
Challenges in Building a Portal for Sensors World-Wide

Suman Nath
Microsoft Research

sumann@microsoft.com

Jie Liu
Microsoft Research

liuj@microsoft.com

Feng Zhao
Microsoft Research

zhao@microsoft.com

September 2006
Microsoft Technical Report MSR-TR-2006-133

Abstract

SensorMap is a portal web site for real-time real-
world sensor data. SensorMap allows data owners
to easily make their data available on the map. The
platform also transparently provides mechanisms to
archive and index data, to process queries, to aggre-
gate and present results on a geo-centric web inter-
face based on Windows Live Local. In this position
paper, we describe the architecture of SensorMap,
key challenges in building such a portal, and current
status and experience.

1 Motivation

The commoditization of cheap, embedded, sensor-
equipped devices and the accelerated trend towards
ubiquitous Internet connectivity presents the new op-
portunity for creating a single web portal for a broad
spectrum of real-time information about the world
around us. Example services provided by such a por-
tal include: a Parking Space Finder service, for di-
recting drivers to available parking spots near their
destination; a Bus Alert service, for notifying a user
when to head to the bus stop; Waiting Time Moni-
tors, for reporting on the queuing delays at post of-
fices, food courts, etc.; a Lost and Found service, for
tracking down lost objects; and a Person Finder ser-
vice, for locating your colleagues or monitoring your
children playing in the neighborhood. Although each
of these services can be built independently, a com-
mon portal is more useful; for example, it would al-
low someone to find parking spots near a post office
with small waiting time. To realize this vision, we are
building a common platform where people can share
their data about the world in useful ways.

Geo-centric web services such as Windows Live
Local (http://local.live.com) and Google Maps

(http://maps.google.com) provide simple API to
visualize spatially and geographically related data
over a map interface. The desire to add useful ge-
ographic related information to a map interface has
resulted in a number of domain specific applications.
Examples of such applications overlay housing infor-
mation1, crime-rate statistics2, weather3, and so on
over maps.

However, these existing solutions, although useful,
have several drawbacks in achieving our vision of pub-
lishing and querying real-time sensor data over maps-
based web interfaces. First, publishing even a single
stream of data as a useful service is a nontrivial task.
Programmers need to understand complicated web
map API and to manage the acquisition, archiving,
indexing, and displaying of data. Second, existing
applications are mutually incompatible. One cannot
bring up a single map that shows both the housing
information and crime rates in an area. Third, ex-
isting solutions allows showing data only as points
(called PushPins) over the map; they do not provide
basic useful functionalities such as querying live sen-
sors based on location or aggregating results from a
number of sensors in a useful manner.

The SenseWeb project at Microsoft Research
aims to address these challenges by providing a re-
search web portal, called SensorMap [6] (http:
//atom.research.microsoft.com/sensormap) and
a set of tools for data owners to easily publish their
data and for users to make useful queries over the
live data sources. SensorMap allows data owners
to easily make their data available on the map. The
platform also transparently provides mechanisms to
archive and index data, to process queries, to aggre-
gate and present results on geo-centric web interfaces

1http://www.housingmaps.com
2http://www.chicagocrime.org/map/
3http://www.wunderground.com

1



Figure 1: SensorMap Architecture.

such as Windows Live Local, etc. We believe that
such a platform will encourage the community to pub-
lish more live data on web and to build useful services
on top of that data.

2 SensorMap Architecture

The SensorMap portal consists of the following four
components (Figure 1): the GeoDB indexes static
metadata about sensors so that it can be queried effi-
ciently, the DataHub web service provides an interface
for registration of new sensor and archiving of real-
time sensor data, the Aggregator clusters geographi-
cally near-by sensors and summarizes data from sen-
sor clusters in useful ways, and the SensorMap GUI
lets users query data sources and view results on the
map.

