
Multi-Paradigmatic Model-Based Testing

Wolfgang Grieskamp

August 2006

Technical Report
MSR-TR-2006-111

For half a decade model-based testing has been applied at Microsoft in the in-
ternal development process. Though a success story compared to other formal
quality assurance approaches like verification, a break-through of the technol-
ogy on a broader scale is not in sight. What are the obstacles? Some lessons
can be learned from the past and will be discussed. An approach to MBT is
described which is based on multi-paradigmatic modeling, which gives users
the freedom to choose among programmatic and diagrammatic notations, as
well as state-based and scenario-based (interaction-based) styles, reflecting the
different concerns in the process. The diverse model styles can be combined
by model composition in order to achieve an integrated and collaborative mod-
el-based testing process. The approach is realized in the successor of Microsoft
Research’s MBT tool Spec Explorer, and has a formal foundation in the frame-
work of action machines.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1 Introduction

Testing is one of the most cost-intensive activities in the industrial software develop-
ment process. Yet, not only is current testing practice laborious and expensive but often
also unsystematic, lacking engineering methodology and discipline, and adequate tool
support.

Model-based testing (MBT) is one of the most promising approaches to address
these problems. At Microsoft, MBT technology has been applied in the production
cycle since 1999 [1–5]. One key for the relative success of MBT at Microsoft is its
attraction for a certain class of well-educated, ambitious test engineers, to which it is
one way to raise testing to a systematic engineering discipline.

However, at the larger picture, an estimate based on the number of subscriptions to
internal mailing lists for MBT would count only about 5-10% of product teams which
are using or have tried using MBT for their daily tasks. While these numbers can be
considered a success compared to other formal quality assurance approaches like veri-
fication, they are certainly not indicating a break-through. So what are the obstacles in
applying MBT, and how can a larger group of users be attracted to the technology?

This paper first makes an attempt to answer this question, based on feedback from
the user base of the Spec Explorer tool [5], its predecessor AsmL-T [3], and other
internal MBT tools at Microsoft. The major issues, apart of the ubiquitous problem in
the industry that people do not have enough time to try out new technology and educate
themselves, seem to be the steep learning curve for modeling notations together with
the lack of state-of-the-art authoring environments, missing support for scenario-based
(interaction-based) modeling, thus involving not only the test organization but also other
stakeholders in the process, poor documentation of the MBT tools, and last but not least
technical problems like dealing with state explosion, fine-grained test selection, and
integration with test management tools.

The paper then sketches a new model-based testing environment which is currently
under development at Microsoft Research and attempts to overcome some of the ob-
stacles. The environment, called “Spec Explorer for Visual Studio” (for short, SEVS),
tries to address the identified challenges by providing a full integration into the develop-
ment environment of Visual Studio, using a multi-paradigmatic approach to modeling,
allowing to describe models on different levels of abstraction, using scenario and state
oriented paradigms as well as diagrammatic and programmatic notations, and enabling
the combination of those diverse artifacts for a given modeling and testing problem.

SEVS is internally based on the framework of action machines [6, 7], which allows
for uniform encoding of models which can stem from a variety of notations, and to
combine and relate them using various compositions. The action machine framework
supports the representation of models with symbolic parts in states and actions, which
gives rise to the expressive power of defining partial models on a higher level of ab-
straction and compose them with lower-level models.

This paper is organized as follows. Sect. 2 describes lessons learned in applying
MBT at Microsoft and draws some conclusions. Sect. 3 gives a high-level overview on
the approach of the SEVS tool using examples. Sect. 4 gives a summary of the formal-
ization of the underlying concepts, and Sect. 5 concludes.

1

class Publisher {
Set<Subscriber> subscribers = Set{};
[Action(ActionKind.Controllable)]
Publisher(){}
[Action(ActionKind.Controllable)]
void Publish(object data)
{

foreach (Subscriber sub
in subscribers)

sub.mbox += Seq{data};
}

}

class Subscriber {
Seq<object> mbox = Seq{};
[Action(ActionKind.Controllable)]
Subscriber(Publisher publisher)
{
publisher.subscribers += Set{this};

}
[Action(ActionKind.Observable)]
void Handle(object data)
requires mbox.Count > 0 &&

mbox.Head.Equals(data);
{
mbox = mbox.Tail;

}
}

Fig. 1. Publisher-Subscriber Model

2 Model-Based Testing in Practice: Lessons Learned

MBT has a long application tradition at Microsoft, and various tools have been and are
in use. The first tool, the Test Modeling Toolkit (TMT), was deployed in 1999, and is
based on extended finite state machines (EFSM) [1]. Microsoft Research deployed two
tools, AsmL-T in 2002 [3] and Spec Explorer in 2004 [5], both using executable spec-
ification languages based on the the abstract state machine paradigm (ASM) [8] as the
modeling notation. Other internal tools which have not been published are also around.
The general mailing alias used for internal discussion of MBT issues at Microsoft cur-
rently exceeds 700 members.

All these tools, though quite different in details and expressiveness, share some
common principles. Models are described by guarded-update rules on a global data
state. The rules describe transition between data states and are labeled with actions
which correspond to invocations of methods in a test harness or in the actual system-
under-test (SUT). Rules can be parameterized (and the parameters then usually also
occur in the action labels). A user provides value domains for the parameters, using
techniques like pairwise combination or partitioning. In the approach as realized by
AsmL-T and Spec Explorer, the parameter domains are defined by expressions over
the model state, such that for example they can enumerate the dynamically created
instances of an object type in the state where the rule is applied.

A very simple example to demonstrate the basic concepts as they appear in Spec
Explorer today is considered. The model describes the publish-subscribe design pattern

2

which is commonly used in object-oriented software systems. According to this pattern,
various subscriber objects are registered with a publisher object to receive asynchronous
notification callbacks when information is published via the publisher object (in fact,
the subscribers can dynamically register and unregister at a publisher, but this aspect is
simplified here.) Thus this example includes dynamic object creation as well as reactive
behavior.

