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1 Introduction

At Microsoft Research, we have in recent years developed a tool environment for
model-based testing called Spec Explorer [3]. This environment allows users to model
object-oriented, reactive software, analyze the specification with model-checking tech-
niques and derive model-based tests. Feedback from Spec Explorer users at Microsoft
shows that the tool's approach is feasible; however, enhancements are needed. Users
have frequently requestedtational independena@nd support fomodel composition

While the Spec Explorer tool is based on a particular textual modeling notation
called Spec# that describes behavior as rules of an abstract state machine, users want
to be able to write models in a variety of notations and styles — they want to use textual
notations as well as diagrams, and they want to use both state-based and interaction-
based modeling. Moreover, users want to be able to combine models resulting from
these different notations by model composition. For example, one common usage is
the composition of a state machine or a model program with a scenario that describes
a test purpose to be extracted from that model. Other applications are the combination
of models of individual features, reflecting the different responsibilities in the process,
and merging a primary model with others that represent aspects, reflecting crosscutting
concerns. As an overall requirement, each individual model, as well as the composed
model, should be amenable to analysis and testing.

Based on this feedback, we started the development of the next version of our mod-
eling environment, which emphasizastation-agnostic model compositias a central
concept for organizing the modeling and model-analysis processes. In our new frame-
work, models can arise from a variety of description techniques, and may describe
full system behavior as well as partial aspects of it. Composition operators allow for
the combination of models, and capture concepts like synchronized and interleaved
parallel composition, substitution (similar to aspects in aspect-oriented programming),
alternating refinement (a notion of conformance) and a set of regular-expression-like
operators. Moreover, we have transformations on models for deriving test suites by un-
folding their behavior. These transformations are suitable for both online (on-the-fly)
and off-line testing.

The semantic foundation of this work is provideddmtion machine¢AM) [6, 5],

a uniform encoding of partial behaviors, which can capture a variety of description
techniques, including state-machine and scenario-oriented ones. Action machines are
essentially labeled transition systems (LTS) where labels represent actions in the behav-
ior, and states are complex structures, i.e. full data states. The power of this approach
comes from that both labels and states capdmtial, i.e. contain symbolic parts. In
compositions, the symbolic parts are unified and stepwise refined.

In this paper we introduce @RD, a language providing a frontend for action ma-
chines. @RD is intended as an intermediate language resulting from compilation
processes: typically, when mapping a modeling problem into the action machine frame-
work, compilation produces some .NET code plus an augmentirgpGcript to coor-
dinate and configure the code for modeling, checking and/or testing tasks. Though an
intermediate language,dRD is declarative enough to illustrate action machine con-
cepts, while its programming-language-like syntax is also human-writable.

This paper is organized as follows. We give a glance of the use@eaitdor model-



ing and model-based testing. We then give an overview of the language core, behavior
expressions, and a sketch of their semantics. We then discuss implementation aspects
and end with the related work and conclusions.

2 Basics: A Sample

We look at a sample to describe the basic concepts of action machinescam C
The publish-subscribalesign pattern is commonly used in object-oriented software
systems. In this pattern, various subscriber objects can register with a publisher object
to receive asynchronous noatification callbacks when information is published via the
publisher. Thus, this example includes both objects and infinite state space, as well as
reactive behavior.

Below is amodel programdescribing the behavior of the publish-subscribe pat-
tern, we have omitted for simplicity the explicit registration of a subscriber with the
publisher:

class Publisher {
Set<Subscriber> subscribers;
Publisher () {
subscribers = New Set<Subscriber>();
}
void Publish(object data) {
foreach (Subscriber sub in subscribers){
sub.mbox.Add (data) ;

}
}
¥
class subscriber {
Seg<object> mbox = new Seg<object> () ;
Subscriber (Publisher pub){
pub.subscribers.Add (this);
}
void Handle (Object data){
Assume.IsTrue (mbox.Count > 0);
Assume.IsTrue (mbox.Head.Equals(data));
mbox.RemoveAt (0) ;

}
}

Model programs are the primary technology used in the Spec Explorer model-based
testing tool and are related to abstract state machines (ASM) [8] and extended finite
state machines (EFSM). ASMs are given by a sajurded-update rulesRules are

fired in states in which the guard is true, producing new states via attached updates. In
contrast to EFSMs, ASMs are not necessarily finite, since the data state they work on
may be unbounded (though the core of the ASM theory maintains that each update step
grows the data state only by a bounded amount).