2.1 GeoDB

GeoDB is a database housing sensor metadata. The
metadata includes information such as publisher
name, sensor location, sensor name, sensor type, data
type, unit, sensor data access methods, and free text
descriptions. We envision that typical user queries
will be based on sensor types, descriptive keywords,
and geographic locations; e.g., they may ask for a list
of all cameras along a route or the average temper-
ature reported by all the thermometers inside a geo-
graphic region. To efficiently support these types of
queries, GeoDB indexes the metadata by using hier-
archical triangular mesh (HTM) indexing scheme [8]
which is particularly suitable for geographic queries.
The indexing is implemented as table-valued func-
tions in a SQL server.

2.2 DataHub

There are basically two ways to make real-time data
available on SensorMap. For sensors that provide
public web interfaces, they can register their URL
directly to GeoDB. These URLs are used by the Sen-
sorMap client to fetch real-time data. For sensors
with Internet connection but no URL (such as those
behind firewalls), the DataHub web service provides a
simple interface to cache sensor data. The sensors are
clients for the DataHub web service, and can send in
real-time data using standard web service calls. The
Aggregator or the SensorMap GUI directly retrieve
these cached data from DataHub rather than trying
to contact the sensors. Section 3.1 discusses more on
publishing sensor data to DataHub and SensorMap.

2.3 Aggregator

The aggregator creates icons representing sensor data
that can be mashed up with maps. Depending on the
sensor type, an aggregator can reside either on the
client side or on the server side. It accepts queries
from the client and redirects the geographic compo-
nents of the queries to the GeoDB. After obtaining
the metadata of a set of sensors that satisfy a client
query, it contacts the sensors for their real-time data.
It then aggregates the data accordingly (e.g., depend-
ing on the zoom level of the underlying map shown
to the client). By doing so, SenseWeb provides use-
ful summarization of data to the client; for example,
when a user is browsing at a city level, instead of
showing him hundreds of temperature sensors in the
city, SensorMap shows only one icon with aggregated
results. What aggregation is performed by the aggre-
gator depends on sensor types. For example, for data
collected from thermometers, average and standard
deviation of temperatures reported by thermometers
in a neighborhood are displayed.

2.4 SensorMap GUI

The GUI is based on Windows Live Local, and there-
fore shares its attractive features such as zooming,
panning, street maps, satellite images, etc. In ad-
dition, it lets end-users to pose queries on available
sensors. SensorMap currently supports three types of
queries: i) geographic queries specified by drawing ge-
ometric shapes (e.g., a region, a route) directly on the
map, ii) type queries specified by sensor types within
the viewport, and iii) free text queries specified by
keywords describing sensors. It overlays the results

2



Figure 2: SensorMap interface for parking sensors.

returned from the aggregator on Windows Live Local.
Note that the GeoDB and the Aggregator are trans-
parent to both the data publishers and users. The
interface also allows users to save views (geographi-
cal region, sensor type filters, etc.) on the client ma-
chine as cookies, which can be quickly retrieved later.
Figure 2 shows a snapshot of SensorMap showing
street parking data in part of San Francisco4.

3 Challenges

This section describes a few key challenges in build-
ing a web portal like SensorMap. These challenges
are primarily caused by the goal of collecting and pre-
senting continuously changing, diverse types of data,
which pushes the limits of current web technologies.
We describe our current working directions to address
them in future releases.

3.1 Data Publishing

Aggregating data from vastly different sensors and
services on a shared Web portal poses a few funda-
mental challenges. First, data sources may have very
different interfaces such as proprietary communica-
tion protocols, data presentation, and accessibility.
Networked sensors, even the Internet ready ones, are
typically behind firewalls due to management bound-
aries and security concerns. Web services are popular
ways to tunnel through firewalls using HTTP ports
and XML encoding.

4Street parking data is published by Streetline Networks,
Inc.

