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Introduction

In the appendix of [1], Gurevich defines finite exploration for small-step al-
gorithms which do not interact with the environment. Although satisfying
finite exploration is a seemingly weaker property than satisfying bounded
exploration, he proves the two notions are equivalent for this class of al-
gorithms. We investigate what happens in the case of ordinary small-step
algorithms – in particular, these algorithms do interact with the environment
– as described by Blass and Gurevich in [2]. Our conclusion is that every algo-
rithm satisfying the appropriate version of finite exploration is equivalent to
an algorithm satisfying bounded exploration. We provide a counterexample
to the stronger statement that every algorithm satisfying finite exploration
satisfies bounded exploration. This statement becomes true if the definition
of bounded exploration is modified slightly. The proposed modification is
natural for algorithms operating in isolation, but not for algorithms belong-
ing to a larger systems of computation. We believe the results generalize to
general interactive small-step algorithms.

Definitions

We use the vocabulary in [2], with the following additional definitions.

Definition 0.1. The universe U(α) of an answer function α is the set of
elements of states occurring in the queries and replies of its domain and
range.

Definition 0.2. The size of an answer function α, or Size(α), is the num-
ber of elements occurring in the queries and replies of its domain and range,
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including repetition. Note that Size(α) can be larger than ||U(α)||, for ex-
ample, the answer function {((a, a), b)} has size 3 although its universe has
size 2.

Definition 0.3. An answer function α is tame for the state X if α ⊂ α′ and
α′ is well founded with respect to `X . Say α is tame if it is tame for some
state X.

Definition 0.4. An ordered answer function is a pair (α, ā) where α is an
answer function and the tuple ā is a particular ordering of the universe U(α).
Ordered answer functions (α, a1 . . . an) and (β, b1 . . . bn) are isomorphic if the
map sending ai to bi is an isomorphism from α to β.

We now introduce the modified version of the bounded exploration postu-
late. The only real difference with the bounded work postulate presented in
[2] is the restriction of arbitrary answer functions to tame answer functions.

Modified bounded exploration postulate

• There is a bound, depending only on the algorithm A, on the size of
contexts.

• There exists a finite set of terms T , depending only on A, with the
following properties. If α is tame for states X and X ′ and each term
in T has the same value in X and in X ′ when the variables are given
the same values in Range(α), then

– α `X q if and only if α `X′ q, and

– if additionally α is a context for X, then either the algorithm fails
for both (X,α) and (X,α′), or it fails for neither and ∆+(X,α) =
∆+(X ′, α).

Finite exploration postulate

• There is a bound, depending only on the algorithm A, on the size of
contexts.

• There exists a map

t : Σ-structures → finite sets of Σ-terms

depending only on A, with the following properties.
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– t(X) is closed under subterms and contains at least one variable.

– t(X) = t(X ′) if X ∼= X ′.

– If α is tame for states X and X ′ and each term in t(X) has the
same value in X and in X ′ when the variables are given the same
values in Range(α), then

∗ α `X q if and only if α `X′ q, and

∗ if additionally α is a context for X, then either the algorithm
fails for both (X,α) and (X,α′), or it fails for neither and
∆+(X,α) = ∆+(X ′, α).

– Given Z and α, if for every state X for which α is tame there is a
term in t(X) with different values in X and Z given some values
for the variables in Range(α), then reciprocally for every state X
for which α is tame, there is a term in t(Z) (as opposed to t(X))
with different values in X and Z given some values in Range(α).

Definition 0.5. The pair (Z, α) described in the final clause of finite explo-
ration is called an error pair.

Definition 0.6. Two Σ-structures X and X ′ coincide over an answer func-
tion α and a set of terms T if each term in T has the same value in X and
in X ′ when the variables are given the same values in Range(α) (and addi-
tionally α is an answer function for both X and X ′) . The above postulates
can be written more concisely with this terminology.