Model programs represent guarded update rules by methods. We call each method
representing a rule aaction This action is enabled (the guard is true) if all
Assume.IsTrue Statements in the method’s body succeed when the method is exe-
cuted in a given state with given parameters.

The C# code above by itself is just a normal program; in order to turn it into a model
program and eventually an action machine, some configuration information needs to be
supplied. This is one of the roles ofb&D. A CoRD script defined relative to the above
program looks as follows:

config PubSub {
action Publisher();
action void Publisher.Publish (object data);
action Subscriber (Publisher pub);
action observable void subscriber.Handle (object data);
domain Publisher = instancegPublisher);
domain Subscriber = instances Subscriber);
domain object = {"foo", "bar"};

}

machine PubSubMachine () : PubSub {
Program[PubSub]

}

This script does the following. First,@nfigurationpicks those methods to be consid-
ered actions of the described behavior: the constructors for publishers and subscribers,
plus all the methods in these classes. The configuration also speciféetiango be
used for action parameters. In this case, the domains are given on a per-type basis. The
domain of a type provides defaults for every action parameter with that type. Here, for
all occurrences of publisher and subscriber parameters, we intend to take as parameters
all instanceghat have been created for that type in the state where the action is invoked
(henceforth this parameter domain is a dynamically growing set), as expressed by the
instancesexpression. For the object type used as published data, a fixed set of string
values was chosen.

Then, the script declares an (actianpchinenamedpubSubMachine. This ma-
chine is defined by a special operaterpgram[PubSub], which turns a (model) pro-
gram into an AM via the configuration provided as a parameter. The program operator
will take all the actions in the given configuration and interpret them as guarded-update
rules, with parameter domains provided by the configuration.

With this script, the AM explorer in our tool camxplore the machine
PubSubMachine. A snippet of the exploration graph as displayed by the tool is shown
in Fig. 1, depicting one cycle of publishing for one publisher and two subscribers (the
exploration graph omits the creation phase). Circles represent so-cal#dl states
and diamonds arebservationstates. A control state is a state for which all outgoing
transitions are labeled with controllable actions, whereas an observation state is one
for which at least one outgoing transition is labeled with an observable action. The
default for all actions is controllable; however, we have declaredihale action as
observable in the vocabulapybsub.
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Figure 1:PubSub Snippet

Controllable actions represent inputs provided to a system, whereas observable ac-
tions are its outputs. The graph shows which inputs (method invocations from the out-
side) a confirming behavior needs to accept, and which outputs (observations of method
invocations happening in the system) should be accepted by the model. Thus, a system
conforms to this behavior snippet if it accepts the invocation of methedish in
statese, and then §7) one can observe the handling of the published data by one of
the subscribers followed by the handling by the other aise {9).

Obviously, the exploration graph is much bigger than the shown excerpt. In fact
it is infinite, as one can create an arbitrary number of instances of publishers and sub-
scribers. @RD supports various ways to prune the exploration. For example, one can
declareboundson the number of instances andnstraintsthat prune exploration at
certain states:

config BoundedPubSub : PubSub {
bound Publisher = 1; bound Subscriber = 2;
constraint {.
foreach (Subscriber sub in
State.Instances (typeof(Subscriber)))
Assume.IsTrue (sub.mbox.Count < 3);
-}
}
machine BoundedPubSubMachine () : BoundedPubSub {
Program[BoundedPubSub]

}

This extends configuratiorubsub by setting bounds on the number of publisher and
subscriber instances, andjbal constrainto filter out all states with more than two
messages in a subscriber's mailbox. The constraint is given in embedded C# code;
however, it makes use of a special library functi@irete. Instances provided by

our exploration runtime to obtain the set of living instances of a given type in the
current state (like theastancesconstruct in domain declarations). A constraint can call
Assume.IsTrue to prune exploration, okssert.IsTrue to flag assertion violations

and therefore express state invariants.



