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Abstract—Many applications require fast data transfer over 

high speed and long distance networks. However, standard TCP 
fails to fully utilize the network capacity due to the limitation in its 
conservative congestion control (CC) algorithm. Some works have 
been proposed to improve the connection’s throughput by adopt-
ing more aggressive loss-based CC algorithms. These algorithms, 
although can effectively improve the link utilization, have the 
weakness of poor RTT fairness. Further, they may severely de-
crease the performance of regular TCP flows that traverse the 
same network path. On the other hand, pure delay-based ap-
proaches that improve the throughput in high-speed networks may 
not work well in an environment, where the background traffic is 
mixed with both delay-based and greedy loss-based flows. In this 
paper, we propose a novel Compound TCP (CTCP) approach, 
which is a synergy of delay-based and loss-based approach. In 
CTCP, we add a scalable delay-based component into the standard 
TCP Reno congestion avoidance algorithm (i.e., the loss-based 
component). The sending rate of CTCP is controlled by both com-
ponents. This new delay-based component can rapidly increase 
sending rate when network path is under utilized, but gracefully 
retreat in a busy network when bottleneck queue is built. Aug-
mented with this delay-based component, CTCP provides very 
good bandwidth scalability with improved RTT fairness, and at 
the same time achieves good TCP-fairness, irrelevant to the win-
dows size. We developed an analytical model of CTCP and imple-
mented it on the Windows operating system. Our analysis and 
experiment results verify the properties of CTCP. 
 

Index Terms—TCP performance, delay-based congestion con-
trol, high speed network 

I. INTRODUCTION 

Moving bulk data quickly over high-speed data network is a 
requirement for many applications. For example, the physicists 
at CERN LHC conduct physics experiments that generate giga-
bytes of data per second, which are required to be shared 
among other scientists around the world. Currently, most of the 
applications use the Transmission Control Protocol (TCP) to 
transmit data over the Internet. TCP provides reliable data 
transmission with embedded congestion control algorithm [1] 
which effectively removes congestion collapses in the Internet 
by adjusting the sending rate according to the available band-
width of the network. However, although TCP achieves re-
markable success (maximizing the utilization of the link and 
fairly sharing bandwidth between competing flows) in the to-
day’s Internet environment, it has been reported that TCP sub-
stantially underutilizes network bandwidth over high-speed and 
long distance networks [3].  

In high-speed and long distance networks, TCP requires a 

very large window, roughly equal to the bandwidth delay pro-
duction (BDP), to efficiently utilize the network resource. How-
ever, the standard TCP takes a very conservative approach to 
update its window in congestion avoidance stage. Specifically, 
TCP increases its congestion window by one packet in every 
round trip time (RTT) and reduces it by half at a loss event. If 
BDP is too large, it requires an unreasonable time for TCP to 
expand its window to that value. As an example, Sally et. al. [3], 
pointed out that under a 10Gbps link with 100ms delay, it will 
roughly take one hour for a standard TCP flow to fully utilize 
the link capacity, if no packet is lost or corrupted. This one hour 
error free transmission requires a packet loss ratio around 10-11 
using 1500-byte packets (one packet loss over 2,600,000,000 
packet transmissions!). This requirement is far from reality of 
current network hardware. 

Recent research has proposed many approaches to address 
this issue. One class of approaches modifies the in-
crease/decrease parameters of TCP congestion avoidance algo-
rithm (CAA) and makes it more aggressive. Like TCP, ap-
proaches in this category are loss-based that uses packet-loss as 
the only indication of congestion. Some typical proposals in-
clude HSTCP [3], STCP [4] [5], and BIC-TCP [6]. Another 
class of approaches, by contrast, is delay-based, which makes 
congestion decisions that reduce the transmission rate based on 
RTT variations, e.g., FAST TCP [5]. All aforementioned ap-
proaches are shown to overcome TCP’s deficiencies in high 
bandwidth-delay networks pretty well to some extent. However, 
in this paper, we argue that for a new high-speed protocol, fol-
lowing requirements must be met before it can be really de-
ployed into the Internet: 

[Efficiency] It must improve the throughput of the connection 
to efficiently use the high-speed network link.  

[RTT fairness] It must also have good intra-protocol fairness, 
especially when the competing flows have different RTTs.  

[TCP fairness] It must not reduce the performance of other 
regular TCP flows competing on the same path. This means that 
the high-speed protocols should only make better use of free 
available bandwidth, but not steal bandwidth from other flows. 

 
For existing loss-based high-speed solutions, it is essential to 

be highly aggressive to satisfy the efficiency requirement. How-
ever, this aggressiveness also causes severe RTT unfairness and 
TCP unfairness. On the other hand, for delay-based approaches, 
although they can achieve high efficiency and good RTT fair-
ness in a network where the majority flows are delay-based, it is 
difficult to meet the third requirement if most competing flows 



 

are loss-based, e.g. TCP-Reno. In this situation, the delay-based 
approaches may suffer from significant lower throughput than 
their fair share. The reason is that delay-based approaches re-
duce their sending rate when bottleneck queue is built to avoid 
self-induced packet losses. However, this behavior will encour-
age loss-based flows to increase their sending rate as they may 
observe less packet losses. As a consequence, the loss-based 
flows will obtain much more bandwidth than their share and 
delay-based flows may even be starved [9] 

In this paper, we propose a new congestion control protocol 
for high-speed and long delay environment that satisfies all 
aforementioned three requirements. Our new protocol is a syn-
ergy of both delay-based and loss-based congestion avoidance 
approaches, which we call it Compound TCP (CTCP). The key 
idea of CTCP is to add a scalable delay-based component to 
standard TCP 1 . This delay-based component has a scalable 
window increasing rule that not only can efficiently use the link 
capacity, but can also react early to congestion by sensing the 
changes in RTT. If a bottleneck queue is sensed, the delay-
based component gracefully reduces the sending rate. This way, 
CTCP achieves good RTT fairness and TCP fairness. We have 
developed analytical model of CTCP and performed compre-
hensive performance studies on CTCP based on our implemen-
tation on Microsoft Windows platform. Our analysis and ex-
perimental results suggest that CTCP is a promising algorithm 
to achieve high link utilization and while maintaining good 
RTT fairness and TCP fairness.  

The rest of paper is organized as follows. In next section, we 
elaborate the background and existing approaches in detail. We 
review these schemes against the three properties we mentioned 
before. Then, we propose our design of CTCP in Section III. 
Analytical analysis of CTCP is presented in Section IV. We 
describe the implementation in Section V, and experiment re-
sults of CTCP are presented in Section VI. We conclude the 
paper in Section VII. 

