
Efficient Integration Testing using Dependency Analysis
Amitabh Srivastava

Microsoft Research
One Microsoft Way

Redmond, WA
amitabhs@microsoft.com

Jay Thiagarajan
Microsoft Research
One Microsoft Way

Redmond, WA
jaythia@microsoft.com

Craig Schertz
Microsoft Research
One Microsoft Way

Redmond, WA
cschertz@microsoft.com

ABSTRACT
Although testing starts with individual programs, programs are
rarely self-contained in real software environments. They depend
on external subsystems like language run time and operating
system libraries for various functionalities. These subsystems are
developed externally to any given program, with their own test
processes. Of course, an uncoordinated change in one of the
external subsystems may affect the program’s correctness. Test
teams therefore add an integration testing step to their process to
ensure that programs will continue to operate with different
versions of the external subsystems. As full testing may take days
or weeks to run, it is useful to understand how to prioritize these
tests.

We present an integration testing system to understand and
quantify the impact of a change, so test teams can focus their
testing efforts on the most likely affected parts of the program.
Detecting the impact of a change is a hard problem due to the size
and complexity of the control and data dependencies involved.
Our new approach is based on a binary dependency framework,
MaX, that determines control and data dependencies in a system
and represents them in a dependency graph. MaX is designed to
work on systems consisting of thousands of binaries and millions
of procedures. It constructs the graph in multiple steps to allow
the analysis of individual binaries to proceed in parallel. MaX
provides simple abstractions for defining systems, and provides a
simple programming interface to tools for analysis of the graph.

The integration testing system also contains two tools that use
MaX to advise test teams. MaxCift quantifies the effect of a
change to guide how much testing is likely to be needed.
MaxScout prioritizes an existing set of tests based on changes
made to external subsystems. All of the tools use a binary code
based approach that does not require source code for external
subsystems, an important requirement for practical use.

MaX runs under the Windows environment and is used by
Microsoft product teams. Early results show that the system scales
to production software and is effective in guiding testing.

Keywords
Software testing, integration testing, test prioritization.

1. INTRODUCTION
Programs continuously evolve to address new requirements,
changing environments, marketplace demands and existing
deficiencies. Software testing has to ensure that no new defects
are introduced throughout the program’s evolution. Testing of
software, therefore, occurs continuously throughout the
development cycle. Over the past decade a number of techniques
have been proposed to reduce the cost of testing (we discuss these
in Section 2). However, all of the proposed techniques focus
internally on a single program; that is, they consider only internal
parameters such as changes made to the program itself, the rate of
faults in the program, and test coverage of the program.

Programs, however, are rarely self-contained in real software
environments; they depend on a number of external subsystems1
like applications, third party dynamically linked libraries (dll),
language run time dlls, and operating system dlls for various
functionalities. These subsystems are external to the program and
are often maintained by different teams with independent testing
process and release schedules. A change in any external
subsystem may affect the program.

As production software is complex, it is difficult to manually track
all of its dependencies (the transitive closure of all immediate
dependencies), yet this is needed to assure continued operation at
customer sites. To handle this challenge, test teams have added an
integration testing step in their development process to ensure that
their applications will continue to operate with different versions
of external subsystems. The external subsystems are often
available to test teams in binary form, and a test team generally
does not know the changes that have been made in these external
subsystems from the previous version. For example, an
application which uses the Windows XP operating system
libraries may have access to the Windows XP and Windows XP
SP1 (Service Pack 1) binaries but will not know the exact details
of the changes that were made in Windows XP to produce the
Windows service pack SP1.

The complexity of integration testing increases with the number of
external subsystems. As full testing of a program may take days or
weeks to run, an effective strategy is to focus testing effort on
parts of the program that may have been affected by the changes
in the external subsystems. In time-constrained situations, an
appropriate set of tests, subject to the specified time limit, can be
selected to best use the available time.

1 A subsystem is a logical collection of shared dynamically linked

libraries (.dlls); for example, the subsystem for the windows
operating system may include dlls such as kernel32.dll,
gdi32.dll, and user32.dll.

To improve the efficiency of integration testing, we have built a
test integration system consisting of the following tools:

1. MaX – a dependency framework for an entire system.

• MaX works with systems consisting of native x86 and
.NET managed CIL [31] binaries.

• MaX determines control and data dependencies by
examining the system binaries. It builds the dependence
graph with a uniform representation for control and data
dependencies.

• MaX provides a simple set of hierarchical abstractions
for defining a system and representing its dependence graph.

• MaX provides a simple programming interface for
navigating and querying the dependence graph.

• MaX scales to large production systems and can be used
in various real time scenarios.