While the machin@oundedPubSubMachine has now a finite behavior, it still con-
tains redundancy, which might not be desired (e.g. in a model-based test setting). For
example, this machine’s behavior creates subscribers at arbitrary points, and explores
all interleavings of those creations with publishing and handling. In order to limit this
state explosion, GRD provides various means cbmposingnachines and construct-
ing them from scenario-style definitions:

machine TestPurpose () : BoundedPubSub {
Publisher p; Subscriber sl,s2;
new Publisher () /p;
new Subscriber (p) /sl; New Subscriber (p)/s2;

p.Publish(_);
_.Handle(_)*

}

machine RestrictedPubSub() : BoundedPubSub {
BoundedPubSubMachine () || TestPurpose()

}

The machingestPurpose describes a partial behavior in a regular-expressin style. In
general, the body of a machine definition is given dsehavior expressionBehav-

ior expressions use operators known from regular expressions, others borrowed from
Process Algebra, and some more. Their building blocks are references to other ma-
chines (like in the definitiorRestrictedPubSub), to actions(like in the definition

of TestPurpose), and special operators (likeogram [BoundedPubSub] used in the
definition of machin@oundedPubSubMachine).

References to actions can have arguments (variables, wild cards or primitive val-
ues); and behaviors can declare local variables,dikbove, or receive them as para-
meters. An action reference likeew publisher () /p in a behavior expression does
not mean that the body of the method is executed, it only describes the “event” of in-
voking the method. Consequently, if the action has a return value, the actual value
returned is unknown. Unknown values are represented symbolically. In the example,
the symbolic return value is bounded to the variable

We can explore machinesstPurpose by itself, yielding the exploration graph in
Fig. 2 (note the use of symbolic values like).

2v4 Handle(v5)

Subscriber(v0)/vl Subscriber(v0 )2 e 0. Publish(v3,

Figure 2:ExploringTestPurpose

The exploration of machin@estrictedPubSub yields the exploration graph
in Fig. 3. Here, the partial behavior described by machikr@tPurpose is
blended through the parallel composition operatpmwith the behavior described by
BoundedPubSubMachine (injecting parameter domains in the actual model semantics
contained in the model program).
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Figure 3:ExploringBoundedPubSub || TestPurpose

3 Going Deeper: Behaviors

Fig. 4 shows the syntax of behavior expressions @R6. The intuition behind most
constructs should be clear to the informed reader, though their semantical foundation
in the presence of partial behavior raises questions (whose full treatment is beyond the
scope of this paper):

In this section, we will discuss these constructs and sketch their meaning. We start
with a synopsis of the underlying semantic framework: action machines.

3.1 Semantics of Action Machines

Each @RD behavior denotes aaction machine The theory of action machines to-
gether with its implementation is developing. The interested reader is referred to an
early publication [6] and a forthcoming one [5].

Action machines are an instance of LTSs where labels represent some aativity (
tion) of the described artifact and states are rich data models. Something that makes
action machines unique is that both labels and states cpartial, i.e. contain sym-
bolic parts.

Action machines are based on some representatidarofsover a given signa-
ture and a set afymbols(logical variables). Over terms, a universeoofnstraintsis
available, which can be just conjuncts of equality constraints or full predicate calculus
formulas, depending on the instantiation. Constraints come with (not necessarily com-



Letabe action namesnmachines names.configuration namestranslation names,
extension operator namessubstitution names variable declarations (in C# syntax),
v variable named,literals, andstma statement in a .NET host language:

e = _|v]l expressions
b = [l][lnew|e]a(e,...,en)[/€] (negated) action reference
|  m(e,....en)[/d machine reference
| - any action
| .. any action repetition
|  bg; by concatenation
| b1? option
| bx zero-or-more repetition
|  bi+ one-or-more repetition
| b by alternative
|  b1& by permutation
| byl b2 synchronized parallel
| by]|| b2 interleaved parallel
| by|?| b2 sync/interleaved parallel
|  bi~by alternating simulation
|  cf/c2][b1] restriction
| [~]t[b] translation
| [#]s[b] substitution
|  {di;...; dn; b} block
|  {.stm}:b; head constraint
|  bi:{.stm} tail constraint
| oflcy,...,cql][(b1,...,bn)] extension operator

Figure 4:Syntax of Behaviors

plete) decision procedure which allows to check for satisfiability w.r.t. an underlying
model, and to check for subsumption (implication between constraints).

