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ABSTRACT

Commercial software development is a complex task that recaitesrough understanding of the
architecture of the software system. We analyze the WindowerS&003 operating system in order to
assess the relationship between its software dependences, chuecs arelrpost-release failures. Our
analysis indicates the ability of software dependences and churnicsmtet be efficient predictors of
post-release failures. Further, we investigate the relationshigeéetthe software dependences and
churn metrics and their ability to assess failure-proneness probalaitisetistically significant levels.
Keywords
Software dependences, Code churn, Failures, Failure-proneness, Multgkssien, Logistic
regression.

1. INTRODUCTION

The IEEE standard [18] for software engineering terminology defireshitecture” as the
organizational structure of a system or component. Related isdEeknition of architectural design
[18] as the results of the process of defining a collection of haedaval software components and their
interfaces to establish the framework (or architecture) for the developnmebaiputer system.

In any large-scale software development effort, a software tectinie enables teams to work
independently on different components in the architecture. Large seftaymtems often are

decomposed hierarchically in a tree, where the leaves ofrébeptovide lower level services that
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components higher in the tree depend on. One usually finds that work greupsganized in a
hierarchy that reflects the hierarchical organization of the software.

Overlaying this hierarchy is a graph of dependences between the componetiigory, the
dependences between components would follow the edges of the treetite ptiais rarely is the case.
Dependences may exist between peers in the software hierarchay aross many levels in the tree.
The number of dependences between parts of the hierarchy reflecksgtiee of ‘coupling’ between
components, which can greatly affect the amount of work needed by devel@ddast teams to keep
the different components in synch.

We use software dependences together with code churn to build modeisdicting the post-release
failures of system binaries. A software dependency is a relhiphstween two pieces of code, such as
a data dependency (component A uses a variable defined by component &) dependency
(component A calls a function defined by component B). Code churn is a measiue amount of code
change taking place within a software unit over time. Microsoftaulsmatic tools for extracting the
software dependences in code and the code churn between versions.

Suppose that component A has many dependences on component B. If the code of mtoBipone
changes (churns) a lot between versions, we may expect that compomeitn@ed to undergo a
certain amount of churn in order to keep in synch with component B. Thhtrs, often will propagate
across dependences. Together, a high degree of dependence plus churn camrasuteat will
propagate through a system, reducing its reliability.

In this paper we investigate the use of software dependences andngtcs to explain post-release
failures for a period of six months for the Windows Server 2003 opgrafistem. Early estimates
regarding the post-release failures can help software organizédiangde corrective actions to the

quality of the software early and economically.



Software architectures [35] and software code churn [25] have heBadsextensively in software
engineering. Wejuantify how the dependences that exist in the implementation of the solystem
and software churn metrics correlate with post-release failofr@a commercial software system. The
size and wide-spread operational use of the system adds strength to our analysis.

In a prior study [27] we investigated the use of a set of relatide churn measures in isolation as
predictors of software defect density. The relative churn [284sures are normalized values of the
various measures obtained during the evolution of the system. In an evolviegh syss highly
beneficial to use a relative approach to quantify the change ystans We also showed that these
relative measures can be devised to cross check each othertke thatrics do not provide conflicting
information.

Our current work differs significantly from our previous work as weegrate in architectural
dependences to investigate the propagation of churn across the systepapériis one of the largest
efforts to quantify architectural dependency entities. Our study seoviesdge the gap between the
actual code and the architectural layout of the system. Furthegpapes uses only three simple churn
measures in absolute terms compared to the multiple churn reeased in the relative approach in our
prior study.

Figure 1 illustrates the temporal aspect of the metrics tiolfecAt the release date for Windows
Server 2003 the dependency information is collected. Also at theerqglesn, the code churn measures
are collected using Windows 2000 as the baseline. This churn helps udyqgis@nevolution of the

system in terms of change from the previous baseline version of Windows 2000.
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Figure 1: Data collection explanation

The overall size of the code base was 28.3 M LOC (Million Liokgode). The 28.3 M LOC
comprises of 2075 compiled binaries that form the major part of thedWs Server 2003 system. In
our analysis, software dependences are between binaries (for examfindows, DLL files), and can
be mapped up in the hierarchy of the system. Dependences have twotedsoeasures, the total
number of dependences (frequency) and the unique dependences between tle (bnarig We
leverage both these measures by computing the ratio of the depefrégesncy to the dependence
count to obtain a relative dependency ratio.