The model is given in Fig. 1 (top). The state of the model consists of publisher and
subscriber instances. A publisher has a field containing the set of registered subscribers,
and a subscriber has a field representing the sequence of data it has received but not yet
handled (its “mailbox”). The model simply describes how data is published by deliv-
ering it to the mailboxes of subscribers, and how it is consumed by a subscriber in the
order it was published. The precondition of the handling method of the subscriber en-
ables it only if the mailbox is not empty, and if the data parameter equals to the first
value in the mailbox. Note that the Handle method is an observable action, which
comes out as spontaneous output from the system under test (SUT).

Fig 1 (bottom) shows an excerpt from the state graph generated by Spec Explorer
from this model. This kind of graph corresponds to an interface automaton [9]. In this
fragment, one publisher and two subscribers are configured (the state graph omits the
configuration phase). From state S3, a Publish invocation is fired, leading to state S4,
which is an observation state where the outgoing transitions are observable actions. The
meaning of an observation state is that the SUT has an internal choice to do one of the
outgoing transitions, as opposed to a control state (S3) where it must accept all of the
outgoing transitions. Thus, effectively, the model gives freedom to an implementation
to process the subscribers of a publisher in any given order.

In order to generate the state graph, the model was augmented with further in-
formation: the parameters passed to the Publish method have been specified (here,
"foo"), the number of publishers and subscribers to be created has been bounded, as
well as the number of messages in the mailbox of a subscriber.

Such state graphs are then input to traversal algorithms to generate a test suite which
can be executed offline, or are dynamically traversed using online/on-the-fly testing.
For both cases, the test execution environment takes care of binding object values in the
model to objects in the implementation, as well as queuing asynchronous observable
action invocation events in the SUT for consumption by the model. For details, see [5].

In practice, models written with Spec Explorer are significantly larger than this
simple example; yet they are rarely on the scale of real programs. In the applications at
Microsoft, models typically introduce about 10 to 30 actions, with up to 2000 lines of
model code, in exceptions over 10000 lines. Yet, these models are able to test features
with a code-base which is larger by an order of magnitude or more. This stems from the
level of abstraction chosen in modeling. Model-based testing is used for a wide range
of application types, including user interfaces, protocols, windows core components,
frameworks, device drivers, and hardware abstraction layers.

While in general successfully used in practice, the technology of Spec Explorer,
as well of the other available tools at Microsoft, raises some challenges which hinder
wider adoption. These will be discussed in the remainder of this section.

3

2.1 The Modeling Problem

Authoring Computer folklore says: “every editor is better than a new editor”. Though
clearly this statement is sarcastic, one should not underestimate its wisdom. The author
of this paper, for example, used to apply the vi editor (a great relict of very early Unix
times) for his programming over many years, even though on the development plat-
form Visual Studio was available, which provides automatic indentation, incremental
compilation, context-sensitive completion, refactoring, and many more nice features.

When initially rolling out one approaches’ favorite modeling notation to end users,
the gravity of habits is even stronger: users are asked to use a new language in an
authoring environment which usually does not provide the convenience features they
are acquainted with from modern environments.

Notations have perhaps become less important today than the environments which
support them. This at least applies to users which are heavily using these modern devel-
opment environments – among which are most younger testers and developers. It might
apply less to other stakeholders (like the author of this text, which is still using a vi
emulation mode under Emacs to write this document in LATEX).

The lesson learned is that if one comes up with a new notation, one should better be
sure that either the users of that notation do not care about modern authoring support,
or one should match this support. The later is unfortunately not trivial. The effort for
decent authoring support for a language is probably an order of magnitude higher than
providing its compiler.

Executable Specifications vs Programming Languages The first generation of the
Microsoft Research MBT tools was based on the Abstract State Machine Language
(AsmL), a high-level executable specification language, which integrates concepts from
functional programming languages and specification languages like Z, B and VDM.
Though the basic concepts of this language seem to be simple and intuitive (it uses
a “pseudo-code” style notation and avoids any mathematical symbols), apart of some
stellar exceptions, for most testers the learning curve was too steep (see [4] for a dis-
cussion).

Testers struggled with concepts like universal and existential quantification and set
comprehensions. Under the assumption that the problem was not the concept itself but
perhaps the unfamiliar way in which it was presented, the next generation, Spec Ex-
plorer, offered in addition to AsmL the Spec# notation, which disguised the high-level
concepts in C# concrete syntax. Though this approach was more successful, the basic
problems remained. Typically, beginners and even intermediate levels in Spec# prefer
to write a loop where a comprehension would be much more natural and concise.

This phenomena is not just explained by the inability of users. It is more the un-
willingness to learn many new concepts at the same time, in particular if they are not
obviously coherent. Confronted with a new technology like MBT and the challenges
to understand the difference between model and implementation and finding the right
abstraction levels, having in addition the challenge to learn a new language, is mastered
only by a minority.

Some people argue that a high-level notation which differs from the programming
notations might support identifying different levels of abstractions, as they are essential

4

for modeling. The AsmL and Spec# experiences do not confirm this, at least in the
beginning of the adoption process. Rather, it seems that if the notation is mastered after
some time, a misleading conceptualization takes place: abstraction is identified with
notation, which after all is only syntactic sugar (in the case of executable specification
languages). Someone who already masters the abstraction process will certainly benefit
from a more concise way to write things down. But for others, the notation can be just
a further roadblock in mastering the technology.