2. MaxCift – quantifying a change. MaxCift uses the
dependence graph to quantify the effect of a change. It
computes the change impact factor (CIF) by measuring the
fraction of binaries and procedures that have been affected in
the system. It helps test teams understand how much testing
may be needed and where to focus.

3. MaxScout - a test prioritization system, which presents a new
approach for prioritizing an existing set of tests for a program
based on changes made in its external subsystems.

All the tools use a binary code based approach that works well for
integration testing, as source code for external subsystems is
generally not available to the program’s test team.

This paper describes the design and implementation of the
integration testing system. It discusses the performance of MaX in
building dependence graphs of large production applications. The
paper also analyzes the impact of change in Microsoft product
service packs.

2. RELATED WORK
Many approaches have been proposed to address the cost of
testing, including test selection [1][2][4][17][26], test
prioritization [5] [6][7][14][15], and a hybrid approach [29] that
consists of test selection using source code changes [12] followed
by test prioritization to schedule the selected tests. Test
minimization techniques that permanently discard tests have been
proposed in [3][11][16][28].

Computing program change has been proposed [1][2][3][17][26]
for test selection, and for test prioritization [5][7][14][29].
Techniques used to compute program change are source code
differencing [5][7][26], data and control flow analysis [1][17],
and coarse grained modified code entities [4] to identify which
parts of the program might be affected by the changes.

Echelon [20] proposed a binary code based approach for test
prioritization. Echelon used binary matching [27] to compute
change in a program at basic block granularity. Instead of using
expensive techniques like data flow analysis, Echelon utilized a
fast and simple heuristic to predict which tests will cover the
affected basic blocks. By doing prioritization, Echelon can use a

non-precise algorithm that works well in practice. Echelon’s
technique is fast and scales well to large programs, making it
suitable for use in development environments.

Echelon and all the previous systems are designed for testing a
single changed program. They use different techniques to compute
changes in the program at different levels of granularity and
prioritize the test cases based on it.

None of the previous systems, including Echelon, propagate the
effect of external changes into a program. MaX, on the other
hand, uses a dependency framework to find relevant affected parts
of the system outside the program boundaries.

MaxCift computes a coefficient that serves as a simple heuristic
that quantifies change. The relative value of the coefficient
reflects the impact of a change.

MaxScout may mark a program as affected or changed even
though there were no changes in any of its own code. All the
previous systems including Echelon were not designed for such
cases.

3. ENVIRONMENT FOR THE MaX TOOLS
The MaX tools are part of the Magellan test effectiveness tool set.
They leverage the Magellan test effectiveness infrastructure and
the Vulcan [21] binary modification infrastructure for information
and analysis. In this section, we briefly describe Magellan and
Vulcan. We also discuss Echelon [20], which is part of the
Magellan tool set; MaxScout uses a modified form of Echelon for
prioritizing tests in its last step.

The Magellan Test Effectiveness Infrastructure

The Magellan tool set provides an infrastructure for collecting,
storing, analyzing, and reporting information about a test process.
The core of Magellan is a SQL Server-based repository that stores
test coverage information for each test. The coverage information
can be mapped to the static structure of the program: its
procedures, files, directories, binaries etc. All the program
binaries that were tested and their corresponding symbol files are
stored in a separate symbol repository and cross-linked. The
Magellan infrastructure is designed to be extensible; Magellan
provides a well-defined interface for accessing and storing
information.

Although new tools are easily added, Magellan also provides a
basic set of tools that are commonly needed during the test
process. This includes a test coverage collection tool that uses
binary instrumentation to collect block coverage and arc coverage
information both in user and kernel mode. The coverage
information is collected for each test and stored in the repository.
For easy presentation of coverage data, Magellan also provides
reporting tools with graphical user interfaces that can map the
data to the source code. Blender, a test migration tool, migrates
coverage data from older versions of Magellan to newer versions.

Magellan includes Echelon [20], a test prioritization system that
uses a practical binary code based approach for test prioritization
based on program change. Echelon takes as input two versions of
the program in binary form along with the test coverage
information of the older version, detailing which tests covered
which parts of the program. Echelon outputs a prioritized list of
tests, starting with a minimal sequence of tests, drawn from the

given tests that cover as many of the affected parts of the program
as possible. This is followed by another minimal sequence of tests
drawn from the remaining tests, and so on; it ends with a sequence
of tests that do not cover any of the affected parts of the program.
Echelon operates on a single binary and computes the impacted
blocks of the binary by determining which blocks in the binary
have been modified or added, using binary matching [27].
Echelon’s technique is fast and scales well to large programs,
making it suitable for use in large-scale development
environments.

