Thread) in a single field is ambiguous in
principle, but this ambiguity can be resolved by requiring
that Thread objects have norep fields.

5.2 Preliminary Experience

We have implemented our methodology as an extension
to the compiler and the static verifier of the Spec# pro-
gramming language research project [4, 29] developed at
Microsoft Research. Spec# extends C# with method con-
tracts, non-null types, checked exceptions, and other relia-
bility features.

We have applied our methodology to a few small test
programs and verified them using both run-time checking
and static verification. The annotation overhead is reason-
able.

We are working to extend the toolset with additional fea-
tures, such as support for arrays and specifications for the
system libraries, so as to be able to gain experience with
larger, more realistic programs.

6 Related Work

The Extended Static Checkers for Modula-3 [8] and for
Java [10] attempt to statically find errors in object-oriented
programs. These tools include support for the prevention of
data races and deadlocks. For each field, a programmer can
designate which lock protects it. However, these two tools
trade soundness for ease of use; for example, they do not
take into consideration the effects of other threads between
regions of exclusion. Moreover, various engineering trade-
offs in the tools notwithstanding, the methodology used by
the tools was never formalized enough to allow a soundness
proof.

Method specifications in our methodology pertain only
to the pre-state and post-state of method calls. Some sys-
tems [26, 12] additionally support specification and ver-
ification of the atomic transactions performed during a
method call. We focus on verification of object invariants,
which does not require such specifications.

A number of type systems have been proposed that pre-
vent data races in object-oriented programs. For example,
Boyapatiet al. [6] parameterize classes by the protection
mechanism that will protect their objects against data races.
The type system supports thread-local objects, objects pro-
tected by a lock (its own lock or its root owner’s lock), read-
only objects, and unique pointers. However, the ownership
relationship that relates objects to their protection mecha-
nism is fixed. Also, the type system does not support object
invariants.

Quite similar to ours is the methodology used by Vault
(cf. [7]), which can be applied in a concurrent setting. In
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Vault, linear types guarantee that objects are owned by a
single thread only. Thepack andunpack operations are
implicit in Vault. Theacquire operation is not supported,
because the object to be acquired may have been deleted;
however, it would be possible to add therelease acquire
operation pair to a version of Vault for a garbage-collected
language. Vault’s methodology is enforced by a static type
system, which has advantages but limits its supported in-
variants. For example, Vault supports neither general pred-
icates on the fields of an object nor relations on the fields of
more than one object in an aggregate.

We enable sequential reasoning and ensure consistency
of aggregate objects by preventing data races. Some au-
thors propose pursuing a different property, calledatomic-
ity, either through dynamic checking [9] or by way of a type
system [11]. An atomic method can be reasoned about se-
quentially. However, we enable sequential reasoning even
for non-atomic methods, by assuming only the object in-
variant for a newly acquired object (see Section 5.0). Also,
in [11] the authors claim that data-race-freedom is unneces-
sary for sequential reasoning. It is true that some data races
are benign, even in the Java and C# memory models; how-
ever, the data races allowed in [11] are generally not benign
in these memory models; indeed, the authors prove sound-
ness only for sequentially consistent systems, whereas we
prove soundness for the Java memory model, which is con-
siderably weaker.

Another effort based on atomicity, and perhaps the most
closely related work to ours is the work on extending the
Java Modeling Language to support multithreaded pro-
grams [27]. As in our methodology, there is support for
object invariants and aggregate objects. A distinction is that
[27] advocates marking methods asatomicor independent.
Both annotations imply that the method can be reasoned
about as if it was executing in isolation. We are not inclined
to adopt similar features, since we feel that these properties
do not abstract away sufficiently the non-observable inter-
nal behavior of the method. For example, a call to a sorting
routine of a private data structure is not atomic if the im-
plementation of the sorting routine is done in parallel using
multiple threads, an implementation decision of the sorting
routine that we would rather not have impacting the rea-
soning of the caller. We allow sequential reasoning about
methods and method calls without restricting internal lock-
ing behavior, by weakening the proof rules appropriately
(see Section 5.0). Another distinction is the type of owner-
ship system used. The type system used by [27] has a fixed
notion of where objects are packed and unpacked (to use
our terminology), whereas our theorem prover-based sys-
tem allows more flexibility. A general observation is that
[27] seems to strive to be able to verify as many existing
programs as possible, whereas our aim is rather to develop
a methodology that prescribes how new programs should be

written.
Ábrah́am-Mummet al. [1] propose an assertional proof

system for Java’s reentrant monitors. It supports object in-
variants, but these can depend only on the fields ofthis. No
claim of modular verification is made.