II. BACKGROUND AND RELATED WORK 

The standard TCP congestion avoidance algorithm employs 
an additive increase and multiplicative decrease (AIMD) 
scheme. When there is no packet loss detected (by means of 
three duplicate-ACKs or retransmission timeout), the conges-
tion window (cwnd) is increased by one Maximum Segment 
Size (MSS) every RTT. Otherwise, if a packet loss is detected, 
the TCP sender decreases cwnd by half. In a high-speed and 
long delay network, it requires a very large window, e.g. thou-
sands of packets, to fully utilize the link capacity. Therefore, it 
will take the standard TCP many RTTs to recover the sending 
rate upon a single loss event. Moreover, it is well-known now 
that the average TCP congestion window is inversely propor-
tional to the square root of the packet loss rate, as shown in (1) 
[8][12], 

p
W

MSS22.1 ⋅= ,                 (1) 

 
1 In this paper, terms of “regular TCP” and “standard TCP” all refer to 

TCP-Reno. 

where W is the average TCP window and p is the average packet 
loss rate. It requires extremely small packet loss rate to sustain a 
large window. With the packet loss rate in real life networks, a 
standard TCP sender may never open its window large enough 
to fully utilize the high-speed link resource. 

One straightforward way to overcome this limitation is to 
modify TCP’s increase/decrease control rule in its congestion 
avoidance stage. More specifically, in the absence of packet loss, 
the sender increases cwnd more quickly and decreases it more 
gently upon a packet loss.  

STCP [4] alters TCP’s AIMD congestion avoidance scheme 
to MIMD (multiplicative increase and multiplicative decrease). 
Specifically, STCP increases cwnd by 0.01 MSS on every re-
ceived ACK and reduces cwnd to its 0.875 times upon a packet 
loss. HSTCP [3], on the other hand, still mimics the AIMD 
scheme, but with varying increase/decrease parameters. As 
cwnd increases from 38 packets to 83,333 packets, the decrease 
parameter reduces from 0.5 to 0.1, while the increase parameter 
increases accordingly. HSTCP is less aggressive than STCP, but 
is far more aggressive than the standard TCP. As pointed in [6], 
these aggressive schemes suffer great RTT unfairness. From 
simple analysis based on synchronized loss model, Lisong et. al., 
[6] shows that for any loss-based congestion control protocol 

with steady state throughput in the form of dpR

C
Th

⋅
= , where R is 

the RTT, p is the packet loss rate, C and d are constant, the 
throughput ratio between two flows with different RTT should 
be inversely proportional to 1/(1-d)th power of their RTT ratio. 

Or, formally, 
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0.82 and 1, respectively. Thus, the RTT unfairness of HSTCP 
and STCP is 5.56 and infinite, respectively.  

In [6], BIC-TCP is proposed to mitigate this RTT unfairness 
by using binary increase scheme and switching to AIMD with 
constant parameters when cwnd is large. BIC-TCP has similar 
RTT-fairness to TCP-Reno when the window is large and then 
the sender has switched to AIMD mode (window > 16000 
packet and in this time d is near 0.5). However, if the protocol 
works at lower window range, d could increase to near 1 and 
BIC-TCP may have similar RTT unfairness to STCP.  

Besides the RTT-unfairness, the above approaches also have 
TCP-unfairness concerns when they are working in a mixed 
network environment with standard TCP flows and these en-
hanced flows. When an aggressive high-speed variant flow trav-
erses the bottleneck link with other standard TCP flows, it may 
increase its own share of bandwidth by reducing the throughput 
of other competing TCP flows. The reason is that the aggressive 
high-speed variants will cause much more self-induced packet 
losses on bottleneck links, and therefore push back the through-
put of the regular TCP flows. Indeed, there is a mechanism pre-
sent in the existing aggressive high-speed variants to revert to 
standard TCP congestion avoidance algorithm if the window is 
smaller than a pre-defined threshold (low_window as defined in 
[3], which is typically set to 38 packets). This, although may 
prevent collapses in heavy congested cases, can not provide 
satisfactory TCP-fairness in general network situations. The 
aggressive behavior of these enhanced flows may severely de-



 

grade the performance of regular TCP flows whenever the net-
work path is already highly utilized. As an illustration, we con-
ducted the following simulation in NS 2 [22]. The network to-
pology was a simple dumbbell topology, as shown in Figure 1. 
The capacity of the bottleneck link was set to 100Mbps and the 
round-trip delay was 100ms. We tested the cases where one 
enhanced high-speed flow (i.e. HSTCP, STCP, BIC-TCP2) was 
competing with five regular TCP flows. We also compared with 
the case where there were six identical regular TCP flows. The 
results are summarized in Figure 2. With this network setup, six 
regular TCP flows already fully utilized the network path. As 
clearly shown in Figure 2, all the three aggressive high-speed 
flows occupied over 60% of link bandwidth in its testing, and 
the throughput of a regular TCP was reduced to only 30% com-
pared to that if there was no aggressive high-speed flow. In 
other words, each aggressive high-speed flow increased its 
throughput only by reducing throughputs of other regular TCP 
flows, and therefore caused TCP unfairness. Note that BIC-
TCP caused even severe TCP-unfairness than HSTCP in this 
case. According to [6], BIC-TCP may have better TCP-fairness 
property than HSTCP when the window is large. But in the 
window size in this example, the aggressiveness of BIC-TCP 
was between of HSTCP and STCP.  
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s 10

Gbp
s, 

1m
s

 
Figure 1. The network topology with simple bottleneck link. 
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Figure 2. Bandwidth allocation between competing flows. 
 