Vulcan Binary Modification Infrastructure

MaX utilizes a rich binary modification infrastructure called
Vulcan [21]. Vulcan is a second-generation toolkit that provides
both static and dynamic binary code modification and provides a
framework for analysis and optimization [22][23][24]. Vulcan
provides a uniform abstraction for binaries with a simple API for
inspection, instrumentation and optimization. Vulcan works in the
Win32 environment and can process x86, IA64, and CIL [31]
binaries. Vulcan has been used to improve the performance and
reliability of many Microsoft products.

To compute the changes between two versions of a binary,
MaXScout utilizes BMAT [27], a binary matching tool built using
Vulcan. BMAT is a fast and effective tool that matches two
versions of a binary program without knowledge of source code
changes. This tool uses a hashing-based matching algorithm and a
series of heuristic methods, with the goal of matching as much of
the program as possible, thus identifying the changes. The
algorithm first matches procedures, then blocks within each
procedure. Several levels of matching are attempted with varying
degrees of precision. This process allows correct matches to be
found even in the presence of shifted addresses, different register
allocation, and various small insignificant program modifications.
The success rate of matching of code blocks is often higher than
99% [27].

4. MaX: DEPENDENCY FRAMEWORK
This section describes how MaX computes the control and data
dependencies of a system, and constructs the dependency graph. It
also discusses the programming interface MaX provides for
analysis, and its performance on large systems.

4.1 Constructing the Dependency Graph
MaX constructs the dependency graph of a system in three steps.
In the first step, a hierarchical definition of the system is created
using the MaX abstractions. In the second step, MaX analyzes
each binary individually to compute the binary’s data and control
dependencies. In the last step, the information from each binary is
consolidated to build the system dependence graph. This section
discusses each of the steps in detail.

Defining the System Definition File

MaX provides four levels of abstraction: system, subsystem,
binary, and procedure. A system consists of one or more
subsystems, a subsystem contains one or more binaries, and a
binary consists of one or more procedures. The system definition
file uses these MaX abstractions to describe the system in a
hierarchical manner.

Figure 1. System Definition File

Figure 1 shows the XML file containing the definition of the
magsys system, which has four subsystems: magellan, vulcan, vc,
and windows. The binaries comprising each subsystem are
enumerated in the system file. For example, the Vulcan subsystem
contains four binaries: vulcan23.dll, vuldyn.exe, vuldynpxy.dll,
vulutil.dll. The system definition file also contains the names for
each of the abstractions and their file locations.

Creating the Binary Dependency Information File

MaX analyzes the binaries defined in the system definition file,
one binary at a time, to produce the dependency information file.
This file summarizes the dependency information for that binary.
The binaries in the system may be processed in parallel. The
processing time thus can be controlled by adding more machines
or processors. Section 4.3 discusses the performance of MaX.

All the binaries in a system have to be processed at least once by
MaX at the start of the process. However, as software
development progresses and parts of the program are changed,
only the modified binaries have to be reprocessed by MaX. This
tremendously cuts the processing costs as not all binaries are
normally modified at each step of the development process.

To express the dependencies in a binary, MaX adds two
abstractions to the binary abstractions: call-in points and call-out
points. Control enters a binary through one of its call-in points
and it continues out of the binary through one of its call-out
points. (We do not consider returns, exceptions, etc., as call-outs.)
A binary may have a number of call-in and call-out points. Call-in
points are procedures in the binary while call-out points link to
procedures in other binaries it may call.

<system name = "magsys">

 <subsystem name = "magellan" file = "mag.xml">

 <binary name = "coverage.dll" file = "coverage.xml"/>
 <binary name = "covercmd.exe" file = "covercmd.xml"/>
 <binary name = "magcore.dll" file = "magcore.xml"/>
 <binary name = "magtraces.dll" file = "magtraces.xml"/>
 </subsystem>

 <subsystem name = "vulcan" file = "vulcan.xml">
 <binary name = "vulcan23.dll" file = "vulcan23.xml" />
 <binary name = "vuldyn.exe" file = "vuldyn.xml" />
 <binary name = "vuldynpxy.dll" file = "vuldynpxy.xml" />
 <binary name = "vulutil.dll" file = "vulutil.xml" />
 </subsystem>

 <subsystem name = "vc" file = "vc.xml">
 <binary name = "mspdb71.dll" file = "mspdb71.xml" />
 <binary name = "msvcr71.dll" file = "msvcr71.xml" />
 <binary name = "msvcp71.dll" file = "msvcp71.xml" />
 <binary name = "msobj71.dll" file = "msobj71.xml" />
 </subsystem>

 <subsystem name = "windows" file = "windows.xml">
 <binary name = "kernel32.dll" file = "kernel32.xml" />
 <binary name = "nt.dll" file = "nt.xml" />
 <binary name = "user32.dll" file = "user32.xml" />
 <binary name = "gdi32.dll" file = "gdi32.xml" />
 </subsystem>

</system>

Many call-in and call-out points, such as the exports and imports
in a Win32 PE binary, are easily found. Binaries also contain
relocation records to mark instructions that can be a target of
indirect procedure call, and MaX marks these as call-in points.
MaX uses Vulcan to determine the control transfer instructions
that might transfer control outside the binary.