The rules in our methodology that an object must be con-
sistent when it is released, and that it can be assumed to be
consistent when it is acquired, are taken from Hoare’s work
on monitors and monitor invariants [15].

There are also tools that try dynamically to detect viola-
tions of safe concurrency. A notable example is Eraser [28].
It finds data races by looking for locking-discipline vio-
lations. The tool has been effective in practice, but does
not come with guarantees about the completeness nor the
soundness of the method.

The basic object-invariant methodology that we have
built on [3] has also been extended in other ways for se-
quential programs [20, 5, 19].

In the straightforward implementation proposed in this
paper, mutual exclusion is achieved through coarse-grained
locking. However, the methodology allows one to use other
semantically equivalent techniques that may be more ap-
propriate for particular contention patterns, while preserv-
ing the same reasoning framework and safety guarantees.
Possible alternatives include fine-grained locking of the ob-
jects within an ownership domain, or a form of optimistic
concurrency, such as transactional monitors [30].

7 Conclusions

Our new sound, modular, and simple locking methodol-
ogy helps in defining leak-proof ownership domains. Sev-
eral aspects of this new approach are noteworthy. First, it
allows one to obtain data-race-freedom through sequential
reasoning. Due to the necessary preconditions for reading
and writing, only one thread at a time can access the objects
of an ownership domain. Second, the owner of an object
can change over time. In particular, an object may move
between ownership domains. Third, our methodology can
be efficient; it requires only one lock acquisition per own-
ership domain, even when the domain consists of many ob-
jects. Further, at run time, we only need to keep track of
a bit per object that says whether or not the corresponding
semaphore is open or closed,i.e. whether the object is free
on the one hand, or owned by a thread or another object on
the other hand.

We have implemented support for this methodology as
an extension of Spec#, which is itself an extension of C#
with contracts [4]. Spec# performs both run-time checking
and static verification.

Much more work remains to be done. One important
area of work is the assessment and optimization of the effi-
ciency of both static verification and run-time checking on
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realistic examples. Also, we have begun extending the ap-
proach to deal with other design patterns, like traversals,
wait and notification, condition variables, multiple reader
writers, fine-grained locking,etc. In fact, our ambition is
to cover many of the design patterns described by Doug
Lea [18]. Another area of future work is the treatment of
liveness properties, such as deadlock freedom.

Since our methodology is an extension of an object-
invariant methodology for sequential programs, it would be
interesting to automatically infer for given sequential pro-
grams the additional contracts necessary for concurrency.
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Appendix. Soundness proof

In this appendix we re-introduce our multithreading
methodology in two steps, proving a number of properties
after each step. The end result is a definition and a proof of
a data-race-free methodology for sequential reasoning and
enforcement of object invariants. Subsequently, we explain
how the methodology in the paper is a refactoring of this
latter methodology, that introduces the benign data races on
theowner fields, in exchange for a simpler formulation.

Throughout the proof, we use aninterleaving semantics.
This is permitted under the Java memory model, provided
that we prove data-race-freedom. (See Section 4.2.) We do
so in Lemma 1.

In Section A.0, we introduce an abstract execution model
where a thread’s interaction with the heap is represented as
a manipulation of tree structures defined by an ownership
relation between objects. The structure ensures mutual ex-
clusion.

In Section A.1, we build on this execution model to de-
fine a programming methodology that, in addition to mutual
exclusion, provides enforcement of object invariants.

A.0. Mutual exclusion

The object ownership scheme of Section 2 with theinv
andowner fields structures the heap as a forest, where each
tree is the ownership domain of the root object of that tree,
and where root objects are free. We show in this subsec-
tion how this structure can be exploited to provide mutual
exclusion on ownership domains. The basic idea is to im-
pose some constraints on the interaction of threads with the
heap, that ensure that threads can gain exclusive access to
an ownership domain by acquiring a semaphore on the root
object of that domain.

