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ABSTRACT 
Although testing starts with individual programs, programs are 
rarely self-contained in real software environments. They depend 
on external subsystems like language run time and operating 
system libraries for various functionalities. These subsystems are 
developed externally to any given program, with their own test 
processes. Of course, an uncoordinated change in one of the 
external subsystems may affect the program’s correctness. Test 
teams therefore add an integration testing step to their process to 
ensure that programs will continue to operate with different 
versions of the external subsystems. As full testing may take days 
or weeks to run, it is useful to understand how to prioritize these 
tests. 

We present an integration testing system to understand and 
quantify the impact of a change, so test teams can focus their 
testing efforts on the most likely affected parts of the program. 
Detecting the impact of a change is a hard problem due to the size 
and complexity of the control and data dependencies involved. 
Our new approach is based on a binary dependency framework, 
MaX, that determines control and data dependencies in a system 
and represents them in a dependency graph. MaX is designed to 
work on systems consisting of thousands of binaries and millions 
of procedures. It constructs the graph in multiple steps to allow 
the analysis of individual binaries to proceed in parallel. MaX 
provides simple abstractions for defining systems, and provides a 
simple programming interface to tools for analysis of the graph.  

The integration testing system also contains two tools that use 
MaX to advise test teams. MaxCift quantifies the effect of a 
change to guide how much testing is likely to be needed. 
MaxScout prioritizes an existing set of tests based on changes 
made to external subsystems. All of the tools use a binary code 
based approach that does not require source code for external 
subsystems, an important requirement for practical use.  

MaX runs under the Windows environment and is used by 
Microsoft product teams. Early results show that the system scales 
to production software and is effective in guiding testing. 
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1. INTRODUCTION 
Programs continuously evolve to address new requirements, 
changing environments, marketplace demands and existing 
deficiencies. Software testing has to ensure that no new defects 
are introduced throughout the program’s evolution. Testing of 
software, therefore, occurs continuously throughout the 
development cycle. Over the past decade a number of techniques 
have been proposed to reduce the cost of testing (we discuss these 
in Section 2). However, all of the proposed techniques focus 
internally on a single program; that is, they consider only internal 
parameters such as changes made to the program itself, the rate of 
faults in the program, and test coverage of the program.  

Programs, however, are rarely self-contained in real software 
environments; they depend on a number of external subsystems1 
like applications, third party dynamically linked libraries (dll), 
language run time dlls, and operating system dlls for various 
functionalities. These subsystems are external to the program and 
are often maintained by different teams with independent testing 
process and release schedules. A change in any external 
subsystem may affect the program.  

As production software is complex, it is difficult to manually track 
all of its dependencies (the transitive closure of all immediate 
dependencies), yet this is needed to assure continued operation at 
customer sites. To handle this challenge, test teams have added an 
integration testing step in their development process to ensure that 
their applications will continue to operate with different versions 
of external subsystems. The external subsystems are often 
available to test teams in binary form, and a test team generally 
does not know the changes that have been made in these external 
subsystems from the previous version. For example, an 
application which uses the Windows XP operating system 
libraries may have access to the Windows XP and Windows XP 
SP1 (Service Pack 1) binaries but will not know the exact details 
of the changes that were made in Windows XP to produce the 
Windows service pack SP1. 

The complexity of integration testing increases with the number of 
external subsystems. As full testing of a program may take days or 
weeks to run, an effective strategy is to focus testing effort on 
parts of the program that may have been affected by the changes 
in the external subsystems. In time-constrained situations, an 
appropriate set of tests, subject to the specified time limit, can be 
selected to best use the available time.  

                                                                 
1 A subsystem is a logical collection of shared dynamically linked 

libraries (.dlls); for example, the subsystem for the windows 
operating system may include dlls such as kernel32.dll, 
gdi32.dll, and user32.dll. 