Software fault-proneness is defined as the probability of the preséffiaelts in the software [11].
Failure-proneness is the probability that a particular softwaraesit (binary, component or area) will
fail in operation. We explain both failure-proneness and failurexy usur dependency and churn

metrics. The research hypotheses we investigate in our study are shown in Table 1.



Table 1: Research hypotheses

Hypothesis

Hi | The software dependence ratios and churn metrics are positoredlated with post;
release failures; that is, an increase in dependence ratios hamd metrics s
accompanied by an increase in failures

H, | The software dependence ratios and churn measures can be uadyg aslieators of
post-release failures

Hs; | The software dependence ratios and churn measures can be uadyg aslieators of
the failure-proneness of the binaries

The rest of our paper is organized as follows. Section 2 discuskted work and Section 3
describes our metrics in detail. Section 4 presents the resutiarcadnalysis and the experimental

limitations. Section 5 provides the conclusions and future work.

2. RELATED WORK

Over the years research related to software architedassanged from analysis of mismatch of
components in the architectural composition [10, 15] to architectusalipBon languages [23]. Perry
and Wolf formulated a model of software architecture that enggsathe architectural elements of data,
processing, and connection, their relationships and properties [30]. Shhi3d{ definearchitectural
style to mean a set of design rules that identify the kinds of componentsmamectors that may be used
to compose a system or subsystem, together with local or global ausstrathe way the composition
is done. Medvidovic et al. [22] discuss architectures as descrilbexria of components (computational
elements), connectors (interaction elements), and their configuratidifee interactions between
components have also been described using formal approaches as explicitly samtiaes¢?2].

Prior studies [1] analyzed and investigated error propagation througlasatiwchitectures, focusing
on the level of components and connectors (rather than dependences betiedeRinzger et al. [31]
integrated information on the evolution of software architecture tf@rsource basis of a project and

from the release history data such as modification and problem gepbe integrated architectural



views show intended and unintended couplings between architectural edleifeatinformation can be
used to highlight to software engineers the locations in the systgrmay be critical for on-going and
future maintenance activitie¥on Mayrhauser [41] et al. investigated the relationship of theydetca
software architectures with faults using a bottom-up approach ofrgomsg) a fault-architecture model.
The fault-architecture model was constructed incorporating the degrdault-coupling between
components and how often these components are involved in a defect fixHditJceBults indicated for
each release what the most fault-prone relationships were amgedtbat the same relationships
between components are repeatedly fault-prone, indicating an underlyihijectsal problem.
Similarly studies have explored the use of software architediréssting [4, 33]. Our work is closely
related to this effort as estimates of post-release failoam identify files that require more testing
effort. Related to the prior work in this area we do not discuss nemy ways for formalizing
architectural connections or the use of any new architecturetdiptesn languages. We simply leverage
the software dependency metrics combined with the software churitamietrexplain post-release
failures.

Podgurski and Clarke [32] present a formal model of program dependendlee sesationship
between two pieces of code inferred from the program text. These mprog@@endences classified as
control dependences and data flow dependences are used to evaluate depasddraatware testing,
debugging and maintenance. Program dependences have also be investigamesl afi testing [21],
code optimization and parallelization[14], and debugging [29]. Empiricaliet have also been
performed on the relationship between dependences involving program predijat@sd inter
procedural control dependences [36] .

