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ABSTRACT 

Commercial software development is a complex task that requires a thorough understanding of the 

architecture of the software system. We analyze the Windows Server 2003 operating system in order to 

assess the relationship between its software dependences, churn metrics and post-release failures. Our 

analysis indicates the ability of software dependences and churn metrics to be efficient predictors of 

post-release failures. Further, we investigate the relationship between the software dependences and 

churn metrics and their ability to assess failure-proneness probabilities at statistically significant levels. 
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1. INTRODUCTION 

The IEEE standard [18] for software engineering terminology defines “architecture” as the 

organizational structure of a system or component. Related is IEEE’s definition of architectural design 

[18] as the results of the process of defining a collection of hardware and software components and their 

interfaces to establish the framework (or architecture) for the development of a computer system. 

In any large-scale software development effort, a software architecture enables teams to work 

independently on different components in the architecture.  Large software systems often are 

decomposed hierarchically in a tree, where the leaves of the tree provide lower level services that 
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components higher in the tree depend on.  One usually finds that work groups are organized in a 

hierarchy that reflects the hierarchical organization of the software.  

Overlaying this hierarchy is a graph of dependences between the components. In theory, the 

dependences between components would follow the edges of the tree. In practice, this rarely is the case. 

Dependences may exist between peers in the software hierarchy or may cross many levels in the tree. 

The number of dependences between parts of the hierarchy reflects the degree of ‘coupling’ between 

components, which can greatly affect the amount of work needed by development and test teams to keep 

the different components in synch.  

We use software dependences together with code churn to build models for predicting the post-release 

failures of system binaries. A software dependency is a relationship between two pieces of code, such as 

a data dependency (component A uses a variable defined by component B) or call dependency 

(component A calls a function defined by component B). Code churn is a measure of the amount of code 

change taking place within a software unit over time. Microsoft has automatic tools for extracting the 

software dependences in code and the code churn between versions. 

Suppose that component A has many dependences on component B. If the code of component B 

changes (churns) a lot between versions, we may expect that component A will need to undergo a 

certain amount of churn in order to keep in synch with component B.  That is, churn often will propagate 

across dependences. Together, a high degree of dependence plus churn can cause errors that will 

propagate through a system, reducing its reliability. 

In this paper we investigate the use of software dependences and churn metrics to explain post-release 

failures for a period of six months for the Windows Server 2003 operating system. Early estimates 

regarding the post-release failures can help software organizations to guide corrective actions to the 

quality of the software early and economically. 



Software architectures [35] and software code churn [25]  have been studied extensively in software 

engineering. We quantify how the dependences that exist in the implementation of the software system 

and software churn metrics correlate with post-release failures of a commercial software system. The 

size and wide-spread operational use of the system adds strength to our analysis. 

In a prior study [27] we investigated the use of a set of relative code churn measures in isolation as 

predictors of software defect density. The relative churn [27] measures are normalized values of the 

various measures obtained during the evolution of the system. In an evolving system it is highly 

beneficial to use a relative approach to quantify the change in a system. We also showed that these 

relative measures can be devised to cross check each other so that the metrics do not provide conflicting 

information.  

Our current work differs significantly from our previous work as we integrate in architectural 

dependences to investigate the propagation of churn across the system. This paper is one of the largest 

efforts to quantify architectural dependency entities. Our study serves to bridge the gap between the 

actual code and the architectural layout of the system. Further this paper uses only three simple churn 

measures in absolute terms compared to the multiple churn measures used in the relative approach in our 

prior study.  

Figure 1 illustrates the temporal aspect of the metrics collection. At the release date for Windows 

Server 2003 the dependency information is collected. Also at the release point, the code churn measures 

are collected using Windows 2000 as the baseline. This churn helps us quantify the evolution of the 

system in terms of change from the previous baseline version of Windows 2000. 



 

Figure 1: Data collection explanation 

The overall size of the code base was 28.3 M LOC (Million Lines of code). The 28.3 M LOC 

comprises of 2075 compiled binaries that form the major part of the Windows Server 2003 system. In 

our analysis, software dependences are between binaries (for example, in Windows, DLL files), and can 

be mapped up in the hierarchy of the system. Dependences have two associated measures, the total 

number of dependences (frequency) and the unique dependences between the binaries (count).  We 

leverage both these measures by computing the ratio of the dependence frequency to the dependence 

count to obtain a relative dependency ratio.  

