
1

Ripple-Stream: Safeguarding P2P Streaming
Against DoS Attacks

Wenjie Wang, Yongqiang Xiong, Qian Zhang

Abstract— Compared with file-sharing and distributed
hash table (DHT) network, P2P streaming is more vul-
nerable to denial of service (DoS) attacks because of its
high bandwidth demand and stringent time requirement.
This paper studies the design of DoS resilient stream-
ing networks using credit systems. We propose a novel
framework—ripple-stream—to improve DoS resilience of
P2P streaming. Ripple-stream leverages existing credit sys-
tems to introduce credit constraints in overlay construction
such that malicious nodes are pushed to the fringe of over-
lay networks. Combining credit constraints with overlay
optimization techniques, ripple-stream can achieve both
DoS resilience and overlay efficiency. Our evaluations show
that ripple-stream can effectively reduce the convergence
time of overlays under attacks and significantly improve
the average receiving data rate of the participating peers.

I. INTRODUCTION

Peer-to-peer networks, especially P2P file sharing
networks, have been quickly adopted by large Inter-
net communities in the past few years. Recently, the
emergence of P2P streaming service, such as conference
broadcasting [1] and Internet TV [2], demonstrates its
potential to deliver high quality media streams to a
large audience. The thriving of P2P networks starts to
attract denial of services (DoS) attacks. It is well known
that P2P file sharing networks are under intense attacks
from the music industry with the intention to reduce
illegal music swapping [3]. Recent researches begin to
study the effect of such DoS attacks in P2P systems.
Various defense schemes have been proposed, including
fair resource allocation [4], randomized peer selection
[5], and secure routing updates [6]. However, the existing
defense schemes share the following drawbacks. On one
hand, existing approaches study the DoS attacks case
by case instead of providing a unified solution. On the

This work was done while Wenjie Wang was a visiting student at
Microsoft Research Asia.

Wenjie Wang is with the University of Michigan at Ann Ar-
bor, E-mail: wenjiew@eecs.umich.edu. Yongqiang Xiong is with
Microsoft Research Asia, E-mail: yqx@microsoft.com. Qian Zhang
is with Hong Kong University of Science and Technology, E-mail:
qianzh@cs.ust.hk.

other hand, in existing approaches, peers don’t share
DoS detection results so each has to detect malicious
behaviors on its own. Moreover, some attacks cannot be
efficiently detected without cooperation among peers.

Compared with the widely used file-sharing networks,
P2P streaming networks are more vulnerable to DoS
attacks for the following reasons. 1) Streaming, espe-
cially video streaming, usually requires high bandwidth.
A certain amount of data loss could make the whole
stream useless. 2) Streaming applications require their
data to be delivered in a timely fashion. Data with a
missed deadline are useless. 3) A streaming network
usually consists of a limited number (sometimes only
one) of data sources. The failure of the data source could
bring down the whole streaming system. Currently we
are not aware of any systematic study on DoS attacks and
defenses specifically targeting P2P streaming networks.

In this paper we first identify the possible attacks on
P2P streaming networks. We then propose a generic DoS
resilience framework named ripple-stream. To identify
DoS attackers and prevent the system from being cor-
rupted by malicious nodes, the ripple-stream framework
employs a credit system to allow peers to evaluate other
peers’ behaviors and introduces a credit-constrained peer
selection mechanism to organize the overlay. In a ripple-
stream based overlay, peers share the credit information
with each other, peers with high credibility are kept in
the “core” of the overlay structure. Malicious nodes, with
low credibility, are pushed to the fringe of the network.
While enforcing the credit constraints, ripple-stream cus-
tomizes techniques such as triangular optimization and
random node recovery to guarantee overlay efficiency.
Moreover, the ripple-stream framework is designed to be
flexible so it can be applied to different overlay networks
and P2P streaming schemes. It is also designed to be
extensible to incorporate existing and future DoS defense
mechanisms.

