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ABSTRACT 
The relevance ranking problem in information retrieval and Web 
search is basically the task of computing aggregated scores from 
potentially large amounts of evidence. This paper focuses on 
computing an aggregated score for a homogeneous-evidence-set 
(HES), an evidence collection in which all evidence items are 
symmetric. Since the evidence items in an HES are typically 
highly dependent on one another, and the numbers of evidence 
items may vary from document to document, many existing 
techniques fail to properly deal with the problem. In this paper, 
we propose a simple, intuitive, and efficient approach for 
homogeneous evidence score combination. Our proposed 
approach can be derived in two different ways by utilizing two 
separate information retrieval models: The first way is to extend 
the BM25 formula by making a latent additivity assumption. The 
second is to adopt the recently proposed gravitational information 
retrieval model. The proposed approach could be seen as a 
generalization of some existing score combination formulas by 
considering the dependency between evidence items. We have 
tested our approach on both Text Retrieval Conference (TREC) 
collections and a dataset collected by a large scale commercial 
Web search engine. This approach could be a practical choice for 
homogeneous evidence combination, and act as a replacement for 
some of the existing heuristic formulas. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search Process 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
Latent additivity, Homogeneous evidence set, Evidence fusion. 

1. INTRODUCTION 
A basic problem in information retrieval and Web search is 
computing the relevance score of a document when a query is 
given. The relevance relationship between a document and a 
query is normally determined by multiple pieces of evidence, each 
of which is an uncertain measure of how relevant the document is 
to the query. The main task of a ranking function is basically to 
compute an aggregated relevance score by combining information 
provided by all evidence available. For instance, it is common for 
most commercial or research Web search engines to rank 
documents by combining information from evidence such as title, 
URL, anchor text, body text, PageRank, etc. 

Figure 1 lists some evidence items that are routinely exploited by 
various research and commercial search engines. Evidence items 
can have different levels and types, and one high-level evidence 
item can comprise some other lower-level evidence items. For 
example, evidence “anchor phrase 1” and “t1

2” are clearly 

evidence items of different levels and types. “Anchor” (i.e. the 
aggregated text description of all links to this page) can be seen to 
be comprised of some “anchor phrase” (i.e. one piece of text 
description related to one link to this page) evidence items. 

 

For each piece of evidence, an evidence score can be defined, as a 
quantitative representation of the evidence, to indicate how 
relevant a document is to a query from the viewpoint of the 
evidence item itself. A score can be based on probability, certainty, 
or confidence. Evidence fusion is commonly (but not necessarily) 
the combination of evidence scores. 

1.1 Homogeneous Evidence Set 
Our interest in this paper centers on some specific evidence 
collections, as represented by dashed ellipses in Figure 1. The 
primary property of such kind of collections is that every two 
evidence items can be seen as interchangeable. To better illustrate 
this problem, let’s give two examples, 

Example 1: Suppose we are about to retrieve books relevant to a 
query from a book collection. Assume each book comprises some 
chapters whose relevance scores (with respect to the query) have 
been computed. The problem is computing the overall relevance 
score of a book, given the score of all its chapters. Here is the 
chapter score distribution of three sample books, 

Book1: (<0.0, 5>, <0.6, 3>, <0.1, 2>) 
Book2: (<0.0, 5>, <0.6, 3>, <0.1, 2>, <0.05, 1>) 
Book3: (<0.1, 30>) 

Here pair <s, n> means there are n chapters having score s. For 
example, <0.6, 3> represents that 3 chapters in the book get 
score 0.6.� 

Example 2: Consider the problem of computing the anchor score 
of a Web page given the scores of all its anchor phrases (see 
Figure 1). Assume we are given the following pages with their 
anchor phrase scores, 

Figure 1. A sample evidence structure in document D, 
given a query Q={t1,t2}. The evidence terms in the same 
dashed ellipse constitute a homogeneous evidence set. 



d1: (<0.9, 3100>, <0.0, 1000>, <0.36, 50>) 
d2: (<0.96>, 1), (0.95, 1) 
d3: (<0.1, 65000>, <0.0, 46000>)                          � 

In Example 1, each book chapter can be treated as an evidence 
item, and all chapters of a book constitute an evidence collection. 
Similarly, the evidence items in Example 2 are anchor phrases. In 
both the above examples, we do not differentiate between 
different evidence items, but their scores. For instance, in 
Example 2, we know that the two anchor phrases of page d2 get 
score 0.96 and 0.95 respectively, but do not care about which one 
gets score 0.96. 

This means the collection can be thought of as being comprised of 
homogeneous evidence items1. In this paper, we choose call such 
a collection as a homogeneous-evidence-set (HES). 

Compared with other evidence collections, an HES has particular 
characteristics, 

1. First, the size (i.e. number of evidence items contained) of 
an HES may vary from document to document. Take the 
anchor phrase evidence set in Example 2 for example. One 
document may have millions of anchor phrases that are 
related to a query, while another document may have no 
anchor text at all. 

2. Second, the evidence items in a homogeneous-evidence-set 
are typically highly dependent. Take all chapters of a book 
as an example (see Example 1). If we have known that one 
book chapter is relevant to a given query, then the 
probability of another chapter of the same book being 
relevant to the query would surely be larger than the 
probability that a random-chosen chapter is relevant. 

3. Last, maybe the most important one, the role of any two 
evidence items in an HES can be regarded as being 
interchangeable. That is, if the scores of two evidence items 
are exchanged, then the overall score of the evidence set 
would keep unchanged, as has been illustrated in Example 1 
and 2. 

The third property is the main reason why this kind of evidence 
set is called homogeneous. Please pay attention that it does not 
mean the scores of all evidence items in the same HES are the 
same. We are going to give a formal definition of homogeneous in 
Section 2. 

1.2 Homogeneous Evidence Combination 
This paper describes how to combine the scores of all 
homogenous evidence items into an aggregated score. We call this 
process as homogeneous score combination (HSC). 