Another class of high speed protocols, like FAST TCP [5], 

instead of making simple modifications on TCP’s in-
crease/decrease parameters, chooses to design a new congestion 
control scheme which takes RTT variances as congestion indi-
cator. These delay-based approaches are more-or-less derived 

 
2 We chose the parameters of BIC-TCP according to [6]. 

from seminal work of TCP Vegas [11]. One core idea of delay-
based congestion avoidance is that the increase of RTT is con-
sidered as early congestion, and the sending rate is reduced to 
avoid self-induced buffer overflow. Another interpretation of 
this delay-based behavior is that it tries to maintain a fixed 
buffer occupation. In this way, they will not cause large queue-
ing delay and reduce packet losses. FAST TCP can be regarded 
as a scaled version of TCP Vegas. FAST TCP incorporates 
multiplicative increase if the buffer occupied by the connection 
at the bottleneck is far less than some pre-defined threshold α , 
and switch to linear increase if it is near α . Then, FAST tries 
to maintain the buffer occupancy around α  and reduces send-
ing rate if delay is further increased. Theoretical analysis and 
experiments show that delay-based approaches have better 
properties than pure loss-based approaches, such as higher utili-
zation, less self-induced packet losses, faster convergence speed, 
better RTT fairness and stabilization [16][5]. However, previ-
ous work also reveals that delay-based approaches may not be 
able to obtain fair share when they are competing with loss-
based approaches like standard TCP [9]. This can be explained 
as follows. Consider a delay-based flow, e.g. Vegas or FAST, 
shares a bottleneck link with a standard TCP. Since the delay-
based flow tries to maintain a small number of packets in the 
bottleneck queue, it will stop increasing its sending rate when 
the delay reaches some value. However, the loss-based flow will 
not react to the increase of delay, and continues to increase the 
sending rate. This, observed by the delay-based flow, is consid-
ered as congestion indication and therefore the sending rate of 
the delay-based flow is further reduced. In this way, the delay-
based flow may obtain far less bandwidth than its fair share. 
One possible way to remedy this is to design a dynamic scheme 
to choose α  to ensure it is TCP-compatible [26]. However, 
designing such a scheme is simply not trivial, since the correct 
α  is a function of buffer size and number of concurrent con-
nections, which are generally unknown in a real world network. 
To our best knowledge, this is no design of such a dynamic 
scheme for this purpose. 

Besides the protocols discussed above, there is recently a 
proposal of TCP Africa [27]. Similar to CTCP, it also proposes 
to incorporate delay information to improve the RTT and TCP 
fairness. However, the key difference of this proposal to CTCP 
lies in that, in TCP Africa, the delay-information is used only as 
a trigger to switch TCP Africa from “fast mode” (aggressive 
increase) and “slow mode” (additive increase), but never used to 
reduce the window size. Therefore, TCP Africa is intrinsically a 
loss-based approach. When competing with other regular TCP 
flows, it will still steal much bandwidth from them, though bet-
ter than HSTCP. As we will show later in our design and ex-
periments, reducing window based on delay information is es-
sential to prevent stealing bandwidth from other regular TCP 
flows in a mixed network environment (see SectionVI.B.6)).  

III. THE COMPOUND TCP 

After understanding the existing approaches and their limita-
tions, we revisit the design of a high-speed congestion control 
algorithm that fulfills all three requirements listed in Section I. 



 

The key idea is that if the link is under-utilized, the high-speed 
protocol should be aggressive in increasing sending rate to ob-
tain available bandwidth more quickly. However, once the link 
is fully utilized, being aggressive is no longer good, as it will 
only cause problems like TCP unfairness. We note that delay-
based approaches already have this nice property of adjusting 
its aggressiveness based on the link utilization, which is ob-
served by the end-systems from the increase in the packet delay. 
However, as mentioned in previous section, the major weakness 
of delay-based approaches is that they are not competitive to 
loss-based approaches. And this weakness is difficult to be 
remedied by delay-based approaches themselves.  

Having made this observation, we propose to adopt a syner-
gic way that combines a loss-based approach with a delay-
based approach for high speed congestion control. For easy 
understanding, let’s imagine application A communicates appli-
cation B simultaneously using two flows. One is a standard 
loss-based TCP flow, and the other is a delay-based flow. 
When the network is underutilized, A can get an aggregated 
communication throughput, with B, which is the sum of both 
flows. With the increase of the sending rate, queue is built at 
the bottleneck, and the delay-based flow gradually reduces its 
sending rate. The aggregated throughput for the communication 
also gradually reduces but is bound by the standard TCP flow.  

Then, there comes the core idea of our novel Compound 
TCP (CTCP), which incorporates a scalable delay-based com-
ponent into the standard TCP congestion avoidance algorithm. 
This scalable delay-based component has a rapid window in-
crease rule when the network is sensed to be under-utilized and 
gracefully reduces the sending rate once the bottleneck queue is 
built. With this delay-based component as an auto-tuning knob, 
Compound TCP can satisfy all three requirements pretty well: 

1) CTCP can efficiently use the network resource and 
achieve high link utilization. In theory, CTCP can be very fast 
to obtain free network bandwidth, by adopting a rapid increase 
rule in the delay-based component, e.g. multiplicative increase. 
However, in this paper, we choose CTCP to have similar ag-
gressiveness to obtain available bandwidth as HSTCP. The 
reasons are two-fold. On one hand, HSTCP has been tested to 
be aggressive enough in real world networks and is now an 
experimental IETF RFC. On the other hand, we want to bound 
the worst case behavior of CTCP as HSTCP if the network is 
poorly buffered, as we will elaborate in Section VI.B.5). 

2) CTCP has similar or even improved RTT fairness com-
pared to regular TCP. This is due to the delay-based component 
employed in the CTCP congestion avoidance algorithm. It is 
known that delay-based flow, e.g. Vegas, has better RTT fair-
ness than the standard TCP [19]. 

3) CTCP has good TCP-fairness. By employing the delay-
based component, CTCP can gracefully reduce the sending rate 
when the link is fully utilized. In this way, a CTCP flow will 
not cause more self-induced packet losses than a standard TCP 
flow, and therefore maintains fairness to other competing regu-
lar TCP flows. 

A. Architecture 
As explained earlier, CTCP is a synergy of a delay-based ap-

proach with a loss-based approach. This synergy is implemented 
by adding a new scalable delay-based component in the stan-
dard TCP congestion avoidance algorithm (also called loss-
based component). To do so, a new state variable is introduced 
in current TCP Control Block (TCB), namely, dwnd (Delay 
Window), which controls this delay-based component in CTCP. 
The conventional congestion window, cwnd, remains untouched, 
which controls the loss-based component in CTCP. Then, the 
CTCP sending window now is controlled by both cwnd and 
dwnd. Specifically, the TCP sending window (called window 
hereafter) is now calculated as follows: 

),min( awnddwndcwndwin +=  , 

where awnd is the advertised window from the receiver. 
The update of dwnd will be elaborated in detail in next sub-

section, while the update of cwnd is in the same way as in the 
regular TCP in the congestion avoidance phase, i.e., cwnd is 
increased by one MSS every RTT and halved upon a packet loss 
event. However, here CTCP may send (cwnd +dwnd) packets in 
one RTT. Therefore, the increment of cwnd on arrival of an 
ACK is modified accordingly: 

)/(1 dwndcwndcwndcwnd ++= .               (2) 

 
CTCP keeps the same Slow-Start behavior of regular TCP at 

the start-up of a new connection. It is because that we believe 
slow-start, which exponentially increases window, is quick 
enough even for fast and long distance environment that we 
target at [3]. We initially set dwnd to zero if the connection is in 
slow-start state, and the delay-based component is effective only 
when the connection is working at congestion avoidance phase. 