A stateof an action machine (and its LTS) is a pair ofemvironmentind acontrol
point An environment represents the global, potentially shared data state in which
AMs operate, and can be represented as an assignment of locations (program variables)
to terms and a constraint. Control points are specific to a particular kind of action
machine, whereas environments are uniform.

The labels of the transitions of action machines are terms, which in general can
represent arbitrary things, but in the instance used in this paper represeunéitief a
method being invoked, including the method name, its arguments, and its return value.

An action machine is given by a tupl€,A, I, T), whereC is a set of control points,

A C C is the subset of those control points which are acceptirg,an initialization
relation, andT is a transition relation. The states of the machine are denoted@s
whereo is an environment and is a control point. Initialization transitions —

¢’ -c e | initialize an action machine in a given environmenteading into an initial

machine state. Regular transitiomsc 1, ¢-¢ lead from a machine state to another,



and are labeled with an action tetmAn accepting control point indicates a legal end
state of a machine run.

A useful idiom for action machine compositions is transition synchronization.
Here, we unify the environments and actions labels, and combine the control points
in a way particular to the composition operator. As an example, consider transitions

G0 5 0y -¢; ando-c; 2, a5, - ¢, of two action machines, starting from the same
environmento. In a parallel, synchronized composition, these machines transition
together asy - (c1,C2) ity (o1M02) - (c},¢,), provided that the labels and target en-
vironments do unify (informally indicated by the use of theoperator). If labels or
environments do not unify, the synchronized transition is not possible.

Another general idiom appears in sequential concatenation of behaviors. Here,
we take the accepting states of the first machine (as determined by accepting control
points) to identify when to transition into the second machine. The second machine
is initialized in an environment resulting from the last transition of the first machine,
henceforth the need for initialization transitions.

The transition relation of composed action machines can be mostly computed in-
ductively based on the inductive definitions of the relations of the sub-machines — i.e.
we do not need to compute the entire transition relation of a machine to compose it
with another machine, which wouldn't be possible in the general case since behaviors
might be infinite.

In the sequel, when we talk of tibeeaningof a CORD behavior, we implicitly mean
the underlying action machine representing this behavior.

3.2 Signatures and Typing Conditions

CoRD behaviors have a typing discipline which is based on the notisigofatures
A signature is a set of actions, and is declared by the configuration construct we have
already introduced.

Every CorD behavior has amffered signatureand stands in the context of an
allowed signature The general typing rule is that the offered signature must be a sub-
signature of the allowed signature, where signature inclusion is based on action-set
inclusion.

A machine declaration associates a machine with a signature. Let
machinem(vy,...,vn)[/V] : ¢ {b} be a machine declaration. The signatureofand
also the allowed signature for the behauiis the signature of the configuratiaen

3.3 Primitive Behaviors

An action reference]l][new | e]a(ey,...,en)[/€], offers the singleton signature con-
taining justa if no negation ! is provided. When negated, it offers the whole allowed
signature of the behavior context (includiagsince in the presence of parameters to
action invocations a negation might not necessarily exclude all instanads dhe
meaning of the negated action reference is to deliver one transition per action in the
allowed signature, with the transition for actiarconstrained not to match the given
parameters, while parameters for all other actions are unbound.



A machine reference behavion(ey, .. .,e,)[/€], offers the signature of the referred
machine. Semantically, this can be seen as unfolding. Note that we do not support
recursive machine references.

The “any action” behavior,, offers the whole allowed signature. Its meaning is a
behavior which has a transition for each action in the demanded signature, with para-
meters unbound. The “any action repetition” behaviorjs just a shortcut forx.

3.4 Regular Expressions

CoRD provides a set of behavior operators based on regular expreskigis:is the
sequential concatenation of the given behavio?Pdsb where its initial states are made
acceptingb+ means repeatinigzero or more timed)+ means repeatinigone or more
times, ando;| by is alternative (eitheb; or by). The permutation operatdn & by, is
equivalent tdb; by|by; by. The offered signature of all these behaviors is the union of
the signatures of its sub-behaviors.