The conceptual distance between programming languages like C# and executable
specification languages like Spec# is shrinking steadily. The new forthcoming C# ver-
sion 3.0 will contain – in addition to the relatively declarative notational features C#
has already now – support for comprehension notations (as part of the LINQ project
[10]). When new language concepts are build into main-stream programming languages
like C# or Java, a campaign is kicked off. Manufactures provide early technology pre-
views, blogs and message boards are filled, books are written or newly edited, and so
on. After some time, the concepts which might have appeared strange to the average
programmer are familiar to many. Why trying to compete with this?

The lesson learned here is that it appears wiser not to mix evangelizing executable
specification languages with the very core of model-based testing concepts. This should
not mean that those notations do not have a place in MBT – they are indeed rather impor-
tant. It just means that users should not be forced to use a new notation and environment
in order to write their first models. Let them use existing programming notations and
their authoring environments if they like. The core of a model-based testing approach
and tool should be agnostic about this choice; it should be multi-paradigmatic.

Scaling up to Model-Based Development One of the promises of MBT is to be an en-
try door for model-based development. In course of applying MBT at Microsoft, several
test teams have attempted to incorporate program managers, domain experts, business
analysts, and the like into the modeling process. This has not been very successful so
far, though some exceptions exist.

One interesting observation is that executable specification languages like AsmL,
which provide a high-level pseudo-code style notation, are more attractive to those
stakeholders than programming-oriented notations like Spec#. AsmL had more users
authoring system models, compared to just models for test, whereas with the introduc-
tion of Spec# and Spec Explorer, these applications diminished. This is a strong argu-
ment to continue supporting high-level executable specification languages like AsmL
for MBT (just do not make them the only choice).

However, it seems that the main obstacle here is not the language but the model-
ing style. AsmL, Spec#, or any of the other MBT approaches used at Microsoft are
not attractive in the requirements phase since they are state-based instead of scenario-
based. In this way they represent a design by itself – even if on an higher-level of
abstraction. These high-level designs are well suited for analysis, but less well for un-
derstanding and communicating usage scenarios. Thus to incorporate stakeholders from
the requirements league, scenario-based modeling must be supported.

Scenarios are also heavily used inside of the test organizations themselves. For ex-
ample, test plans are commonly used at Microsoft to describe (in an informal way) what
usage scenarios of a feature should be tested. These test plans, as well as the scenarios

5

coming from the requirements phase, are intrinsically partial, omitting a lot of details,
in particular oracles, parameter assignments, and so on. It is the job of the test engineers
to “implement” these test plans.

The challenge for MBT to scale up to model-based development is the support of
both the state-based and the scenario-based paradigm in one approach, where it is pos-
sible to combine (compose) models coming from those different sources. For example,
a scenario might provide the control flow, and a state machine the oracle, and the com-
position of both produces an instantiated test suite.

How should scenario-based models be written down? In [11], a programmatic ap-
proach based on Spec# is suggested. While this approach is useful in some instances,
diagrammatic approaches like activity charts or interaction charts look more promising,
as far as stakeholders from the requirements phase should be involved. Because of the
wealth of literature available, it seems wise to orient toward UML 2.0 when support-
ing diagrammatic notations, instead of inventing ones own. But again, the choice of the
notation should not be part of the core of an MBT approach and tool.

Education and Documentation For more than a decade, proponents of formal meth-
ods claim that the major problem in adoption is education. In particular universities are
in charge of providing better preparation for those technologies. However, as long as
there are no practical applications and tools around, only a minority of students will
subscribe to this content.

Until then, the adoption problem must be solved in the field. To that end manage-
ment support is the essence. At Microsoft, the most successful applications of MBT
emerged in areas where the technology was pushed from management level by making
time resources available for the adoption phase. This has to go in combination with
introduction classes and seminars, and – most important – good documentation and
samples. See [4] for a discussion.

2.2 The Technology Problems

State Explosion MBT is known to easily generate a huge amount of tests from even
small models. But this turns out to be more a problem in practice than an advantage,
commonly referred to as the “state explosion problem”. In fact, this is the main concern
mentioned by users of MBT tools at Microsoft.

The state explosion problem has a number of facets. First, the time required to run a
test-suite is a significant cost factor. For example, at Microsoft, developers need to run
so-called “basic verification tests” (BVT) before they can submit sources to a shared
depot. The time required to run the BVT is important for development productivity. If
BVTs require hours to finish, developers tend to submit their changes in larger time
intervals, which raises problems with the integration of their changes with other devel-
opers changes.

This is also a reason why stochastic on-the-fly/online testing is not the solution for
the state explosion problem. It is not realistic to run millions of tests “over night” in
the standard development process. Indeed, this kind of testing has its proper use in test
deployments which run in test labs asynchronously with the development process and
in larger time intervals.

6

Test Selection The notion of test selection is generally used in the MBT community
to name the process of selecting some representative set of tests from the model. Thus
it should provide the tools to overcome the state explosion problem. Test selection tra-
ditionally covers graph traversal techniques which can be applied to models which are
boiled down to some finite state machine representation, as well as techniques for gen-
erating parameters of tested actions, like pairwise combination, partitioning, and so on.
In the context of models which have an unbounded state space, like Spec Explorer mod-
els, test selection can also include bounds, filters, state grouping, and other techniques
to prune the state space.

While these techniques are mostly automated and well understood, it is a regular
complain of MBT users at Microsoft that they have not enough fine-grained control
over the test selection process. For example, a typical user problem is to choose the
set of tests from the model where during some initialization phase an arbitrary path is
sufficient, in the operation phase paths should be chosen such that all transitions are
covered, and in the shutdown phase again an arbitrary path is good enough. MBT tools
need to support this kind of fine-grained control over the test selection process.

Some tools support defining so-called test purposes which are combined with the
model to slice some desired behavior, using special notations for that [12, 13]. Instead
of introducing a further notation for describing test purposes, it looks desirable to use
models to express test purposes and view the test selection problem with test purposes
as a model composition problem. Test purposes then fall together with test plans and
requirement scenarios, as discussed previously. Even more than for those applications,
models used as test purposes must allow to express partial behavior which omits many
details.