SensorMap uses web service interface for sensor
registration and data caching. Before publishing data
to SensorMap, a data publisher must first register
the sensor by providing its static description. This
meta data describes sensor name, sensing type, loca-
tion, data type, units, URL, as well as a free text de-
scription of the sensors, and is used in searching sen-
sors for a given user query. In SensorMap, we use
a Sensor Description Markup Language (SDML) to
encode these properties. Unlike SensorML [2], SDML
only describes sensor data interfaces rather than the
internal structure of sensors. Thus, it is much simpler
and lighter-weight than SensorML. However, SDML
syntax is similar to SensorML’s; we can incorporate
SensorML’s features into SDML as we need and Sen-
sorMap can incorporate SensorML when it matures.

To further help data publishers to use these
web services, we extended the MSRSense [9]
toolkit (can be downloaded from http://research.
microsoft.com/nec) with data publishing capabili-
ties. MSRSense is a collection of software tools that
allow users to collect, process, archive, and visualize
data from a sensor network. It contains: a recon-
figurable microserver execution environment, an ex-
tensible library implementing signal processing and
event detection algorithms, an extension to Excel
2003 (Senscel) to import, visualize and processing
sensor data, interface to SQL server to archive and
retrieve data, and a web-service interface to regis-
ter and publish sensor data to SensorMap. Us-
ing a SensorMap publishing component from the
MSRSense library, a sensor is automatically regis-
tered to the SensorMap DataHub, and all sen-
sor data received by the component is sent to the
DataHub for caching.

Secondly, the interoperability and extensibility of
different sensor types is challenging. For example,
weather data can be published by public web site like
weather.com as well as weather stations from hobby-
ists’ backyards. In order to meaningfully aggregate
data from multiple sources, we need common repre-
sentation of sensor types and units. As an open sen-
sor portal site, we must anticipate new sensor types
to be added. We cannot design SensorMap based
only on a fixed set of sensors.

We believe that using a standard ontology to pub-
lish data is a key requirement, since it enables au-
tomation of processing tasks within the portal. The
ontology has to be extensible such that data aggrega-
tion and presentation methods can be standardized
within SensorMap based on abstract types. For

3



example, we can define aggregation methods, such
as MIN, MAX, and AVERAGE, for all scalar sensor
data. When a new sensor type is added, as long as it
is indicated as a subtype of scalar, the same aggrega-
tion methods can apply.

Currently, there is no lack of such web ontol-
ogy frameworks (e.g., NASA SWEET 5 and IEEE
SUMO 6), however, the biggest problem is that they
are mutually incompatible. Moreover, most of these
standards are incomplete and have no useful imple-
mentation which explains why they are not used by
most data publishers. The community needs to work
towards addressing this problem.

3.2 Scalable Data Management

The large amount of data provided by the portal
poses new data management problems. Consider a
centralized solution where the portal itself collects
sensor data on demand, computes clusters at required
granularity, and aggregates data within each clus-
ter. This is different from traditional data warehouse
model where underlying data changes infrequently or
from traditional data stream model where data is con-
tinuously pushed and queries are long running. A
more appropriate model is to maintain an approx-
imate view of the database and to materialize the
portion of interest on demand. The materialization
is done by using unexpired cached data and by col-
lecting additional data from a carefully chosen subset
of sensors of the area of interest.

Several challenges arise in this model. First, query
planning, optimizations, and cache management need
to incorporate the cost of collecting data from the
sensors. Second, if the area of interest contains a
large number of sensors, a sample of them can be
used to compute aggregate result. Ideally, the sample
should be roughly uniform over the area of interest.
However, depending on query workload, cached data
may become spatially skewed. Thus, the sensors to
be probed must be selected carefully to complement
the cache content. Third, if a flat cache is used, sen-
sor data selected by a query (cached data + collected
data) need to be clustered and aggregated for each
query which can be very expensive. A more desir-
able solution is to cache the aggregated clusters and
results. This is tricky, however, since aggregated re-
sults are computed from multiple sensor data that

5NASA Semantic Web for Earth and Environmental Ter-
minology. http://sweet.jpl.nasa.gov/ontology/