Every threadt maintains a thread-local set of object ref-
erencest .Owns. Think of t .Owns as the set of root objects
in the ownership forest thatt has exclusive access to. We
say the thread owns the objects int .Owns.

For any given system state (i.e. state of the heap, and
thread local state for all threads), and for a given threadt ,
the logical variablet .TransOwns denotes the set of objects
accessible from thet .Owns set by following inverseowner
references. We say the thread transitively owns these ob-
jects.

In the previous section, an object is considered to be free
if and only if itsowner field is null. In this section, we say
that an object is a root object if and only if itsowner field
is null, and we say that an object is free if and only if its
semaphore is open.

The pseudovariabletid denotes the current thread.
Consider the primitive operations in Figure 6. The

assert∗ keyword denotes preconditions on the system

primacquire o ≡
o.P();
tid .Owns.Add(o)

primrelease o ≡
assert∗ o ∈ tid .Owns;
tid .Owns.Remove(o);
o.V ()

disconnect o ≡
assert∗ o 6∈ tid .Owns ∧ o ∈ tid .TransOwns;
o.owner = null ;
tid .Owns.Add(o)

connect (o, x ) ≡
assert∗ o ∈ tid .Owns ∧ x ∈ tid .Owns ∧ o 6= x ;
x .owner = o;
tid .Owns.Remove(x )

Creation of a new object≡
x = new C ();
tid .Owns.Add(x )

Reading a fieldf of o (with f 6= owner ) ≡
assert∗ o ∈ tid .TransOwns;
x← o.f

Writing a fieldf of o (with f 6= owner ) ≡
assert∗ o ∈ tid .TransOwns;
o.f ← v

Figure 6. Primitive operations

state.
We assume that thenew operator initializes the per ob-

ject owner field to null. Note that each of these operations
can be considered to be atomic: they perform one atomic
operation on the shared heap, and some thread local state
update.

Now, consider a system consisting of a number of
threads interacting with a shared object heap by perform-
ing the seven atomic operations defined above.

The intuition underlying the atomic operations is as fol-
lows. As mentioned before, the heap is seen as a for-
est, partitioned into a sub-forest of free trees and, for each
thread t , a sub-forest of trees owned by threadt . A
threadt uses the operationsprimacquire, primrelease,
disconnect, andconnect to manipulate the shape of this
forest, as follows:

• primacquire moves a tree from the sub-forest of free
trees into the sub-forest of trees owned by threadt
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• primrelease moves a tree from the sub-forest of trees
owned by threadt into the sub-forest of free trees

• disconnect prunes a sub-tree from a tree and makes
it into a separate tree

• connect takes a tree and grafts it into another tree

We say that a sequentially consistent execution of the
system iswell-behavediff each of the atomic operations
happens only in a state where its precondition is satisfied.

Given a system state, we define the following sets:

• Free is the set of all objects whose semaphore is in the
open state.

• TransFree is the set of all objects transitively owned
by objects inFree.

Lemma 1. For a well-behaved execution, the following in-
variants hold:

0. The setst .Owns for each threadt , andFree partition
the root objects in the ownership hierarchy. (This im-
plies that, for all objects in these sets, the owner field
is null.)

1. The setst .TransOwns for each thread t , and
TransFree partition the set of all objects. More-
over, this partition changes only atprimacquire and
primrelease operations.

2. The ownership graph does not contain cycles: it is a
forest.

Moreover, there are no data races.

Proof. The proof of the 3 invariants is an induction over the
atomic actions in the execution.

After the empty prefix, the invariant holds: allt .Owns
sets and theFree set are empty. Also allt .TransOwns and
theTransFree set are empty. Since the set of existing ob-
jects is also empty, the invariants are true.

For the induction step, we extend a well-behaved execu-
tion that satisfies the invariants with a new operation per-
formed by some threadt :

• Creation of a new object by threadt maintains the in-
variants: the setst .Owns and t .TransOwns gain a
new element, the element int .Owns is indeed a root
element.