 

 



To improve the efficiency of integration testing, we have built a 
test integration system consisting of the following tools: 

1. MaX – a dependency framework for an entire system.  

•  MaX works with systems consisting of native x86 and 
.NET managed CIL [31] binaries. 

•  MaX determines control and data dependencies by 
examining the system binaries. It builds the dependence 
graph with a uniform representation for control and data 
dependencies. 

•  MaX provides a simple set of hierarchical abstractions 
for defining a system and representing its dependence graph. 

•  MaX provides a simple programming interface for 
navigating and querying the dependence graph. 

•  MaX scales to large production systems and can be used 
in various real time scenarios.  

2. MaxCift – quantifying a change. MaxCift uses the 
dependence graph to quantify the effect of a change. It 
computes the change impact factor (CIF) by measuring the 
fraction of binaries and procedures that have been affected in 
the system. It helps test teams understand how much testing 
may be needed and where to focus.  

3. MaxScout - a test prioritization system, which presents a new 
approach for prioritizing an existing set of tests for a program 
based on changes made in its external subsystems.  

All the tools use a binary code based approach that works well for 
integration testing, as source code for external subsystems is 
generally not available to the program’s test team. 

This paper describes the design and implementation of the 
integration testing system. It discusses the performance of MaX in 
building dependence graphs of large production applications. The 
paper also analyzes the impact of change in Microsoft product 
service packs.  

2. RELATED WORK 
Many approaches have been proposed to address the cost of 
testing, including test selection [1][2][4][17][26], test 
prioritization [5] [6][7][14][15], and a hybrid approach [29] that 
consists of test selection using source code changes [12] followed 
by test prioritization to schedule the selected tests. Test 
minimization techniques that permanently discard tests have been 
proposed in [3][11][16][28]. 

Computing program change has been proposed [1][2][3][17][26] 
for test selection, and for test prioritization [5][7][14][29]. 
Techniques used to compute program change are source code 
differencing [5][7][26], data and control flow analysis [1][17], 
and coarse grained modified code entities [4] to identify which 
parts of the program might be affected by the changes.  

Echelon [20] proposed a binary code based approach for test 
prioritization. Echelon used binary matching [27] to compute 
change in a program at basic block granularity. Instead of using 
expensive techniques like data flow analysis, Echelon utilized a 
fast and simple heuristic to predict which tests will cover the 
affected basic blocks. By doing prioritization, Echelon can use a 

non-precise algorithm that works well in practice. Echelon’s 
technique is fast and scales well to large programs, making it 
suitable for use in development environments. 

Echelon and all the previous systems are designed for testing a 
single changed program. They use different techniques to compute 
changes in the program at different levels of granularity and 
prioritize the test cases based on it.  

None of the previous systems, including Echelon, propagate the 
effect of external changes into a program. MaX, on the other 
hand, uses a dependency framework to find relevant affected parts 
of the system outside the program boundaries. 

MaxCift computes a coefficient that serves as a simple heuristic 
that quantifies change. The relative value of the coefficient 
reflects the impact of a change.  

MaxScout may mark a program as affected or changed even 
though there were no changes in any of its own code. All the 
previous systems including Echelon were not designed for such 
cases. 

3. ENVIRONMENT FOR THE MaX TOOLS 
The MaX tools are part of the Magellan test effectiveness tool set. 
They leverage the Magellan test effectiveness infrastructure and 
the Vulcan [21] binary modification infrastructure for information 
and analysis. In this section, we briefly describe Magellan and 
Vulcan. We also discuss Echelon [20], which is part of the 
Magellan tool set; MaxScout uses a modified form of Echelon for 
prioritizing tests in its last step. 