Model Analysis Another facet of the state explosion problem is the understanding of
what the model actually does. Since models represent human abstractions they can be
error-prone in missing some intended behaviors because of over-abstraction. Therefore,
they require “debugging”. Debugging a model for MBT effectively means exploring and
analyzing the state space it spans, both by humans and automatically.

The Spec Explorer tool invests a great lot of detail to support human analysis by its
viewing capabilities, which allow to visualize the state space directly or using projection
techniques. These capabilities are one major cornerstone for the success of the tool, and
need to be maintained and extended.

The Spec Explorer tool also supports model-checking with safety and liveness prop-
erties. However, this support is not very well developed in comparison to decent model-
checking tools, and temporal property checking is not available. Model checking is a
key feature that makes modeling more attractive for stakeholders outside of the test or-
ganization. Consequently, user requests for supporting model-checking in model-based
testing tools come from this side.

Test Management Test automation does not end with the generation of test cases. In
particular, if it comes to testing of distributed systems and/or testing of software on
heterogeneous hardware, test management is a significant effort of the overall process.

At Microsoft, a variety of test management tools are in use which allow distribution
of test jobs on matching hardware and execution of orchestrated tests inclusive of log-

7

ging for collecting the test results. Other tools support measuring coverage of test suites.
The integration of this set of tools with model-based testing tools is only marginally de-
veloped, and an improvement here is an often requested feature. For example, users
want end-to-end tracking of test case execution with the model source, test versioning,
automatic bug filing, generation of repros for failed test runs, and so on.

Visual Studio Team Suite 2005 added support for test management, as well as for
unit testing. It is desirable to leverage this support for an MBT solution integrated into
Visual Studio. However, experiences show that requirements and tools for test manage-
ment often differ from product unit to product unit. Thus a unified, single solution for
test management might not be adequate. Therefore, the best strategy for an MBT tool
seems be to have a well-defined abstraction layer over the test management support,
which allows deployment of different tools underneath – very similar like development
environments do today for source control and versioning. The definition of this layer is
an open problem.

3 A Multi-Paradigmatic Approach and Tool

Over the past year, Microsoft Research has developed a new tool for modeling and
model-based testing, called “Spec Explorer for Visual Studio” (for short SEVS), which
strikes out to meet some of the challenges learned from the experiences with older tool
generations. This tool provides a full integration of model-based testing and model-
checking in the Visual Studio environment on base of a multi-paradigmatic approach
to modeling as motivated in the previous section.

In its intended final stage of expansion, models can be written in SEVS using any
.NET language (including AsmL), supporting whatever authoring environment is avail-
able for a given language. The tool also provides the use of UML 2.0 behavior diagrams,
which are realized using Visual Studio’s domain specific language support [14]. Models
can be either state-based or scenario-based, in both textual and diagrammatic flavors.

A central feature of SEVS is the ability to compose models stemming from different
paradigms. For example, a scenario-based model (given in any notation) can be put in
parallel composition with a state-based model (given in any notation), producing the
combined behavior of both. As discussed in the previous section, the scenario model
could e.g. be a test plan which describes a control flow on a high abstraction level,
whereas the state-based model could represent the “implementation” of the omitted
details of the test plan (and other test plans in the same domain).

Besides parallel composition, the tool supports various other compositions (for a
complete description see [7]). SEVS is based on the semantic and implementation frame-
work of action machines [6]. The action machine framework supports the representation
of models with symbolic, “omitted” parts in states and actions, which gives rise to the
expressive power to define models on a higher level of abstraction and compose them
with lower-level models. A synopsis of the formal background of action machines is
given in Sect. 4.

This section provides a look-and-feel sample of the usage of SEVS. Namely, it
presents the well-known ATM (automatic teller machine) sample to illustrate the com-
bination of different paradigms. The sample uses UML 2.0 activity charts to describe

8

Fig. 2. ATM Use Case Diagram and the “Transactions” Use Case

the behavior of the ATM in a scenario-based style. A state-based C# model is used to
describe the sub-behavior of the “bank” actor in the overall model, which maintains a
data-base of customers and their accounts.

3.1 The ATM scenario model

Fig. 2 shows a screen shot of Visual Studio displaying the activity chart for one depicted
use case. The model is built from four use cases, which are hierarchicaly organized.
The top-level use case “Session” describes an interaction of a customer with the bank
via the ATM system, the use case “Transactions” describes an iteration of transactions
a customer can perform, and the use cases “Inquiry” and “Withdrawal” describe the
individual transaction types.

The activity diagram for the “Transactions” use case describes a loop where the
user can enter a transaction type (variable ttype), and in dependency of that type the
“Withdrawal” or the “Inquiry” use case is invoked, or processing further transactions is
canceled.

Such scenario descriptions might result from the requirements phase or from mod-
eling test plans. In course of concretizing them for an analysis or testing problem, the
so-far abstract nodes of the activity are mapped to action patterns. In the screen shot,
the tool tip underneath the activity “Input Transaction Type” shows such a mapping.
Namely, this activity is mapped to the action invocation console.InputTType(ttype),
where console is a variable representing the customer console of the system, which

9

has been declared elsewhere. This mapping has been performed manually based on an
underlying object model for the ATM, but it can be also performed automatically by
synthesizing actions from the activity node name and the variables in scope.

Variables in activity charts play an important role for the expressiveness of the ap-
proach, since they bound inputs and outputs from different activities together. All vari-
ables are purely declarative (logical variables). Flows can add constraints over those
variables. Variables may be scoped inside iterations, like here the ttype variable.