Our evaluation results show that under typical at-
tack scenarios, ripple-stream can effectively shorten the
convergence time of overlay networks and significantly
improve the data rate for overlay peers. When there
are no malicious nodes, ripple-stream can achieve good
overlay quality even with the credit constraints it imposes

2

on the connectivity among overlay peers.
Note that in this paper, first of all, we are not designing

a DoS-resilient credit system. Ripple-stream can work
with future or more advanced credit system to improve
its efficiency. Secondly, currently we only focus on
internal DoS attacks that are launched from peers that
run malicious streaming clients. These attacks are more
severe than external attacks that are launched on the
network level. We discuss external attacks in Section VI.

The rest of this paper is organized as follows. We
first analyze the possible DoS attacks targeted on P2P
streaming. The ripple-stream scheme is presented in
Section III. The performance evaluation is shown in
Section IV. We discuss the related work in Section V
and conclude in Section VI.

II. DOS ATTACKS IN P2P STREAMING NETWORKS

We categorize the possible DoS attacks on P2P stream-
ing networks into two categories: attacks on the control
plane and attacks on the data plane.

A. DoS Attacks on the control plane

We first identify four unique attack schemes targeting
P2P streaming networks: RTT cheating, accepting too
many downstream peers, connecting to multiple up-
stream peers, and advertising fake data availability. The
first three attacks can cause severe damage in single-tree
overlays, where a single tree is maintained to delivery the
streams, while the last one only works in multiple-tree
overlays where a peer may receive data from multiple
peers in parallel [2].

For RTT cheating, a malicious node can either inflate
its RTT distances to other peers to discourage them from
connecting back or deflate the RTT distances to attract
connections. RTT cheating can degrade the quality of the
constructed overlay [7]. This type of attacks can also be
applied to other network metrics, such as bandwidth.

The purpose of accepting too many downstream peers
is to corrupt the quality of their data stream. Such attacks
can be used together with RTT cheating to affect more
peers. A malicious node can disconnect its downstream
peers frequently to create instability in the overlay.

The objective of connecting to multiple upstream
peers is different with accepting too many downstream
peers. Peers in streaming overlays limit the number of
connections they can accept due to the high data rate of
streaming. By connecting to a large number of upstream
peers, a malicious node can deplete the degree resources
in the overlay.

Advertising fake data availability is targeted to
multiple-tree overlays. For example, in CoolStreaming,

a peer connects to another that has the portion of data it
needs (indicated by a bitmap that marks the availability
of data parts). A malicious peer can advertise fake
bitmaps to attract peers in order to prevent them from
locating the desired data parts in time.

The above attacks are unique to P2P streaming. There
are also attack schemes derived from file-sharing and
DHT networks that can be used against P2P streaming.
These attacks include the query flooding attacks and
routing-based attacks discussed in Section V. In addition,
a malicious node can corrupt overlay operations by
dropping valid control messages and generating invalid
ones. The invalid control messages can confuse other
peers about the status of overlay nodes or overlay links.

B. DoS Attacks on the data plane

Attacks launched on the data plane are rather simple
to explain: a malicious node can drop, corrupt, delay,
duplicate, and forge media data. Dropping or corrupting
data is similar to content attacks in DHT networks. By
delaying data, the malicious node can intentionally make
all or part of the data miss their playback deadline so
they will become useless to its downstream peers. By
duplicating or forging data, a malicious peer can flood its
downstream peers with duplicated or bogus data packets
to waste the bandwidth of the network.

We notice that most attacks launched solely on the
data plane can be detected and avoided if downstream
peers disconnect from peers with bad data quality. Such
technique is originally designed to guarantee the quality
of streaming. Meanwhile, it is difficult for DoS attacks
on data plane to corrupt the perceived QoS of a large
number of peers. However, an attacker can combine
data plane attacks with control plane attacks to attract
more peers, such as combining data dropping with RTT
cheating, which would severely degrade the streaming
performance.

There exist some mechanisms to detect the above
attacks, such as [4][8][6]. In this proposal, instead of
providing case-by-case detection schemes, we design a
unified framework to provide an overall solution that can
incorporate existing detection schemes to defend against
various DoS attacks.

III. RIPPLE-STREAM DESIGN

In this section we first present the architecture of
ripple-stream and its two key components, and then we
analyze how ripple-stream can be used to achieve DoS
resilience.