3.5 Parallel Compositions

CoRD provides three operators for parallel composition. Indtechronized parallel
compositionwritten asby ||by, all transitions of the composed behaviors must be syn-
chronized; transitions which can not synchronize are excluded. The offered signature
of this behavior is théntersectionof the signatures of the sub-behaviors.

In theinterleaved parallel compositigrwritten ashs |||by, all interleavings of the
transitions of the sub-behaviors are produced; the offered signature of this behavior is
theunionof the signatures of the sub-behaviors.

The synchronized/interleaved parallel compositiowritten asb;|? |by, is a mix-
ture of these both constructs. Actions in the intersection of the signatures of the sub-
behaviors must synchronize, the remaining actions are interleaved. The offered signa-
ture is again the union of the signatures of the sub-behaviors.

3.6 Alternating Simulation

Alternating simulation [1] is a powerful operator for describing behavior refinement,
and is related to the conceptioterface automat$4]. We used the notion informally
in Sec. 2 to describe conformance of behaviors in model-based testing.

Alternating simulation is written als;~b, in CORD. The typing conditions are as
follows. Recall that actions are either observable or controllable. The set of control-
lable actions in the offered signaturelmfmust be a subset of the controllable actions
in the offered signature df,, and vice-versa: the set of observable actions in the of-
fered signature db, must be a subset of the observable actions in the offered signature
b;. The resulting signature of the composition is the union of the controllable actions
of by and the observable actionsinf.

The meaning of alternating simulation as a composition operator is as follows. In
each state, every transitionloflabeled with a controllable action must be simulated by
a transition inby, and every transition ib, labeled with an observable action must be
simulated by a transition ib;. Simulation hereby means that the simulating machine



must make transition with a matching label, which is at least as partial as that of the
other machine, and results in an environment which is at least as partial as that of the
other machine (this condition is expressed by subsumption in our semantic framework).

If a simulation as described above is not possible, a distinct error state is produced
in the composed behavior. If a simulation is not demanded — for exatppf@as more
controllable transitions thaly — these non-demanded transitions are dropped in the
result.

Thus, besides providing a powerful notion of conformance, alternating simulation
actually reduces the composed sub-behaviors. In the Interface Automata literature[4],
this is motivated by the application whdsgrepresents an “environment” in which the
behaviorb, (an “interface”) is deployed. The composition cuts off everything fimm
not used by the “environment”, and in turn cuts off anything fieymot produced by
the “interface”.

3.7 Restriction

The behavior; [ /c,][b] hides transitions db not labeled with actions from the config-
urationcs; it behaves like a hiding operator in process algebra. The offered signature
of the composed behavior is the intersection of the offered signatureund the sig-
nature ofc;. If ¢y is given, the allowed signature for the behawawill be that of c,,
otherwise it will default to the allowed signature of this behavior’s context.

The meaning is that all transitions with actions frbmvhich are not in the signature
care contracted in the resulting behavior into a transition which is labeled with a visible

action. Consider a trac® N S N Sy tn, Sh. Supposs;, i < n, is constructed
from hidden actions, ant} from a visible action. In the resulting behavior, this trace

will be represented a® o, Sh.

The construction of the restriction behavior is the only operator we present in this
paper which can not be defined solely inductively. The reason is that, when produc-
ing the transitions of this behavior, we need to “look ahead” into the transitions of the
underlying behaviob to find the next transition with a visible action. In fact, this
lookahead might diverge, since there might be an infinite trace of transitions with hid-
den actions. The pragmatic solution our tool provides for this problem is to have a
bound for this lookahead which can be globally configured; if the bound is exceeded,
we produce an error state.

3.8 Translation

Translation allows to map a behavior into another one with a different signature, and
is written as[~]t[b], wheret is the name of dranslation declarationa particular
construct of ®RD discussed below. The modifier indicates whether the translation
t should be applied from left to right or from right to left. A translation declaration has
a “left” and a “right” signature; if~ is not given, then the left signature bbecomes
the allowed signature fdy, while the offered signature of the overall behavior is given
by the right signature df otherwise, it is the opposite way.