Evidence combination (or evidence fusion) plays an important 
role and has been extensively studied in information retrieval (and 
other fields of computer science). Croft [2] gives a comprehensive 
survey of different combination techniques. Existing efforts 
commonly result in one of the following fruits: 1) Simple heuristic 
formulas (e.g. summing up all evidence scores, taking the 
maximum score, Dempster’s combination rule, etc); or 2) General 
formal frameworks with a lot of parameters for tuning (e.g. 
Bayesian networks, inference networks, linear or nonlinear 

                                                                 
1 Please note here it is only an intuitive and informal description 

of “homogeneous.” Section 2 includes a formal definition. 

regression using neural networks or SVM, etc). More detail 
analysis of existing evidence combination techniques will be 
given in the related work section. 

Existing formal evidence fusion frameworks commonly provides a 
general-purpose way of combining evidence (not necessarily 
homogeneous evidence items). The main drawback of these 
frameworks is that most of them include too many parameters for 
users to tune, especially when there are a lot of evidence items 
participating in combination. Some techniques can only accept 
vectors of the same dimension as input, therefore are not feasible 
to be used for homogeneous evidence combination. That’s 
because different homogeneous evidence sets may have different 
number of elements (Property 1), and the computed scores of any 
two evidence sets are required to be comparable. 

Maybe due to the above reasons, most widely used evidence 
combination techniques now are still those simple and heuristic 
formulas. However, as we will illustrate in this paper, 
unreasonable results will be acquired when popular heuristic 
combination formulas are used to combine homogeneous 
evidence scores. Specially, because of the dependency of evidence 
items (Property 2), formulas relying on the “independent” 
assumption would not be feasible. 

1.3 Contribution 
Solving a general score combination problem in a simple and 
efficient way might be a challenging task. However, we argue that, 
because of the homogeneity of evidence items, the score of an 
HES could be computed efficiently by a simple formula. 

In this paper, we present a simple, reasonable and effective 
approach to the HSC problem. In our approach, to combine 
homogeneous evidence scores, we first sort them in descending 
order, and then apply the following formula2, 
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where ),...,,( 21 msssS = is the score vector after sorting, and W is 

a weighting vector determined by Formula 3.7 (Section 3). 

The proposed approach is derived by two different methods and 
utilizes two different information retrieval models. The first 
extends the BM25 formula [12] by making a latent additivity 
assumption while the other adopts the recently proposed 
gravitational information retrieval model [16][17]. 

The proposed approach can be seen as a generalization of some 
existing score combination formulas by considering the 
dependency between evidence items. Just like many existing 
popular formulas, it is simple, easy-to-implement, and has a clear 
explanation. We provide a theoretical analysis of our approach 
and conduct some experiments to demonstrate its effectiveness. 
By this, we demonstrate that our solution outperforms standard 
baseline approaches, both in intuition and in practice. 

The rest of this paper is organized as follows. In Section 2, we 
give a somewhat formal definition of the problem and discuss 
some baseline approaches to address it. Then, in Section 3, we 
propose our approach, analyze its advantages over some baseline 
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combination (see Section 3 for an explanation). 



solutions, and give two derivations of the approach. In Section 4, 
we discuss the relationship between our method and other 
approaches. The performance issues and possible impacts of the 
proposed approach are also discussed. We verify some of our 
discussions and test the effectiveness of our approach by 
conducting experiments in Section 4. Related work is discussed in 
Section 5. Finally, concluding remarks and future work is 
discussed in Section 6. 

2. PROBLEM DEFINITION 
In this section, we first give a formulation of the homogeneous 
evidence combination problem. Some basic and straightforward 
approaches to this problem are discussed. 

2.1 Problem Formulation 
We denote an evidence collection by a vector E containing all 
elements within as, 
 },...,,{}{ 21 mi eeeeE ==  (2.1) 
where ei (1<=i<=m) is the i’th evidence in E. In our information 
retrieval and Web search context, E can be a specific collection of 
evidence about the relevance relationship between a query and a 
document.  

Example 3: In Figure 1, the set of all occurrences of term t in 
document d is a evidence collection: E={t1, t2, …, tm}, where ti is 
the i-th occurrence of term t. 

For ease of further processing, a mathematical model is commonly 
used to assign a quantitative expression of the information 
contained in each piece of evidence. We call the quantitative 
expression of evidence e as its evidence score, denoted by s(e). 
And the mapping from evidence items to their scores is called a 
score assignment scheme. We denote vector S(E) as the 
collection of evidence scores of all the evidence items in E, 
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In information retrieval and Web search context, an evidence 
score can be defined to indicate how relevant a document is to a 
query from the viewpoint of this evidence item without 
considering the score of other evidence items. An evidence score 
can denote probability, log-odds, confidence (how confident when 
an evidence item says that a document is the answer to a query), 
and the like. We assume that for each evidence item e, its score 

0)( ≥es
3 . The higher the score is, the more confidence the 

evidence provides in terms of the relevance between the document 
and the query. And a zero score (s(e)=0) means the score does not 
affect the aggregated score of the whole evidence set. 

Evidence set E itself is actually a higher level and compound 
evidence item that should also have its own score s(E), and is 
determined by the evidence scores of all its child evidence items. 
That is, there should be a function f, such that, 
 f(S(E))=s(E) (2.3) 

where f is called a score combination function (SCF) for 
evidence set E. It is clear that the score combination function of 
an evidence set is uniquely determined by its score assignment 
scheme. 

                                                                 
3 Actually a negative evidence score also has a distinct meaning. 

However, we choose NOT to consider this term in this paper. 

Example 3 (cont.): If a document can be considered as a bag of 
words, we can assign score s(ti)=1.0 for each term ti. That is, 
S(E)=(1.0, 1.0, …, 1.0). Score s(E) is the score of document d 
when all occurrences of t are considered. Score combination 
function f should satisfy f(S(E))=s(E). 