Studies have also been performed on the distribution of faults during deeslbmnd their

relationship with metrics like size, complexity metrics [12]orRra design metrics perspective there



have been studies involving the CK metrics [9]. These metrics carubeful early internal indicator of
externally-visible product quality [3, 38, 39]. The CK metric suite corsissix metrics (designed
primarily as object oriented design measures): weighted methodsaper(@/MC), coupling between
objects (CBO), depth of inheritance (DIT), number of children (NO&panse for a class (RFC) and
lack of cohesion among methods (LCOM). The CK metrics have alsarbesstigated in the context of
fault-proneness. Basili et al. [3] studied the fault-pronenessftware programs using eight student
projects. They observed that the WMC, CBO, DIT, NOC and RFC werelai®d with defects while
the LCOM was not correlated with defects. Further, Briand. §7pperformed an industrial case study

and observed the CBO, RFC, and LCOM to be associated with the fault-pronenessf a clas

Software evolution via code churn has been studied [16, 27, 28] to understagldtitsiship on
software quality. Prior studies have involved analysis of code churruresas isolation and using a
relative code churn approach [27] to predict defects at statigtgignificant levels and as part of a
larger suite of metrics [20] to understand defect density. Gravals |i6] predict fault incidences in
software systems using software change history. Ohlsson et ad¢28fy 25 percent of the most fault-
prone components successfully by analyzing legacy software through succedeases using
predominantly size and change measures. The distribution of modificatioasprogram plays a
significant role in determining the accuracy of a predictive motiéést selection [17]. Voklos et al.
[40] studied the use of modification (differencing) between the souogggms of two different version
for the selection of regression tests. Zimmermann et al. [##dreight large scale open source systems
(IBM Eclipse, POSTGRES, KOFFICE, GCC, GIMP, JBOSS, JEDId RYTHON) version histories to
guide programmers along related changes. They predict where future chaitgplace in systems and
upon evaluation using these open source projects the top three recommencdiaitendy them

contained a correction location for future change with an accuracy of 70%.



We have discussed prior work on software architectures and thenstap between software
metrics, churn and quality. Prior studies show that architectusahaich, poor architectural design (or
layout), and excessive dependence on a particular component are detricmémaduality of software
systems. Studies have also investigated how the architecture gfstieen can be used in the testing
process. To the best of our knowledge, this paper is the first leatgeesnpirical study in this area that
uses architectural metrics and software churn to explaindaildihe quantification of the propagation
of failures in the system based on the churn (or evolution) and atongef the system helps in early

identification of binaries that require further testing.

3. SOFTWARE DATA AND METRICS

In this section we explain the software dependence and churn dasaeteatected. The Windows
Server 2003 operating system is decomposed into a hierarchy of sub systehesvn in Figure 2. At
the highest level we have an “Area” (shown by the dashed box). Forpkxaan area would be
“Internet Explorer” shipped with Windows Server 2003. Within Internet Eeplave could have several
sub-systems. For example, the HTML rendering engine could be a componetiteadavaScript
interpreter could be another component (shown by rectangular solid boxdsh &dith component we
have several binaries denoted in Figure 2 by the black ovals. The berarite lowest level to which
failures can be accurately mapped to. The 2075 binaries in our studipcated within 453

‘Components’ which are present in 53 ‘Areas’.
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Figure 2: Sub-system description in Windows Server 2003

3.1 SOFTWARE DEPENDENCES
A software dependence is a relationship between two pieces of aoceasa data dependence, call

dependence, etc. Microsoft has a completely automated tool called[daxhat tracks dependence
information at the function level, including caller-callee dependeniogports, exports, RPC, COM,
Registry access, etc. MaX builds a system-wide dependency grapMirfdows. The system-wide
dependency graph can be viewed as the low-level architecture of Wirskwear 2003. MaX works
with systems consisting of both native x86 and .NET managed binariesis®s the dependency
information of each binary to build the dependence graph. MaX [37] hasuseel to study what
binaries (or procedures) will be affected by a change, so that corrective actiba taken accordingly.
Let us explain the metrics associated with call dependencesilar metric is collected for data
dependences). A relation (A,B) between binaries A and B signiifagsAt makes a call on B. Given two
entities A and B, A may call B from many different call sitEsecount of a dependence (A,B) is either
0 or 1, based on whether A contains a call to B (1) or not (B&fréquency of a dependence (A,B) is

the (total) number of calls from A to B. All information is analyzed and mappadiatry level.