Action patterns might be more complex than just describing action invocations.
They impose regular expression constructs plus all the composition operators available
in the framework (see [7] for the action pattern language of SEVS). The implementation
of the activity chart shown in Fig. 2 is actually based on a translation into a single action
pattern which looks as follows:

([TransactionType ttype]
([. ttype == TransactionType.Withdrawal .] :

Console.InputTType(ttype); Withdrawal(console,bank,cinfo)
| [. ttype == TransactionType.Inquiry .] :

console.InputTType(ttype); Inquiry(console,bank,cinfo)
)
)*
([TransactionType ttype]
[. ttype == TransactionType.Cancel .] :
console.InputTType(ttype); console.DisplayCanceled()
)

Here, the notation [T x]pat introduces a variable scoped over action pattern pat,
and [.exp.]:pat stands for a constraint expressed by an embedded host language
expression exp (which can be C#); the other constructs come from regular expres-
sions. The action pattern language is the only “new” language which is introduced by
SEVS. However, users do not need to know its full range of possibilities to use it.

Given a scenario model as above, users can explore it under SEVS to visualize its
behavior. Exploration yields in a graph as shown in Fig. 3. This graph is similar to
the one shown in Sect. 2 for the old Spec Explorer tool and basically depicts an in-
terface automaton [9], where nodes of the graph represent states and transitions action
invocations. Round nodes are control points where input is provided to the system and
diamond nodes represent observation points where output is observed from the sys-
tem. Note how variable v5 in the left part of the graph (which represents the amount
a user want to withdraw) express causalities which go beyond pure control flow: the
same given amount in v2.InputAmount(v5) must also be withdrawn from the
bank (v4.?TryWithdrawal(v1,v5)). However, the model has also some partial-
ity: the value of variable v5 is not fixed, and the model does not contain any information
when the verification of a pin (state S2) or the withdrawal from the bank (state S10)
is actually successful; it only states what the successive behavior is supposed to be in
either of that cases.

3.2 Refining the Bank

The behavior generated from the ATM model, as shown in Fig. 3, is partial regarding
the behavior of the bank. While such a model can already be used for testing (after
providing some additional information for parameter domains and traversals, and then
applying test selection), it may miss some important parts: If the bank is “trivial”, that

10

Fig. 3. Exploration Graph Resulting from ATM Model

is always returns false on pin verification, no interesting tests are performed. Making
the bank non-trivial can be either achieved in the manual setup for the test or can be
modeled as well.

Fig. 4 gives a state-based model of the bank in C#. The model introduces four
actions: In addition to VerifyPIN and TryWithdrawal, which already appeared
in the ATM scenario model, a constructor for the bank and an action SetCustomer is
introduced which allows to add a customer with a given id, pin, and initial balance to the
bank. The model uses library support to express pre-conditions (enabling conditions) of
actions. Contracts.Requires(!pins.Contains(id)), for example, ensures
that the action is only enabled if a customer with the given id is not yet added to the
bank.

This model could be explored, analyzed and converted to a test suite by itself. Ob-
viously, it would suffer from the problem of state explosion, since its state space is
unbounded. In order to test the bank standalone, one could provide a scenario which
prunes the behavior. However, the focus here is on combining it with the ATM model
given before to not only prune the model, but also yield a composed model which is
richer than each individual model.

A small piece of the action pattern language can be used for this purpose (in its
intended final stage of expansion, SEVS will provide UI abstractions for defining such
compositions). Let BankModel describe the model of the bank, and Session the
model of the ATM, then the composition can be defined as follows:

(new Bank();_.AddCustomer(1,1,10);Session()) |?| Bank()

Here a scenario is constructed which creates a new bank, adds one customer, and then
runs the Session scenario; this scenario is composed in parallel with the bank model

11

class Bank {
MapContainer<int,int> pins = new MapContainer<int,int>();
MapContainer<int,int> balances = new MapContainer<int,int>();
Bank(){

pins = new MapContainer<int,int>();
balances = new MapContainer<int,int>();

}
void AddCustomer(int id, int pin, int balance){
Contracts.Requires(!pins.Contains(id));
pins[id] = pin; balances[id] = balance;

}
bool VerifyPIN(int id, int pin){

return pins.Contains(id) && pins[id] == pin;
}
bool TryWithdrawal(int id, int amount){
Contracts.Requires(balances.Contains(id));
if (balances[id] >= amount){

balances[id] -= amount;
return true;

} else
return false;

}
}

Fig. 4. Model of the Bank in C#

itself, where the |?| composition enforces synchronization of actions common to both
operands, and allows interleaving of other actions. Note that since there is only one bank
object ever created in this construction, an assignment to the bank receiver parameter
can be left open, since there are no choices.

Fig. 5 shows the result of exploring the given composition. The parameter for
InputAmount was fixed to 10 (in practice, one could use a larger domain, but the
result would be harder to understand for the purpose of this paper). With an additional
balance of 10 and a withdrawal amount of 10, there are two states in the composed
model from which the customer can make transactions: in state S6 she has 10 dollars
on the account, whereas in state S16, she has zero dollars on the account.

3.3 What else?

The ATM sample showed only a fragment of the possibilities of the new tool. For ex-
ample, the ATM scenario model could have been directly given in the action pattern
language or defined programmatically. Fig. 6 gives an idea on how a programmed sce-
nario looks like in AsmL (C# could have been used here as well). The SEVS imple-
mentation allows to create symbolic values in .NET programs. It is able to abstract the
calls to actions over which a scenario program is defined. In other words, the action
InputTType here is not really executed; instead, it will create a state transition in the
generated behavior which is labeled with the action and its parameters. If an action is
non-void the result will be represented by a free symbolic value.

In its final stage of expansion, SEVS will also allow to represent state-based models
using diagrams, namely, by supporting Statecharts.

Other features which have been taken for granted here without deeper explanation
are the possibility to explore symbolic state spaces, the traversal techniques and the
parameter selection techniques, and, moreover, the possibility to run tests on-the-fly
(before traversal) or to persist test suites as data or programs (after traversal).