An evidence collection is called homogeneous under a score 
assignment scheme if the score exchange of any two evidence 
items does not affect the overall score of the evidence set. 
Formally, 

Definition (HES) Given an evidence set E and its corresponding 
score vector S(E). Assume S/(E) is a score vector generated by 
exchanging two elements of S(E). If equation f(S)= f(S/) holds for 
all such S(E) and S/(E), we say that E is a homogeneous evidence 
set (HES) under score assignment scheme s(e). 

For an HES, its score vector is called a homogeneous score set 
(HSS). Our goal in this paper is to find an appropriate function f 
satisfying Formula 2.3. Some basic terms and their abbreviations 
are listed in Table 1. 

Table 1. Terms and their abbreviations 
Term Abbreviation 

Homogeneous evidence set HES 

Homogeneous score set HSS 

Score combination function SCF 

Homogeneous score combination HSC 

2.2 Basic SCF Properties 
The score combination function (SCF) of an HES should have the 
following properties. 

Property-1 (Symmetry): Given a HSS S1=(s11, …, s1,m), if S2 is a 
permutation of elements in S1, then f(S1)=f(S2). 
This property can directly be acquired from the definition of HES. 

Property-2 (V-Monotonicity): Given two score sets of HES E: 
S1=(s11, …, s1,m), S2=(s21, …, s2,m). If 

ii ss ,2,1 ≤ holds for 

every )1( mii ≤≤ , then )()( 21 SfSf ≤ . 
This property says that improving the relevance score of one or 
some evidence items would increase the aggregated overall score 
of the whole evidence set. It is apparently reasonable. 

Property-3 (H-Monotonicity): Given two score vectors 
S1=(s1, …, sm), S2=(s1, …, sm, sm+1), if sm+1=0, then )()( 21 SfSf = , 

else )()( 21 SfSf < . 
This property says that when a new evidence item is discovered 
and added into the evidence set, then the overall score would be 
unchanged (if the new evidence item has a zero score) or 
increased (if a positive scoring item is added). 

2.3 Baseline Evidence Fusion Techniques 
In this subsection, we discuss some existing score combination 
methods that could possibly be borrowed to address the 
homogeneous score combination problem. We begin with some 
simple heuristic formulas which have been widely used for 
combining document representations, retrieval algorithms, and 
search system output). Followed by that, we illustrate that the 
BM25 [12] formula can actually be adopted for score combination 
when all scores are of equal value. In addition, many other well-
studied evidence fusion approaches are available. However, 
because of the special properties of HES (symmetric, variant size, 



dependent), some fusion techniques may not be appropriate to be 
used here. These approaches and some related work will be 
discussed in Section 5. 

2.3.1 Simple Heuristic Formulas 
The simplest way to combine a list of scores together is to sum 
them up, as expressed below: 

 �
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And, another straightforward way is just taking the largest value 
as the combination score, 

 ii
sSf max)( =  (2.6) 

Formula 2.5 and 2.6 have their applicable conditions. When the 
evidence items in an evidence set are completely independent and 
the evidence scores denote Log-Odds, then it is reasonable to sum 
up the scores to find the aggregate score of an entire evidence set. 
However, when evidence items are highly dependent, taking the 
top score (as the aggregated score) should be a better choice. 
Following existing work [4], we call Formula 2.5 and 2.6 as 
CombSum and CombMax, respectively. 

Example 1 (cont.): Using CombSum (Formula 2.5), the overall 
scores of the three books in Example 1 (see Section 1.1) are, 

CombSum(book1) = 0.0*5+0.6*3+0.1*2 = 2.0 
CombSum(book2) = 0.0*5+0.6*3+0.1*2+0.05*1 = 2.05 
CombSum(book3) = 0.1*30 = 3.0 

While if CombMax (Formula 2.6) is used, the overall score of the 
three books will be, 

CombMax(book1) = 0.6 
CombMax(book2) = 0.6 
CombMax(book3) = 0.1 

Table 2 lists the ordering of the three books, according to their 
CombSum and CombMax scores respectively.    � 

Example 2 (cont.): Similarly, the overall anchor scores of the 
Web pages in Example 2 can be computed as follows, 

CombSum(d1) = 2808.00;   CombMax(d1) = 0.95 
CombSum(d2) =       1.91;   CombMax(d2) = 0.96 
CombSum(d3) = 6500.00;   CombMax(d3) = 0.1 

The resultant ordering of documents is shown in Table 2. � 

Linear combination [20] is another commonly used way of fusing 
evidence scores, 

 �
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It is clear that the above linear combination function f is not a 
valid HSC function because the exchange of the values of si and sj 
may result in a different aggregated score. 

2.3.2 BM25 score combination 
We demonstrate in this Subsection that, if all the scores 
participating in combination have the same value, then the BM25 
formula [12] can be used to combine these scores. 

BM25 formula is an effective way of computing the score of 
document D respect to a query term t, 

 )(
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where, tf is term frequency of t in D, and w(t) is a function of 
inverse document frequency indicating how important the term in 
the whole collection. K=k1*((1-b)+b*|D|/avdl), where |D| is 
document length, avdl is average document length, and k1, b are 
parameters. 

Formula 2.8 can be rewritten as below, 
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where m is the number of times term t appearing in D. We can 
treat each occurrence of term t as an evidence item. Since BM25 
does not distinguish different occurrences of the same term, all 
evidence items have the same score. Then the meaning of Formula 
2.9 is to compute the combined score of m evidence items given 
the score of each evidence item. 
For a homogeneous score set S=(s1, s2, …, sm), we assume all the 
evidence scores have the same value s. By Formula 2.9, the score 
of S can be computed as below, 

 s
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Formula 2.10 is the evidence combination function derived from 
BM25 when all the evidence scores are the same. We call the 
above formula BM25 score combination. Compared with 
CombSum and CombMax, an advantage of the above BM25 score 
combination formula is that it can contains a parameter K, which 
makes it adaptable to different dependency degrees between 
evidence items. So, the BM25 formula actually offers a reasonable 
way of combining scores for HESs. However, it is unknown what 
2.10 would be when the evidence items participating in 
combination hold different score values. 