6IEEEP1600.1 Suggested Upper Merged Ontology

may have different expiry times; without clever al-
gorithm an aggregated result may be invalid when
any of the input data expires, limiting the benefits
of cached aggregate results. SensorMap maintains
a variant of R-tree, called COLR-Tree, for efficient
spatio-temporal query processing. COLR-tree pro-
vides a natural way to index clusters and cache aggre-
gate results at different granularities. An aggregate
result is computed from partially aggregated data in
the cache and dynamically collected data from sen-
sors. COLR-Tree intelligently selects sensors to col-
lect live data from such that they and the unexpired
sensors on the cache spread uniformly over the area
of interest. An aggregate result at non-leaf nodes of
the COLR-tree is maintained in a data structure such
that on expiration of an input sensor data, only part
of the aggregate result expires. Thus, if two queries
partially overlap in space, the latter one can reuse
the results computed by the first one if they are is-
sued within a short period of time. Our implementa-
tion within SQL server and evaluation with real work-
load from Windows Live Local shows that it scales to
around 100 queries per second over around 400,000
sensors. In case our centralized solution does not
scale sufficiently, we will distribute the R-tree nodes
across multiple machines, similar to how IrisNet dis-
tributes an XML hierarchy over multiple organizing
agents [4].

Mobile clients such as cellphones browsing sensor
data pose bigger challenges since user queries need to
be evaluated in the context of users’ locations. Even
if such contexts can be extracted, context-specific
queries reduce opportunities for sharing data and in-
crease load of the backend.

3.3 Data Visualization

Variety of sensor data needs to be displayed on the
portal in meaningful ways. Current version of Sen-
sorMap shows sensor data as points—each sensor or
sensor-group is represented by an icon whose shape
denotes the sensor type and color denotes the sen-
sor value. For many sensor data, such simple dis-
play method is insufficient. For example, data from
a dense deployment of temperature sensors could be
better displayed as contour maps showing tempera-
ture gradients, archived data of a traffic sensor could
be displayed in a way that highlights temporal con-
gestion patterns, and so on.

Moreover, when the amount of data to be displayed
is large, data needs to be summarized in useful ways
so that users can easily extract the useful informa-

4



tion. Several geometric or statistical summarization
techniques can be used for this purpose. For example,
locations of a large number of sensors can be repre-
sented by an approximate convex hull [5]. Such sum-
marization can often be done in many different ways,
with all summaries being equally good. Such non-
uniqueness of summaries can be a problem in the con-
text of a portal when underlying data sets, queries,
or client viewports change. Imagine a user panning a
rectangular window over a region of the US and want-
ing to see summarized geometric information about
the contents of that window - for example the gas
prices and locations of gas stations. Depending on
how the summarization algorithm is implemented,
small motions or small changes in the window content
may cause the algorithm to choose a very different
summarization. Even though this new summariza-
tion may be equally good in terms of any error qual-
ity metric, the sudden change may be distracting—
especially if continuous motion of the window causes
high-frequency oscillations between two solutions, es-
pecially near the borders of the viewport. The situa-
tion can be worse if the underlying data is mobile.
Existing geometric summarization techniques over-
look this property and further research is required
to produce stable summaries that avoid the above
problems.

Addressing above problems is challenging in the
context of a web portal for several reasons. First, the
solutions need to be provided within the web service
framework rather than a stand alone application like
Google Earth. Second, one can not hope to provide
all possible useful visualization methods since many
of those are specific to data domains. Rather we need
to identify and provide a small set of simple abstrac-
tions that can be used to compose a variety of more
complex visualization. Section 3.5 discusses more on
this issue.