While many control transfer targets can be determined statically,
others require more analysis. MaX uses static analysis and several
heuristics to determine these dependencies. For example, MaX
uses constant propagation to determine the names of dlls that are
explicitly loaded at runtime. Indirect calls through a virtual table
require finding the virtual table and using the index to determine
the target of the call. These methods may not identify the targets
of some calls. If MaX cannot resolve an indirect transfer of
control, it flags the call, which is then resolved by providing
manual feedback to MaX or by refining MaX’s heuristics, which
work quite well in practice. MaX lists all of the call-in and call-
out points in the binary dependency information file.

In the next step, MaX determines dependencies. A call-in point is
dependent on a call-out point if there is a control-flow path from
the call-in point to the call-out point. Using reachability analysis,
MaX determines the dependency relationships between call-in and
call-out points in the binary. These call-in/call-out dependencies
are also listed in the binary information file. Similarly, for each
procedure in the binary, MaX lists the dependent call-in points in
the binary dependency information file.

All the dependencies that we have described so far are control
dependencies. To handle data dependencies, MaX introduces one
more abstraction, named object, which is a data element in the
program with a name. Two code segments, which may be residing
in different binaries, are data dependent if they read or write to
the same named object. For example, two procedures are data
dependent if one procedure writes to a global variable while the
other procedure reads the same global. Named objects can also be
registry keys, semaphores, mutexes, etc.

As data dependent procedures may reside in different binaries,
MaX, in this step, outputs the procedures in the binary that read
or write to named objects that are being tracked. This information
is consolidated in the next step to determine data dependencies.

Building the Dependence Graph

MaX aggregates the dependency information files of each binary
to build the dependence graph. MaX maintains the same hierarchy
of system, subsystem, binary, and procedures in the dependency
graph. For performance, MaX initially considers only procedures
that are call-in or call-out points for binaries, and creates directed
edges between dependent call-in and call-out points across
binaries. Other data such as procedure dependencies is read only
when needed.

MaX creates a named object data structure for each named object
that is being tracked. For each procedure that references a named
object, MaX creates a directed edge between the procedure and
named object, whose direction depends on whether the procedure
reads the named object or writes to it.

The reason for constructing the graph in two steps is to enable
MaX to exploit the parallelism in the first step; to take advantage
of the fact that only changed binaries need to be reprocessed, and

to allow construction of data dependencies in a scalable manner
that makes this approach practical for large production systems.

4.2 MaX Programming Interface
MaX provides a simple programming interface for tools to
analyze the dependency graph. MaX models a system as lists of
subsystems, binaries and procedures. MaX provides query
primitives to inspect various properties like names, locations etc,
and navigation primitives to move through the respective lists. A
node abstraction represents the procedures in the dependency
graph, and MaX provides primitives to traverse its callers and
callee nodes.

4.3 Status and Performance
MaX has been implemented in C# for x86 platforms running
Windows. It handles both native x86 and .NET managed CIL
binaries. MaX is under active development. It can currently detect
static dependencies, indirect dependencies from loadlib,
CreateProcess GetProcAddress, and CoCreateInstance in COM.
New dependencies, including registry keys, are being added.

Table 1. System Information

Dependency Graph Objects Count
Binaries 3,308
Procedures 1,495,295
Call-in points 197,534
Call-in/Call-out Dependency edges 2,206,972
Named Objects 18,898

To measure the performance of MaX, we constructed the
dependency graph of a large production system with 3120 binaries
and 1.2 million procedures. MaX added 763950 dependency
edges between the call-in and call-out nodes. It also created 2406
named objects. The details are summarized in Table 1.

MaX took 287.4 minutes to collect the dependency data for all
3308 binaries on a dual processor 2.18GHz XEON P4 with 2GB
of memory running Windows Server 2003. Note that this step is
needed only once; subsequently, only changed binaries need to be
reprocessed. Further, since the binaries can be processed in
parallel, this processing cost can be reduced by adding more
machines; for example, it can be cut approximately in half by
adding a second machine. Most of the time is spent in writing the
binary dependency information files.