Based on this information we collect a set of eight dependency meatseribed below for each

binary.
. Same Component Count
. Same Component Frequency
. Different Component Count
. Different Component Frequency
. Same Area Count
. Same Area Frequency
. Different Area Count
. Different area Frequency

Consider the dependence frequencies/counts for the shaded binary @@#grimet Explorer area
shown in Figure 3. The binary has seven outgoing dependences. Three of #esgihiar the
component X, directed from binary A to binary B. So the same componemddgpe frequency is
three and the same component dependence count is one-{i®). Ahere exist four dependences
between the binary A and binaries in different components (Y, Z) spoeasds three binaries (indicated
by the cross shaded ovals). The different component frequency is four addféhent component
count is three. There is a single dependence from binary A (in thadhtexplorer area) to the Control
Panel area. This is a cross area dependency. The differesbardand frequency are hence one. Also
within the Internet Explorer area, binary A has a same area deysnctzunt of three and frequency of
six. The dependency data is mapped for each binary accounting for itsns#igt to other binaries
based on their locations in different areas/components. This allow® useasure how many

dependences a binary has in the same/different areas and compionemter to quantify its



architectural layout. Thus each binary in our analysis has itsateapsame/different component/area

dependency counts and frequencies.
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Figure 3: Softwar e dependency measurement description

Figure 4 (A-D) shows the distribution of the dependency counts acrass ame components for
Windows Server 2003. The X-axis indicates the dependency counts and the thhea number of
binaries. The X-axis is removed for confidentiality reasons bueisame scale for all the histograms to
make comparisons among the dependences meaningful. To explain the histogrigitte more detail,

summing up all the data from the bars would add up to 2075, the totalafdbatbinaries in our study.



Let us consider for example, the same component count histogrgume(BiA). Let the X axis (which is
removed) be denoted by ‘a’, ‘b’, ‘c’ and so on where ‘a’, ‘b’, ‘c’ et the dependency counts. So the
graph can be read as, in Windows Server 2003, 1200 binaries have asgmaent dependency count

of ‘a’, 575 binaries have a same component dependency count of ‘b’ and so on.
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Figure 4: Softwar e dependency distribution histograms

From the histograms in Figure 4 for the same and different compoaants (Figure 4.A, 4.C) we

observe a significant spread in the distribution of binaries accotdirtge dependence counts. For



example around 1200 binaries (Figure 4.A) have a same component count depersiebatiati but
correspondingly only around 165 binaries (Figure 4.C) have a different componant @ his indicates
that each binary has dependences with several other binaries irerdiffmmponents. A similar
distribution of dependences can be observed between 650 binaries (Figuire thd8same area count
and only around 60 binaries (Figure 4.D) in the different area count fisto@e. first bar in their
respective histograms). Comparing across same component arwbanés (Figure 4.A, 4.B) we also
see a significant difference in the distribution of the binaaimrding to the dependency data. These
histograms indicate the widespread distribution of dependences amobmadhies in the Windows
operating system. To give a high level example for context, the almdernel would have a higher
degree of dependences than say the calculator program in Windows. The vadegregs of
dependences represent the real life architecture of a complevasofsystem like Windows. We
present only the counts of the dependences in Figure 4 and not the freqdeaed®space limitations.
The same and different component/area frequencies also follow similad spdiatributions.
3.2 SOFTWARE CHURN

Code churn is a measure of the amount of code change taking place veitifiiware unit over time.
It is easily extracted from a system’s change history, as ret@ud@matically by a version control
system. We use a file comparison utility (such as diff) to aatmally estimate how many lines were
added, deleted and changed by a programmer to create a new versiiba foba an old version. This
measure is used to compute the overall change in terms ofn#®e df code (added, deleted, and
modified). The software evolution measures that are collected are:

* Delta LOC: The overall change in the lines added, deleted or modified between twaszersi

e Churn Files: The number of files within the binary that churned.



e Churn count: The number of changes made to the files comprising a betargen the two
versions.