B. Design of delay-based congestion avoidance 
In this sub-section, we focus on the algorithm used in the 

aforementioned delay-based component in CTCP, which is en-
abled when the connection is in congestion avoidance phase. 
This delay-based algorithm should have the following properties. 
Firstly, it should have an aggressive, scalable increase rule when 
the network is sensed to be under-utilized. Secondly, it should 
also reduce sending rate accordingly when the network is sensed 
to be fully utilized. By reducing its sending rate, the delay-based 
component yields ways for competing TCP flows to ensure TCP 
fairness of CTCP. Lastly, it should also react to packet losses. It 
is because packet losses may still be an indicator of heavy con-
gestion, and hence reducing sending rate upon packet loss is a 
necessary conservative behavior to avoid congestion collapse. 

Our algorithm for delay-based component is derived from 
TCP Vegas. A state variable, called baseRTT, is maintained as 
an estimation of the transmission delay of a packet over the 
network path. When the connection is started, baseRTT is up-
dated by the minimal RTT that has been observed so far. An 
exponentially smoothed current RTT, sRTT, is also maintained. 
Note that both baseRTT and sRTT should be of high resolution. 
Then, the number of backlogged packets of the connection can 
be estimated by following algorithm: 

baseRTTActualExpectedDiff

RTTwinActual

baseRTTwinExpected

⋅−=
=

=
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The Expected gives the estimation of throughput we get if we 
do not overrun the network path. The Actual stands for the 
throughput we really get. Then, (Expected – Actual) is the dif-
ference between the expected throughput and the actual 
throughput. When multiplying by baseRTT, it stands for the 
amount of data that injected into the network in last round but 
does not pass through the network in this round, i.e. the amount 
of data backlogged in the bottleneck queue. An early conges-
tion is detected if the number of packets in the queue is larger 
than a threshold γ . If diff <γ , the network path is determined 
as under-utilized; otherwise, the network path is considered as 
busy and delay-based component should gracefully reduce its 
window. 

Note here, it requires the connection to have at least γ  pack-
ets backlogged in the bottleneck queue to detect early conges-
tion. Therefore, we want γ  to be small, since it requires less 
buffer size on the bottleneck to ensure TCP fairness. On the 
other hand, we can not set γ  to be too small, since it may cause 
false detection on early congestion and adversely affect the 
throughput. In this paper, we set γ  to be 30 packets. As we will 
show in Section VI.B.4), we believe this γ  value is a pretty 
good tradeoff between TCP fairness and throughput. 

The increase law of the delay-based component should make 
CTCP more scalable in high-speed and long delay pipes. In this 
paper, we choose the CTCP window evolution to have the bi-
nomial behavior. More specifically, when there is no conges-
tion occurs, neither increase in queue nor packet losses, the 
CTCP window increases as follows 

ktwintwintwin )()()1( ⋅+=+ α ;           (3) 

while there is a lose, the window is multiplicatively decreased,  
 ( )β−⋅=+ 1)()1( twintwin .             (4) 

Parameters of α , β  and k are tunable to give out desirable 
scalability, smoothness and responsiveness. As we mentioned 
before, we tune CTCP to have comparable scalability to 
HSTCP when there is absence of congestion (the detailed deri-
vation is presented in Section IV.A). 

Considering there is already a loss-based component in 
CTCP, the delay-based component needs to be designed to only 
fill the gap, and the overall CTCP should follows the behavior 
defined in (3) and (4). We summarize the algorithm for the 
delay-based component as in (5) 
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where (.)+ is defined as max (., 0 ). The first line shows that in 
increase phase, dwnd only needs to increase +−⋅ )1)(( ktwinα  

packets, since the loss-based component (cwnd) will also in-
crease by 1 packet. Similarly, when there is a loss, dwnd is set 
to the difference between the desired reduced window size and 
that can be provided by cwnd. The rule on the second line is 
important. It shows that dwnd does decrease when the queue is 
built, and this is the core for CTCP to preserve good RTT and 
TCP fairness. Here, ζ  is a parameter that defines how rapidly 

the delay-based component should reduce this window when 

early congestion is detected. Note that dwnd will never be nega-
tive. Therefore, CTCP window is low-bounded by its loss-based 
component (i.e. a standard TCP). 

In above control laws, we assume the loss is detected by three 
duplicate ACKs. If a retransmission timeout occurs, dwnd 
should be reset to zero and the delay-based component is dis-
abled. It is because that after a timeout, the TCP sender is put 
into slow-start state. After the CTCP sender exits the slow-start 
recovery state, the delay-based component may be enabled once 
more. 

IV. ANALYSIS OF CTCP 

In this section, we develop analytical models of CTCP to 
study its characteristics. More specifically, we want to quantify 
how well CTCP satisfies the three requirements proposed earlier 
for high speed protocols, namely efficiency property, RTT fair-
ness property, and TCP fairness property. In the following 
analysis, we use a synchronized loss model. There is much evi-
dence showing that synchronized loss is common in high-speed 
networks [6]. We develop our analytic model based on a simple 
network topology which contains one bottleneck link, as shown 
in Figure 3, where u stands for the link capacity; B is the buffer 
size on the bottleneck link; and Ti is the transmission delay. 
Note that this transmission delay can be different for different 
connections. 

u

CTCP

B
Ti

Regular TCP

l

m  
Figure 3. A simple network model. 

A. Efficiency property 
We first focus on the stable state throughput of CTCP. We 

ignore the slow-start phase and assume all loss events are de-
tected by three duplicate ACKs. We follow the common as-
sumptions as in previous work [12][19] that packet losses in 
different rounds are independent and RTT is independent to the 
window size of individual flow. The evolution of the CTCP 
window is illustrated in Figure 4. At time D, the connection just 
experiences a loss event and reduces the window size. At this 
point, the queue at the bottle-neck has been drained, and there-
fore, the window increases binomially. At time E, the queue 
begins to build, the CTCP senses this from the increase in the 
packet delay, and dwnd decreases to try to maintain a stable 
window. Note that cwnd still increases one MSS each round and 
when dwnd decreases to zero, CTCP window increases again at 
time F. CTCP continues to probe the network capacity until a 
packet loss occurs at time G, and window is reduced by Wβ . 