MaX takes only 58.6 seconds, less than a minute, to analyze the
dependency information files of the 3308 binaries and build the
control and dependency graph. As MaX only reads the relevant
information needed to build the graph, it can process all the files
in less than a minute; it reads other data such as procedure
dependencies, only when needed. Once the graph is constructed,
reachability analysis can be performed interactively. By quickly
reprocessing the changed binaries, the updated graph can be
quickly created and used interactively.

5. MaxCift: QUANTIFYING CHANGE
The effects of different changes are not equal; a change in a core
binary can have a much larger impact on a system than a change
in a binary on the periphery. Test teams can make better decisions
when they understand how a change affects the system. For
example, the impact of a change can be used to decide whether to

accept change late in the development process. It can also be used
to prompt a code review if the impact of a change is above a
certain threshold. Further, in time-constrained situations, such as
when issuing a security fix, a test team can allocate necessary
testing resources and focus its testing efforts to relevant parts of
the system by understanding the impact of the proposed changes.

MaxCift uses MaX to compute the effect of a change on a system.
It uses the reachability analysis to find which procedures have
been affected. If a procedure in a binary has been affected, the
binary is also marked as affected. The fraction of affected binaries
measures the “spread” of the change. The fraction of affected
procedures measures the “depth” of the change. Both depth and
spread are used to balance the size of a binary versus the number
of binaries affected. MaxCift combines these measures to compute
the change impact factor, CIF, as follows:

CIF = log10(%affected binaries* %affected procedures + 1)

CIF is on a log scale and can range from 0 to 4; therefore, a CIF
of 2.0 is ten times more serious than a CIF of 1.0.

We analyzed a service pack of a Microsoft product by computing
the CIF values of each binary that was modified, as shown in
Figure 2.

0

0.5

1

1.5

2

2.5

3

3.5

4

Binary

C
IF

Figure 2. CIF for changed binaries in Service Pack

In the 101 binaries that were modified in Figure 1, only 11
binaries had a change impact factor or CIF greater than 2.5. A test
team can focus on those binaries. Our manual analysis confirmed
that these were critical binaries.

6. MaxScout: PRIORITIZING TESTS
MaxScout takes as input a system definition file, the binaries that
make up the system, new versions of binaries for subsystems that
have changed, and test coverage information of a specified
program. It produces a prioritized list of tests, as well as a list of
subsystems, binaries and specific call-in points that have been
affected by the change.

MaxScout computes the changes between two versions of the
binaries for the subsystems that have a newer version available. It
then uses MaX to propagate the changes to find the affected parts
of the system by performing reachability and dependency analysis
using the MaX dependency graph, as described in section 4.1.

MaxScout starts by computing changes at block granularity using
BMAT [27]. For each updated binary it marks the affected blocks
that have either been modified or added. MaxScout first uses
MaX dependency information for each binary to mark call-in
points that have a path to the affected block. Next, MaxScout uses
MaX to conduct reachability analysis to determine the call-in
points in other binaries that can reach an affected call-in point. If
a call-in point of a binary has been affected, MaxScout marks the
binary as affected.

MaxScout prioritizes the available tests for each affected binary.
(Note that a binary may be affected even if not a single block was
changed.) MaxScout uses Echelon [20] to prioritize tests.
MaxScout, however, uses a different algorithm to compute the
impacted blocks. In Echelon [20], the impacted blocks were
computed by finding the set of blocks that were either modified or
were added. MaxScout, on the other hand, defines the impacted
blocks as a set of call-out blocks of the binary that are connected
to affected call-in points. If a call-out point is affected, all its
dependent call-in points are affected. We thus prioritize tests that
cover an affected call-in and call-out point over others; a test
which covers more call-in and call-out points will get a higher
priority. Unlike Echelon’s measure, MaxScout’s measure
addresses tests for binaries that have been affected even though
they were not modified.

MaxScout uses Echelon to prioritize the tests based on the
computed impacted blocks. Echelon uses an iterative, greedy
algorithm to first find a short sequence of tests taken from the
available tests that covers as many of the impacted blocks as
possible. It starts by assigning a priority weight to each test, equal
to the number of impacted blocks it covers. The test with the
maximum weight is first selected, and in case of a tie, the test with
the maximum overall coverage is selected. The selected test is
removed from the list, and the impacted blocks covered by it are
removed from the impacted block set. The priority weight for each
test is recalculated based on the updated impacted block set. At
each step, Echelon picks a test from the available tests to cover
the maximum number of the remaining impacted blocks; this
repeats until no remaining test can cover any remaining impacted
block. The tests thus selected form a first sequence to provide the
maximum coverage of the impacted blocks. This process is
repeated starting again with the full set of impacted blocks to
generate the next test sequence, till no remaining test can cover
any of the impacted blocks. Remaining tests are added to a
separate sequence in the order of their overall coverage.