Below is a sample of a translation declaration:

10



// C#
classa { void foo(int x); }
classB { static void bar (B b, int x, int y); }
// CORD
config cA { action void A.foo(int x; }
config cB { action void B.bar (B b, int x, int y); }
translation Trans : CA <-> CB {
domain A <-> B;
action { & a; int x; int y;
a.foo(x) <-> B.bar(a,x,Vy)
{. Assume.IsTrue(y == x+1); .};

Translations are declared based on two configurations (laea@dCB) which de-
termine the left and right signature of the translation. They are defined by a two sets of
rewriting rules, one over type domains and one over actions.

A type domain rewriting rule translate values. This mapping can be calculated
automatically (as in this sample) or provided by embedded code (not shown in the
sample). The automatic translation of type domains roughly works as follows. Suppose
ais a value of typeA. The translation o& into the domain oB is represented by a
termtranss(a), where we considdranss as an uninterpreted function. Vice-versa, the
translation of & into A is represented byransa(b). These translation functions are
related by the axiorntransa(transs(x)) = x (and vice-versa), for a#.

Action translations map action labels from one signature into the other. Each action
rule is parameterized over a set of variables (in the sampley), which are typed in
the left signature of the translation. When using these variables on the right side of the
rule, these variables are mapped according to the type domain rules. Hencefarsh,
typea on the left side of the rule, and tymeon the right side.

The action rules are applied during translation of a behavior as follows. For each
transition label, every matching action rule is instantiated to produce a new label and a
new transition with that label, applying possible type domain translations as sketched
above, and evaluating constraints as imposed by application conditions in embedded
code. If for a given transition no rule matches, this transition will be dropped; therefore
translations can also filter behavior. If for a given transition more than one rule may
match, then one transition will be produced in the translation result for each matching
rule.

For example, consider a transitisn-— s;, wheret = a.foo(x), andx is a sym-
bolic integer value. Applying the above translatibnans, this transition is trans-

lated ass - s, wheret’ = B.bar(transz(a),x,y), and the difference betweesn
ands; is the addition of the constraigt= x+ 1 to the environment of,. Consider
now this transition is synchronized with a transition of another machine with label
B.bar(b,2,3). The synchronization will produce an environment with equivalences
transa(a) = b,x = 2,y = 3. With the axiomv'x e transz(transa(x)) = x, we can infer

the additional equivalendeanss(b) = a, allowing us to map back and forth between
the translated domains.

11



3.9 Head/Tail Constraints

Head/tail constraints allow to inject assumptions and assertions into behaviors, written
in embedded code (C# or other .NET languages).

A head constraint is given gsstm.}:b. The meaning is that in every initial state
of the behaviob, stmwill be executed. A tail constraint is given ag.stm.}. Here
the meaning is thatmwill be executed in every accepting state of behafsior

Embedded statements can access all local variables of the behavior, as well as
global data which is available in the context of the .NET (model) program augmented
by CoRrb. Typically, they use constructs likessume . IsTrue to add assumptions, and
Assert.IsTrue to add assertions, as we have already seen. In general, a path of transi-
tions which leading to a state in whiek sume . IsTrue (false) holds is pruned from
exploration, whereas a path which leads into a state in whiebrt . IsTrue (false)
is marked as an error path and cuts exploration.

A typical application of tail constraints is to express negative scenarios. Suppose
the following CorRD machine (using the publish-subscribe example from Sec. 2, where
the logic is assumed to be extended by explicit registration of subscribers):

machine NoHandleBeforeRegister () : PubSub {
Subscriber s; !_.Register(s) *;
s.Handle(_) : {. Assert.IsTrue(false) .}

This machine states that any path which leads into handling but does not contain
a registration of a given subscriber is an error. Using such a machine in synchronized
parallel composition with a model or program amounts precisely to the setting usually
found in model-checking of temporal properties.