• primacquire o by threadt : By definition, o must
be in theFree set before this operation (otherwise the
P() operation would block). After the operation,o is
removed fromFree, and is now an element oft .Owns.
Sinceo was inFree, it was a root object, and hence the
ownership domain ofo is also transferred atomically
from TransFree to t .TransOwns.

• primrelease o by threadt : this operation atomically
moveso from t .Owns to Free. By the invariant,o
must be a root object. Hence, the ownership domain of
o is transferred atomically fromt .TransOwns to the
TransFree set.

• disconnect o by threadt : turnso into a new root ob-
ject and inserts it in thet .Owns set. Thet .TransOwns
set does not change. No cycles in the ownership hier-
archy are created.

• connect (o, x ) by threadt : removes root objectx .
Thet .TransOwns set does not change. Sinceo andx
were different root objects, no cycles are created in the
ownership hierarchy.

• Field reads and writes of other object fields: do not
touch the invariants.

Next, observe that thet .TransOwns set can only change
as the result of operations performed by threadt (in partic-
ular, when the thread releases or acquires objects, or creates
new objects).

Now, suppose there are two accesses by different threads
t1 andt2 to the same object field. At the time threadt1 ac-
cesses the field, the object must be int1.TransOwns. When
t2 accesses the field, the object must be int2.TransOwns,
and hence, because of the second invariant, it cannot be
in t1.TransOwns anymore. Since onlyt1 can change
t1.TransOwns, this means there must be a release byt1
between the two accesses, and hence the two accesses do
not constitute a data race.

Corrollary 1. In any well-behaved execution, any predi-
cate that holds on an ownership domain right before any
primrelease , also holds right after anyprimacquire .

Proof. After a primrelease , the released object goes to
theFree set, and hence its ownership domain is not touched
by any thread until the nextprimacquire .

A predicateP(o) on the ownership domain of an object
o is a free-object-invariantif all threads in the system en-
sure thatP(o) holds before any release of any objecto. As
a consequence, it is true on all objects in theFree set.

The interactions that threads have with the heap are of
course driven by the program code the threads are execut-
ing. We show that well-behavedness of a system can be
ensured by verifying the program code for each thread in a
sequential setting.

First we need some terminology. We say the statevisible
to a threadt consists of the thread-local state oft , and all
fields of objects int .TransOwns.

We say a program iswell-behaved with free-object-
invariantP(o) if one can show by sequential reasoning (i.e.
assuming exclusive access),
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• relying only on visible state

• and assuming onlyP(o) on acquired ownership do-
mains,

thatP(o) holds before any release ofo and that all precon-
ditions required for well-behavedness of executions hold.

Lemma 2. If all threads in a system run well-behaved pro-
grams, all executions are well-behaved.

Proof. The proof is a straightforward induction over the ac-
tions in a sequentially consistent execution.

0. The assumption of exclusive access is clearly valid for
the empty prefix.

1. Suppose we can assume that deriving properties un-
der the assumption of exclusive access was sound for
a given prefix. Then, for a well-behaved program, the
precondition for the next atomic operation will hold.
Hence, the execution extended with one new operation
is still well-behaved. By Lemma 1, we know that the
assumption of exclusive access is again valid for the
extended execution.

In the next subsection, we build on the model introduced
here to define and prove a programming methodology that
guarantees well-behaved programs. Subsequently, we ex-
plain how from this result we obtain the soundness of the
methodology that we propose in this paper.

A.1. Programming methodology

We can now reformulate our methodology’s commands,
given in Figure 3, in terms of the above-introduced primitive
commands; this results in the definitions of Figure 7.

We show that Program Invariant 1 from the sequential
methodology is also maintained in this multithreaded set-
ting. For this, we need to consider two weakened versions
of Program Invariant 1:

• PI (r) for a root objectr is Program Invariant 1 where
quantification is done over all objects in the ownership
domain ofr . Also, we definePI ′(r) asPI (r)∧ r .inv

• PI (t) for a threadt is Program Invariant 1 where
quantification is done over all objects visible to a
threadt .