The first clause of the finite exploration postulate implies that there is a
finite bound, depending only on the algorithm, on the size of a tame answer
function (see corollary 2.31 of [2]). For a fixed n, a finite tuple ā belongs
finitely many answer functions α where (α, ā) is an ordered answer function
of size n. Therefore we have the following.

Fact 0.7. There are finitely many isomorphism classes of ordered tame an-
swer functions.

Facts about finite and modified bounded exploration

The main goal of this section is to show that every algorithm satisfying mod-
ified bounded exploration is equivalent to an algorithm satisfying bounded
exploration. In the preliminary lemma we analyze the behavior of well
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foundedness in structures satisfying finite exploration (and therefore mod-
ified bounded exploration as well). This lemma is also used in the proof that
finite exploration implies modified bounded exploration.

Lemma 0.8. Assume algorithm A satisfies finite exploration, α is an answer
function for X,X ′, and X,X ′ coincide over α and t(X). Then

• α is well founded for X if and only if α is well founded for X ′, and

• α is a context for X if and only if α is a context for X ′.

Proof. Assume X,X ′ and α are given as above. Define the monotone
operators

ΓX(Z) = {q : (∃ξ ⊂ α � Z) ξ `X q}

ΓX′(Z) = {q : (∃ξ ⊂ α � Z) ξ `X′ q}

The answer function α is `X well founded if Dom(α) ⊂ Γ∞X . We prove
inductively that Γn

X = Γn
X′ for all n ∈ N, and this is sufficient to complete

the proof. The base case is trivial: Γ0
X = Γ0

X′ is empty. Inductively assume
Γn−1

X = Γn−1
X′ . Now Γn

X = {q : (∃ξ ⊂ α � Γn−1
X ) ξ `X q}. Since Γn

X is well
founded, every ξ ⊂ α � Γn−1

X is tame. Therefore by finite exploration ξ `X q
if and only if ξ `X′ q for such ξ and Γn

X = Γn
X′ .

Lemma 0.9. If algorithm A satisfies modified bounded exploration then the
normalization A′ of A satisfies bounded exploration.

Proof. Assume that X,X ′ are states for A, that α is an answer function
for both, and that X,X ′ coincide over α. Since contexts are not changed
by normalization, the final clause of the bounded exploration postulate is
satisfied by A′ and it is enough to show the following.
Claim: If α `′X q then α `′X′ q.

Recall the causality relation α `′X q for A′ means that α is `X well-
founded and q is `X reachable under α, that is, there exist β1 . . . βn and
q1 . . . qn = q where each βi ⊂ α � {qj : j < i} andβi `X qi. By the previous
lemma, α is well founded for `X implies α is well founded for `X′ . Therefore
each βi is tame for X ′ and by modified bounded exploration βi `X′ qi. Thus
α `′X′ q.
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Main result

Theorem 0.10. Every algorithm satisfying the finite exploration postulate
satisfies the modified bounded exploration postulate.

Proof. Let A be an algorithm satisfying finite exploration, with map t.
We will obtain a modified bounded exploration witness W . As in the original
proof, the main tool is König’s lemma in the guise of the compactness theorem
of first order logic and the compactness of Cantor space. The most significant
difference in the structure of this proof is the consideration of more than one
tree with Cantor space structure.

Recall that Cantor space consists of infinite sequences ξ = 〈ξi : i ∈ N〉
where N is the set of natural numbers and each ξi ∈ {0, 1}. Every function
f from a finite set of natural numbers to {0, 1} gives a basic open set

O(f) ≡ {ξ : ξi = f(i) for all i ∈ Domain(f)}

of the Cantor space. An arbitrary open set of the Cantor space is a union of
basic open sets O(f).

Say there are n isomorphism classes of tame ordered answer functions, and
choose representatives (α1, ā1) . . . (αn, ān) for these isomorphism classes. Call
a term equational if it has the form term1 = term2. For each isomorphism
class [αi, āi] list in some order all the equational terms in the signature Σ∪{āi}
:

ei1, ei2, ei3, . . .