Software fault-proneness is defined as the probability of the presence of faults in the software [11]. 

Failure-proneness is the probability that a particular software element (binary, component or area) will 

fail in operation.  We explain both failure-proneness and failures using our dependency and churn 

metrics. The research hypotheses we investigate in our study are shown in Table 1. 
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Table 1: Research hypotheses 

 Hypothesis 

H1 The software dependence ratios and churn metrics are positively correlated with post-
release failures; that is, an increase in dependence ratios and churn metrics is 
accompanied by an increase in failures 

H2 The software dependence ratios and churn measures can be used as early indicators of 
post-release failures 

H3 The software dependence ratios and churn measures can be used as early indicators of 
the failure-proneness of the binaries 

 

The rest of our paper is organized as follows. Section 2 discusses related work and Section 3 

describes our metrics in detail. Section 4 presents the results of our analysis and the experimental 

limitations. Section 5 provides the conclusions and future work. 

2. RELATED WORK 

 

Over the years research related to software architectures has ranged from analysis of mismatch of 

components in the architectural composition [10, 15] to architectural description languages [23]. Perry 

and Wolf formulated a model of software architecture that emphasizes the architectural elements of data, 

processing, and connection, their relationships and properties [30]. Shaw et al. [34] define architectural 

style to mean a set of design rules that identify the kinds of components and connectors that may be used 

to compose a system or subsystem, together with local or global constraints on the way the composition 

is done. Medvidovic et al. [22] discuss architectures as described in terms of components (computational 

elements), connectors (interaction elements), and their configurations.  The interactions between 

components have also been described using formal approaches as explicitly semantic entities [2].  

Prior studies [1] analyzed and investigated error propagation through software architectures, focusing 

on the level of components and connectors (rather than dependences between code). Pinzger  et al. [31] 

integrated information on the evolution of software architecture from the source basis of a project and 

from the release history data such as modification and problem reports. The integrated architectural 



views show intended and unintended couplings between architectural elements. This information can be 

used to highlight to software engineers the locations in the system that may be critical for on-going and 

future maintenance activities. Von Mayrhauser [41] et al. investigated the relationship of the decay of 

software architectures with faults using a bottom-up approach of constructing a fault-architecture model. 

The fault-architecture model was constructed incorporating the degree of fault-coupling between 

components and how often these components are involved in a defect fix [41]. Their results indicated for 

each release what the most fault-prone relationships were and showed that the same relationships 

between components are repeatedly fault-prone, indicating an underlying architectural problem. 

Similarly studies have explored the use of software architectures for testing [4, 33]. Our work is closely 

related to this effort as estimates of post-release failures can identify files that require more testing 

effort. Related to the prior work in this area we do not discuss any new ways for formalizing 

architectural connections or the use of any new architectural description languages. We simply leverage 

the software dependency metrics combined with the software churn metrics to explain post-release 

failures. 

Podgurski and Clarke [32] present a formal model of program dependences as the relationship 

between two pieces of code inferred from the program text. These program dependences classified as 

control dependences and data flow dependences are used to evaluate dependence based software testing, 

debugging and maintenance. Program dependences have also be investigated in terms of testing [21], 

code optimization and parallelization[14], and debugging [29].  Empirical studies have also been 

performed on the relationship between dependences involving program predicates [5] and inter 

procedural control dependences [36] .  

Studies have also been performed on the distribution of faults during development and their 

relationship with metrics like size, complexity metrics [12]. From a design metrics perspective there 



have been studies involving the CK metrics [9]. These metrics can be a useful early internal indicator of 

externally-visible product quality [3, 38, 39]. The CK metric suite consist of six metrics (designed 

primarily as object oriented design measures): weighted methods per class (WMC), coupling between 

objects (CBO), depth of inheritance (DIT), number of children (NOC), response for a class (RFC) and 

lack of cohesion among methods (LCOM). The CK metrics have also been investigated in the context of 

fault-proneness. Basili et al. [3] studied the fault-proneness in software programs using eight student 

projects. They observed that the WMC, CBO, DIT, NOC and RFC were correlated with defects while 

the LCOM was not correlated with defects. Further, Briand et al. [7] performed an industrial case study 

and observed the CBO, RFC, and  LCOM to be associated with the fault-proneness of a class.  