The Magellan Test Effectiveness Infrastructure 

The Magellan tool set provides an infrastructure for collecting, 
storing, analyzing, and reporting information about a test process. 
The core of Magellan is a SQL Server-based repository that stores 
test coverage information for each test. The coverage information 
can be mapped to the static structure of the program: its 
procedures, files, directories, binaries etc. All the program 
binaries that were tested and their corresponding symbol files are 
stored in a separate symbol repository and cross-linked. The 
Magellan infrastructure is designed to be extensible; Magellan 
provides a well-defined interface for accessing and storing 
information. 

Although new tools are easily added, Magellan also provides a 
basic set of tools that are commonly needed during the test 
process. This includes a test coverage collection tool that uses 
binary instrumentation to collect block coverage and arc coverage 
information both in user and kernel mode. The coverage 
information is collected for each test and stored in the repository. 
For easy presentation of coverage data, Magellan also provides 
reporting tools with graphical user interfaces that can map the 
data to the source code. Blender, a test migration tool, migrates 
coverage data from older versions of Magellan to newer versions.  

Magellan includes Echelon [20], a test prioritization system that 
uses a practical binary code based approach for test prioritization 
based on program change. Echelon takes as input two versions of 
the program in binary form along with the test coverage 
information of the older version, detailing which tests covered 
which parts of the program. Echelon outputs a prioritized list of 
tests, starting with a minimal sequence of tests, drawn from the 



given tests that cover as many of the affected parts of the program 
as possible. This is followed by another minimal sequence of tests 
drawn from the remaining tests, and so on; it ends with a sequence 
of tests that do not cover any of the affected parts of the program. 
Echelon operates on a single binary and computes the impacted 
blocks of the binary by determining which blocks in the binary 
have been modified or added, using binary matching [27]. 
Echelon’s technique is fast and scales well to large programs, 
making it suitable for use in large-scale development 
environments. 

Vulcan Binary Modification Infrastructure 

MaX utilizes a rich binary modification infrastructure called 
Vulcan [21]. Vulcan is a second-generation toolkit that provides 
both static and dynamic binary code modification and provides a 
framework for analysis and optimization [22][23][24]. Vulcan 
provides a uniform abstraction for binaries with a simple API for 
inspection, instrumentation and optimization. Vulcan works in the 
Win32 environment and can process x86, IA64, and CIL [31] 
binaries. Vulcan has been used to improve the performance and 
reliability of many Microsoft products.  

To compute the changes between two versions of a binary, 
MaXScout utilizes BMAT [27], a binary matching tool built using 
Vulcan. BMAT is a fast and effective tool that matches two 
versions of a binary program without knowledge of source code 
changes. This tool uses a hashing-based matching algorithm and a 
series of heuristic methods, with the goal of matching as much of 
the program as possible, thus identifying the changes. The 
algorithm first matches procedures, then blocks within each 
procedure. Several levels of matching are attempted with varying 
degrees of precision. This process allows correct matches to be 
found even in the presence of shifted addresses, different register 
allocation, and various small insignificant program modifications. 
The success rate of matching of code blocks is often higher than 
99% [27]. 

4. MaX: DEPENDENCY FRAMEWORK 
This section describes how MaX computes the control and data 
dependencies of a system, and constructs the dependency graph. It 
also discusses the programming interface MaX provides for 
analysis, and its performance on large systems.  

4.1 Constructing the Dependency Graph 
MaX constructs the dependency graph of a system in three steps. 
In the first step, a hierarchical definition of the system is created 
using the MaX abstractions. In the second step, MaX analyzes 
each binary individually to compute the binary’s data and control 
dependencies. In the last step, the information from each binary is 
consolidated to build the system dependence graph. This section 
discusses each of the steps in detail. 

Defining the System Definition File 

MaX provides four levels of abstraction: system, subsystem, 
binary, and procedure. A system consists of one or more 
subsystems, a subsystem contains one or more binaries, and a 
binary consists of one or more procedures. The system definition 
file uses these MaX abstractions to describe the system in a 
hierarchical manner.  