3

Pre-trusted or high

credit hosts

Mediocre

credit hosts

Low credit hosts

Fig. 1. Example of a ripple-stream based overlay.

A. Architecture

The essential idea of ripple-stream is to leverage an
existing credit system to keep malicious peers or un-
trustworthy peers on the fringe of the overlay. Basically,
in a ripple-stream based overlay, peers are organized
around the data source based on their credit. The higher
the credit, the closer a peer can be to the data source.
Figure 1 shows a simple example. The ripple-stream
framework enables peers to share their knowledge such
that further attacks from discovered malicious nodes can
be prevented. It can work with existing or future defense
schemes to construct DoS resilience overlay networks.

We can explain the ripple-stream framework by de-
scribing the procedures a new node goes through in
a ripple-stream overlay. When a new peer A joins the
overlay, it will first obtain a list of peers with mediocre
credit from a bootstrap mechanism. The join procedure
can vary among different overlays. After joining the
overlay, A accumulates credit by fulfilling its duties on
the control plane and on the data plane. These credit-
related operations are handled by the credit component
included in ripple-stream. Meanwhile, A also tries to find
upstream peers that can provide better service based on
some overlay optimization principles. These upstream
peers should have similar credit values as A does.
If A discovers malicious behaviors of other peers, it
disconnects from these peers and reports its discovery
to the credit system.

Thus, we can see that the ripple-stream framework
consists of two key components, credit management and
overlay management. Credit management defines the
interface between overlay events or transactions and the
underlying credit system used by ripple-stream [9]. It
regulates how credits are accumulated and how penalties
are applied in streaming overlays. Overlay management
defines credit-constrained peer selection and overlay
optimization techniques. It regulates how overlay peers
should interconnect with each other to construct DoS re-
silient and efficient overlays. DoS resilience is achieved
by enforcing credit constraints based on the credit sys-
tem, and overlay efficiency is guaranteed by overlay
optimization based on network proximity metrics. In all,

credit management identifies malicious nodes with low
credit and overlay management pushes them to the fringe
of the overlay.

B. Credit Management

Ripple-stream uses a credit system to identify ill-
behaving peers. To achieve this goal, its credit man-
agement component needs to translate a user’s behavior
to its credit value. The credit management component
defines the following principles for this credit translation.
Since ripple-stream relies on existing credit systems
to maintain peers’ credit, only the credit systems that
can implement these principles are qualified for ripple-
stream.

• Transaction importance. In ripple-stream, events
and transactions have different importance levels.
Data or control tampering, once detected, is marked
as an important event.

• Transaction rating. Nodes gain credit faster by
serving more data. This will help nodes with high
bandwidth accumulate credits fast and move up the
overlay structure where they can serve more peers.

• Credit aging. Ripple-stream requires a credit aging
algorithm that takes transaction time into considera-
tion. The idea is to prevent a node from maintaining
high credit after it stops serving data.

• Long-term credibility and short-term trust. The
credit system should be able to respond quickly to
the changes in a peer’s personality.

Besides credit maintenance and calculation, ripple-
stream also relies on the credit system to deal with
collusive behaviors in the overlays. We find PeerTrust
[9] to be a close match to the credit system required by
ripple-stream.

PeerTrust defines the following trust metric,

T (u) = α ∗

I(u)∑

i=1

S(u, i) ∗ Cr(p(u, i)) ∗ TF (u, i) + β ∗ CF (u)

In this equation, T (u) stands for the credit of peer u,
I(u) is the total number of transactions performed by
u, S(u, i) is the normalized amount of satisfaction u

gets from transaction i, p(u, i) represents the other peer
in transaction i, and Cr(p) stands for the credibility
of feedbacks from peer p. TF (u, i) is the transaction
context factor. CF (u) is the community factor of peer
u, and α and β are normalized weight factors.