Software evolution via code churn has been studied [16, 27, 28] to understand its relationship on 

software quality. Prior studies have involved analysis of code churn measures in isolation and using a 

relative code churn approach [27]  to predict defects at statistically significant levels and as part of a 

larger suite of metrics [20] to understand defect density. Graves et al. [16] predict fault incidences in 

software systems using software change history. Ohlsson et al. [28] identify 25 percent of the most fault-

prone components successfully by analyzing legacy software through successive releases using 

predominantly size and change measures. The distribution of modifications to a program plays a 

significant role in determining the accuracy of a predictive model of test selection [17]. Voklos et al. 

[40] studied the use of modification (differencing) between the source programs of two different version 

for the selection of regression tests. Zimmermann et al. [42] mined eight large scale open source systems 

(IBM Eclipse, POSTGRES, KOFFICE, GCC, GIMP, JBOSS, JEDIT and PYTHON) version histories to 

guide programmers along related changes. They predict where future changes take place in systems and 

upon evaluation using these open source projects the top three recommendations made by them 

contained a correction location for future change with an accuracy of 70%. 



We have discussed prior work on software architectures and the relationship between software 

metrics, churn and quality. Prior studies show that architectural mismatch, poor architectural design (or 

layout), and excessive dependence on a particular component are detrimental to the quality of software 

systems. Studies have also investigated how the architecture of the system can be used in the testing 

process. To the best of our knowledge, this paper is the first large scale empirical study in this area that 

uses architectural metrics and software churn to explain failures. The quantification of the propagation 

of failures in the system based on the churn (or evolution) and architecture of the system helps in early 

identification of binaries that require further testing. 

 

3. SOFTWARE DATA AND METRICS 

 

In this section we explain the software dependence and churn data that are collected. The Windows 

Server 2003 operating system is decomposed into a hierarchy of sub systems as shown in Figure 2. At 

the highest level we have an “Area” (shown by the dashed box). For example, an area would be 

“Internet Explorer” shipped with Windows Server 2003. Within Internet Explorer we could have several 

sub-systems. For example, the HTML rendering engine could be a component and the JavaScript 

interpreter could be another component (shown by rectangular solid boxes). Within each component we 

have several binaries denoted in Figure 2 by the black ovals. The binaries are the lowest level to which 

failures can be accurately mapped to. The 2075 binaries in our study are located within 453 

‘Components’ which are present in 53 ‘Areas’. 



 

Figure 2: Sub-system description in Windows Server 2003 

 

3.1 SOFTWARE DEPENDENCES 

A software dependence is a relationship between two pieces of code, such as a data dependence, call 

dependence, etc. Microsoft has a completely automated tool called MaX [37] that tracks dependence 

information at the function level, including caller-callee dependences, imports, exports, RPC, COM, 

Registry access, etc.  MaX builds a system-wide dependency graph for Windows. The system-wide 

dependency graph can be viewed as the low-level architecture of Windows Server 2003.  MaX works 

with systems consisting of both native x86 and .NET managed binaries and uses the dependency 

information of each binary to build the dependence graph.  MaX [37] has been used to study what 

binaries (or procedures) will be affected by a change, so that corrective action can be taken accordingly.  

Let us explain the metrics associated with call dependences (a similar metric is collected for data 

dependences). A relation (A,B) between binaries A and B signifies that A makes a call on B. Given two 

entities A and B, A may call B from many different call sites. The count of a dependence (A,B) is either 

0 or 1, based on whether A contains a call to B (1) or not (0).  The frequency of a dependence (A,B) is 

the (total) number of calls from A to B. All information is analyzed and mapped at a binary level.  
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Based on this information we collect a set of eight dependency measures described below for each 

binary.  