 

Figure 1. System Definition File 

Figure 1 shows the XML file containing the definition of the 
magsys system, which has four subsystems: magellan, vulcan, vc, 
and windows. The binaries comprising each subsystem are 
enumerated in the system file. For example, the Vulcan subsystem 
contains four binaries: vulcan23.dll, vuldyn.exe, vuldynpxy.dll, 
vulutil.dll. The system definition file also contains the names for 
each of the abstractions and their file locations. 

Creating the Binary Dependency Information File 

MaX analyzes the binaries defined in the system definition file, 
one binary at a time, to produce the dependency information file. 
This file summarizes the dependency information for that binary. 
The binaries in the system may be processed in parallel. The 
processing time thus can be controlled by adding more machines 
or processors. Section 4.3 discusses the performance of MaX.  

All the binaries in a system have to be processed at least once by 
MaX at the start of the process. However, as software 
development progresses and parts of the program are changed, 
only the modified binaries have to be reprocessed by MaX. This 
tremendously cuts the processing costs as not all binaries are 
normally modified at each step of the development process. 

To express the dependencies in a binary, MaX adds two 
abstractions to the binary abstractions: call-in points and call-out 
points. Control enters a binary through one of its call-in points 
and it continues out of the binary through one of its call-out 
points. (We do not consider returns, exceptions, etc., as call-outs.) 
A binary may have a number of call-in and call-out points. Call-in 
points are procedures in the binary while call-out points link to 
procedures in other binaries it may call. 

<system          name = "magsys">  

   <subsystem  name = "magellan"  file = "mag.xml"> 

      <binary     name = "coverage.dll"     file = "coverage.xml"/> 
      <binary     name = "covercmd.exe"    file = "covercmd.xml"/> 
      <binary     name = "magcore.dll"      file = "magcore.xml"/> 
      <binary     name = "magtraces.dll"    file = "magtraces.xml"/> 
   </subsystem> 

   <subsystem  name = "vulcan"             file = "vulcan.xml"> 
      <binary     name = "vulcan23.dll"    file = "vulcan23.xml" /> 
      <binary     name = "vuldyn.exe"       file = "vuldyn.xml" /> 
      <binary    name = "vuldynpxy.dll"  file = "vuldynpxy.xml" /> 
      <binary    name = "vulutil.dll"         file = "vulutil.xml" /> 
  </subsystem> 

   <subsystem  name = "vc"                    file = "vc.xml"> 
      <binary     name = "mspdb71.dll"    file = "mspdb71.xml" /> 
       <binary    name = "msvcr71.dll"     file = "msvcr71.xml" /> 
      <binary     name = "msvcp71.dll"    file = "msvcp71.xml" /> 
      <binary     name = "msobj71.dll"     file = "msobj71.xml" /> 
   </subsystem> 

   <subsystem  name = "windows"         file = "windows.xml"> 
      <binary     name = "kernel32.dll"     file = "kernel32.xml" /> 
      <binary     name = "nt.dll"               file = "nt.xml" /> 
      <binary     name = "user32.dll"        file = "user32.xml" /> 
      <binary     name = "gdi32.dll"         file = "gdi32.xml" /> 
 </subsystem> 

</system> 



Many call-in and call-out points, such as the exports and imports 
in a Win32 PE binary, are easily found. Binaries also contain 
relocation records to mark instructions that can be a target of 
indirect procedure call, and MaX marks these as call-in points. 
MaX uses Vulcan to determine the control transfer instructions 
that might transfer control outside the binary.  

While many control transfer targets can be determined statically, 
others require more analysis. MaX uses static analysis and several 
heuristics to determine these dependencies. For example, MaX 
uses constant propagation to determine the names of dlls that are 
explicitly loaded at runtime. Indirect calls through a virtual table 
require finding the virtual table and using the index to determine 
the target of the call. These methods may not identify the targets 
of some calls. If MaX cannot resolve an indirect transfer of 
control, it flags the call, which is then resolved by providing 
manual feedback to MaX or by refining MaX’s heuristics, which 
work quite well in practice. MaX lists all of the call-in and call-
out points in the binary dependency information file.  