To use the above trust metric in our framework, ripple-
stream has new semantics for variable S(u, i), TF (u, i)
and I(u). In ripple-stream, S(u, i) stands for transaction
rating that can differentiate credit gained from data plane
and control plane, TF (u, i) is the transaction importance

4

TABLE I
A TYPICAL CREDIT SYSTEM SETTING FOR RIPPLE-STREAM

Credit Type Trans. Rating: S(u,i) Trans. Importance: TF(u,i)
Control c t
Data s*c (s = [5-10]) t
Tampering -c W*t (W>100)
Disconnecting -s*c w*t (w>1)

that enforces high penalty for control and data tampering.
I(u) has to take transaction time into consideration
during transaction accounting. Ripple-stream can use the
latest subset of I(u) to calculate the short-term trust
of a peer. The short-term trust value is used to quickly
identify the malicious peers that start their attacks after
accumulating a certain amount of credit.

Based on the credit management principles and the
trust metric used, we currently define four credit types
in ripple-stream, control, data, tampering, and discon-
necting. These credit types correspond respectively to
the credit a peer will gain or lose if it helps with con-
trol, serves data, tampers control or data messages, and
disconnects its downstream peers. Among these credit
types, tampering has the highest transaction importance,
and disconnecting has a higher importance value than
data and control. Table I shows a typical credit setting
for ripple-stream, in which c is the unit for normalized
satisfaction values, and t is the unit for transaction
importance. The credit gained from serving data is s

times of the credit gained from serving control.

To penalize serious attacking behaviors such as data
tampering, a high credit penalty, controlled by W , is
used. Disconnecting penalty is used to punish the be-
havior of frequent peer disconnecting. The amount of the
penalty is equivalent to the credit a peer can accumulate
by serving data for a certain time period (represented
by “w” in Table I). In ripple-stream, a downstream B

disconnects from peer A if it observes low data quality
from A. This disconnecting event costs both A and B

the disconnecting penalty. For a malicious node that
attracts other peers then disconnects them, such penalty
can quickly degrade its credit.

The credit management provides the foundation for
the defense mechanisms of ripple-stream. It requires
peers, regardless of the type of DoS detection schemes,
to report their experience to the credit system. The
credit management works with the underlying credit
system to aggregate peers’ experience and calculates
their credibility. The credibility information will be used
by the overlay management component to construct DoS
resilient overlays.

C. Overlay Management

Overlay management defines overlay construction
principles based on peers’ credibility. It adopts credit-
constrained peer selection to regulate how overlay peers
should interconnect with each other based on their credit
values. Meanwhile, overlay management adopts overlay
optimization techniques to guarantee overlay efficiency
based on network proximity metrics.

Credit-constrained peer selection requires peers to
select neighbors based on their credit values. A peer
will only allow queries or data requests from peers
whose credit is approachable. A peer considers another
peer’s credit level to be approachable if the normal-
ized credit difference between them is below a pre-
defined threshold θ, Periodically, a peer checks whether
its credit difference with connected neighbors exceeds
such a threshold. It will disconnect the peers whose
credits become unapproachable. Note that one peer only
needs to estimate the credit difference to enforce the
credit constraints. There is no strict requirement on the
accuracy or freshness of peers’ credit value.

To assist approachable peers in locating each other,
ripple-stream employs a random node discovery mecha-
nism. A node maintains several peering neighbors with
approachable credits. These peering neighbors serve as
alternatives upstream peers. When a new peer joins the
overlay, it will ask for the peering neighbors from its
upstream peers from which the new peer discovers its
own peering neighbors.

To provide opportunities for later-joined nodes to
serve data, ripple-stream introduces credit-constrained
triangular optimization algorithm to avoid links with high
cost (similar to [10]) among peers with approachable
credits. Triangular optimization can reorganize the over-
lay in an efficient way without the dependency on the
sequence of node arrival.

D. DoS resilience analysis

In this section we demonstrate how ripple-stream can
be used to defend against DoS attacks. Ripple-stream
can use existing DoS detection schemes to catch the
ill behaviors of malicious peers. Once detected, ripple-
stream uses a unique way to adjust the overlay to defend.

We use RTT cheating as an example. A malicious
node can deflate its distance to other peers to attract
their connections. Such RTT cheating can be detected
by additional measurements. That is, before a peer A

switches to another peer B, it will verify the low RTT
claim from B with its own measurement. A control
tampering report will be sent to the credit system if peer

5

A’s measurement result is significantly different from
B’s claim.