• Same Component Count 

• Same Component Frequency  

• Different Component Count  

• Different Component Frequency  

• Same Area Count  

• Same Area Frequency  

• Different Area Count  

• Different area Frequency  

Consider the dependence frequencies/counts for the shaded binary (A) in Internet Explorer area 

shown in Figure 3. The binary has seven outgoing dependences. Three of these are within the 

component X, directed from binary A to binary B. So the same component dependence frequency is 

three and the same component dependence count is one (i.e. AB). There exist four dependences 

between the binary A and binaries in different components (Y, Z) spread across three binaries (indicated 

by the cross shaded ovals). The different component frequency is four and the different component 

count is three. There is a single dependence from binary A (in the Internet Explorer area) to the Control 

Panel area. This is a cross area dependency. The different area count and frequency are hence one.  Also 

within the Internet Explorer area, binary A has a same area dependency count of three and frequency of 

six. The dependency data is mapped for each binary accounting for its relationship to other binaries 

based on their locations in different areas/components. This allows us to measure how many 

dependences a binary has in the same/different areas and components in order to quantify its 



architectural layout. Thus each binary in our analysis has its respective same/different component/area 

dependency counts and frequencies.  

 

 

Figure 3: Software dependency measurement description 
 

Figure 4 (A-D) shows the distribution of the dependency counts across areas and components for 

Windows Server 2003. The X-axis indicates the dependency counts and the Y-axis the number of 

binaries. The X-axis is removed for confidentiality reasons but is the same scale for all the histograms to 

make comparisons among the dependences meaningful. To explain the histogram in a little more detail, 

summing up all the data from the bars would add up to 2075, the total count of the binaries in our study. 
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Let us consider for example, the same component count histogram (Figure 4.A). Let the X axis (which is 

removed) be denoted by ‘a’, ‘b’, ‘c’ and so on where ‘a’, ‘b’, ‘c’ etc. are the dependency counts. So the 

graph can be read as, in Windows Server 2003, 1200 binaries have a same component dependency count 

of ‘a’, 575 binaries have a same component dependency count of ‘b’ and so on. 

A

 

B 

 

C 

 

D 

 

Figure 4: Software dependency distribution histograms 
 

From the histograms in Figure 4 for the same and different component counts (Figure 4.A, 4.C) we 

observe a significant spread in the distribution of binaries according to the dependence counts. For 



example around 1200 binaries (Figure 4.A) have a same component count dependency distribution but 

correspondingly only around 165 binaries (Figure 4.C) have a different component count.  This indicates 

that each binary has dependences with several other binaries in different components. A similar 

distribution of dependences can be observed between 650 binaries (Figure 4.B) in the same area count 

and only around 60 binaries (Figure 4.D) in the different area count histogram (i.e. first bar in their 

respective histograms). Comparing across same component and area counts (Figure 4.A, 4.B) we also 

see a significant difference in the distribution of the binaries according to the dependency data. These 

histograms indicate the widespread distribution of dependences among the binaries in the Windows 

operating system. To give a high level example for context, the Windows kernel would have a higher 

degree of dependences than say the calculator program in Windows. The varying degrees of 

dependences represent the real life architecture of a complex software system like Windows.  We 

present only the counts of the dependences in Figure 4 and not the frequencies due to space limitations. 

The same and different component/area frequencies also follow similar spread of distributions.  

3.2 SOFTWARE CHURN 

Code churn is a measure of the amount of code change taking place within a software unit over time.  

It is easily extracted from a system’s change history, as recorded automatically by a version control 

system. We use a file comparison utility (such as diff) to automatically estimate how many lines were 

added, deleted and changed by a programmer to create a new version of a file from an old version. This 

measure is used to compute the overall change in terms of the lines of code (added, deleted, and 

modified). The software evolution measures that are collected are: 

• Delta LOC: The overall change in the lines added, deleted or modified between two versions. 

• Churn Files:  The number of files within the binary that churned. 



• Churn count:  The number of changes made to the files comprising a binary between the two 

versions. 

Code churn is used in our study as it measures the evolution of the system from a baseline version. As 

the system evolves from Windows 2000, our baseline version to Windows Server 2003 we measure the 

delta LOC, churned files and the churned count. Considering the churn metrics from an architectural 

perspective, if for example the core Internet Explorer binary churns very frequently with a large delta 

LOC, then all binaries that have dependences with this binary might churn (or change) appropriately to 

be in synch with the core Internet Explorer binary. If they are not in synch then it could lead to build 

failures which would be very expensive to fix late in the development process. This also explains our 

motivation to integrate churn and architectural dependency metrics to explain post-release failures. As 

with the dependences each binary has its associated delta LOC, churn files and churn count mapped to 

it. 