Let Tri be the corresponding Cantor space for [αi, āi], that is, the set of
infinite sequences representing characteristic functions for these equational
terms. Additionally, equip Tri with a special subset Oi of sequences rep-
resenting (Y, (β, b̄)) where (β, b̄) ∼= (αi, āi), Y is a Σ-structure, and β is an
answer function for Y .

Definition 0.11. Every (structure, ordered answer function ) pair (Y, (β, b̄))
where ||b̄|| = ||āi|| gives rise to a sequence ξ ∈ Tri, where ξj = 1 if eij holds
in Y under the substitition āi → b̄. If additionally (β, b̄) ∼= (αi, āi) we say
that ξ ∈ Ti represents (Y, (β, b̄)).

Lemma 0.12. For each isomorphism class [αi, āi] the subset Oi ⊂ Tri is
closed.
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Proof. Given ξ 6∈ Oi we find an open set U with ξ ⊂ U and U disjoint
from Oi. Let Φ = {eij : ξj = 1} ∪ {¬eij : ξj = 0}. Since ξ does not
represent any Σ∪{āi}-structure, the set of sentences Φ is not satisfiable. By
the compactness theorem for first order logic, there is a finite subset Φ′ ⊂ Φ
which is not satisfiable and a corresponding basic open set U containing ξ
and not containing any sequences representing Σ ∪ {āi}-structures.

Since Cantor space is compact, Oi ⊂ Tri is compact for each i. We now
define open covers for each Oi, so that the finite subcovers of the finitely
many O1, . . .On will give us a candidate for the modified bounded exploration
witness.

Definition 0.13. Let T be a set of Σ-terms. Two branches ξ, ψ ∈ Tri agree
on T if ξj = ψj for every eij which is an equality between terms in T with
elements of āi substituted for the variables.

We say (X, (α, ā)) and (Y, (β, b̄)) agree on a set of Σ-terms T if 1) (α, ā)
and (β, b̄) belong to the same isomorphism class [αi, āi] and 2) the sequences
ξ1, ξ2 ∈ Ti representing (X, (α, ā)) and (Y, (β, b̄)) agree on T .

Definition 0.14. Say (Y, (β, b̄)) is represented in Tri by ξ. Define

O((Y, (β, b̄))) = {ψ ∈ Tri : ψ agrees with ξ on t(Y)}

Note that O((Y, (β, b̄))) is a basic open set.

Lemma 0.15. For each isomorphism class [αi, āi] define Legali to be the set
of pairs (Y, (β, b̄)) where Y is a legal state, β is tame for Y and (αi, āi) ∼=
(β, b̄). Also, define Errori to be the set of pairs (Y, (β, b̄)) where (Y, β) is an
error pair and (β, b̄) ∼= (αi, āi). Then we claim

Oi ⊂
⋃

(Y,(β,b̄))⊂Legali∪Errori

O(Y, (β, b̄))

Proof. Consider the sequence ξ representing (Z, (γ, c̄)) where Z is a Σ-
structure, γ is an answer function for Z and (γ, c̄) ∼= (αi, āi). If (Z, γ) is an
error pair then since ξ agrees with itself clearly ξ ∈ O((Z, (γ, c̄))). If not, then
there exists (Y, (γ, c̄)) where Y is legal, γ is tame for Y , and the sequence ξ′

representing (Y, (γ, c̄)) agrees with ξ on t(Y ). In this case, ξ ∈ O((Y, (γ, c̄)))
and (Y, (γ, c̄)) ∈ Legali.

By the compactness of Oi, there exist finite subsets Legal′i ⊂ Legali and
Error′i ⊂ Errori where
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Oi ⊂
⋃

(Y,(β,b̄))⊂Legal′i∪Error′
i

O(Y, (β, b̄))

Definition 0.16.
W =

⋃
i≤n

⋃
(Y,(β,b̄))⊂Legal′i

t(Y )

Recall that n is the number of isomorphism classes of ordered answer func-
tions. Since each t(Y ) is closed under subterms and contains at least one
variable, the same is true for W . We need the following lemmas to prove
that W is indeed a modified bounded exploration witness.