In the next step, MaX determines dependencies. A call-in point is 
dependent on a call-out point if there is a control-flow path from 
the call-in point to the call-out point. Using reachability analysis, 
MaX determines the dependency relationships between call-in and 
call-out points in the binary. These call-in/call-out dependencies 
are also listed in the binary information file. Similarly, for each 
procedure in the binary, MaX lists the dependent call-in points in 
the binary dependency information file. 

All the dependencies that we have described so far are control 
dependencies. To handle data dependencies, MaX introduces one 
more abstraction, named object, which is a data element in the 
program with a name. Two code segments, which may be residing 
in different binaries, are data dependent if they read or write to 
the same named object. For example, two procedures are data 
dependent if one procedure writes to a global variable while the 
other procedure reads the same global. Named objects can also be 
registry keys, semaphores, mutexes, etc. 

As data dependent procedures may reside in different binaries, 
MaX, in this step, outputs the procedures in the binary that read 
or write to named objects that are being tracked. This information 
is consolidated in the next step to determine data dependencies.  

Building the Dependence Graph 

MaX aggregates the dependency information files of each binary 
to build the dependence graph. MaX maintains the same hierarchy 
of system, subsystem, binary, and procedures in the dependency 
graph. For performance, MaX initially considers only procedures 
that are call-in or call-out points for binaries, and creates directed 
edges between dependent call-in and call-out points across 
binaries. Other data such as procedure dependencies is read only 
when needed. 

MaX creates a named object data structure for each named object 
that is being tracked. For each procedure that references a named 
object, MaX creates a directed edge between the procedure and 
named object, whose direction depends on whether the procedure 
reads the named object or writes to it.  

The reason for constructing the graph in two steps is to enable 
MaX to exploit the parallelism in the first step; to take advantage 
of the fact that only changed binaries need to be reprocessed, and 

to allow construction of data dependencies in a scalable manner 
that makes this approach practical for large production systems. 

4.2 MaX Programming Interface 
MaX provides a simple programming interface for tools to 
analyze the dependency graph. MaX models a system as lists of 
subsystems, binaries and procedures. MaX provides query 
primitives to inspect various properties like names, locations etc, 
and navigation primitives to move through the respective lists. A 
node abstraction represents the procedures in the dependency 
graph, and MaX provides primitives to traverse its callers and 
callee nodes. 

4.3 Status and Performance 
MaX has been implemented in C# for x86 platforms running 
Windows. It handles both native x86 and .NET managed CIL 
binaries. MaX is under active development. It can currently detect 
static dependencies, indirect dependencies from loadlib, 
CreateProcess GetProcAddress, and CoCreateInstance in COM. 
New dependencies, including registry keys, are being added. 

Table 1. System Information 

Dependency Graph Objects Count
Binaries 3,308
Procedures 1,495,295
Call-in points 197,534
Call-in/Call-out Dependency edges 2,206,972
Named Objects 18,898  

To measure the performance of MaX, we constructed the 
dependency graph of a large production system with 3120 binaries 
and 1.2 million procedures. MaX added 763950 dependency 
edges between the call-in and call-out nodes. It also created 2406 
named objects. The details are summarized in Table 1. 

MaX took 287.4 minutes to collect the dependency data for all 
3308 binaries on a dual processor 2.18GHz XEON P4 with 2GB 
of memory running Windows Server 2003. Note that this step is 
needed only once; subsequently, only changed binaries need to be 
reprocessed. Further, since the binaries can be processed in 
parallel, this processing cost can be reduced by adding more 
machines; for example, it can be cut approximately in half by 
adding a second machine. Most of the time is spent in writing the 
binary dependency information files. 