3.3 METRICS DESCRIPTION 

We utilize a set of seven metrics, four related to the dependency metrics and the remaining three 

based on the software churn metrics. These metrics are described below in Table 2. 

Table 2: Metric descriptions 

Metric name Description 

Software Dependence Metrics 

Same component ratio Same Component Frequency          
Same Component Count 

Different component ratio Different Component Frequency          
Different Component Count 

Same area ratio Same Area Frequency           
Same Area Count 

Different area ratio Different Area Frequency           
Different Area Count 

Software Churn Metrics 
Churn count See Section 3.2 



Churn files See Section 3.2 
Delta LOC See Section 3.2 

In the computation in Table 1 we make two mathematical transformations. In the dependence ratios, 

all the denominator values are count+1 in order to eliminate division by zero. Second, we take a log 

transformation of the delta LOC in the software churn metrics [24] to scale the variables into a standard 

comparison scale. 

The rationale for the dependence ratio is best described with an example. Consider two binaries, A 

and B, where binary A has a same component count of 2 and frequency of 7. Binary B similarly has a 

same component count of 1 and frequency of 7. Computing a ratio lets us leverage the fact that though 

binaries A and B have a similar number of dependences they may differ in their failure-proneness ability 

as binary B is related to two different binaries compared to binary A. This relative approach is similar to 

our prior work on code churn measures[27] where a relative approach yielded better predictors for 

estimating system defect density than absolute measures.  

4. EXPERIMENTAL ANALYSES 

This section presents our experimental analysis of the relationship between software dependences, 

churn and post-release failures. Section 4.1 investigates the empirical relationship between the software 

dependency and churn metrics with the post-release failures using a Spearman rank correlation. Section 

4.2 demonstrates the ability of the dependence ratios and software churn metrics to explain the number 

of post-release failures, via multiple regression analysis. Section 4.3 shows how the metrics can be used 

to estimate the failure-proneness probabilities using logistic regression techniques. Section 4.4 discusses 

the threats to the external validity of our study. 

4.1 CORRELATION RESULTS 

In order to identify the relationship between the software dependence ratios, churn metrics and post-

release failures we run a Spearman rank correlation between the measures and the post-release failures. 



Spearman rank correlation is a commonly-used robust correlation technique [13] because it can be 

applied even when the association between elements is non-linear.  The correlation results magnitude 

and sign can be used to identify the strength and characteristics of the relationship between the software 

dependence ratios, churn metrics and post-release failures. The results of such a correlation are 

presented below in Table 3. We see that all results except the different area ratio of dependences are 

statistically significant at 99% confidence3. The lack of statistical significance of the different area ratio 

might be due to the fact that compared to the number of dependences among components, there is a 

proportionally small number of dependences among areas.  

The other correlations are all positive and statistically significant, indicating that with an increase in 

the ratios there is an increase in the number of failures. These results also hold across the software churn 

metrics. These results indicate that with increase in the software dependency ratios and churn metrics 

there is an increase in post-release failures (H1) except for the lack of statistical significance for the 

different area ratio which is due to the relatively small number of different area dependences. 

From the correlation matrix it also is interesting to observe the relationship between the same 

component ratio, delta LOC and churn files metrics. These correlations show a positive statistically 

significant value confirming that when there are changes within a component there is a “propagation” of 

this change due to the dependences, as indicated by the increase in the number of files churned and the 

number of times churned. This also confirms our initial argument about the propagation of churn across 

dependences. We observe a similar relationship for the same area ratios also. 