3.10 Substitution

The purpose of substitution is to replace every occurrence of certain steps in a given
behavior with another whole behavior. The gluing is provided Ipatiernthat iden-

tifies those steps to be replaced. The application of a substitution to a behavior is
written as[#]s[b], wheres is the name of @ubstitution declarationa construct of
CoRrb discussed below. The presence of the # modifier indicates that the result of the
substitution must behave according t@@routine semanti¢sotherwise theaoutine
semanticsgs applied. This difference is also explained below.

This is an example of a substitution declaration iDFD:

config Concrete {
action FileOpenDialog();
action void FileOpenDialog.Show();
action string FileOpenDialog.GetSelectedPath();
action static File FileSystem.Open (String path);
}
machine FileOpenMachine () /File f : Concrete {
string p; FileOpenDialog o;

12



new FileOpenDialog()/o; o.Show();
o0.GetSelectedPath () /p; FileSystem.Open (p)/f;

config Abstract {
action File FileManager.OpenFile();
action void FileManager.WriteFile (File f,

string data);

action void FileManager.CloseFile (File f);

}

substitution Subs : Abstract -> Concrete {
File f; object d;
_.OpenFile()/f -> { FileOpenMachine()/f }
_.WriteFile(f, d) -> { f.Write(data) }
_.CloseFile(f) -> { f.Flush(); file.Close() }

}

When this substitution is applied to a behavior (that must adhere to the allowed sig-
natureAbstract) the result will have as its allowed signaturencrete and every
transition labeled with a term that matches the left-hand side of a rule (a line with a
->) will have been replaced with the corresponding right-hand-side behavior. Neces-
sary equality constraints are added to the environment in order to achieve the effect of
parameter passing from the original machine to the inserted behavior and back.

In the co-routine semantics, the right-hand-side behavior is not initialized each time
it is inserted, but execution continues from the (accepting) control point reached in the
previous insertion, thus maintaining its own internal state. In the proposed example, co-
routine semantics could be used to reflect the fact that theopenDialog preserves
the last opened locations between invocations.

Of the multiple applications of substitution we are particulary interested in two.
The first one ishierarchical model refinemenivhere steps in a (more abstract) model
are replaced with specific (more detailed) behaviors. For example, a model might
contain transitions labeleghitialization and Termination, which are later instantiated
with machines describing actual initialization and termination sequences. The second
application is Aspect Oriented Modeling. In this setting, the substitution is used as
the weaving mechanism, and the result is similar to thatrofind advicesn Aspect
Oriented Programming[10], where the original join point is replaced by a different
behavior provided by the aspect writer. Quantification is rich, allowing for predicates
over the environment and action label equivalences. We plan to further extend this
operation (through the use fggered scenariofl4, 15, 2]) in order to allow complete
behavior specifications to identify sets of gluing poirgsifitcuts.

3.11 Extension Operators

CoORD provides so-calledxtension operatorghich allow to plug-in new ways to con-
struct machine from external and additional composition operators. The syntax for the
application of an extension operatoioi$cy, . .., cn)][(b1,. . .,bn)]. Thec’s and theb’s

are any number of configurations/behaviors which are passed on to the operator.
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Extension operators are plugged into the system in a way which we leave open
here. Essentially, one can describe the arity of the operator (i.e. which number of
configurations and/or behaviors it takes), and attach code to this operator to compute
the offered signature during type checking and to realize the intended semantics during
runtime.

We have seen one extension operator already in use, nanelyam[PubSub]
in Sec. 2. This operator takes the configuratiomisub and uses it to construct a
guarded-update machine from the .NET program augmentec®pC

There are various other extension operators which come with the current imple-
mentation of @RD, among them in particular operators which expand a behavior into
a test-suite using various traversal techniques.

4 Implementation

The implementation of GRD and action machines is based on XRT [7] (Exploring
Runtime), a software model-checker and virtual execution framework for .NET. XRT
provides symbolic state representation and exploration of full .NET code. On top of
XRT, we have defined an abstraction for action machines via a small set of interfaces.
This abstraction takes environments as provided by XRT’s data state model, and adds
the concept of action machines and action machine states as interfaces. Relations for
transitions are described by enumerations delivered by the machine and state interfaces.
Each of the ©®RD behaviors we have discussed is represented by an according imple-
mentation of these interfaces. The compilation of behavior expressions is therefore
just a straightforward denotational mapping from the abstract syntax tree into an action
machine. As is common for compiler generators, embedded C# code is dealt with by
extraction into a separate C# document without deeper analysis; this document is then
compiled using the standard C# compiler and loaded into the running program using
reflection.