Table 2. The Ordering of books/documents according to the 
scores computed by various evidence fusion approaches 

Approach Ordering (Example 1) Ordering (Example 2) 

CombSum book3 > book2 > book1 d3 > d1 > d2 

CombMax book1 = book2 > book3 d2 > d1 > d3 

HSC3D (K=4) book2 > book1 > book3 d1 > d2 > d3 

 

3. OUR APPROACH 
In this section, we first give our approach for homogeneous score 
combination, and then provide two derivations of it. 

In Formula 2.10, if we denote, 
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Then, Formula 2.10 becomes, 
 smSf ⋅= )()( σ  (3.2) 

Our approach for HSC is shown in Figure 2. It is a two-step 
approach. The first step sorts all scores from largest to smallest. In 
the second step, Formula 3.3 is used to compute the aggregated 
score. At the moment, we treat Formula 3.1 as the expression of 

)(iσ in our algorithm. A general form of )(iσ  will be given in 
Section 3.2. 

Given the expression of �(i) in Formula 3.1, we call our approach 
as HSC3D (Homogeneous evidence combination in three-
dimension space). It will be clear in Section 3.2 why it is got this 
name. 



 

Example 1 (cont.): According to our approach in Figure 2, we 
first sort the chapter scores of each book in descending order. So 
the score vector of book1 becomes S = (0.6, 0.6, 0.6, 0.1, 0.1, 
0.0,…). Using Formula 3.3, book1’s overall score can be 
computed as follows (assuming parameter K=4.0 in Formula 3.1), 

HSC3D(book1) = �(1)(0.6-0.6)+�(2)(0.6-0.6)+�(3)(0.6-0.1) 
+�(4)(0.1-0.1)+�(5)(0.1-0.0)+�(6)(0.0-0.0)+… 

= �(3)(0.6-0.1) + �(5)(0.1-0.0) 
= 1.349 

Similarly, 
HSC3D(book2) = �(3)(0.6-0.1)+ �(5)(0.1-0.05)+ �(6)(0.05-0.0) 

= 1.360 
HSC3D(book3) = �(30)(0.1-0) = 0.441 

Table 2 shows the order of books when their scores are computed 
by HSC3D.  � 

Example 2 (cont.): Similarly, the overall anchor scores of the 
Web pages in Example 2 can be computed using our approach, 

HSC3D(d1) = 4.494 
HSC3D(d2) = 1.593 
HSC3D(d3) = 0.500      � 

By examining Table 2, we can see that our approach gives the 
most desirable order of documents in the two toy problems. The 
main problem of CombSum is that the combination of many tiny 
evidence scores would be inappropriately larger than the 
combination of a medium number of large scores. For CombMax, 
it cannot differentiate two evidence sets with the same highest 
evidence score values. Moreover, intuitively the combination of 
two same scores should get a higher score (except that one 
evidence item depends completely on another). However it is not 
the case for CombMax. 

The above approach can be derived by two different methods and 
utilizing two distinct information retrieval models: The first 
extends the BM25 formula by making a latent additivity 
assumption while the other adopts the recently proposed 
gravitational information retrieval model [16][17]. We will 
describe the two derivations in the following subsections. 

3.1 Derivation 1: BM25 + Latent Additivity 
A description of the latent additivity assumption follows. 

Latent Additivity Assumption: Given an HES E’s three m-dim 
score vectors U={s, s, …, s}, S1={s11, s12, …, s1m}, 
S2=U+S1={s+s11, s+s12, …, s+s1m}. We say that E satisfies latent 

additivity assumption if for all such U and S1, the following 
equation holds, 
 f(S1)+f(U)=f(S2)  (3.4) 

The following proposition guarantees that if an HES satisfies 
latent additivity and BM25 can be used to combine its uniform 
scores, then the only reasonable way of computing its aggregated 
score is by using our algorithm. 

Proposition 1: Assume that an HES E satisfies the latent 
additivity assumption, and BM25 score combination (Formula 
2.10) can be used to combine its scores when they hold the same 
value, then for E’s score set S=(s1, …, sm) (

msss ≤≤≤ ...21
), we 

have, 
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Please refer to Appendix A for the proof of the above proposition. 
The meaning and proof of Proposition 1 is depicted in Figure 3. 
The basic idea is to divide the score set into some sub-sets, each 
of which contains some equal-valued scores, such that BM25 can 
be applied to each sub-set. 

 

Formula 3.5 can easily be transformed into the following 
equivalent one, 
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Figure 3 is a visual description of the transformation. 

Formula 3.6 is actually an inner product of a score vector 
S=(s1,s2,…,sm) and a weight vector W=(w1,w2,…,wm). Please do 
not confuse it with ordinary linear combination. They are different 
in two ways: First, the evidence score in S must be sorted before 
computing the inner product. So by applying this kind of inner 
product, the maximal score always get the largest weight. Second, 
the length of vector W can potentially be infinitely large. That is, 
given a score vector S of any dimension m, we can construct an m-
dim vector W for a linear combination with the score vector, by 
using the only parameter K. 

Figure 3. Proposition 1 illustration 

Algorithm Homogeneous score combination 

Input: Score vector S=(s1,s2,…,sm) of an HES E. 
Output: Aggregated score s(S). 

Step1. Sort all scores in descending order, resulting in 
a vector ),,,( //

2
/
1 msssS �=′ . 

Step2. Compute f(S) by using the following formula,  
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where )(iσ is expressed by Formula 3.1. And we use the 

convention that 0/
1 =+ms . 

Figure 2. Our HSC approach 



3.2 Derivation 2: Gravitational IR Model 
In this subsection, we try to address the HSC problem by using 
the GBM model [16][17]. In the model, documents and queries 
are modeled as physical objects with specific structures, and the 
relationship between a query and a document is modeled as the 
attractive force between them. Newton’s theory of gravitation is 
used to compute the relevance of a document given a query. 