The negative feedbacks for the malicious nodes can
quickly degrade its credit value, especially its short-
term trust value. Its upstream peer will notice the low
credibility of the malicious node and disconnect it. In this
way, the malicious node can only stay at the lower part
of the overlay structure due to its low credit. It can still
misrepresent its RTT distance to other peers, but it cannot
attract other peers because the credit-constrained peer
selection will exclude this malicious node from being
selected.

For other forms of attack on the control plane, similar
procedure can be applied. In this paper, we will not
analyze all DoS attacks listed in Section II case by
case. The key idea remains the same: peers report
their observations into the credit systems. Ripple-stream
overlay management can then adjust the overlay accord-
ingly to push the malicious nodes to the fringe of the
overlays where their attack behaviors cause the least or
no damage.

We notice that sometimes it is difficult to differentiate
attacks from network congestion. High loss rate in a data
flow can either cause by intentionally packet dropping or
real congestion in the network. However, such misun-
derstanding won’t affect the quality of the constructed
overlays. First, congestion happens occasionally won’t
affect a peer’s credibility. Moreover, if congestion in-
deed happens frequently, this peer should be placed on
the fringe of the network because of its bad network
condition. This reflects the design objective of ripple-
stream: honest peers with good network condition will
accumulate credit fast and be placed on the top of the
overlay structure.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ripple-
stream in two aspects: how it performs if there are no
malicious nodes in the P2P streaming system, and how
well ripple-stream responds to DoS attacks. We base
our evaluation on a root-path tree protocol with the
ripple-stream framework. We name it credit RP protocol.
Similar to [11], the optimization goal of the RP protocol
is to minimize peers’ latencies to the root of the tree (root
distance). In a RP tree, a node maintains its path to the
root of the tree along with the root distance and tries
to minimize this distance by randomly querying other
peers.

A. Performance Metrics and Simulation Setup

1) Average root RDP (Relative Delay Penalty [12]),
evaluates how close peers are to the root.

2) Initial stabilization time, evaluates how long it
takes an overlay to stabilize initially after a peer
joins.

3) Number of disconnected peers.
4) Average receiving rate.
The first two metrics are used to evaluate how ripple-

stream performs with no malicious nodes. Our expecta-
tion is that ripple-stream takes a longer time to stabilize
initially and it can achieve similar RDP performance as
the original tree. The last two metrics are used to evaluate
the performance of ripple-stream under DoS attacks.

We conduct our simulations on a transit-stub topology
of 4,000 nodes generated by the GT-ITM topology
generator [13]. We vary the overlay group size from 50
to 1000. For each overlay size, we randomly select the
overlay nodes from the network topology.

B. Performance under DoS attacks

To test how credit RP trees react under DoS attacks,
we setup the following attack scenario. It advertises low
root distance after it join the overlay. Meanwhile, it
forwards only part of media data to its downstream peers.
As analyzed in Section II, this is a typical combinational
attack scenario launched from the data plane and the
control plane. In this paper, we only present this typical
attack scenario in this paper to show the effectiveness of
ripple-stream.

Fig. 2 shows the number of disconnected nodes after
the malicious nodes start the DoS attacks in a group of
600 nodes. The credit RP tree can quickly stabilize after
a number of peers identify the malicious nodes. While in
the original RP tree, the malicious nodes keep attracting
innocent peers. Since peers do not share their knowledge
with each other, these innocent peers may connect to
another malicious node even though that malicious node
has been discovered by other peers. This explains the
seesaw in the number of disconnected nodes for the
original RP tree.

In Fig. 3, we present the average receiving rate of the
overlay peers. We assume there is 1% data loss on the
link between two good peers. The malicious nodes report
half of their actual receiving rate. Fig. 3 shows that the
average receiving rate of the credit RP tree stabilizes at a
high level quickly even with a large number of malicious
nodes.