Figure 3. System Dependencies

Magellan

VC

Vulcan

Windows

6.1 Results and Analysis
MaxScout has been tested on a number of binaries from
Microsoft’s internal development environment. We used the
system defined in Figure 1 to study MaxScout in more detail.
shows the dependencies of each subsystem. Table 2 shows the
details of this system: the size of each binary and of its associated
symbol file, and the number of call-in and call-out points of each
binary.

Table 2. System Information

Sub
system

Binary Binary
Size

(bytes)

Symbol
Size

(bytes)

Call-
in

Call-
out

coverage 9,216 76,800 11 7

covercmd 27,136 142,336 1 49

magcore 436,224 3,804,160 93 286

M
ag

el
la

n

magtraces 95,232 1,846,272 15 101

vulcan23 1,847,296 7,957,504 2295 153

vuldyn 36,864 273,408 1 95

vuldynpxy 28,672 93,184 4 31

V
ul

ca
n

vulutil 57,344 355,328 2 60

mspdb71 241,664 2,575,360 172 148

msvcr71 344,064 2,345,984 761 143

msvcp71 499,712 2,952,192 1088 106 V
C

msobj71 73,728 1,469,440 20 62

kernel32 904,192 3,785,128 900 375

ntdll 654,848 2,589,696 1104 0

user32 528,896 2,507,776 719 310

W
in

do
w

s

gdi32 235,008 2,098,176 592 109

We next took an updated version of the kernel32.dll binary (size =
903,680, symbol size = 3,785,128) in the Windows subsystem
from a build about a month later. In the new kernel32, 195 (167
modified, 28 added) blocks were impacted, and 80 call-in points
out of 900 kernel32 call-in points were affected by the changes.
All four subsystems were affected by the change, but only 11
binaries were affected. Table 3 shows the number of affected call-
in points in each binary.

MaxScout prioritized the 104 tests into 22 sequences for the
Magellan subsystem. The first sequence, which provides a
maximum coverage of impacted blocks, contained 25 tests. Each
subsequent sequence contained fewer tests. Figure 4 shows the
number of tests in each sequence. The number of tests in each
sequence falls sharply.

Figure 5 shows how many impacted blocks are covered by each
minimal sequence. As expected the first sequence covers the
maximum number possible. However, the graph shows a sharp
decline after the first few sequences. This information can be very
useful for a test team when deciding on how many test sequences
to run.

Table 3. Call-in points affected by Windows change

Sub
system

Binary Call-in
Points

Call-in Points
affected

coverage 11 0

covercmd 1 0

magcore 93 11

M
ag

el
la

n

magtraces 15 2

vulcan23 2295 1183

vuldyn 1 0

vuldynpxy 4 0

V
ul

ca
n

vulutil 2 2

mspdb71 172 37

msvcr71 761 545

msvcp71 1088 674 V
C

msobj71 20 5

kernel32 900 159

ntdll 1104 0

user32 719 141

W
in

do
w

s

gtdi32 592 196

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21

Sequence

T

es
ts

Figure 4. Number of tests in each sequence

As kernel32 is a critical component in the Windows operating
system, it is not surprising that all the subsystems were affected.
One of the changes to kernel32 was in a commonly used string
print function, which was called directly or indirectly by Magellan
from 103 call sites. This change required 25 tests to provide the
maximal coverage of the impacted blocks. Note that some
impacted blocks are not covered by any test. New tests will be
needed to cover those blocks.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Sequence

#I
m

p
ac

te
d

 B
lo

ck
s

Figure 5. Number of impacted blocks in each sequence

We repeated the study with a change in the Vulcan subsystem
instead of the Windows subsystem. We took a new version of the
vulcan23.dll binary (size = 1,847,296, symbol size = 7,957,504)
in the Vulcan subsystem from a build about a month later. Here,
303 (159 modified, 144 new) blocks in the new version of
vulcan23 were impacted. Only 30 call-in points out of 2295 call-
in points of vulcan23 were affected by the changes, and only the
Magellan and Vulcan subsystems were affected, including only 2
binaries. Table 4 shows the number of affected call-in points in
each binary.

MaxScout prioritized the 104 tests into 104 sequences for the
Magellan subsystem, as shown in Figure 6. As the impact on
Magellan was minimal, each sequence contains only one test.

Figure 7 shows how many impacted blocks are covered by each
minimal sequence. As expected, the first sequence covers the one
impacted block, as does the second, but the rest of tests do not
cover any impacted block. As MaxScout does not eliminate any
tests, it places all of these tests at the end of the list.

It is interesting to contrast the two cases. In the first, a change to a
critical function in a subsystem caused many dependencies. In the
second case, although the change was larger, most of these
changes were found to have no impact on the other subsystems,
resulting in very different results.