For a homogeneous evidence set E, we model each evidence item 
as an ideal-cylinder-shaped object (just as in the continuous 
version of GBM). And, E is modeled by a list of evidence objects. 
As in [16][17], it is natural to define the score of evidence set E 
(given query Q) as the maximal gravitational attractive force 
between its corresponding evidence object and the query object. 
Apparently, the attractive force is maximized when E is in its 
optimized evidence placement state, where all evidence objects are 
sorted by the attractive forces between them and query Q. 

To be more clear about the problem we wish to solve, note Figure 
4. Figure 4(a) shows the relationship between query Q and 
evidence ei. Note that the score of a piece of evidence is the 
relevance of the document and the query without considering the 
score of other evidence items. Therefore, it is natural in the 
gravitational model to model an evidence score the gravitational 
force between the query and the evidence without considering 
other evidence objects, as shown in Figure-4(a). So, we have, 

 ��
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where mi is the mass of evidence ei, and )(xκ  denotes the 
gravitational force between two unit point masses of distance x 
( 2/)( xGx =κ according to Newton’s law). 

 
Now consider how to compute the aggregated score of evidence 
set E. Figure-4(b) shows a sample evidence set and all its child 
evidence items. In the figure, m is the number of non-zero 
evidence items, and n is the total number of evidence items (zero 
scored or non-zero scored) being observable to users. And k is the 
number of hidden evidence items (i.e. evidence items that do exist 
but are not observable). We denote the mass of evidence object ei 
by m(ei), and assume all evidence items have the same diameter4 d. 
It is natural to define the score of evidence set E as the 
gravitational force between Q and E. When object E is in its 
optimized evidence placement state (as in Figure-4(b)), all its 
child evidence objects should be sorted according to their 
respective mass. The larger the mass, the larger the gravitational 
force between Q (since we have assumed all evidence objects 

                                                                 
4 Please note that the diameter of an ideal-cylinder-shaped object 

is defined by its height in the GBM model. 

have the same size), therefore the nearer the evidence to object Q. 
Without loss of generality, we assume that 

mmmm ≥≥≥ ...21
 (the 

mass of other evidence items is zero because of zero evidence 
score), as shown in Figure-4(b). 

We can clearly see from Figure-4 that, when evidence set E is in 
its optimized evidence placement state, most evidence objects 
would be farther away from query Q, except for evidence e1. As a 
result, the attractive forces suffered by Q would decrease 
accordingly. Now the new force between Q and ei have changed to, 

  �
⋅+

⋅−+

⋅
=

di

di

iQ
i dxx

d

mm
QeF

1

)1(1

)(),( κ  (3.9) 

By combining Formula 3.8 and 3.9, we have, 
 iii suQeF ⋅=),(  (3.10) 
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So the attractive force between query Q and evidence set E is, 
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then Formula 3.12 can be re-written as, 
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According to Newton’s law, 2/)( xGx =κ . So, by applying it to 
Formula 3.13, we have, 
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As has been illustrated in [16][17], 1/d in the gravitational model 
corresponds to K in BM25 formula. Therefore, the expressions of 

)(iσ in Formula 3.1 and 3.15 are actually the same. As a result, 
we derived our HSC Formula 3.3 by providing Formula 3.14. 

Here, we do not make the latent additivity assumption. Readers 
may also have realized that the role of Latent additivity 
assumption in the previous subsection is the same as that of the 
additivity of gravitational forces in this case here. 

3.2.1 Going beyond inverse square 
When Newton first discovered the law of universal gravitation, he 
did not give an explanation why the gravitational force is 
inversely proportional to the square of distance. Laplace (in his 
famous book, Mecanique Celeste) extended Newton’s law by 
building a model and formulating a differential equation satisfied 
by the gravitational potential corresponding to a certain 
distribution of mass in space. By assuming that a gravitational 
potential must satisfy his equation, Laplace actually “proved” that 
gravitational force should be inverse-square in R3 (three-
dimension space)5. From the same process, the gravitational force 

                                                                 
5 As Laplace’s original treatise may be hard to acquire, please 

refer to Section 73.11 of [3] for an introduction to Laplace’s 
work on gravitation. 

Figure 4. Using the gravitational IR model for HSC 



in R2 can be proved to be inversely proportional to the distance 
(without the square). So the gravitational function can actually 
have different expressions in different dimensional spaces. 

Since we do not know exactly which dimension should be taken 
in information retrieval and/or Web search tasks, the expression of 

)(xκ  is therefore not necessarily inverse-square, according to the 
Laplacian model. Therefore, the expression of )(iσ  in Formula 
3.13 is in a more general form than 3.15. 

According to the Laplacian model, the expression of )(xκ  in R2 
is c/x (where c is a constant). By applying it into Formula 3.13, 
the expression of )(iσ in R2 is, 
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Since the above Formula is for a two-dimensional space, we call it 
as HSC2D. Accordingly, Formula 3.15 (or 3.1) is called HSC3D. 

4. DISCUSSIONS 
4.1 Relationships with Other Techniques 
It is easy to verify that �(i)=1 for each i>0 when K=0 in Formula 
3.1 (or +∞=d in Formula 3.14). In this case, our approach 
(Formula 3.3) actually returns the maximal score. Therefore, 
CombMax (Formula 2.6) is a special case of our approach. 
Similarly, CombSum (Formula 2.5) is also a special case of our 
approach (when +∞=K , or d=0). The BM25 score combination 
formula (Formula 2.10) is apparently a special case in which all 
evidence scores are the same. To sum up, the CombMax, 
CombSum, and BM25 score combination approach are all special 
cases in our approach. 