 

 

                                                 
3 SPPS® for computation that does not give an accuracy of greater than 3 decimal places. So p=0.000 should be interpreted as p<0.0005 



Table 3: Correlation results between the dependency ratios, churn metrics and failures 

4.2 POST-RELEASE FAILURE ANALYSIS 

For explaining the post-release failures we use multiple linear regression (MLR), where the post-

release failures form the dependent variable and the seven metrics described in Table 1 form the 

independent variables. The goal of this analysis is to identify if the software dependence ratios and 

churn metrics can be used to model (explain at statistically significant levels) and estimate the post-

release failures. In multiple linear regression, we measure the R2 value and the F-test significance. R2 is a 

measure of variance in the dependent variable that is accounted for by the model built using the 

predictors [6]. R2 is a measure of the fit for the given data set. (It cannot be interpreted as the quality of 

the dataset to make future predictions). The adjusted R2 measure also can be used to evaluate how well a 

model will fit a given data set [8]. Adjusted R2 explains for any bias in the R2 measure by taking into 

account the degrees of freedom of the independent variables and the sample population. The adjusted R2 

tends to remain constant as the R2 measure for large population samples. The computation of the 

adjusted R2 is shown in Equation 1. 

 

  
 

Same 
comp ratio 

Diff comp 
ratio 

Same 
area ratio 

Diff area 
ratio 

Churn 
times 

Churn 
files 

Delta 
LOC Failures 

Same comp ratio  1.000 .187 .954 .021 .496 .538 .472 .401 
 (p) . (.000) (.000) (.334) (.000) (.000) (.000) (.000) 

Diff comp ratio   1.000 .104 .032 .161 .176 .122 .181 
 (p)  . (.000) (.150) (.000) (.000) (.000) (.000) 

Same area ratio    1.000 .018 .478 .519 .453 .382 
 (p)   . (.406) (.000) (.000) (.000) (.000) 

Diff area ratio     1.000 .036 .040 .047 .014 
 (p)    . (.101) (.070) (.033) (.522) 

Churn times      1.000 .946 .902 .642 
 (p)     . (.000) (.000) (.000) 

Churn files       1.000 .917 .652 
 (p)      . (.000) (.000) 

Delta LOC        1.000 .592 
 (p)       . (.000) 

Failures         1.000 
 (p)        . 



Adjusted R2 =        R2 - (Vi - 1)                  … (1)      
             (n- Vi ) * (1- R2)          
where n is the number of samples used to build the regression model and Vi  is the number of 

independent variables used to build the regression model. The F-test is a test of statistical significance 

used to test the hypothesis that all regression coefficients are zero. The F-test and its associated p values 

govern the acceptability of the built regression model in terms of statistical significance. 

One difficulty associated with MLR is multicollinearity among the metrics that can lead to an inflated 

variance in the estimation of the failures. One approach that has been used to overcome this difficulty is 

Principal Component Analysis (PCA) [19]. With PCA, a smaller number of uncorrelated linear 

combinations of metrics that account for as much sample variance as possible are selected for use in 

regression (linear or logistic).  From Table 3 we can see the statistically significant correlations among 

the metrics. We ran a PCA on the seven metrics discussed in Table 1; the resulting principal components 

that account for a variance greater than 95% are shown below in Table 4. These resulting five principal 

components can be used to build regression models with minimal loss of information compared to the 

original metrics while handling the problem of multicollinearity. A logistic regression equation also can 

be built to model data using the principal components as the independent variable [11]. The individual 

and cumulative variances for each principal component that altogether account for 95% of the total 

sample variance is explained in Table 4. 

Table 4: Principal component variances 

Initial Eigenvalues 
Principal 

Components Total 
% of 

Variance Cumulative % 
1 2.739 39.128 39.128 
2 1.690 24.140 63.268 
3 1.395 19.935 83.203 
4 .607 8.675 91.877 
5 .324 4.623 96.501 



These five principal components are used to build our multiple regression equation. The overall fit 

using these principal components as the independent variable and the failures as the dependent variable 

is performed using all the 2075 binaries. The overall R2 value of the regression fit is 0.629, (adjusted R2 

value =0.628) F=686.188, p<0.0005. The general form of the fit regression is shown in Equation 2.  

Post-release failures = c + a1PC1+ a2PC2+ a3PC3+ a4PC4+ a5PC5       … (2) 

where c is the regression constant and a1,… a5 are the regression coefficients. PC1…PC5 represent 

the principal components obtained from using the dependency and churn metrics.  

The regression model characteristics are shown Table 5. The coefficients of the multiple regression 

equation are removed to protect proprietary information. The individual metrics statistical significance is 

evaluated by the use of a t-test that indicates the significance of the principal components towards 

explaining the failures in terms of the multiple regression equation. The t-test and R2 values show the 

efficacy of our regression model built for 2075 binaries using the five principal components as the 

independent variables.  