The dashed line in Figure 4 illustrates the evolution of cwnd in 
CTCP. From time D to time G, we define a Loss Free Period 



 

(LFP).  
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Figure 4. The evolution of CTCP window during a LFP. 

We denote w0 the window size at the stable state, i.e. from 
time E to time F, at which CTCP tries to maintain γ  packets 
backlogged at the bottleneck queue. Following the previous 
analysis [19], the average diff in this stable state is approxi-
mately γ . Therefore, we have 

baseRTTR

R
w

−
⋅= γ0

,              (6) 

where R is  the round trip time. 
Below, we develop the throughput model of CTCP. During 

time D to E, window increases according to 
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Therefore, the interval between D and E can be calculated as 
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And the number of packets transmitted during time interval D-
E is 
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 During time E to F, while cwnd continues to grow, dwnd 
keeps dropping. As a consequence, the CTCP window remains 
stable until dwnd drops to zero and window starts again to in-
crease at time F. Therefore, we have 
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and 
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 During time F to G, CTCP window increases linearly just as 
if it is a simple TCP Reno. Therefore, we simply have 
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 The total number of packet sent in one LPF is 
  pNNNY FGEFDE /1≈++= .           (14) 

Note that Wm is the only variable in equation (14), so that it can 
be got by solving (14). Then, we plug Wm back into (8), (10), 
and (12) to get the total number of RTTs in each LPF. Finally, 

the throughput of CTCP is 
)(

/1

FGEFDE TTTR

p

++⋅
=Λ . Below, we 

give the close-form expression of CTCP throughput in a special 
case, from where we give the rational on how to choose CTCP 
parameters.  

We assume the packet loss rate is rather high compared to the 
link speed. In this case, random packet loss limits the through-
put of CTCP and the stable state mentioned above is never 
achieved. The response function in this case reflexes the ability 
of CTCP to use the free bandwidth. Since LFP ends before time 
E, from (9), we have  
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So, now we get 
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Therefore, we have the throughput of CTCP as  
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Figure 5. The response functions. 

Note that k determines the slope of response function (ag-
gressiveness). As we mentioned before, we intend to let CTCP 
have the similar ability to HSTCP in a congestion-free network. 
By compared (17) to the response function of HSTCP, whose 

window is 
833.0

1

p
WHSTCP ∝ . Therefore, we can get k by solving the 

following equation, 8.0833.0
2

1 ≈⇒=
−

k
k

. However, it is rather 

difficult to implement an arbitrary power calculation using inte-
ger algorithm. Therefore, we choose k equal to 0.75, which can 
be implemented with fast integer algorithm of square root. 
α and β  is a trade-off between smoothness and the responsive-

ness. In this paper, we choose α =1/8, β =1/2. We plot the 
CTCP response function in log-log scale, in Figure 5, as well as 
the response functions of the standard TCP, STCP and HSTCP. 
From the figure, we can see that CTCP is slightly more aggres-



 

sive than HSTCP in moderate and light packet loss rate and is 
approaching to HSTCP when window is large. 

B. Convergence and RTT fairness 
We first demonstrate that two CTCP flows with same RTT 

converge to their fair shares and then study its RTT fairness.  
Theorem 1: Two CTCP flows converge to fair share under 

the network model as shown in Figure 3 with same round trip 
delay. 

Proof. We use Jain’s fairness index [23], which is defined as 
follows, 
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 Let’s consider two CTCP flows, whose window size are x1 
and x2, respectively. We assume x1 < x2. We see 0F∆ ≥ , if and 
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0>∆F . When the queuing delay is detected, dwnd is decreasing 
while cwnd still increases by 1MSS. Therefore,  
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We see that when the two streams share the same bottleneck 
and the propagation delay is same, the baseRTT observed by 
two streams should also converge to the same value. Therefore,  
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the fairness index also increases. When the packet loss is de-
tected, both rates are decreased by β  times. So the fairness 
index keeps the same value. In summary, in each phase of the 
control law, the fairness index is strictly none decreasing. 
Therefore, eventually, the two CTCP flows converge to their 
fair share.  □ 

Then, we consider the case where different CTCP flows may 
have different delays. We show by Theorem 2 that the RTT 
unfairness of CTCP is bounded by that of the standard TCP 
Reno. 

Theorem 2: Let Th1 and Th2 present the throughput of two 
CTCP flows with round trip time as R1 and R2, respectively. 
Then, the following inequality satisfied 
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Proof. One CTCP flow contains two components, delay-
based component (dwnd) and the loss-based component (cwnd). 
The delay-based component reacts to the increase of round trip 
time and tries to maintain certain number of packets back-
logged in the bottleneck queue. Since the flow rate of each 
connection is approximately proportional to its queue size, the 
delay-based component of each connection give roughly same 
throughput. However, we know that the throughput ratio of 
TCP Reno is inversely proportional to the square of their RTT 
ratio. 

Let Λ  and 'Λ  stand for the throughput of the delay-based and 
loss-based component of a CTCP flow. We have,  
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Note that when including a delay-based component into the 
standard TCP would improve the RTT fairness of TCP’s con-
gestion avoidance algorithm. 

C. TCP Fairness 
In this section, we study the impact of CTCP on other stan-

dard TCP flows when they are competing for the same bottle-
neck. More specifically, we want to quantify the throughput 
reduction of the regular TCP flows because of the introduction 
of CTCP flows. We define a new metric here to measure the 
TCP fairness, named bandwidth stolen. 