Code churn is used in our study as it measures the evolution of tamdysin a baseline version. As
the system evolves from Windows 2000, our baseline version to Windower 2803 we measure the
delta LOC, churned files and the churned count. Considering the churiasniedm an architectural
perspective, if for example the core Internet Explorer binary churnysfrezgyuently with a large delta
LOC, then all binaries that have dependences with this binary might @ruchange) appropriately to
be in synch with the core Internet Explorer binary. If they aremsynch then it could lead to build
failures which would be very expensive to fix late in the development ggoddis also explains our
motivation to integrate churn and architectural dependency metricpl@irepost-release failures. As
with the dependences each binary has its associated delta LOCfilgsuamd churn count mapped to
it.
3.3METRICSDESCRIPTION

We utilize a set of seven metrics, four related to the dependratrycs and the remaining three
based on the software churn metrics. These metrics are described below & Table

Table2: Metric descriptions

Metric name Description

Softwar e Dependence Metrics

Same component ratio Same Component Frequency
Same Component Count

Different component ratio] Different Component Frequenc
Different Component Count

Same area ratio Same Area Frequency
Same Area Count
Different area ratio Different Area Frequency

Different Area Count

Software Churn Metrics
Churn count \ See Section 3.2




Churn files See Section 3.2
Delta LOC See Section 3.2
In the computation in Table 1 we make two mathematical transfimmsaln the dependence ratios,

all the denominator values are count+1 in order to eliminate divisiaretny Second, we take a log
transformation of the delta LOC in the software churn metricstf24tale the variables into a standard
comparison scale.

The rationale for the dependence ratio is best described wittaample. Consider two binaries, A
and B, where binary A has a same component count of 2 and frequency of y.Bsiarilarly has a
same component count of 1 and frequency of 7. Computing a ratio lietgeuage the fact that though
binaries A and B have a similar number of dependences they mayidiffeir failure-proneness ability
as binary B is related to two different binaries compared toyoiar his relative approach is similar to
our prior work on code churn measures[27] where a relative approadedyibetter predictors for
estimating system defect density than absolute measures.

4. EXPERIMENTAL ANALYSES

This section presents our experimental analysis of the relatiobhshien software dependences,
churn and post-release failures. Section 4.1 investigates the exinptationship between the software
dependency and churn metrics with the post-release failures using@ran8peank correlation. Section
4.2 demonstrates the ability of the dependence ratios and software d@ttios no explain the number
of post-release failures, via multiple regression analysis.d®e4t8 shows how the metrics can be used
to estimate the failure-proneness probabilities using logigiiression techniques. Section 4.4 discusses
the threats to the external validity of our study.

4.1 CORRELATION RESULTS
In order to identify the relationship between the software dependatics, churn metrics and post-

release failures we run a Spearman rank correlation betweemetgures and the post-release failures.



Spearman rank correlation is a commonly-used robust correlation teclfiRjubecause it can be
applied even when the association between elements is non-linearcorfélation results magnitude
and sign can be used to identify the strength and characteristicsrefati@nship between the software
dependence ratios, churn metrics and post-release failures. Thits refs such a correlation are
presented below in Table 3. We see that all results except fheedifarea ratio oflependences are
statistically significant at 99% confideric&@he lack of statistical significance of the different amg#or
might be due to the fact that compared to the number of dependenaeg eomponents, there is a
proportionally small number of dependences among areas.

The other correlations are all positive and statisticatipiBcant, indicating that with an increase in
the ratios there is an increase in the number of failureseTieslts also hold across the software churn
metrics. These results indicate that with increase in the software dependency ratios and churn metrics
there is an increase in post-release failures (H1) except for the lack of statistical significance for the
different area ratio which is due to the relatively small number of different area dependences.

From the correlation matrix it also is interesting to obsehee relationship between the same
component ratio, delta LOC and churn files metrics. These cooredashow a positive statistically
significant value confirming that when there are changes witbomgonent there is a “propagation” of
this change due to the dependences, as indicated by the increaseumbtee of files churned and the
number of times churned. This also confirms our initial argument abeuydropagation of churn across

dependences. We observe a similar relationship for the same area ratios also.