Salton, Fox and Wu [14] developed the p-Norm model as one 
generalized way of processing Boolean queries. For a query Q={t1, 
t2, …, tn}, assume the term score of document d for the query 
terms are s1, s2, …, sn, then the overall document score could be 
computed by the following OR-like formula, 
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P-Norm and our approach share some similar characteristics. First, 
in both approaches, high score values can be seen as receiving 
larger weights. Second, they both are generalizations of some 
simple heuristic formulas. The two extremes (p=1 and p=�) of p-
Norm are average and CombMax, and the two extremes of our 
approach are CombSum and CombMax. 

Despite the similarities, they have apparent differences. First, p-
Norm is commonly applied to fixed dimensional evidence sets. 
For example, in computing the overall term scores of documents 
with respect to a four-term query, each document corresponds to a 
4-dimension evidence set. However, for evidence sets of different 
lengths (i.e. numbers of items), their overall scores computed by 
p-Norm might not be comparable. For instance, in Example 2 
(Section 1), p-Norm would always assign a larger score to d2 than 
to d1, which is not reasonable. Second, our approach is linear in 
nature (see Formula 3.6), while p-Norm is non-linear for most p 
values. Third, for p-Norm, scaling evidence scores (multiplying 
by a factor c) does not affect the relative ordering of evidence sets. 
Our approach also has this property. Moreover, for our approach, 
score transformation (i.e. adding scores by a constant value s0) 
also does not affect the relative ordering of evidence sets, as long 
as they have the same number of evidence items. Forth, p-Norm 

has two kinds of dual operations AND(p) and OR(p), while our 
approach has only one format for now. Finally, p-Norm is based 
on geometry and has an excellent geometric explanation, while 
our approach has a physical explanation (subsection 3.2). 

4.2 Computational Complexity 
Since evidence combination is often embedded in the online 
query processing module, its computational performance is crucial. 
Now let’s analyze the time complexity of our approach. 

Assume that an HES has M elements and K different score values. 
Implementing our approach in a naïve way would result in an 
algorithm with O(MlogM) time complexity, because all scores 
should be sorted in the first step. When score with same values 
have been grouped together, the time cost can easily be reduced to 
O(KlogK). This time complexity would be acceptable for most 
applications with medium-length evidences sets. 

In the case of requiring linear time-complexity, an approximate 
algorithm is provided in Figure 5. In the algorithm, some score-
range slots are utilized to record and summarize the scores in their 
ranges. For example, if all evidence scores are in [0, 1], we can 
generate 100 slots each of which is in charge of a score range of 
0.01 length. The time complexity of this algorithm is O(M+h), 
where h is the number of slots utilized. 

 

4.3 Impact Analysis 
Homogeneous score combination is important for information 
retrieval and Web search, for two main reasons. On one hand, 
good HSC mechanism may improve search performance. Because 
of the challenges of computing a combined score for an HES, 
existing ranking algorithms ordinarily choose to bypass it and use 
a relatively non-optimal, alternative method. For example, due to 
the difficulty of computing the aggregated score of a collection of 
anchor phrases, most of (if not all) retrieval systems choose to 
merge all anchor phrases into an entire document and apply full-
text ranking models or formulas (e.g. BM25 [12]). In this way, the 
anchor phrase structure can not be utilized. 

On the other hand, HSC helps to ranking function design. If for 
each HES in Figure 1 we remove all the evidence items belonging 
to it and replace them with a piece of new aggregated evidence, 
the evidence structure of Figure 1 would be greatly simplified. 
Most importantly, it is possible that different documents would 
have the same number of evidence items by this way. Therefore, 
some machine learning techniques which can only accept fixed-
dimension vectors could possibly be applied now. 

There are surprising numbers of evidence collections in various 
fields which could be considered, at least approximately, as 

Figure 5. A linear-time HSC algorithm 

Algorithm Linear-time HSC 

Input: Score vector S=(s1,s2,…,sm) of an HES E. 
Output: Aggregated score s(S). 

Step1. Build h score-range slots R=(r1, …, rk), with 
each slot initialized to be empty. 
Step2. For each evidence score si, put it into the slot 
whose score range contains the score. 
Step3. By treating all scores in the same slot to be the 
same value, utilize Formula 3.3 to compute the 
aggregated score. 



homogeneous. Actually, many widely used heuristic formulas are 
implicitly assuming the symmetry of evidence items. A large 
number of problems would benefit from an efficient homogenous 
evidence combination approach. 

Although the derivation process of our approach is somewhat not 
easy to understand (especially the derivation from GBM), the 
resultant formula is simple, efficient and intuitive. It power is 
showed and verified by our preliminary experiments (Section 5). 
We believe this approach could be a practical choice for 
homogeneous evidence combination, and act as a replacement for 
some of the existing heuristic formulas. 

5. EXPERIMENTS 
In this section, we verify the analysis of previous sections and test 
the performance of our approach through experiments. 

5.1 Experimental Setup 
We report results on the .GOV data set used in the TREC [18] 
Web Retrieval Track and a dataset acquired from MSN Search. 
We call the former dataset TREC and the latter CSE (Commercial 
Search Engine) hereafter. There are 1,053,111 web pages in 
TREC (not including PDF files) and about 12,500,000 web pages 
in the MSN dataset. 

For the TREC data set, we use two query-sets: TREC2003 Mixed, 
and TREC2004 Mixed. They are queries used in Web track of 
TREC’2003 and 2004. Both of the query-sets mix three types of 
queries: topic distillation, homepage finding and named page 
finding. The CSE dataset comprises 1,000 queries. For each query, 
averagely 70 Web pages were manually labeled and assigned a 
relevance value from 1 (meaning “poor” match) to 5 (meaning 
“perfect” match). The reason for using five-judgment levels 
instead of the binary judgments widely used in information 
retrieval is that multiple judgments can more precisely evaluate 
the relevance of a Web page to a query. We shuffled the queries 
and used 1/10 (100 queries) for training and 9/10 (900 queries) 
for testing. 

For the TREC dataset, we choose Mean Average Precision (MAP) 
as a primary measure for representing our experimental results.  
Similar experimental results have been observed using other 
measures (e.g. MRR, P@5). 