Table 4. Call-in points affected by Vulcan change

Sub
system

Binary Call-in
Points

Call-in Points
affected

coverage 11 0

covercmd 1 0

magcore 93 1

M
ag

el
la

n

magtraces 15 0

vulcan23 2295 30

vuldyn 1 0

vuldynpxy 4 0

V
ul

ca
n

vulutil 2 0

mspdb71 172 0

msvcr71 761 0

msvcp71 1088 0 V
C

msobj71 20 0

kernel32 900 0

ntdll 1104 0

user32 719 0

W
in

do
w

s

gtdi32 592 0

0

0.2

0.4

0.6

0.8

1

1.2

1 10 19 28 37 46 55 64 73 82 91 100

Sequence

T

es
ts

Figure 6. Number of tests in each sequence

0

0.2

0.4

0.6

0.8

1

1.2

1 10 19 28 37 46 55 64 73 82 91 100

Sequence

#I
m

p
ac

te
d

 B
lo

ck
s

Figure 7. Number of impacted blocks in each sequence

7. APPLICATIONS OF MaX
As MaX can propagate the effect of changes to various call-in and
call-out points in a system, it can be used to prioritize the number
of configurations in which a program needs to be retested. For
example, a program that prints reports may normally need to be
tested with a wide variety of printers, with the printers’
downstream code connected to a particular call-out point in the
program. If that call-out point is not affected by the change, we
can prioritize lower the retest of the program across the large
number of available printers. Thus MaX can reduce the number of
variables in a configuration matrix, where the configuration is
defined as a function of call-in and call-out points.

MaX can also be used for what-if analysis. Using the dependency
graph as a query engine, teams can study what procedures and
binaries will be impacted if a change were to be made to a
particular procedure. For example, if a previously published
interface is to be deprecated, a team can find the affected owners
and inform them. MaX is used very often in what-if mode.

8. CONCLUSIONS
Test teams constantly deal with program change. As the impact of
different changes is not equal, better understanding of their impact
will enable test teams to allocate their resources and focus testing
effort on the affected parts of the program. Understanding the
impact of change in a complex production system is hard for
testers due to the system’s sheer size, and because of its complex
control and data dependencies. The MaX tools build a data and
control dependence graph in a scalable manner, at various
granularities, allowing the analysis of the impact of change in a
large system. Using the dependence graph, these tools can help
test teams by quantifying the impact of change and prioritizing
appropriate tests. Our early results on production systems are very
encouraging. We are continuing to improve the MaX tools as we
learn from their usage in production environment.

9. ACKNOWLEDGMENTS
Our work leverages the great work of many people, especially
those in the Magellan and Vulcan teams at Microsoft Research.
David Notkin, Jim Larus, Marne Staples, Sriram Rajamani, Tom
Ball, and GS Rana reviewed early versions of the paper. John
DeTreville gave very insightful and perceptive comments that
helped us improve the paper. Our sincere thanks to all.

REFERENCES

[1] T. Ball, “On the Limit of Control Flow Analysis for
Regression Test Selection”. Proc. ACM Int’l Symposium.
Software Testing and Analysis, pp. 134-142, Mar. 1998.

[2] D. Binkley, “Semantics guided Regression Test Cost
Reduction”, IEEE Trans. Software Eng., vol. 23, no. 8, pp.
498-516, Aug. 1997.

[3] T.Y. Chen and M.F. Lau, “Dividing Strategies for the
Optimization of a Test Suite”, Information Processing
Letters, vol. 60, no. 3, pp. 135-141, Mar. 1996.

[4] Y.F. Chen, D.S. Rosenblum, and K.P. Vo, “TestTube: A
System for Selective Regression Testing,” Proc. 16th Int’l
Conf. Software Eng., pp. 211-222, May 1994.

[5] S. Elbaum, .A. Malishevsky and G. Rothermel, “Test case
prioritization: A family of empirical studies”, IEEE Trans.
Software Engg. , vol. 28, no. 2, pp. 159-182, Feb. 2002.

[6] S. Elbaum, .A. Malishevsky and G. Rothermel,
“Incorporating varying test costs and fault severities into test
case prioritization”, Proc. 23rd Int’l Conf. Software Engg.,
pp. 329-338, May 2001.

[7] S. Elbaum, .A. Malishevsky and G. Rothermel, “Prioritizing
test cases for regression testing”, Proc. Int’l Symp. Software
Testing and Analysis, pp. 102-112, Aug. 2000.

[8] T. L. Graves, M.J. Harrold, J-M. Kim, A. Porter and G.
Rothermel, “An empirical study of regression test selection
techniques”, 20th Int’l Conference on Software Engineering,
Apr. 1998.