Definition 1: bandwidth stolen.  Let P be the aggregated 
throughput of m regular TCP flows when they compete with 
another l regular TCP flows. Let Q be the aggregated through-
put of m regular TCP flows when they compete with another l 
high-speed protocol flows in the same network topology. Then, 

P

QP
Bstolen

−=  is the bandwidth stolen by high-speed protocol 

flows from regular TCP flows. 
Theorem 3: With the system model shown in Figure 3, when 

γ>
+ lm

B , CTCP will not steal bandwidth from competing regu-

lar TCP flows. 
Proof. We assume all packet losses are caused by buffer over-

flow and synchronized. We use a graph argument.  Figure 6 
shows a LFP when CTCP flows compete with regular TCP 
flows. As discussed before, CTCP flows will aggressively in-
crease dwnd until there are γ  packets are backlogged at the bot-
tleneck queue at time E. Assume the window size at this point is 
w0. After that, dwnd declines while cwnd continues to increase 

by one packet every RTT. Since γ>
+ lm

B , cwnd will eventually 

reach w0 before the next packet loss event. However, at this 
point (time F), dwnd is approaching zero. From then, CTCP is 
just controlled by its loss-based component. And at time G, 
buffer overflows and all flows sense packet loss. Since all dwnd 
drop to zero when packet loss occurs, each regular TCP flow 
will get a maximal window size as if there were (m+l) regular 
TCP flows. The average window of a TCP flow equals to 3/8 of 
its maximal window size. Therefore, the m regular TCP flows 
will receive the same throughput no matter they compete with l 
other TCP flows or l CTCP flows.          □ 

Theorem 3 shows that CTCP is fairness to TCP flows in term 
of not reducing TCP’s throughput when the network is suffi-
ciently buffered. However, CTCP does have higher throughput 
than regular TCP. It is because CTCP can make better use of 
free bandwidth that is currently not utilized. 

Note that when the network is significantly under buffered 
(which we argue should not be a normal setup), CTCP may still 
steal bandwidth from regular TCP flows. It is because when 
buffer size is small, the early congestion detection may not per-
form well. We will discuss this worse case behavior in Section 
VI.B.5). 
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Figure 6. Window evolution of TCP and CTCP. 

D. Summary of CTCP characteristics 

Our analysis above shows that the scalable delay-based com-
ponent in CTCP can aggressively obtain free bandwidth when 
the network is light-loaded, while gracefully reduce its sending 
rate when queue is built and avoid adding more self-induced 
packet losses. In this way, CTCP can efficiently utilize the 
bandwidth while at the same time maintaining good RTT fair-
ness and TCP fairness. 

V. IMPLEMENTATION 

We have implemented CTCP on the Microsoft Windows 
Platform by modifying the TCP/IP stack.  

The first challenge is to design a mechanism that can pre-
cisely track the changes in round trip time with minimal over-
head, and can scale well to support many concurrent TCP con-
nections. Naively taking RTT samples for every packet will 
obviously over-kill both CPU and system memory, especially 
for high-speed and long distance networks where a whole win-
dow worth of data may have tens of thousands packets. There-
fore, we need to limit the number of samples taken, but without 
lose of much accuracy. In our implementation, we only take up 
to M sample per window of data. M scales with the round trip 
delay. More specifically, δ/RTTM ∝ , where δ  is the minimal 
RTT value on the Internet. We believe ms1=δ  is a reasonable 
value, since most of operating systems have a scheduling accu-
racy larger than that. Since TCP flows can not change their 
sending rate faster than their RTT, letting δ/RTTM ≈  can 
pretty well track the changes of queueing delay on the network 
path. In order to further improve the efficiency in memory us-
age, we develop a dynamic memory allocation mechanism to 
allocate sample buffers from a kernel fix-size per-processor 
pool to each connection in an on-demand manner. The smallest 
unit (block) is 256 bytes which can hold 32 samples. As the 
window increases, more packets are sent. If current sample 

buffer is not enough, more blocks are allocated and linked to the 
existing sample buffer until up to M samples are taken. Note 
that sampled packets are uniformly distributed among the whole 
window. If a sample block is empty due to a reduced window or 
lack of application data, the unused blocks are returned to the 
memory pool. This dynamic buffer management ensures the 
scalability of our implementation, so that it can work well even 
in a busy server which could host tens of thousands of TCP 
connections simultaneously. Note that it may also require high-
resolution timer to time RTT sample. On Win32 platform, we 
can get a micro-second timer by using KeQueryPerformance-
Counter. After WinXP SP2, KeQueryPerformanceCounter has 
been optimized to directly read CPU’s Time Stamp Counter if 
available, and therefore introduces very less overhead. 

The rest of implementation is rather straightforward. We add 
two new state variables into the standard TCP Control Block, 
namely dwnd and baseRTT. The baseRTT is a value that tracks 
the minimal RTT sample measured so far and it is used as an 
estimation of the transmission delay of a single packet. Follow-
ing the common practice of high-speed protocols, CTCP also 
revert to standard TCP behavior when the window is small. De-
lay-based component only kicks in when cwnd is larger than 
some threshold, lowwnd. When the delay-based component 
kicks in, we let it at least increase one MSS per RTT. Therefore, 
from the increase law in equation (5), CTCP window should be 
at least 41 packets. So, we select lowwnd to be 41 MSS.  

Dwnd is updated at the end of each round. If more than N 
(currently set to 5) RTT samples are taken, an average RTT is 
calculated and used to update dwnd according to equation (5). 
Note that RTT sampling and dwnd update are frozen during the 
loss recovery phase. It is because the retransmission during the 
loss recovery phase may result in inaccurate RTT samples and 
can adversely affect the delay-based control. 

VI. PERFORMANCE EVALUATION 

A. Methodology 
We constructed a test-bed to conduct experiments for CTCP 

in our lab. The test-bed contains several DELL Desktop GX280 
desktops equipped with Intel Pro/1000 XT Giga Ethernet cards. 
We use a DELL WS450 workstation as a router that connects 
two DLink DGS-1008T gigabit switches. The router is running 
FreeBSD 5.3 and DummyNet [25]. The DELL desktops are 
running Microsoft Windows and connected to the DLink 
switches. The testing environment is illustrated in Figure 7. We 
have extended the Windows TCP/IP stack to simultaneously 
support multiple TCP variants. Applications can dynamically 
select a congestion control scheme by using a Socket option. 
We modified Iperf [21] to support the new Socket option, so 
that it can test the different TCP variants.  

We configure DummyNet to emulate network conditions with 
different packet loss rate and round trip delay. In each experi-
ment, we set DummyNet to limit the bottleneck link speed to be 
700Mbps. It is the highest speed we can get before the router‘s 
CPU becomes a bottleneck. We configure the router to use 
DropTail queue management. Unless otherwise pointed, the link 
delay is 100ms and the buffer size at the router is set to 1500 



 

packets. 
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Figure 7. Testing Environment. 