3 SPPs® for computation that does not give an accurhgyeater than 3 decimal places. So p=0.000 shoaiinterpreted as p<0.0005



Table 3: Correlation results between the dependency ratios, churn metrics and failures

Same Diff comp Same Diffarea Churn Churn  Delta
comp ratio ratio arearatio  ratio times  files LOC Failures

Same comp ratio  p 1.000 187 .954 .021 496 538 AT2 401
(9) ) (.000) (.000) (.334)  (.000) (.000) (.000) (.000)
Diff comp ratio p 1.000 .104 .032 161 176 122 181
(p) : (.000) (.150)  (.000) (.000) (.000) (.000)
Same arearatio  p 1.000 .018 478 519 453 382
(p) . (.406)  (.000) (.000)  (.000) (.000)
Diff area ratio p 1.000 036  .040 .047 014
(9) : (.101) (.070)  (.033) (.522)
Churn times p 1.000 .946 .902 .642
(9) . (.000)  (.000) (.000)
Churn files p 1.000 .917 652
(p) : (.000)  (.000)
Delta LOC p 1.000 592
(9] . (.000)
Failures p 1.000

()

4.2 POST-RELEASE FAILURE ANALYSIS

For explaining the post-release failures we use multiple liregression (MLR), where the post-
release failures form the dependent variable and the seven nagdcgbed in Table 1 form the
independent variables. The goal of this analysis is to identifgeifsoftware dependence ratios and
churn metrics can be used to model (explain at statistically isigmiflevels) and estimate the post-
release failures. In multiple linear regression, we meaherg value and the F-test significanc€iRa
measure of variance in the dependent variable that is accounted tbe byodel built using the
predictors [6]. Ris a measure of the fit for the given data set. (It cannatteepreted as the quality of
the dataset to make future predictions). The adjustede®sure also can be used to evaluate how well a
model will fit a given data set [8]. Adjusted Bxplains for any bias in the’Rneasure by taking into
account the degrees of freedom of the independent variables and the saputééion. The adjusted’R
tends to remain constant as thé measure for large population samples. The computation of the

adjusted Ris shown in Equation 1.



Adjusted R = B-(V-1) .. (1)
(n-V) * (1- R)

where n is the number of samples used to build the regression model aiedtMe number of

independent variables used to build the regression model. The Fdetgsisof statistical significance
used to test the hypothesis that all regression coefficienterreThe F-test and its associated p values
govern the acceptability of the built regression model in terms of statistjodlcance.

One difficulty associated with MLR is multicollinearity amotg tmetrics that can lead to an inflated
variance in the estimation of the failures. One approach thdutdeasused to overcome this difficulty is
Principal Component Analysis (PCA) [19]. With PCA, a smaller numideruncorrelated linear
combinations of metrics that account for as much sample varignpesaible are selected for use in
regression (linear or logistic). From Table 3 we can seetditistgally significant correlations among
the metrics. We ran a PCA on the seven metrics discussed m T;ahk resulting principal components
that account for a variance greater than 95% are shown below indlalllese resulting five principal
components can be used to build regression models with minimal logg®rofiation compared to the
original metrics while handling the problem of multicollinearitylofyistic regression equation also can
be built to model data using the principal components as the independehtevflrl]. The individual
and cumulative variances for each principal component that altogatbeunt for 95% of the total

sample variance is explained in Table 4.

Table 4: Principal component variances

Initial Eigenvalues

Principal % of
Components Total Variance Cumulative %
1 2.739 39.128 39.128
2 1.690 24.140 63.268
3 1.395 19.935 83.203
4 .607 8.675 91.877
5 324 4.623 96.501




These five principal components are used to build our multiple régmesgquation. The overall fit
using these principal components as the independent variable andutesfag the dependent variable
is performed using all the 2075 binaries. The overalidue of the regression fit is 0.629, (adjustéd R
value =0.628) F=686.188, p<0.0005. The general form of the fit regression is shown in Equation 2.

Post-release failures = ¢ #PL1+ aPC2+ gPC3+ aPC4+ gPC5 .. (2)

where c is the regression constant afd.aas are the regression coefficients. PC1...PC5 represent
the principal components obtained from using the dependency and churn metrics.

The regression model characteristics are shown Table 5. Théciewe$f of the multiple regression
eqguation are removed to protect proprietary information. The individetia® statistical significance is
evaluated by the use of a t-test that indicates the signi@cah¢he principal components towards
explaining the failures in terms of the multiple regression equafioe.t-test and Rvalues show the
efficacy of our regression model built for 2075 binaries using the drugcipal components as the
independent variables.