Technically, our current implementation makes one significant simplification re-
garding realization of synchronization. Recall, in the sketch of the semantics above,
the synchronization of transitios c; A, 07 -¢jando-c; 2, 0,-C,aso-(C1,Co) e
01M0y-(c},c,). Actually, instead of computing the join of two environments, we use
the environment resulting from the first transitioh as the starting environment for
the second transition. This is safe if the transitions do commute (in most of our appli-
cations they do, even in the presence of state sharing via the environment). While this
treatment is not by design, but a consequence of XRT limitations, which we intend to
overcome soon; it might turn out to be a useful optimization switch in future versions
of the implementation.

5 Related Work

In order to better understand the contributions ofRD, compared to existing research,
it is worth recalling some of its features that make it specially suitable for model-based
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specification and testing of running software artifacts. Firstly, it features a rich no-
tion of state and actions (with symbolic parts). Secondly, it serves as a coordination
language for both state-based and interaction-based description styles. Moreover prim-
itive behavior can be described from scratch ioRD but it can also be given in the

form of any running component, provided its behavior can be exposed as an action
machine. Thirdly, it features a neat distinction between controllable and observable
actions. Finally, it features a carefully crafted alternating simulation operator as a first
class citizen thus simplifying conformance testing tasks.

Thus, though Process-Algebraic and regular-expression-based mechanisms for
composing behavior are ubiquitous in the Computer Science literature (e.g., event cor-
relation and monitoring [12, 13, 16]; interaction-based scenario languages [14, 9],
etc.), features mentioned are not found in any single approach. For instance, languages
with the richest composition operators usually have poor action or state structures (e.g.,
[14, 13]) to actually predicate on. Event correlation approaches like GEM use a regular-
expression-like syntax to denote event patterns. UnlikRK; these languages are
either focused on monitoring distributed system or, as in the case of PAR, aimed at
writing event-pattern reactive programs that recognize temporal patterns of events and
respond by generating output notifications in publish-subscribe architectures.

High level Message Sequence Charts [9] structure pieces of behavior by means of
graphs. TMCS ([14]) extend MSCs with partial and conditional scenarios, together
with process-algebra-like operators to compose these building blocks. Conditional
scenarios in this setting are primarily meant to refine non-deterministic based speci-
fications by constraining and retaining desirable sequences. Several other extensions
have been proposed to MSCs in order to overcome specific deficits in the notation,
sometimes adding operators to combine diagrams in different ways. As an additional
example, [11] introduces a join operator to combine overlapping scenarios, which ad-
dresses one of the many forms of coordination that we intend to cover.

6 Conclusions

We have presenteddRD, a hovel language for coordination of construction and com-
position of partial behaviors. @RD is based upon and reflects the semantical and
implementation framework of action machines, and provides a powerful, language-
agnostic approach to model-checking, model-based testing, and other analysis activi-
ties based on models.

The combination of state-based and interaction-based descriptiortemical
level is naturally achieved in our framework. A key feature which makegiand
action machines unique and flexible is the systematic support for partial behavior de-
scriptions, encoded by symbolic states and transition labels, which captures many of
the usual technical concerns. Indeed, deenotsee our approach as a methodologi-
cal answer to the problem of combining state-based and interaction-based formalisms,
which is indicated by the fact that we considepRD as an intermediate language, not
a language for end-users. Rather, our approach provides a technical platform which
allows to conduct further experiments in this direction.

Immediate practical application of the work presented in this paper is apparent in
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its use for model-based testing. As explained in the introduction and in Sec. 2, MBT
users would like to combine state-based models, like model programs, with scenarios
in order to extract test purposes; they would like to compose models of individual
features; and they would like to relate various different notational styles. Our approach
offers direct technical answers to these demands. Our experiments indicate that, in
these application areas, the presence of partial states and labels does not introduce a
scalability problem.
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