We test three TCP implementations on our test-bed: CTCP, 
HSTCP and the default Windows TCP implementation (regular 
TCP). We make our own implementation of HSTCP according 
to RFC 3645 and the reference implementation in NS2 [22]. In 
all three TCP implementations, New Reno, SACK, D-SACK 
and TCP high performance extensions are implemented and 
enabled by default. Each experiment lasts for 300 seconds, and 
the results presented are averaged over 5 runs of each test.  

B. Results  
1) Utilization 
We first want to verify whether or not CTCP can effectively 

use the available bandwidth in high-speed and long delay envi-
ronment. We configured DummyNet to generate random packet 
losses. We varied the loss rate from 10-2 to 10-6. We ran 4 regu-
lar TCP, HSTCP and CTCP flows, respectively. The aggre-
gated throughput of each TCP variant is plotted in Figure 8. 
Note that when packet loss is high (>10-3), all three protocols 
behave exactly the same. However, with the decrease of packet 
loss rate, HSTCP and CTCP can use the bandwidth more effi-
ciently. CTCP has slightly higher throughput compared to 
HSTCP. The reasons are two-fold: 1) the CTCP’s response 
function is slightly more aggressive than HSTCP in moderate 
window range; and 2) CTCP introduces much less self-induced 
loss due to the delay-based nature. 
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Figure 8. Throughputs under different packet loss rates. 

We then conducted another set of experiments under burst 
background traffic. We generated On/Off UDP traffic with dif-
ferent peak data rate. The on-period and off-period of the UDP 

traffic were both 10s. Table 1 summarizes the aggregated 
throughputs and link utilizations (shown in brackets, normalized 
by the theoretical available bandwidth left over by UDP traffic) 
of 4 testing flows. It shows that CTCP and HSTCP can effi-
ciently recover from the packet losses caused by burst back-
ground traffic and remain high link utilization. However, regular 
TCP can not efficiently use the link bandwidth. When the peak 
rate of UDP traffic goes from 50Mbps to 200Mbps, the utiliza-
tion of the bottleneck link drops to 66%.  This verifies that 
TCP’s congestion control algorithm is too conservative under 
high-speed and long delay networks. 

Table 1. Throughputs under burst UDP traffic. 
BG traffic 
peak rate 

50Mbps 100Mbps 150Mbps 200Mbps 

Regular 
TCP 

583.47 
(86%) 

558.44 
(85%) 

 415.01 
(66%) 

404.19 
(66%) 

HSTCP 613.77 
(91%) 

595.87 
(91%) 

566.85 
(90%) 

543.35 
(90%) 

CTCP 625.01 
(93%) 

600 
(93%) 

581.5 
(93%) 

544.83 
(91%) 

 
2) TCP fairness 
After showing that CTCP is effective in utilizing link band-

width, we evaluate the TCP fairness property of CTCP. There 
are many methods that improve the efficiency at the cost of fair-
ness to the regular TCP flows. However, our goal of CTCP is to 
improve the efficiency and maintain TCP fairness at the same 
time.  

To qualify the TCP fairness, we first ran 8 regular TCP flows 
as baseline. Then, we replaced 4 flows to be the high speed pro-
tocols and repeated the experiments under the same condition. 
We compared the throughputs got by regular TCP flows with 
and without the present of high speed protocols. We used the 
bandwidth stolen defined in IV.C as an index in our compari-
sons.  

The first experiment investigated the TCP fairness under dif-
ferent link packet loss rates. Figure 9 and Figure 10 present the 
results of HSTCP and CTCP, respectively. The Regular 
TCP(baseline) presents the throughput of 4 regular TCP flows 
in the baseline test (total 8 regular TCP flows are in test). The 
Regular TCP line shows the throughput got of 4 regular TCP 
flows when they were competing with 4 high-speed protocols. 
The gap between these two lines demonstrates the throughput 
reduction of regular TCP flows when there are high-speed pro-
tocols. In Figure 9, we can see when the packet loss is high 
(>0.0001), HSTCP will not degrade the throughput of regular 
TCP. This is because when the packet loss rate is high, the link 
is under utilized. Fairness issue only rises when the link is fully 
utilized. When packet loss is light, HSTCP begins to occupy the 
buffer more quickly than regular TCP and induces more packet 
loss events. As a consequence, the regular TCP obtains much 
less throughput compared to the baseline case. On the contrary, 
in Figure 10, when the bottleneck link is fully utilized, the de-
lay-based component begins to retreat early without causing 
additional self-induced packet losses, and therefore, the compet-
ing regular TCP flows will receive similar throughput as in the 
baseline case. Figure 11 shows the bandwidth stolen. HSTCP 



 

can steal up to 70% of bandwidth from regular TCP flows, 
while throughput reduction of regular TCP when competing 
with CTCP is less than 10%.  
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Figure 9. Throughput of HSTCP and Regular TCP flows when 

competing for same bottleneck. 
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Figure 10. Throughput of CTCP and Regular TCP flows when 

competing for same bottleneck. 
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Figure 11. Bandwidth Stolen under various packet loss rate. 
We then repeated the experiment under burst traffic setup. 

We used the same On/off UDP background traffic pattern as in 
last section. Figure 12 shows the bandwidth stolen of CTCP 
and HSTCP in this experiment. We get similar results that 
HSTCP can cause around 60% throughput reduction of regular 

TCP, while the throughput reduction cause by CTCP is around 
10%. Therefore, CTCP is much fairer to regular TCP then 
HSTCP. 
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Figure 12. Bandwidth Stolen under burst background traffic. 

 
3) RTT fairness 
In this experiment, four high-speed flows were competing for 

the bottleneck link with different round trip delay. Two of them 
had shorter delay with 40ms. Two others had longer delay 
which varied among 40ms, 80ms, 120ms, and 240ms. The bot-
tleneck link delay is 20ms, and we set the buffer size to be 1000 
packets.  

Table 2 summarizes the throughput ratio between flows with 
different round trip delay. It is not surprising to see that HSTCP 
has very severe RTT unfairness because in this experiment, 
most of packet losses are synchronized. The interesting thing is 
that CTCP has much improved RTT fairness compared to regu-
lar TCP. It is because the delay-based component included in 
CTCP gives favor to long-delay flows.  

Table 2. Throughput ratio with different round trip delay. 
Inverse RTT ratio 1 2 3 6 
Regular TCP 0.9 3.6 6.2 31.6 
HSTCP 1 28.9 90.5 233.8 
CTCP 1 2.2 4.1 9.5 
 

4) Impact of gamma 
Note that in previous experiments, we evaluate CTCP with 

γ =30. Recall from in Section III.B, that γ  is a tradeoff between 
throughput and the buffer requirement for TCP fairness. In this 
section, we explore the impact of γ  on the performance of 
CTCP, and this gives us the insight of how to choose γ  value. 