Since we used five judgment levels for the CSE dataset, some 
common evaluation metrics (e.g. mean average precision, 
precision@10, etc) are not applicable any more. In order to study 
the performance of our approach, we adopt the nDCG [5] measure 
in the experiments to evaluate search results. nDCG has two kinds 
of parameters: discount factor b, and gains for all labeled 
relevance levels. In our experiments, the value of the discount 
factor b is fixed to be 2. And the gain value for the 5 relevance 
levels (from 1 to 5) are 0.01, 1, 3, 7 and 15, respectively. For 
completeness, we also transform the 5 judgment levels into binary 
judgments (with judgment level 1 and 2 treated as irrelevant, and 
other levels as relevant), and utilize traditional IR evaluation 
metrics to evaluate our results (see Table 6). For the CSE dataset, 
we chose nDCG@3 as a primary measure for representing 
experimental results. Similar experimental results have been 
observed at other nDCG ranks and binary judgments (e.g. MAP, 
MRR, P@5). 

In tuning parameters to optimize an evaluation measure, we use a 
grid search method. On the CSE dataset, parameters are tuned on 
the training set and then the optimized parameters are applied to 

the testing set. The experimental results reported are on the test 
query set. 

We chose two types of HESs in our experiments to test the 
performance of our HSC approach and compared it with other 
techniques. The first is the set of all anchor phrases of a document. 
The second is the set of a document’s all body-text fragments. 

5.2 Anchor Text Experiments 
For a Web page, its anchor text phrase is one piece of text 
description related to one link to page. Clearly all anchor phrases 
of a page can be thought of as an HES. Several techniques can be 
used to compute an aggregated anchor score for a document. The 
most straightforward way is merge all anchor phrases into a full-
text and use common term weighting formulas (e.g. BM25) to 
compute a score. We call this method as anchor full text (AFT) in 
displaying the experimental results. If we have computed a score 
for each anchor phrase, then some methods mentioned in this 
paper can be used to combine them into an aggregated one. We 
will test the performance of the following approaches: CombSum 
(Formula 2.5), CombMax (Formula 2.6), HSC3D (our 
homogeneous score combination approach with Formula 3.1 or 
3.15 as the expression of �(i)), and HSC2D (our approach with 
Formula 3.16 as the expression of �(i)). 

Table 3. Search performance comparison between different 
anchor scoring approaches (Dataset: CSE; Metric: nDCG@3).  

Method Anchor 
Only 

Imp. over 
CombMax (%) 

Base+ 
Anchor 

Imp. over 
Base (%) 

Base - - 0.254 -- 

AFT 0.248 -23.7 0.359 +41.3 

CombSum 0.207 -36.3 0.254 0 

CombMax 0.325 -- 0.353 +39.0 

HSC3D 0.358 +10.2 0.366 +44.1 

HSC2D 0.346 +6.46 0.37 +45.7 

Table 4. Search performance comparison between different 
anchor scoring approaches (Dataset: TREC; Query-Set: 

TREC2003 Mixed; Metric: MAP) 

Method Anchor 
Only 

Imp. over 
CombMax (%) 

Base+ 
Anchor 

Imp. over  
Base (%) 

Base - - 0.292 - 

AFT 0.461 +12.4 0.486 +66.4 

CombSum 0.318 -22.4 0.367 -25.7 

CombMax 0.410 - 0.449 +53.8 

HSC3D 0.476 +16.1 0.48 +64.4 

HSC2D 0.471 +14.9 0.505 +72.9 

On the CSE data, the second column of Table 3 shows the search 
performance (on the test query set) of each anchor scoring 
approach, by using anchor text only. In the experiments, the score 
for an anchor phrase is computed by the BM25 formula with 
parameters tuned on the training query set. We can see that 
HSC3D and HSC2D outperform other approaches. AFT is the 
normal way of utilizing anchors in information retrieval. We 
observed that the CombMax approach and two of our 
homogeneous approaches achieve much better performances than 
AFT on the anchor field. Another observation is that the 
performance of the CombSum method is far worse than that of the 
others. The reason may lie in the high dependency between the 
anchor phrases. In addition to comparing the performance of these 
approaches on the anchor field, we need to investigate how they 
perform when their scores are combined with other scores. The 
last two columns of Table 3 show the combination of a base score 
with the anchor score, calculated by each approach. We can see 



from the table that only the two variations of our approach 
outperform the basic AFT approach (i.e. merge all anchor phrases 
into a whole text). This may be the reason why existing 
approaches compute anchor scores using the AFT method. 

Table 4 shows the search performance of each anchor scoring 
approaches on TREC2003 query-set. It indicates that HSC2D and 
HSC3D outperforms CombMax significantly when only anchor is 
used for ranking or anchor score is linearly combined with a base 
score that is computed by adopting the BM25 formula on title and 
body text fields of a Web page. Experimental results on 
TREC2004 Mixed data confirmed such conclusion. 

5.3 Term Proximity Experiments 
With term proximity, we mean how near query terms occur in a 
document. When query terms appear close together within a 
document, the document more likely to be an answer to the query. 
Given a query, a document can be split into segments with each 
segment acting as a piece of evidence. A score can be computed 
for each fragment according to nearness factors and order of terms 
in the fragment. The set of all segments is another example of 
HES (Figure 1) 

Table 5. Search performance comparison between different 
term proximity score combination approaches (Dataset: CSE; 

Metric: nDCG@3). 

Method Proximity 
Only 

Imp. over 
CombMax (%) 

Base+ 
Proximity 

Imp. over  
Base (%) 

Base - - 0.254 - 

CombSum 0.201 -3.83* 0.254 0 

CombMax 0.209 - 0.267 +5.12 

HSC3D 0.215 +2.87* 0.281 +10.6 

HSC2D 0.240 +14.8 0.281 +10.6 
Note: * means that the change is NOT statistically significant, i.e. when t-test is done 
to compare two ranking results, p-value is larger than 0.05. 