[9] M.J. Harrold and G. Rothermel, “Empirical Studies of a
Prediction Model for Regression Test Selection”, IEEE
Trans. On Software Eng., vol. 27, no. 3, Mar. 2001.

[10] M. J. Harrold, “Testing Evolving Software”, Journal of
Systems and Software, vol. 47, no. 2-3, pp. 173-181, Jul.
1999.

[11] M.J. Harrold, R. Gupta and M.L. Soffa, “A Methodology for
Controlling the Size of a Test Suite”, ACM Trans. Software
Eng. And Methodology, vol. 2, no. 3, pp. 270-285, July
1993.

[12] J.R. Horgan, and S.A. London, “ATAC: A data flow
coverage testing tool for C”, Proc. of Symp. On Assessment
of Quality Software Development Tools, pp. 2-10, 1992.

[13] D. Rosenblum and G. Rothermel, “An Empirical comparison
of regression test selection techniques”, Proceedings of the
Int’l Workshop for Empirical Studies of Software
Maintenance, Oct. 1997.

[14] G. Rothermel, R.H. Untch and M.J. Harrold, “Prioritizing
Test Cases For Regression Testing”, IEEE trans. On
Software Engineering, vol. 27, no. 10, Oct. 2001

[15] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold, “Test
Case Prioritization: An Empirical Study”, Proc. Int’l Conf.
Software Maintenance, pp. 179-188, Aug. 1999.

[16] G. Rothermel, M.J. Harrold, J. Ostrin and C. Hong, “An
Empirical Study of the Effects of Minimization on the Fault
Detection Capabilities of Test Suites”, Proc. Int’l Conf.
Software Maintenance, pp. 34-43, Nov. 1998.

[17] G. Rothermel and M.J. Harrold, “A Safe, Efficient
Regression Test Selection Technique”, ACM Trans.
Software Eng. And Methodology, vol. 6, no. 2, pp. 173-210,
Apr. 1997.

[18] G. Rothermel and M. J. Harrold, “Experience with
Regression Test Selection”, Proc. of the Int’l Workshop for
Empirical Studies of Software Maintenance, Monterrey, CA,
Nov. 1996.

[19] G. Rothermel and M.J. Harrold, “Analyzing Regression Test
Selection Techniques”, IEEE Trans. Software Eng., vol. 22,
no. 8, pp. 529-551, Aug. 1996.

[20] A. Srivastava and J. Thiagarajan, “Effectively Prioritizing
Tests in Development Environment”, Proc. Int’l Symp.
Software Testing and Analysis, July. 2002.

[21] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary
Transformation in a Distributed Environment”, Microsoft
Research Technical Report, MSR-TR-2001-50.

[22] A. Srivastava and D. Wall. Link-Time Optimization of
Address Calculation on a 64-bit Architecture. Symposium on
Programming Language Design and Implementation, 1994,
pp 49-60.

[23] A. Srivastava and A. Eustace, “ATOM – A System for
Building Customized Program Analysis Tools”, Symposium
on Programming Language Design and Implementation,
1994, pp. 196-205, 1994.

[24] A. Srivastava and D. Wall. A Practical System for
Intermodule Code Optimization at Link Time. Journal of
Programming Language, 1(1):1-18, March 93.

[25] F. Vokolos and P. Frankl, “Empirical evaluation of the
textual differencing regression testing techniques”, Int’l
conference on Software Maintenance, Nov. 1998.

[26] F. Vokolos and P. Frankl, “Pythia: a regression test selection
tool based on text differencing”, Int’l conference on
reliability, Quality and Safety of Software Intensive Systems,
May 1997.

[27] Z. Wang, K. Pierce, and S. McFarling, “BMAT: A Binary
Matching Tool for Stale Profile Propagation”, The Journal of
Instruction-Level Parallelism, vol. 2, May 2000.

[28] W.E. Wong, J.R. Horgan, S. London, and A.P. Mathur,
“Effect of Test Set Minimization on Fault Detection
Effectiveness”, Software-Practice and Experience, vol. 28.
no. 4, pp. 347-369, Apr. 1998.

[29] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal, “A
Study of Effective Regression Testing in Practice”, Proc.
Eighth Int’l Symposium Software Reliability Eng., pp. 230-
238, Nov. 1997.

[30] W.E. Wong, J.R. Horgan, A.P. Mathur, and A. Pasquini,
“Test Set Size Minimization and Fault Detection
Effectiveness: A Case Study in a Space Application”, Proc.
21st Ann. Int’l Computer Software & Applications Conf., pp.
522-528, Aug. 1997.

[31] ISO/IEC 23271, ISO/IEC 23272, ECMA-335, ECMA
TR84,