MaX takes only 58.6 seconds, less than a minute, to analyze the 
dependency information files of the 3308 binaries and build the 
control and dependency graph. As MaX only reads the relevant 
information needed to build the graph, it can process all the files 
in less than a minute; it reads other data such as procedure 
dependencies, only when needed. Once the graph is constructed, 
reachability analysis can be performed interactively. By quickly 
reprocessing the changed binaries, the updated graph can be 
quickly created and used interactively. 

5. MaxCift: QUANTIFYING CHANGE 
The effects of different changes are not equal; a change in a core 
binary can have a much larger impact on a system than a change 
in a binary on the periphery. Test teams can make better decisions 
when they understand how a change affects the system. For 
example, the impact of a change can be used to decide whether to 



accept change late in the development process. It can also be used 
to prompt a code review if the impact of a change is above a 
certain threshold. Further, in time-constrained situations, such as 
when issuing a security fix, a test team can allocate necessary 
testing resources and focus its testing efforts to relevant parts of 
the system by understanding the impact of the proposed changes. 

MaxCift uses MaX to compute the effect of a change on a system. 
It uses the reachability analysis to find which procedures have 
been affected. If a procedure in a binary has been affected, the 
binary is also marked as affected. The fraction of affected binaries 
measures the “spread” of the change. The fraction of affected 
procedures measures the “depth” of the change. Both depth and 
spread are used to balance the size of a binary versus the number 
of binaries affected. MaxCift combines these measures to compute 
the change impact factor, CIF, as follows: 

CIF = log10(%affected binaries* %affected procedures + 1) 

CIF is on a log scale and can range from 0 to 4; therefore, a CIF 
of 2.0 is ten times more serious than a CIF of 1.0. 

We analyzed a service pack of a Microsoft product by computing 
the CIF values of each binary that was modified, as shown in 
Figure 2.  
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Figure 2. CIF for changed binaries in Service Pack 

In the 101 binaries that were modified in Figure 1, only 11 
binaries had a change impact factor or CIF greater than 2.5. A test 
team can focus on those binaries. Our manual analysis confirmed 
that these were critical binaries. 

6. MaxScout: PRIORITIZING TESTS 
MaxScout takes as input a system definition file, the binaries that 
make up the system, new versions of binaries for subsystems that 
have changed, and test coverage information of a specified 
program. It produces a prioritized list of tests, as well as a list of 
subsystems, binaries and specific call-in points that have been 
affected by the change.  

MaxScout computes the changes between two versions of the 
binaries for the subsystems that have a newer version available. It 
then uses MaX to propagate the changes to find the affected parts 
of the system by performing reachability and dependency analysis 
using the MaX dependency graph, as described in section 4.1.  

MaxScout starts by computing changes at block granularity using 
BMAT [27]. For each updated binary it marks the affected blocks 
that have either been modified or added. MaxScout first uses 
MaX dependency information for each binary to mark call-in 
points that have a path to the affected block. Next, MaxScout uses 
MaX to conduct reachability analysis to determine the call-in 
points in other binaries that can reach an affected call-in point. If 
a call-in point of a binary has been affected, MaxScout marks the 
binary as affected. 

MaxScout prioritizes the available tests for each affected binary. 
(Note that a binary may be affected even if not a single block was 
changed.) MaxScout uses Echelon [20] to prioritize tests. 
MaxScout, however, uses a different algorithm to compute the 
impacted blocks. In Echelon [20], the impacted blocks were 
computed by finding the set of blocks that were either modified or 
were added. MaxScout, on the other hand, defines the impacted 
blocks as a set of call-out blocks of the binary that are connected 
to affected call-in points. If a call-out point is affected, all its 
dependent call-in points are affected. We thus prioritize tests that 
cover an affected call-in and call-out point over others; a test 
which covers more call-in and call-out points will get a higher 
priority. Unlike Echelon’s measure, MaxScout’s measure 
addresses tests for binaries that have been affected even though 
they were not modified. 