Table 6. Search performance comparison between different 
term proximity score combination approaches (Dataset: CSE; 

Metric: MAP). 

Method Proximity 
Only 

Imp. over 
CombMax (%) 

Base+ 
Proximity 

Imp. over  
Base (%) 

Base - - 0.156  - 

CombSum 0.114  1.572 0.156  0.000 

CombMax 0.112  - 0.163  4.711  

HSC3D 0.121  7.471 0.170  8.794  

HSC2D 0.132  17.83 0.170  8.965  

Table 7. Search performance comparison between different 
term proximity scoring approaches (Dataset: TREC; Query-
Set: TREC2004 Mixed; Metric: MAP). 

Method Proximity 
Only 

Imp. over 
CombMax (%) 

Base+ 
Proximity 

Imp.over  
Base (%) 

Base - - 0.286 - 

CombSum 0.175 +16.7 0.286 0 

CombMax 0.150 - 0.317 +10.8 

HSC3D 0.233 +55.3 0.319 +11.5 

HSC2D 0.236 +57.3 0.315 +10.1 

It is not difficult to split a document into segments. One natural 
query-independent method is splitting by sentence or paragraph 
boundaries. A query-dependent method is by the distribution of 
query terms, e.g. splitting when the distance between two adjacent 
query term occurrences are larger than a threshold. We used the 
latter method when generating segments. We use a heuristic 
formula in our experiments to compute the term proximity score 

for each segment. Then, the segment scores were combined by 
using four fusion approaches: CombSum, CombMax, HSC3D, 
and HSC2D (please refer to Section 4.2 for definitions). 

The results on the CSE dataset are shown in Table 5 and Table 6. 
We can see that HSC2D and HSC3D behave better than 
CombSum and CombMax. Experimental results on TREC data 
indicate that both HSC3D and HSC2D outperform CombMax 
dramatically when term proximity score is considered only (see 
Table 7). On the other side, the gap between CombMax and 
HSC3D / HSC2D is slight if they are linearly combined with the 
base score. We observed similar results for the TREC2003 Mixed 
query-set.  

6. RELATED WORK 
Evidence combination and fusion is a basic problem not only for 
information retrieval and Web search, but widely throughout the 
research arena. There have been many theoretical or heuristic 
approaches to address this problem. 

Theories developed for evidence fusion include Bayesian theory, 
Dempster-Shafer theory [15], Stanford certainty theory [8], etc. 
Bayesian networks [6] make use of conditional independence 
assumptions to simplify joint probability computation and, to 
some extent, make some evidence combination problems tractable. 
However, when the number of parents for a given random variable 
(network node) is large, inference network would not be feasible 
to adopt. The Dempster-Shafer theory of evidence [15] provides a 
rule, the Dempster’s combination rule, which allows for the 
expression of the aggregated uncertainty from component 
uncertainties. And Stanford certainty theory [8] provides a simple 
way of combining some certainty factors. The Dempster-Shafer 
theory and Stanford certainty theory both make the independence 
assumption, so are not suitable for a general homogeneous score 
combination problem. All these theories provide basic 
frameworks for evidence combination. However, as have been 
pointed out, none of them is applicable to be used to solve a 
general HEC problem. 

The p-Norm model [14] provides a remarkable way of combining 
evidence items. We have discussed the relationship between p-
Norm and our approach in Section 4. 

Heuristic approaches often provide simple and easy-to-understand 
ways of combining evidence scores. However, they are often ad-
hoc and lack theoretic foundations. Moreover, their performances 
are not stable enough for different datasets and applications. We 
have demonstrated that our approach is superior to some 
commonly used heuristic approaches (CombSum and CombMax). 
In addition to the similarity value combination approaches tested 
by Fox et al [4] to combine TREC runs, Wilkinson [21]  has 
conducted some empirical studies to evaluate different ways of 
combining the scores obtained from document fields. 

There has been extensive work on evidence fusion in a wide area 
of research fields. In the meta-search field, many fusion 
algorithms have been developed and studied to address the 
problem of combining results from different retrieval systems 
[1][20]. Structured document retrieval has seen a strong demand 
for evidence fusion. Various kinds of approaches have been 
studied and tested [2][7][9] (e.g. language models [10], inference 
networks [19][11], and term frequency combination[13], etc). 



7. CONCLUSION AND FUTURE WORK 
In this paper, we have addressed the special case of the evidence 
fusion problem: homogeneous evidence combination. Generally 
speaking, a homogeneous-evidence-set typically have three 
properties: variant-size, mutual dependency, and homogeneity. 
The first two properties make it hard to combine homogeneous 
evidence scores by effectively using existing approaches. Our 
approach makes full use of the third property and provides a 
simple, effective, and somewhat formal way to address this 
problem. 

There are a surprising number of evidence collections (in a wide 
area of fields) that can be regarded as homogeneous. Although our 
approach is derived from information retrieval models and 
formulas, it is hoped to be a general purpose way of fusing 
symmetric, mutually dependent, and variant-number evidence. 

If would be perfect if our approach could be derived from a 
probabilistic framework by using Bayesian theory or other 
probabilistic theories. This will be left to future work. Another 
problem for further study is the combination of our approach with 
other approaches (e.g. regression, inference networks, and the like) 
to solve an array of evidence fusion problems. 
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APPENDIX 

A. Proof of Proposition 1: 
Proof: For each i ( mi ≤≤1 ), construct the following i-dimension 
evidence score vectors, 
 ),,,( 111 +++ −−−= iiiiiii ssssssU �   
 ),,,( 21 iiiii ssssssR −−−= �   
 ),,,( 11211 +++ −−−= iiiii ssssssV �   
According to the Latent Additivity Assumption, we have 
 )()()( iii UfRfVf +=   
As the last element of Ri is always zero, according to Property-3, 
we get, 
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Please note that we use the convention that s0=0 and 0)0( =σ  in 
the process of proof. 

 

 