Lemma 3. Programs developed in accordance with the pre-
sented methodology are always well-behaved with a free-
object-invariantPI ′(r).

packT o ≡
assert o 6= null ∧ o ∈ tid .Owns ∧ ¬o.inv ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ assert o.f ∈ tid .Owns ∧ o.f .inv ; }

assert InvT (o) ;
foreach (distinct non-nullo.f where f ∈ RepFieldsT )
{ connect (o, o.f ) ; }

o.inv← true

unpackT o ≡
assert o 6= null ∧ o ∈ tid .Owns ∧ o.inv ;
o.inv← false ;
foreach (distinct non-nullo.f where f ∈ RepFieldsT )
{ disconnect (o.f ) ; }

acquire o ≡
assert o 6= null ∧ o 6∈ tid .Owns ;
primacquire o

release o ≡
assert o 6= null ∧ o ∈ tid .Owns ∧ o.inv ;
primrelease o

o.f := v ≡
assert o 6= null ∧ o ∈ tid .Owns ∧ ¬o.inv ;
o.f ← v

x := E ≡
assert LegalJEK ;
x← E

Figure 7. The multithreaded methodology, re-
formulated

Proof. The proof proceeds in two stages. First we show
that PI (t) holds for the threadt executing the program.
This follows immediately from the corresponding invariant
for the sequential methodology. Only a (straightforward)
verification that the proof for the sequential methodology
relies only on visible state is needed.

Second, relying onPI (t), we show that the conditions
for well-behavedness are always fulfilled. For this, we have
to show thatPI (r)′ always holds before aprimrelease r ,
and that the preconditions forprimrelease , connect ,
disconnect and field reads and writes always hold.

It is obvious thatPI (r)′ holds before aprimrelease r ,
since the ownership domain ofr is visible to t before the
release, andPI (t) holds, andr .inv is asserted.

We now consider the preconditions.
disconnect is only used inunpackT . The precon-
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dition follows fromPI (t), together with the fact thato.inv
was true upon enteringunpackT .

connect is used only inpackT . The precondition
follows immediately from the asserts inpackT .

primrelease is only used inrelease . The precondi-
tion follows immediately from the asserts.

Field reads and writes: reads and writes to theinv field
always occur guarded by an assert. If we assume a short-
circuit evaluation of the assert, the precondition is always
satisfied. For other object fields, the preconditions follow
from the asserts on assignment and evaluation, together
with PI (t).

Theorem 0 (Soundness). The methodology ensures that
Program Invariant 1 holds in all reachable states.

Proof. From the previous lemma, we know that a system
consisting of threads executing programs developed accord-
ing to the methodology is a well-behaved system with a
free-object-invariantPI ′(r). From the proof of that lemma,
we know thatPI (t) holds for each threadt . From the proof
of lemma 1, we know that in any system state, the objects
are partitioned in free objects and objects visible to each of
the threads. FromPI ′(r) on the free root objectsr , and
from PI (t) on each threadt , the full program invariant fol-
lows for all allocated objects.

The methodology introduced here is phrased in terms of
a sett .Owns of objects owned byt , for each threadt . A
more straightforward alternative is to extend the meaning of
theo.owner field, so that its value is either

• null , to indicate that the object isfree

• some objectp, to indicate thato is owned byp, or

• some threadt , to indicate thato is owned byt .

The latter approach was adopted in Section 3. It is not
strictly data-race-free, since a check of ownership of some
object by one thread might occur concurrently with an up-
date of the ownership of that object by another thread. How-
ever, this data race does not invalidate the methodology un-
der the Java memory model. Specifically, Java guarantees
a property known ashappens-before consistencyfor object
references. Applied to this case, it means two things:

• A read of anowner field always yields a value written
to that field by some write operation; that is, it never
yields a garbled value.

• A thread does not see writes eclipsed by other writes.
For example, after a thread writesnull into anowner
field, no subsequent read by that thread ever sees an
earlier write by the same thread.

Additionally, our commands are defined such that a thread
t is the only thread ever to write the valuet into anowner
field.

Together, these properties mean that while the value of a
read ofo.owner might be determined by a race, the value
of an evaluation ofo.owner = tid is stable and not deter-
mined by a race. Therefore we may still assume sequential
consistency for this methodology.
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