MaxScout uses Echelon to prioritize the tests based on the 
computed impacted blocks. Echelon uses an iterative, greedy 
algorithm to first find a short sequence of tests taken from the 
available tests that covers as many of the impacted blocks as 
possible. It starts by assigning a priority weight to each test, equal 
to the number of impacted blocks it covers. The test with the 
maximum weight is first selected, and in case of a tie, the test with 
the maximum overall coverage is selected. The selected test is 
removed from the list, and the impacted blocks covered by it are 
removed from the impacted block set. The priority weight for each 
test is recalculated based on the updated impacted block set. At 
each step, Echelon picks a test from the available tests to cover 
the maximum number of the remaining impacted blocks; this 
repeats until no remaining test can cover any remaining impacted 
block. The tests thus selected form a first sequence to provide the 
maximum coverage of the impacted blocks. This process is 
repeated starting again with the full set of impacted blocks to 
generate the next test sequence, till no remaining test can cover 
any of the impacted blocks. Remaining tests are added to a 
separate sequence in the order of their overall coverage.  

 
 

Figure 3. System Dependencies 
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6.1 Results and Analysis 
MaxScout has been tested on a number of binaries from 
Microsoft’s internal development environment. We used the 
system defined in Figure 1 to study MaxScout in more detail.  
shows the dependencies of each subsystem. Table 2 shows the 
details of this system: the size of each binary and of its associated 
symbol file, and the number of call-in and call-out points of each 
binary.  

 

Table 2. System Information 

Sub 
system 

Binary Binary 
Size 

(bytes) 

Symbol 
Size 

(bytes) 

Call-
in 

Call-
out 

coverage 9,216  76,800 11 7 

covercmd 27,136 142,336 1 49 

magcore 436,224 3,804,160 93 286 

M
ag

el
la

n 

magtraces 95,232 1,846,272 15 101 

vulcan23 1,847,296 7,957,504 2295 153 

vuldyn 36,864 273,408 1 95 

vuldynpxy 28,672 93,184 4 31 

V
ul

ca
n 

vulutil 57,344 355,328 2 60 

mspdb71 241,664 2,575,360 172 148 

msvcr71 344,064 2,345,984 761 143 

msvcp71 499,712 2,952,192 1088 106 V
C

 

 

msobj71 73,728 1,469,440 20 62 

kernel32 904,192 3,785,128 900 375 

ntdll 654,848 2,589,696 1104 0 

user32 528,896 2,507,776 719 310 

W
in

do
w

s 

 

gdi32 235,008 2,098,176 592 109 

 

We next took an updated version of the kernel32.dll binary (size = 
903,680, symbol size = 3,785,128) in the Windows subsystem 
from a build about a month later. In the new kernel32, 195 (167 
modified, 28 added) blocks were impacted, and 80 call-in points 
out of 900 kernel32 call-in points were affected by the changes. 
All four subsystems were affected by the change, but only 11 
binaries were affected. Table 3 shows the number of affected call-
in points in each binary.  

MaxScout prioritized the 104 tests into 22 sequences for the 
Magellan subsystem. The first sequence, which provides a 
maximum coverage of impacted blocks, contained 25 tests. Each 
subsequent sequence contained fewer tests. Figure 4 shows the 
number of tests in each sequence. The number of tests in each 
sequence falls sharply. 

Figure 5 shows how many impacted blocks are covered by each 
minimal sequence. As expected the first sequence covers the 
maximum number possible. However, the graph shows a sharp 
decline after the first few sequences. This information can be very 
useful for a test team when deciding on how many test sequences 
to run. 