12

Fig. 5. Exploration Graph Resulting from ATM Model in Composition with Bank Model

One application of SEVS which has not been shown as well is model-checking of
temporal properties. This is supported by exploration of the parallel composition of
anti-models – models whose behavior is unwanted – with regular models. If the result
of this exploration is non-empty, it represents the “counter examples”. Anti-models can
be directly written down by a user – in the form of anti-scenarios, for example – or
generated from temporal formulas.

4 Foundations: Action Machines

This section provides to the interested reader a sketch of action machines, the underly-
ing semantic and implementation framework of SEVS. For a complete description, see
[6].

Action machines combine concepts from abstract state machines, finite automata,
and labeled transition systems, and as such they constitute a novel hybrid. Their con-
struction is motivated by the practical need to express data as well as control state,
transitions which are labeled with actions, symbolic data and actions, and compositions
of behavior, both in parallel and sequential style. In contrast to other approaches com-
bining state and control based formalisms, action machines support full sharing of data

13

Transactions()
var continue = true
step while continue

let ttype = Symbolic.Any<TransactionType>()
step

console.InputTType(ttype)
step

match ttype
Cancel : console.DisplayCanceled()

continue := false
Inquiry : Inquiry()
Withdrawal : Withdrawal()

Fig. 6. Scenario Program for the Transactions Use Case in AsmL

state in compositions, which is essential for the application in SEVS. The formalization
of action machines uses natural semantics [15] and is very close to the actual imple-
mentation. The implementation is based on the Exploring Runtime, a software-model
checker for .NET [16].

Terms, Constraints, and Actions An abstract universe of terms over a given signa-
ture, t ∈ T, is assumed. Terms capture values in the domain of the modeling and imple-
mentation languages, constraints, as well as action labels. Terms also contain (logical)
variables, V ⊆ T.

The class of terms which represent constraints is C ⊆ T. The actual structure of
constraints does not matter. However, it is assumed that C contains at least the tautology
true, equivalences between terms (denoted as t1 ≡ t2), and is closed under conjunction
(c1 ∧ c2).

Terms have an interpretation in a mathematical value domain, D, which is described
by a function ξT ∈ (V → D) × T → D. Given a value assignment to variable terms,
the interpretation function delivers the value of the term in D. For constraint terms, the
truth value in the interpretation image is denoted as trueD.

The further explicit structure of terms does not matter here. However, to aid in-
tuition, and for use in examples, the structure of terms that represent action labels
is described in an instance of the framework where actions stand for method invoca-
tions. m(t1, . . . , tn)/t denotes an action term representing a method invocation, where
m is a symbol identifying the invoked method, ti are input arguments, and t is the re-
turned value. The symbol m behaves for the term language like a free constructor (self-
interpreting function). Henceforth, two action labels are equivalent exactly when the
action symbols are equal and the input and output terms are equivalent.

During the rest of this section an oracle for renaming of variables in terms is used:
rename(t) denotes the term t after renaming all variables to be distinct from other vari-
ables in use.

Environments An environment, e ∈ E, is a representation of a (partial) global data
state. Let L be a countable set of locations (global state variables). An environment is
syntactically represented by a pair (α, c), where α ∈ L 7→ T is a partial function from
locations to terms, and c ∈ C is a constraint. A model of an environment is represented
by a (total) function Γ ∈ L→ D; Γ is valid for e, denoted as Γ |= e, as follows:

Γ |= e ⇔ ∃ v : V→ D | ξT(v, ce) = trueD ∧ ∀ l ∈ dom(αe) · Γ (l) = ξT(v, αe(l))

14

Note that locations not used by the environment can have arbitrary assignments in the
model.

The interpretation of an environment is the set of models it has, denoted as ξE(e) =
{Γ | Γ |= e}. Environments are partially ordered by subsumption which directly maps
to inclusion of environment model sets: e1 w e2 ⇔ ξE(e1) ⊇ ξE(e2). Subsumption
e1 w e2 indicates that e1 is more general (contains less information) than e2. This can be
because e1 fixes less locations than e2, or because its constraint is weaker. Equivalence
on environments, as derived from the subsumption ordering, is denoted as e1 ≡ e2, and
coincides with model set equality.

With the ordering v=w−1, environments build a complete lattice [17] with meet
(least upper bound) e1 t e2 = ξE(e1) ∪ ξE(e2), join (greatest lower bound) e1 u e2 =
ξE(e1)∩ ξE(e2), and top and a bottom elements >E and ⊥E, where >E = L→D is the
set of all environment interpretations and ⊥E = ∅.

In the construction of action machine transitions the transition label is stored in the
environment instead of representing it explicitly. This greatly simplifies the formaliza-
tion of synchronization in composition, which is performed both on target environments
and labels. Let ν ∈ L denote a distinguished “scratch” location used for storing an ac-
tion label. e[t] denotes the environment where the term t is assigned to the location ν,
and all other locations are mapped to the assignment in e. Henceforth, dom(αe[t]) =
dom(αe) ∪ {ν}, αe[t](ν) = t and ∀ l ∈ dom(αe[t]) · l 6= ν ⇒ αe[t](l) = αe(l).

Computable Operations on Environments Environment operations like joining are not
computable in arbitrary term domains. The range of the computable part depends on
the power of the underlying decision procedures (that is, a constraint solver or theorem
prover), from which the formalization here intends to abstract.

To this end, is a computable approximation to joining is defined. One writes (e1 uc

e2) 7→ e3 to indicate that a join may result in an environment which has models. This
operator is a relation on syntactic environment representations and is related to the
model semantics as follows: (e1uc e2) 7→ e3 ⇒ e1ue2 ≡ e3, and (¬ ∃ e3 ·(e1uc e2) 7→
e3) ⇒ e1 u e2 ≡ ⊥E. The incompleteness of an underlying decision procedure is
reflected as follows: If an operational join proceeds, the resulting environment might be
infeasible (has no models), but it respects the model semantics. If an operational join
does not proceed, then also the model join is empty.