Lemma 0.17. If (X, (α, ā)) and (Y, (β, b̄)) agree on a set of Σ-terms T
(closed under subterms and containing at least one variable) then there exists
Z where

• (Z, (α, ā)) ∼= (Y, (β, b̄)) and

• X,Z coincide over α and T , that is, each term in T has the same value
in X and Z when the variables are given the same values in Range(α).

Proof. First make X and Y disjoint. The Σ-structure Z is obtained from
Y by removing each element equal to some t(b̄′) where t ∈ T and b̄′ ⊂ b̄
and replacing it with the corresponding element in X equal to t(ā′), where
ā′ is the isomorphic image of b̄′ under the unique isomorphism from (β, b̄) to
(α, ā). By the choice of Z we clearly have X,Z coinciding over α and T . By
the definition of agreement the notion of equality remains undisturbed and
indeed since T contains a variable we have (Z, (α, ā)) ∼= (Y, (β, b̄)). Note in
particular that if β is tame for Y then α is tame for Z.

Lemma 0.18. Say ξ ∈ Tri represents (X, (α, ā)) where X is legal and α is
tame for X. Then ξ ∈ ∪(Y,(β,b̄))∈Legal′O(Y, (β, b̄)).

Proof. Assume ξ 6∈ ∪(Y,(β,b̄))∈Legal′O(Y, (β, b̄)) for contradiction. Then

ξ ∈ O(Z, (β, b̄)) for some error pair (Z, β). By the definition of O(Z, (β, b̄))
we know that (X, (α, ā)) and (Z, (β, b̄)) agree on t(Z). By the previous lemma
we can find Z ′ where (Z ′, (α, ā)) ∼= (Z, (β, b̄)) and where Z ′, X coincide over
α and t(Z). By the isomorphism postulate (Z ′, α) is an error pair and by the
definition of t we have t(Z) = t(Z ′). But by the definition of error pairs and
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by the final clause of the finite exploration postulate, Z ′ must fail to coincide
with X over α and t(Z ′). Contradiction

We now show that W is a modified bounded exploration witness for our
algorithm. Say states X,X ′ coincide over β and W , and β is tame for both.
Let b̄ order the universe of β and say (β, b̄) ∼= (αi, āi). Take (Y, (αi, āi)) ∈
Legal′i such that (X, (β, b̄)) and (Y, (αi, āi)) agree on t(Y ). Since t(Y ) ⊂ W it
follows that (X ′, (β, b̄)) and (Y, (αi, āi)) agree on t(Y ) as well. By the second
to last lemma there exists a state Z with (Z, (β, b̄)) ∼= (Y, (αi, āi)) such that
X,X ′ and Z all coincide over t(Z) = t(Y ) and β. Since αi is tame for the
legal state Y , it follows that β is tame for the legal state Z.

• Suppose α `X q. By the finite exploration postulate α `Z q and again
α `X′ q.

• Suppose α is a context for X. By the previous section, α is a context
for Z as well. By two applications of finite exploration, either the
algorithm fails for both (X,α) and (X ′, α) or it fails for neither and
∆+(X,α) = ∆+(X ′, α).

This ends the proof of the main theorem.

Corollary 0.19. If A satisfies finite exploration then A is equivalent to an
algorithm satisfying bounded exploration.

Proof. Since A satisfies modified bounded exploration, it follows by the
results of the previous section that the normalization of A satisfies bounded
exploration.

Counterexample

We give an example of an algorithm satisfying finite exploration but not
bounded exploration. The construction in fact refutes the weaker statement
that strong finite exploration implies bounded exploration, where strong fi-
nite exploration is the natural analog to bounded exploration obtained by
removing the tameness condition from the definition of finite exploration.