Table 3. Call-in points affected by Windows change 

Sub 
system 

Binary Call-in 
Points 

Call-in Points 
affected 

coverage 11 0 

covercmd 1 0 

magcore 93 11 

M
ag

el
la

n 

magtraces 15 2 

vulcan23 2295 1183 

vuldyn 1 0 

vuldynpxy 4 0 

V
ul

ca
n 

vulutil 2 2 

mspdb71 172 37 

msvcr71 761 545 

msvcp71 1088 674 V
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As kernel32 is a critical component in the Windows operating 
system, it is not surprising that all the subsystems were affected. 
One of the changes to kernel32 was in a commonly used string 
print function, which was called directly or indirectly by Magellan 
from 103 call sites. This change required 25 tests to provide the 
maximal coverage of the impacted blocks. Note that some 
impacted blocks are not covered by any test. New tests will be 
needed to cover those blocks. 
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We repeated the study with a change in the Vulcan subsystem 
instead of the Windows subsystem. We took a new version of the 
vulcan23.dll binary (size = 1,847,296, symbol size = 7,957,504) 
in the Vulcan subsystem from a build about a month later. Here, 
303 (159 modified, 144 new) blocks in the new version of 
vulcan23 were impacted. Only 30 call-in points out of 2295 call-
in points of vulcan23 were affected by the changes, and only the 
Magellan and Vulcan subsystems were affected, including only 2 
binaries. Table 4 shows the number of affected call-in points in 
each binary. 

MaxScout prioritized the 104 tests into 104 sequences for the 
Magellan subsystem, as shown in Figure 6. As the impact on 
Magellan was minimal, each sequence contains only one test.  

Figure 7 shows how many impacted blocks are covered by each 
minimal sequence. As expected, the first sequence covers the one 
impacted block, as does the second, but the rest of tests do not 
cover any impacted block. As MaxScout does not eliminate any 
tests, it places all of these tests at the end of the list.  

It is interesting to contrast the two cases. In the first, a change to a 
critical function in a subsystem caused many dependencies. In the 
second case, although the change was larger, most of these 
changes were found to have no impact on the other subsystems, 
resulting in very different results.      

Table 4. Call-in points affected by Vulcan change 

Sub 
system 

Binary Call-in 
Points 

Call-in Points 
affected 

coverage 11 0 

covercmd 1 0 

magcore 93 1 

M
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el
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magtraces 15 0 

vulcan23 2295 30 

vuldyn 1 0 

vuldynpxy 4 0 
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msvcr71 761 0 

msvcp71 1088 0 V
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Figure 7. Number of impacted blocks in each sequence 

7. APPLICATIONS OF MaX 
As MaX can propagate the effect of changes to various call-in and 
call-out points in a system, it can be used to prioritize the number 
of configurations in which a program needs to be retested. For 
example, a program that prints reports may normally need to be 
tested with a wide variety of printers, with the printers’ 
downstream code connected to a particular call-out point in the 
program. If that call-out point is not affected by the change, we 
can prioritize lower the retest of the program across the large 
number of available printers. Thus MaX can reduce the number of 
variables in a configuration matrix, where the configuration is 
defined as a function of call-in and call-out points. 

MaX can also be used for what-if analysis. Using the dependency 
graph as a query engine, teams can study what procedures and 
binaries will be impacted if a change were to be made to a 
particular procedure. For example, if a previously published 
interface is to be deprecated, a team can find the affected owners 
and inform them. MaX is used very often in what-if mode. 

8. CONCLUSIONS 
Test teams constantly deal with program change. As the impact of 
different changes is not equal, better understanding of their impact 
will enable test teams to allocate their resources and focus testing 
effort on the affected parts of the program. Understanding the 
impact of change in a complex production system is hard for 
testers due to the system’s sheer size, and because of its complex 
control and data dependencies. The MaX tools build a data and 
control dependence graph in a scalable manner, at various 
granularities, allowing the analysis of the impact of change in a 
large system. Using the dependence graph, these tools can help 
test teams by quantifying the impact of change and prioritizing 
appropriate tests. Our early results on production systems are very 
encouraging. We are continuing to improve the MaX tools as we 
learn from their usage in production environment. 
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