Table 5: Complete model summary 

 t significance 
(Constant) 56.441 p < 0.0005 

Principal component 1 46.788 p < 0.0005 
Principal component 2 -6.075 p < 0.0005 

Principal component 3 -28.272 p < 0.0005 

Principal component 4 15.336 p < 0.0005 

Principal component 5 -13.055 p < 0.0005 

In order to assess the ability of the regression models to predict the post-release failures we use the 

technique of data splitting [26]. That is, we randomly pick two-thirds (1384) of the binaries to build our 

prediction model and the remaining one-third (691) to verify the efficacy of the built model. Table 6 

shows the results obtained on performing such random splits. In order to ensure the repeatability of our 

results we performed the random splitting five times. From Table 6 we see consistent R2 and adjusted R2 



values that indicate the efficacy of the regression models built using the random splitting technique. The 

correlation results (both Spearman and Pearson) between the actual failures and estimated failures are at 

similar levels of strength and are statistically significant. This indicates the sensitivity of the predictions 

to estimate post-release failures. That is, an increase/decrease in the estimated values is accompanied by 

a corresponding increase/decrease in the actual values of post-release failures. 

Table 6: Random data splits summary 

R2 Adj. R2 F-test Pearson* Spearman* 
0.641 0.639 480.776, p<0.0005 0.778 0.676 
0.628 0.627 435.561, p<0.0005 0.793 0.662 
0.634 0.633 468.756, p<0.0005 0.785 0.624 
0.654 0.653 509.410, p<0.0005 0.748 0.620 
0.614 0.612 427.999, p<0.0005 0.809 0.664 

* All correlations are statistically significant at 99% confidence 

Thus using principal component analysis of the metrics we can estimate the post-release failures at 

statistically significant levels. As the dependency information and churn metrics are available early in 

the development process, we can use the software dependency ratios and churn measures as early 

indicators of post-release failures (H2).These estimates can be used to identify the binaries that will 

have a higher number of failures than acceptable standards and how testing can be directed more 

effectively at these binaries.  

4.3 FAILURE-PRONENESS ANALYSIS 

In order to assess failure-proneness (i.e. simply stated the probability of a binary to fail in the field) 

we use a binary logistic regression approach. The overall goal of this analysis is to use the software 

dependence ratios and churn metrics as early indicators of failure-proneness modeled using logistic 

regression techniques. The higher the failure-proneness of a binary, the higher is the likelihood of it 

failing in the field. For the purpose of using a binary logistic regression we need to define a binary-

cutoff point for failure-proneness. For this purpose, we use a statistical lower confidence bound 



computation, as used in prior studies [27]. The general form of a binary logistic regression is shown in 

Equation 3: 

 (prob) = e (c + a1PC1+ a2PC2+ a3PC3+ a4PC4+ a5PC5)                     … (3)  

            1+ e (c + a1PC1+ a2PC2+ a3PC3+ a4PC4+ a5PC5) 
where the cut-off value for probability of failure  is 0.500 to discriminate between binaries as failure-

prone or not. 

We perform the binary logistic regression using the principal components generated from the 

dependency ratios and the churn measures (independent variables) and failure-proneness (dependent 

variable). The Nagelkerke’s R2  and the Cox and Snell R2  are 0.402 and 0.301. These two R2 measures 

are not true R2 measures as in multiple regression. Hence we do not draw any inferences of the overall 

logistic regression fit with respect to explaining the variance in the dependant variable. These R2 values 

are presented in order to show the overall consistency in the fit of the logistic regression with a random 

splitting approach. 

We also perform a repeated random splitting approach where we use two-thirds of the binaries to 

build the logistic regression equation and the remaining one-thirds to evaluate the built logistic 

regression model. Table 7 shows the results. The Nagelkerkes R2 and the Cox and Snell R2 are consistent 

across the five random splits (different from the random splits in Section 4.2) indicating the efficacy of 

the built logistic regression models in terms of the consistency of the datasets.  