Lemma 0.20. There exists an algorithm A satisfying strong finite explo-
ration but not bounded exploration.
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Proof. The signature for the algorithm is Σ ≡ {Rn | n ∈ N} where Rn is
a n-ary relation. A legal state for A is any state isomorphic to Xk for some
k ≥ 1, where the universe of Xk is {an : n ≤ ω} and the single positive
relation Rk(a1 . . . ak) holds in Xk. For Y ∼= Xk define t(Y ) = {Ri | i ≤ k}.
For Σ-structure Z which is not a state define t(Z) = {R1}. Let s be a label,
let s̄n be the query of s repeated n times, and αn be the answer function
((s, a1), . . . , (s, an)). Note that Range(αn) = a1 . . . an. Given 1 ≤ j ≤ k,
Y ∼= Xk, and βj the isomorphic image of αj, define βj `Y s̄j. There are no
other causality relations. In particular the only well founded answer function
is the empty function. Finally the algorithm executes no updates.

Claim 1: If (Z, β) is an error pair then for every state X where β is an
answer function for X the structures Z,X fail to coincide over β and t(Z).

Proof. Let (Z, β) be an error pair and assume the range of β is b̄ =
b1 . . . bn. We assert that there are at least two elements of b̄ satisfying R1.
First, say there is only one element bi satisfyingR1. Without loss of generality
assume bi = b1 and let Y be the state isomorphic to X1 with b̄ substituted for
a1 . . . an: the structures Z and Y coincide over β and t(Y ) = R1. Second, if
there are no elements of b̄ satisfying R1 then let Y be the state isomorphic to
X1 with b̄ substituted for a2 . . . an+1. Again, the structures Z and Y coincide
over β and t(Y ) = R1. Now if X is a legal state it will never contain two
elements satisfying R1. Therefore Z will fail to coincide with any legal state
X over β and t(Z) = R1.

Claim 2: The algorithm satisfies strong finite exploration.
Proof. The size of contexts is bounded by zero, and the witness map t

satisfies the first and second clauses. By the previous lemma the fourth clause
is satisfied. Since there are no updates we are left to prove the following: if
α is an answer function for states X and X ′ which coincide over α and t(X)
then α `X q if and only if α `X′ q. Without loss of generality we can assume
X = Xi and and X ′ = Xj with 1 ≤ i < j. We can also assume that α = αk

where k ≤ j. First assume k ≤ i. In both Xi and Xj the answer function
αk causes a single query, namely s̄k. Thus αk `X q if and only if α `X′ q.
Finally assume i < k ≤ j. Note that Ri ∈ t(Xi) ∩ t(Xj) and additionally
Ri(αi) holds in Xi but not in Xj. SInce αi ⊂ αk it follows that Xi, Xj fail to
coincide over αk and t(Xi) ∩ t(Xj).

We finish the proof by showing that the algorithm fails to satisfy bounded
exploration. Assume for contradiction that W is a bounded exploration
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witness. Since W is finite there exists a maximum j with Rj ∈ W . Thus
Xj+1, Xj+2 coincide over αj+2 and W , but αj+2 causes s̄j+2 in Xj+2 and fails
to cause s̄j+2 in Xj+1. Contradiction.

Remark 0.21. The above counterexample can be translated into an algo-
rithm whose signature consists if a binary predicate → and a unary predicate
U as follows. Let G1, G2, . . . be a sequence of → graphs where no Gi is a
subgraph of Gj. The n-ary predicate Rn(x̄) is replaced by the quantifier free
formula θ(x̄, ȳ), where

θ(x̄, ȳ) ≡ x1 → x2 . . .→ xn ∧
∧
i

U(xi) ∧
∧
j

¬U(yj) ∧ Gn(ȳ) ∧
∧
i,j

xi → yj

This replacement induces natural replacements of Xi, t, αi and `X . We
leave the verification that the new algorithm satisfies strong finite exploration
but not modified exploration as an exercise for the reader.

Conclusion

As mentioned in the introduction, we believe the above arguments extend
to general interactive small-step algorithms, with attainable histories taking
the place of tame answer functions.
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