C. RP Tree without Malicious Node

Fig. 4 shows the average root RDP of the original
RP tree and the credit RP tree. The credit RP tree has
similar average root RDP as the original RP tree for
small groups. For large groups, the credit RP tree shows

6

 0

 20

 40

 60

 80

 100

 120

 2 4 6 8 10 12 14 16 18 20

A
vg

. N
um

be
r o

f D
is

co
nn

ec
te

d
N

od
es

Time

Original RP Tree - 10%
Original RP Tree - 5%
Credit RP Tree - 10%

Credit RP Tree - 5%

Fig. 2. Number of disconnected peers with 5% and 10%
malicious nodes.

 65

 70

 75

 80

 85

 90

 95

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 R
ec

ei
vi

ng
 R

at
e

Time

Original RP Tree - 10%
Original RP Tree - 5%
Credit RP Tree - 10%

Credit RP Tree - 5%

Fig. 3. Average receiving rate of peers with 5% and 10%
malicious nodes.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
oo

t R
D

P

Group Size

Credit RP Tree
Original RP Tree

Credit RP Tree w/o Triangular Opt

Fig. 4. Average root RDP of RP tree for various group sizes.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900 1000

S
ta

bl
iz

at
io

n
Ti

m
e

Group Size

Credit RP Tree
Original RP Tree

Fig. 5. Initial stabilization time of credit RP tree.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350

N
um

be
r o

f S
w

itc
he

s

Time

Credit RP Tree

Fig. 6. Number of switches over time in credit RP tree for group size 600..

better root RDP. For fair comparison, we also disable the
credit-constrained triangular optimization in the credit
RP tree and include the result in Fig. 4. The root RDP
then becomes about 9.8% higher than that of the original
RP tree.

We compare the initial stabilization time of the orig-
inal RP tree and the credit RP tree in Fig. 5. In this
simulation, from an empty tree, we add ten peers into
the overlay in each time unit. After all peers are added
into the overlay, we start counting the stabilization time.
From Fig. 5, we can see that on average, it takes the
credit RP tree about 10 times longer to stabilize than the
original RP tree. The credit constraints in the credit RP
tree generate additional switches that prolong the initial
stabilization process as the credits of peers evolve over
time. This is the price we pay to achieve DoS resilience
shown earlier. However, from Fig. 6 which shows the
average number of switches in the whole overlay of
600 nodes at each time unit, we see that the number

of switches in the overlay is in fact very low after time
100, which means the overlay becomes relatively stable
very quickly.

V. RELATED WORKS

Existing DoS studies for P2P system focus on file
sharing networks and DHT networks. In P2P file sharing
networks, copyright owners intentionally spread a large
number of bogus files in order to discourage the sharing
of copyright protected contents. This type of content-
based attacks is named file pollution [3]. Dumitriu et al.
studied the effects of two type of semantic attacks, false
reply attack (reply with fake query results) and slow node
attack (direct users to slow or overloaded peers) [5].

DoS studies in DHT networks focus on content at-
tacks and routing attacks. To launch a content-based
attack, a malicious node denies the existence of the
content it is responsible for. For routing-based attacks,
a malicious node can mis-route, corrupt, forge, or drop
routing messages [8]. Castro et al. conclude that three
requirements should be met to secure routing in DHT:
secure assignment of node IDs, secure routing table
maintenance and secure message forwarding [6]. Some
streaming overlays that use routing to construct data
forwarding path, are subject to routing-based attacks.
However, unlike the discrete unicast messages in DHT,
the data in P2P streaming networks are continuous
streams and in most cases are broadcasted. Thus, the
defense schemes proposed in DHT may not be suitable
or efficient for streaming.

7

Some attacks target all overlay networks, including
overlays used by DHT or streaming. Query flooding is
one example. A malicious node floods another peer with
queries to deplete its process power. Daswani has studied
this type of attacks in file sharing and DHT networks
[4]. A malicious node can initiate an eclipse attack [14]
to an overlay network by manipulating a large number
of nodes to isolate part of the network. Singh et al.
show that eclipse attacks can be prevented by limiting
the degrees of individual nodes. It is relatively difficult
to launch query flooding and eclipse attacks in ripple-
stream based overlays because the credit constraints
already limit the number of peers the malicious node
can contact.