Table 7: Logistic regression model characteristics 

Random 
split 

Nagelkerkes R2 Cox and 
Snell R2 

1 0.415 0.311 
2 0.396 0.297 
3 0.403 0.302 
4 0.416 0.312 
5 0.382 0.286 

 



Similarly in order to evaluate the efficacy of the built logistic regression we use statistical 

correlations. A positive and strong correlation (we present both Spearman and Pearson correlations) 

between the predicted failure-proneness probability and the actual number of failures indicates the 

sensitivity of the failure-proneness probability (i.e. the higher the failure-proneness probability the 

higher the actual number of failures that occurred in the field). The results of the sensitivity of the 

predictions in terms of the correlations for the five random splits are shown in Table 8. The correlation 

results in Table 8 are positive and statistically significant indicating that with increase in the predicted 

failure-proneness of the binaries there is an increase in the number of actual post-release failures. 

Table 8: Logistic regression results 

Correlation coefficients Random 
split Pearson* Spearman* 

1 0.625 0.672 
2 0.612 0.668 
3 0.632 0.665 
4 0.619 0.658 
5 0.606 0.651 

* All correlations are statistically significant at 99% confidence  

Based on these results we can assess the ability of software dependency ratios and churn measures to 

be used as early indicators of the failure-proneness of the binaries (H3).This failure-proneness 

probability quantifies the extent of the propagation of failures in the system. For each binary we can 

compute this probability of failure using the logistic regression equation based on its evolution (churn) 

and architecture. This indicates that excessive churn on strongly dependent binaries has a higher 

probability of propagating a failure due to its strong relationships with other binaries. 

4.4 THREATS TO EXTERNAL VALIDITY 

The main threats to external validity of our study are: 

• The data analysis is performed as a post-mortem operation, i.e. all the data points are from the same 

software system. It is possible that these results might be valid only for the current system under 



study. We intend to address this issue in our future work plans by incorporating this methodology 

into the next generation Windows operating system development. 

• As with all empirical studies, these analyses should be repeated in different environments and in 

different contexts before generalizing the results. Results that were found in this study on the 

Windows operating system might differ with other software systems based on environment, context, 

size etc.  

• These results were applicable to the Windows system that has strong prior history information that 

could be leveraged. In the absence of prior historical information in this context it is not possible to 

make early estimates regarding the post-release failures/ failure proneness. 

5. CONCLUSIONS AND FUTURE WORK 

 
Software developers can benefit from an early estimate regarding the quality of their product as field 

quality information is often available late in the software lifecycle to affordably guide corrective actions. 

Identifying early indicators of field quality (in terms of failures/failure-proneness) is crucial in this 

regard. In this paper we have studied the software dependency and churn metrics from the standpoint of 

the post-release failures for Windows Server 2003. From our analysis in section 4.1 we observe that, an 

increase in software dependency ratios and churn metrics is accompanied by an increase in post-release 

failures.  

Based on statistical models built from a random two thirds of the data points to construct a prediction 

model and the remaining one third to evaluate the built model we get statistically significant results 

between the actual and estimated values for both, predicting post-release failures and failure-proneness. 

Table 6 and Table 8 summarize the strength of the statistical results in terms of the correlation between 

the actual and estimated values for estimating failures and failure-proneness across all the ten random 

splits (five for estimating the failures and five for estimating failure-proneness). The strength of the 



correlations indicates the sensitivity of the predictions which are all consistent across different random 

splits. These results indicate that we can predict the post-release failures and failure-proneness of the 

binaries at statistically significant levels. These predictions can help identify binaries that are more 

likely to fail in the field which can be used to focus efforts more efficiently to prioritize testing, perform 

code inspections etc. 

These metrics form part of a larger set of in-process and product metrics in a long-term focus of 

Microsoft called the MetriZone project. MetriZone is a project targeted at making early estimates of 

software quality to predict post-release failures. It leverages the rich history of in-process and product 

metrics available from prior versions of the Windows operating system to build statistical prediction 

models to estimate the post-release field quality in terms of failures and for early identification of 

failure-prone binaries. Our current focus has been to leverage the architectural dependency and churn 

metrics. We plan on using data from the testing process, pre-release faults, inspection data, faults found 

using static analysis tools etc. in future investigations. We also plan to do similar studies on other 

Microsoft products and compare our results to understand the underlying differences in architecture for 

different systems.  
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