Table5: Complete model summary

t significance

(Constant) 56.441 p < 0.0005
Principal component : 46.788 p < 0.0005
Principal component . -6.075 p < 0.0005

Principal component:  _2g8 272 p < 0.0005
Principal component « 15.336 p < 0.0005
Principal component!  -13.055 p < 0.0005
In order to assess the ability of the regression models to predigiost-release failures we use the

technique of data splitting [26]. That is, we randomly pick two-th{i84) of the binaries to build our
prediction model and the remaining one-third (691) to verify the effichiche built model. Table 6
shows the results obtained on performing such random splits. In order te #resuepeatability of our

results we performed the random splitting five times. From Tafle $ee consisten’Rnd adjusted R



values that indicate the efficacy of the regression models binlj trse random splitting technique. The
correlation results (both Spearman and Pearson) between the aidtmes fand estimated failures are at
similar levels of strength and are statistically significaiis indicates the sensitivity of the predictions
to estimate post-release failures. That is, an increase#&$ecm the estimated values is accompanied by
a corresponding increase/decrease in the actual values of post-releas®. failur

Table 6: Random data splits summary

R° Adj. R? F-test Pearson? Spearman*
0.641 0.639 480.776, p<0.0005 0.778 0.676
0.628 0.627 435.561, p<0.0005 0.793 0.662
0.634 0.633 468.756, p<0.0005 0.78% 0.624
0.654 0.653 509.410, p<0.0005 0.748 0.620
0.614 0.612 427.999, p<0.0005 0.809 0.664

* All correlations are statistically significant at 99% confidence

Thus using principal component analysis of the metrics we canadstihe post-release failures at
statistically significant levels. As the dependency information dmotn metrics are available early in
the development process, we can usestifvare dependency ratios and churn measures as early
indicators of post-release failures (H2).These estimates can be used to identify the binaries that will
have a higher number of failures than acceptable standards and hiogy tes be directed more
effectively at these binaries.

4.3 FAILURE-PRONENESSANALYSIS

In order to assess failure-proneness (i.e. simply stated the pitybaba binary to fail in the field)
we use a binary logistic regression approach. The overall goalsoamiaiysis is to use the software
dependence ratios and churn metrics as early indicators of fpromeness modeled using logistic
regression techniques. The higher the failure-proneness of a binahjightiee is the likelihood of it
failing in the field. For the purpose of using a binary logistic regrassie need to define a binary-

cutoff point for failure-proneness. For this purpose, we use a isttifdwer confidence bound



computation, as used in prior studies [27]. The general form of a bowsyic regression is shown in

Equation 3:

I (pI’Ob) — e(c + alPC1l+ a2PC2+ a3PC3+ a4PC4+ a5PCb) . (3)

1+ éc + alPC1l+ a2PC2+ a3PC3+ a4PC4+ a5PC5)

where the cut-off value for probability of failutes 0.500 to discriminate between binaries as failure-
prone or not.

We perform the binary logistic regression using the principal comporgartsrated from the
dependency ratios and the churn measures (independent variables)laeepfaneness (dependent
variable). The Nagelkerke’'s’Rand the Cox and Snell’Rare 0.402 and 0.301. These twonReasures
are not true Rmeasures as in multiple regression. Hence we do not draw anyniesref the overall
logistic regression fit with respect to explaining the varidndte dependant variable. ThesevRlues
are presented in order to show the overall consistency in thetlfie dbgistic regression with a random
splitting approach.

We also perform a repeated random splitting approach where we adhirie of the binaries to
build the logistic regression equation and the remaining one-thirdsvatuate the built logistic
regression model. Table 7 shows the results. The Nagelkefkesi Fhe Cox and Snelf@re consistent
across the five random splits (different from the random dpli€ection 4.2) indicating the efficacy of

the built logistic regression models in terms of the consistency of the datasets.