In theory, we expect to choose small γ  value. But we show 
that too small γ  will adversely impact the throughput. It is be-
cause a slightly disturbance on the RTT will be sensed as early 
congestion in a dynamic network. To measure the impact of 
different γ  value, we ran a CTCP flow with mixed traffic of 
UDP and TCP background traffic. We added a CBR UDP traf-
fic which occupied 20% of capacity, and then we randomly 
added TCP flows. Each TCP flow would transmit 50Mbyte data. 
We measured the throughput of the CTCP flow over 5 minutes. 
Figure 13 shows the throughput of the CTCP flow with different  
γ  value. The grayed column presents the median value of 10 



 

runs. The two short bars present the maximal and minimal 
value. It is expected that with higher  γ  , CTCP will have 
higher throughput. It is because that CTCP connection will ac-
cumulate more packets in the bottleneck queue and reduce the 
chance of buffer underflow, which causes throughput reduction. 
However, when  30>γ , the throughput increase is almost satu-
rated (from γ =30 to γ =50, the increase is less than 5%). 
Therefore, we set γ  to be 30 in this paper. 
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Figure 13. Throughput of CTCP with different gamma. 

 
5) Impact on bottleneck buffer size 
As we mentioned before, delay-based component requires 

certain amount of buffer space at the bottleneck link, i.e. γ  
packet per flow. If the buffer size is too small, the delay may 
not significantly increase during the congestion period, so that 
the early congestion detection will not be effective. If this hap-
pens, CTCP would degrade to a pure loss-based congestion 
avoidance algorithm. We conducted experiments under differ-
ent buffer sizes. Our tests contained 4 high-speed flows with 4 
regular TCP flows. Similar as before, we firstly ran 8 regular 
TCP flows and measured their throughput as a baseline. We 
plot the bandwidth stolen of HSTCP and CTCP in Figure 14.  
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Figure 14. Bandwidth Stolen under different buffer size. 

We can see from Figure 14, that when the buffer size is very 
small (<=300packets), the delay-based control law can not 
work well. As a consequence, CTCP stole bandwidth from 

regular TCP flows similar as HSTCP, as we intentionally set 
CTCP to have similar aggressiveness as HSTCP (actually, 
CTCP is a bit more aggressive than HSTCP with low window 
size). However, when the buffer size increases, the delay-based 
control law became more effective. Therefore, CTCP demon-
strated good TCP fairness (the bandwidth stolen drops to around 
10%). HSTCP, on the other hand, stole more bandwidth from 
competing regular TCP flows with the increase of the buffer 
size (the bandwidth stolen became saturated after some point). 
The reason is that when buffer size is large, the window of 
HSTCP is also larger and it is more aggressive compared to 
regular TCP.  
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Figure 15. Throughput under different buffer size. 

We argue that for high-speed and long delay network, it is es-
sential to provide sufficient buffer space in order to fully utilize 
the link capacity. To show that, we plot in Figure 15 the aggre-
gated throughput of the eight flows under different buffer sizes 
in above experiment. It shows that only with enough buffer size 
(e.g. 1000 packets), the 700Mbps link with 100ms delay can be 
fully utilized. Therefore, we expect reasonable large buffer 
should be deployed on the high-speed and long delay Internet 
that we target at.  

 
6) Impact of window reduction rule according to delay in-
crease 
In this section, we evaluate the impact on the TCP fairness of 

the window reduction control law with the increasing of delay. 
We modified the CTCP implementation and removed the win-
dow reduction rule. We refer this modified CTCP implementa-
tion as CTCP-NWR. Note that CTCP-NWR is very similar to 
TCP Africa [27]. We conducted the following experiment. We 
set the bottleneck link speed to be 500Mbps with round trip 
delay 60ms. Accordingly, we set the buffer size to be 750 pack-
ets. We tested 4 regular TCP flows first as a baseline and we 
had averaged throughput of two flows as 229.1Mbps. Then, we 
ran 2 regular TCP flows against 2 HSTCP, CTCP-NRR, and 
CTCP flows, respectively. Table 3 summarizes the results. We 
can see that without the window reduction rule, CTCP-NRR still 
behaved more aggressive that regular TCP and caused 50% 
throughput reduction. Indeed, this is better than HSTCP, which 
resulted in 81% bandwidth stolen, but much worse than CTCP, 



 

which only had 6% bandwidth stolen. This confirms that reduc-
ing window based on delay information is essential to ensure 
TCP fairness in a mixed network environment. 

Table 3. Impact on TCP fairness of window reduction rule in 
CTCP (unit Mbps) 

 Regular 
TCP 

High-speed 
protocol 

Sum Bandwidth 
stolen 

HSTCP 42.9 435. 478. 81% 
CTCP-
NWR 

113.6 362. 476. 50% 

CTCP 215.2 264.9 480.1 6% 

VII. CONCLUSIONS 

In this paper, we present a novel congestion control algo-
rithm for high-speed and long delay networks. Our Compound 
TCP approach combines a scalable delay-based component 
with a standard TCP loss-based component. The delay-based 
component can efficiently use free bandwidth with its scalable 
increasing law. When the network is congested, the delay-based 
component will gracefully reduce the sending rate, but the loss-
based component keeps the throughput of CTCP lower 
bounded by TCP Reno. This way, CTCP will not be timid, nor 
induce more self-induced packet losses than a single TCP Reno 
flow, and therefore achieves good TCP fairness. Further, delay-
based schemes allocate network resource without RTT bias. 
Therefore, adding a delay-based component in CTCP greatly 
improves the RTT fairness even compared to TCP Reno.  

We have implemented CTCP on Windows Platform by 
modifying Win32 TCP/IP stack. We conducted excessive lab 
experiments with our implementation and convinced ourselves 
that our implementation is stable and robust. The experimental 
results verify that CTCP can effectively utilize the link capacity, 
while at the same time maintaining excellent RTT and TCP 
fairness.  

Finally, we note that CTCP may still be able to improve in 
many ways. For example, one going-on effort is to adaptively 
set γ  value. Our goal is to detect early congestion with constant 
buffer requirement independent of the number of CTCP flows. 
We are currently investigating several ways to achieve this goal.  
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