Similarly, a computable approximation to extending an environment by a constraint
is required. Let c be a constraint. One writes (e1 ∧c c) 7→ e2 to denote that e2 is
the extension of e1 by c. The constraint c might share variables with e1. Extension is
explained as follows: let e′2 be constructed as (αe1 , [[ce1 ∧ c]]), then (e1 ∧c c) 7→ e2 ⇒
e2 ≡ e′2, and ¬ ((e1 ∧c c) 7→ e2) ⇒ e′2 ≡ ⊥E.

Machines Let E denote an environment domain as described above. An action machine
is given as a tuple M = (C, A, I, T). C is a set of so-called control points, and A ⊆ C is
a set of accepting control points. I ⊆ E×E×C is the initialization transition relation,
and T ⊆ E× C × E× C is the (regular) transition relation.

A pair of an environment and a control point is called a (machine) state and de-
noted as e · c ∈ E × C. Initialization transitions from I relate an environment with an
initial machine state. One writes e1 −→M e2 · c2 for initialization transitions. Regular

15

U1

(t0, p0, u) ∈ R (t, p) = rename(t0, p0) (e[t] ∧c p) 7→ e′[t′] e′′[t′′] · c′ = u(e′[t′])

e · c t′′−→UI,R e′′ · c′

P1

e −→M1 e1 · c1 e −→M2 e2 · c2

(e1 uc e2) 7→ e′

e −→M1‖M2 e′ · (c1, c2)
P2

e · c1
t1−→M1 e1 · c′1 e · c2

t2−→M2 e2 · c′2
(e1[t1] uc e2[t2]) 7→ e′[t′]

e · (c1, c2)
t′−→M1‖M2 e′ · (c′1, c′2)

S1
e −→M1 e′ · c1

e −→M1; M2 e′ · c1
S2

e −→M1 e1 · c1 c1 ∈ AM1 e1 −→M2 e2 · c2

e −→M1; M2 e2 · c2

S3
e · c

t1−→M1 e′1 · c′1

e · c
t1−→M1; M2 e′1 · c′1

S4
e · c

t1−→M1 e′1 · c′1 c′1 ∈ AM1 e′1 −→M2 e′2 · c′2

e · c
t1−→M1; M2 e′2 · c′2

Fig. 7. Guarded Update, Parallel, and Sequential Composition Rules

transitions from T lead from states to states; the action label is contained in the special
location ν of the target environment. For readability, one writes e1 · c1

t−→M e2 · c2 for
regular transitions, which is syntactic sugar for (e1, c1, e2[t], c2) ∈ T .

Initialization transitions are allowed to refine the environment, but not to change
it. This is imposed by the following property which holds for every action machine M:
∀(e1 −→M e2 ·c2) ∈ I ·e1 w e2. Such a refinement could be, for example, the allocation
of a new location, or the strengthening of the environment constraint.

Instances of Action Machines Some instances of action machines are defined to illus-
trate the approach. The guarded-update machine shows the principal way how state-
based notations, like AsmL or C#, are mapped into action machines. The guarded-
update machine, UI,R = (C, A, I, T) is defined by a given initialization transition rela-
tion I and a set of rules R, (t, p, u) ∈ R, where t ∈ T is an action label term, p ∈ C is a
constraint, and u ∈ E→E×C is an update function which maps a given environment to
a new machine state. One has C = {�, ◦} and A = {◦}, that is the machine has exactly
two control states, one of which is accepting and the other is not. The transition relation
of the machine is defined by rule U1 in Fig. 7.

The synchronized parallel composition of two action machines results in a machine
that steps both machines simultaneously. A transition is only possible if the action labels
and the target environments can be joined. Let M1 ‖ M2 = (C, A, I, T) denote the
parallel machine, where C = CM1 × CM2 and A = AM1 × AM2 . Rule P1 describes
initialization transitions, while rule P2 describes regular transitions.

The sequential composition of two machines, M1; M2 = (C, A, I, T), exhibits the
behavior of M1, and when M1 is at an accepting control point, it also exhibits transitions
into M2. One has C = CM1] CM2 and A = AM2 . The regular transitions of M2 are
contained in T (TM2 ⊆ T). Rule S1 and rule S2 describe initialization transitions of
this machine; in the case that an initial control point of M1 is accepting the machine
offers also the initial control points of M2. Rule S3 and S4 describe regular transitions;

16

similar as with initialization, if an accepting control point is reached, the transition is
duplicated to also reach an initial control point of the second machine. Note that in [6]
a slightly more complex definition of sequential composition is provided which avoids
duplication of transitions. The definition given here is sufficient for illustration but less
practical.

The action machine framework provides many more composition operators, among
the most interesting to mention are alternating simulation, hiding, and hierarchical
composition. In order to formalize alternating simulation – the used testing confor-
mance notion – in the presence of an incomplete decision procedure, [6] distinguishes
between may and must transitions of action machines. May-transitions have been used
in this paper. They represent an over-approximation and are thus safe (no false posi-
tives) when providing inputs to a system-under-test. However, for checking outputs of
a system, must-transitions are required. The details can be found in [6].

Implementation The implementation of action machines is based on the Exploring
Runtime (XRT) [16], a software model-checker and virtual execution framework for
.NET which is based on byte code interpretation. XRT provides symbolic state repre-
sentation and exploration of full .NET code. Action machines are realized as a layer on
top of XRT. This layer takes environments as provided by XRT’s data state model and
adds the constructs of action machines as a set of interfaces. Transition relations are
described by lazy enumerations delivered by those interfaces. The interface abstraction
is very close to the semantic model.