Table 7: Logistic regression model characteristics

Random| Nagelkerkes R Cox and

split Snell R
1 0.415 0.311
0.396 0.297

2

3 0.403 0.302
4 0.416 0.312
5 0.382 0.286




Similarly in order to evaluate the efficacy of the built logistegression we use statistical
correlations. A positive and strong correlation (we present both Speaand Pearson correlations)
between the predicted failure-proneness probability and the actual nwinfefures indicates the
sensitivity of the failure-proneness probability (i.e. the higher Hieiré-proneness probability the
higher the actual number of failures that occurred in the fieldg rEsults of the sensitivity of the
predictions in terms of the correlations for the five random spigsshown in Table 8. The correlation
results in Table 8 are positive and statistically significadicating that with increase in the predicted

failure-proneness of the binaries there is an increase in the number of actuelgasst-failures.

Table8: Logistic regression results

Random Correlation coefficients
split Pearson? Spearman*
1 0.625 0.672
2 0.612 0.668
3 0.632 0.665
4 0.619 0.658
5 0.606 0.651

* All correlations are statistically significant at 99% confidence

Based on these results we can assess the ability of software dependency ratios and churn measures to
be used as early indicators of the failure-proneness of the binaries (H3).This failure-proneness
probability quantifies the extent of the propagation of failures in the system. For each binary we can
compute this probability of failure using the logistic regression emuaiased on its evolution (churn)
and architecture. This indicates that excessive churn on strongly depémizmes has a higher

probability of propagating a failure due to its strong relationships with other binaries.

44 THREATSTO EXTERNAL VALIDITY
The main threats to external validity of our study are:

* The data analysis is performed as a post-mortem operation, tlee dihta points are from the same

software system. It is possible that these results might Ik asaly for the current system under



study. We intend to address this issue in our future work plans by incongotiais methodology
into the next generation Windows operating system development.

* As with all empirical studies, these analyses should be repeatdifferent environments and in
different contexts before generalizing the results. Results tead vound in this study on the
Windows operating system might differ with other software systeased on environment, context,
Size etc.

» These results were applicable to the Windows system that bag strior history information that
could be leveraged. In the absence of prior historical informationdrctimtext it is not possible to

make early estimates regarding the post-release failures/ failuranpssne
5. CONCLUSIONS AND FUTURE WORK

Software developers can benefit from an early estimate regahdirguality of their product as field
guality information is often available late in the software jitde to affordably guide corrective actions.
Identifying early indicators of field quality (in terms of fais/failure-proneness) is crucial in this
regard. In this paper we have studied the software dependency and cings fnmen the standpoint of
the post-release failures for Windows Server 2003. From our analysgéstion 4.1 we observe that, an
increase in software dependency ratios and churn metrics is aciethpg an increase in post-release
failures.

Based on statistical models built from a random two thirds ofldite points to construct a prediction
model and the remaining one third to evaluate the built model we ajistisally significant results
between the actual and estimated values for both, predicting p@sedlures and failure-proneness.
Table 6 and Table 8 summarize the strength of the statigtmalts in terms of the correlation between
the actual and estimated values for estimating failures adlodef@roneness across all the ten random

splits (five for estimating the failures and five for estim@gtfailure-proneness). The strength of the



correlations indicates the sensitivity of the predictions whichalireonsistent across different random
splits. These results indicate that we can predict the posseelailures and failure-proneness of the
binaries at statistically significant levels. These predicticas help identify binaries that are more
likely to fail in the field which can be used to focus efforts enefficiently to prioritize testing, perform
code inspections etc.

These metrics form part of a larger set of in-process and pratkicics in a long-term focus of
Microsoft called the MetriZone project. MetriZome a project targeted at making early estimates of
software quality to predict post-release failures. It leverdgesich history of in-process and product
metrics available from prior versions of the Windows operatingesydb build statistical prediction
models to estimate the post-release field quality in termsikfrés and for early identification of
failure-prone binaries. Our current focus has been to leverage titeeoral dependency and churn
metrics. We plan on using data from the testing process, preedbrats, inspection data, faults found
using static analysis tools etc. in future investigations. V8e plan to do similar studies on other
Microsoft products and compare our results to understand the underlyfergnities in architecture for
different systems.
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