For P2P streaming, we are only aware of one study
investigating RTT cheating in the context of application-
level multicast [7]. However, the authors do not provide
a mechanism to defend against such cheating attacks.

VI. CONCLUSION AND FURTHER DISCUSSION

In this paper we investigate the possibility to use
credit system to improve the resilience of P2P streaming
networks to DoS attacks. We study various DoS attacks
on P2P streaming and then propose an open framework
named ripple-stream to construct efficient overlays with
high DoS resilience. Our evaluations show that, when
under attacks, ripple-stream can effectively stabilize the
overlay and significantly improve the streaming quality.
Moreover, ripple-stream has the flexibility to incorporate
existing or future DoS defense schemes as long as they
plug their feedbacks into the credit system. Ripple-
stream can also work seemlessly with more advanced
credit system to increase its efficiency.

To the best of our knowledge, this is the first pro-
posal to systematically address the DoS issues in P2P
streaming system. In this paper we only focus on internal
DoS attacks while P2P streaming is also vulnerable
to external attacks which are launched on the network
level targeting the limited number of streaming sources.
We plan to do more investigation to guarantee efficient
data delivery without revealing the source of the P2P
streaming network.

REFERENCES

[1] Y. Chu, S. Rao, S. Seshan, and H. Zhang. Enabling Confer-
encing Applications on the Internet using an Overlay Multicast
Architecture. In Proc. of ACM SIGCOMM ’01, San Diego, CA,
USA, Aug. 2001.

[2] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. CoolStream-
ing/DONet: A Data-driven Overlay Network for Live Media
Streaming. In Proc. of IEEE INFOCOM 05, Miami, FL, USA,
Mar. 2005.

[3] J. Liang, R. Kumar, Y. Xi, and K. Ross. Pollution in P2P File
Sharing Systems. In Proc. of IEEE INFOCOM 05, Miami, FL,
USA, Mar. 2005.

[4] N. Daswani and H. Garcia-Molina. Query-Flood DoS Attacks
in Gnutella. In ACM Computer and Communications Security,
Washingtion, DC, USA, Nov 2002.

[5] D. Dumitriu, E. Knightly, A. Kuzmanovic, I. Stoica, and
W. Zwaenepoel. Denial-of-Service Resilience in Peer-to-Peer
File-Sharing Systems. In Proc. of ACM SIGMETRICS 05, Banff,
Canada, Jun. 2005.

[6] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach.
Secure Routing for Structured Peer-to-Peer Overlay Networks.
In Proc. of OSDI, Boston, MA, USA, Dec. 2002.

[7] L. Mathy, N. Blundell, V. Roca, and A. El-Sayed. Impact of
Simple Cheating in Application-Level Multicast. In Proc. of
IEEE INFOCOM 04, Hong Kong, China, Mar. 2004.

[8] E. Sit and R. Morris. Security Considerations for Peer-to-Peer
Distributed Hash Tables. In Lecture Notes in Computer Science,
volume 2429, pages 261–269, 2002.

[9] L. Xiong and L. Liu. PeerTrust: Supporting Reputation-
Based Trust for Peer-to-Peer Electronic Communities. In IEEE
Transactions on Knowledge and Data Engineering, volume 16,
pages 843–857, Jul. 2004.

[10] B. Zhang, S. Jamin, and L. Zhang. Host Multicast: A Frame-
work Delivering Multicast To End Users. In Proc. of IEEE
INFOCOM ’02, New York, NY, USA, Jun. 2002.

[11] P. Francis. Yoid: Extending the Internet Multicast Architecture.
Apr. 2000. http://www.aciri.org/yoid.

[12] Y. Chu, S. Rao, and H. Zhang. A Case For End System
Multicast. In Proc. of ACM SIGMETRICS 00, Santa Clara,
CA, USA, Jun. 2000.

[13] K. Calvert, M. Doar, and E. Zegura. Modelling Internet
Topology. In IEEE Communications Magazine, Jun. 1997.

[14] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending
Against Eclipse Attacks on Overlay Networks. In Proc. of ACM
SIGOPS European Workshop, Leuven, Belgium, Sep. 2004.