The action machine coordination language, Cord [7], is a declarative intermediate
notation which realizes a textual frontend to action machines. Apart from providing ac-
tion patterns, as used before in this paper, and composition between machines, it allows
the definition of configurations for model-based testing and model-checking problems,
like parameter generators, exploration bounds, traversals, and so on.

5 Conclusion

Model-based testing promises a significant contribution in raising software testing to
a systematic engineering discipline, and providing an entry door to model-based de-
velopment. Its application for internal development at Microsoft for half a decade is
considered a success, though a break-through of the technology is not in sight. This pa-
per attempted to identify some of the obstacles for wider adoption of MBT at Microsoft,
which are typical at least for software development at enterprise level.

The conclusion drawn is that in order to address different concerns both inside the
testing organizations as well as in the broader scope of model-based development, a
model-based testing tool and approach should be multi-paradigmatic, supporting pro-
grammatic and diagrammatic notations, as well as state-based and scenario-based styles.
Programmatic notations with decent authoring support should be provided for test engi-
neers, best using mainstream programming languages, whereas diagrammatic, scenario-
based notations as well as executable specification languages should be provided for test
architects and stakeholders outside of the test organizations. Moreover, model-checking
should be seen as an integral part of model-based testing tools. The paper sketched a
new tool which is currently in development, “Spec Explorer for Visual Studio”, which

17

is designed from these goals, and proves that they are feasible. The semantic founda-
tion of this tool, action machines, has been described as well. Whether the approach of
this tool works in practice has to be validated once it has been rolled out to the internal
Microsoft user community.

The general message of the paper does not come as a surprise: Multi-paradigmatic
approaches are ubiquitous in model-based development, as for example reflected in
UML. However, model-based testing requires that there are full programmatic nota-
tions, and not only diagrammatic ones, and puts strong demands on the semantic and
tool-technical integration of the various behavioral notations, requiring them to be com-
posable for a common testing goal. This demand is indeed also a long term goal for
model-based development in general – yet the model-based testing application provides
very concrete requirements, the implementation of which promises immediate payoff.

Acknowledgments Many thanks go to my colleagues Colin Campbell, Yuri Gure-
vich, Lev Nachmanson, Kael Rowan, Wolfram Schulte, Nikolai Tillmann and Margus
Veanes, and the numerous enthusiastic users of MBT at Microsoft which have made
this work possible. Special thanks go to Nicolas Kicillof and the reviewers for reading
an early draft of this paper.

References

1. Harry Robinson. Finite state model-based testing on a shoestring. In STARWEST 99. avail-
able online.

2. Wolfgang Grieskamp, Yuri Gurevich, Wolfram Schulte, and Margus Veanes. Generating
finite state machines from abstract state machines. In ISSTA’02, volume 27 of Software
Engineering Notes, pages 112–122. ACM, 2002.

3. Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Tillmann,
and Margus Veanes. Towards a tool environment for model-based testing with AsmL. In
Petrenko and Ulrich, editors, Formal Approaches to Software Testing, FATES 2003, volume
2931 of LNCS, pages 264–280. Springer, 2003.

4. Keith Stobie. Model based testing in practice at microsoft. In Proceedings of the Work-
shop on Model Based Testing (MBT 2004), volume 111 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2004.

5. Colin Campbell, Wolfgang Grieskamp, Lev Nachmanson, Wolfram Schulte, Nikolai Till-
mann, and Margus Veanes. Model-based testing of object-oriented reactive systems with
Spec Explorer. Technical Report MSR-TR-2005-59, Microsoft Research, May 2005. to
appear in Formal Methods and Testing, LNCS, Springer.

6. Wolfgang Grieskamp, Nicolas Kicillof, and Nikolai Tillmann. Action machines: a frame-
work for encoding and composing partial behaviors. Technical Report MSR-TR-2006-11,
Microsoft Research, February 2006. to appear in International Journal of Software & Knowl-
edge Engineering.

7. Wolfgang Grieskamp and Nicolas Kicillof. A schema language for coordinating construction
and composition of partial behaviors. In Proceedings of the 28th International Conference on
Software Engineering & Co-Located Workshops – 5th International Workshop on Scenarios
and State Machines. ACM, May 2006.

8. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specification and
Validation Methods, pages 9–36. Oxford University Press, 1995.

18

9. Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the 8th
European Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE), pages 109–120. ACM, 2001.

10. Microsoft. The LINQ project. http://msdn.microsoft.com/data/ref/linq, 2006.
11. Wolfgang Grieskamp, Nikolai Tillmann, and Margus Veanes. Instrumenting scenarios in a

model-driven development environment. Information and Software Technology, 2004.
12. J.C. Fernandez, C. Jard, T. Jéron, and C. Viho. An experiment in automatic generation of

test suites for protocols with verification technology. Science of Computer Programming -
Special Issue on COST247, Verification and Validation Methods for Formal Descriptions,
29(1-2):123–146, 1997.

13. Jan Tretmans and Ed Brinksma. TorX: Automated model based testing. In 1st European
Conference on Model Driven Software Engineering, pages 31–43, Nuremberg, Germany,
December 2003.

14. Microsoft. Domain specific language tools. http://msdn.microsoft.com/vstudio/dsltools,
2005.

15. G. Kahn. Natural semantics. In Symposium on Theoretical Computer Science (STACS’97),
volume 247 of Lecture Notes in Computer Science, 1987.

16. Wolfgang Grieskamp, Nikolai Tillmann, and Wolfram Schulte. XRT - Exploring Runtime
for .NET - Architecture and Applications. In SoftMC 2005: Workshop on Software Model
Checking, Electronic Notes in Theoretical Computer Science, July 2005.

17. B.A. Davey and H.A. Priestly, editors. Introduction to Lattices and Order. Cambridge
University Press, 1990.

19