3.4 Sensor Discovery

Even though SensorMap provides tools to easily
register and publish sensor data, we cannot expect
all data publishers to proactively put their sensors
on SensorMap. Many useful sensors already ex-
ist on the Web; they are just not linked from Sen-
sorMap. For example, many departments of trans-
portation put traffic cameras on Web, USGS puts real
time stream gauge information on Web, and so on.
Just as existing Web portal such as Yahoo! automat-
ically crawls the Web to discover new web pages, a
sensor portal needs similar crawlers to automatically

discover and index live data sources on Web.
Although many existing sensors can be accessed

through their web pages, automatically discovering
them is challenging for a few reasons. First, these
pages typically do not have a well-defined structure
that could hint that a page might represent a sensor.
Second, unlike typical web pages, these sensor web
pages typically do not link to each other; they are
often isolated. Finally, even if a page representing
a sensor is found, extracting necessary metadata to
describe the sensor is nontrivial. One may require us-
ing natural language processing techniques to extract
such information.

Current version of SensorMap includes a crawler
to automatically discover and annotate traffic cam-
eras available on the Web. The crawler exploits the
facts that traffic camera web pages are often main-
tained at various departments of transportation web
sites, camera web pages often contain keywords like
“live,” “camera,” “webcam,” etc., and almost all traf-
fic cameras are made available as .jpg images. To an-
notate a camera with its location, the crawler extracts
keywords near the camera URL in its web page. The
keywords often describe locations such as “Camera
at the I-405 South exit 2.” Inputting these location
keywords into local search engines such as Windows
Live Local or Google Maps return latitudes and lon-
gitudes of places such as restaurants, shops etc. near
the location. The location of the camera is then ap-
proximated by removing outliers of these results and
taking the center of the remaining.

Note that the above crawler works in a relatively
narrow domain, which vastly simplifies the problem.
Writing a crawler for general sensors is still an open
problem. The problem becomes more complicated
when we consider mobile sensors such as cellphones
with cameras. Their locations need to be updated
consistently when they move, which is not trivial to
do in a scalable fashion.

3.5 Mash-up API

To realize the full potential of a portal like Sen-
sorMap, it should be easily extensible and mashed-
up with other applications and service. As example
scenarios, a user should be able visualize real time
traffic data from SensorMap and driving directions
from Google Maps together or set a trigger that sends
him a mail when the traffic condition is good. Pro-
viding a general mash up framework is tricky since it
may need to deal with the semantics of the underly-
ing data. In the second example above, the mash-up

5



code needs to parse and understand the traffic data
from SensorMap.

However, we believe that by providing modular and
composable rendering API, some part of the mash-up
process can be automated. Consider the first example
above—with Google Maps and Windows Live Local
API, it requires multiple JavaScript programs at the
client, each of which does the custom conversion of
its raw data (traffic, driving directions, etc.) to a
visual representation. But, automatic integration of
multiple JavaScript parsers is hard.

We propose pushing the rendering API all the way
out to the data publisher based on abstract types.
One possibility is to have data publishers generates
rendered representations of data, rather than raw
data. That is, instead of sending (for example) driv-
ing directions in proprietary format (as is done in
Google Map and Windows Live Local mash-ups), the
publisher (through a publishing toolkit) does the in-
terpretation of this data into one of a small num-
ber of common visual representations: points, lines,
regions, and images. A standard JavaScript at the
client can then automatically render these data types
from different data sources to compose more complex
visualization. The JavaScript can also handle func-
tionalities like panning, zooming, etc. The client can
have controls to add and delete feeds, change the or-
der of the layers, and so forth.

While the flexibility of this architecture adds some
cost to the provider, the benefit of the composabil-
ity will outweigh the cost. Conceptually, the client
program in this architecture is similar to an RSS ag-
gregator, except that visual map data are being ag-
gregated for display rather than textual headlines. In
some sense, the four fundamental data types (points,
lines, region, and image) represent a “narrow waist”
of this visual mash-up framework.

Note that since abstract and UI only data represen-
tations lose the semantics of sensing types, this inter-
face limits the aggregation mechanisms we can apply.
However, it can work as a complement to known-type
aggregation so that we can quickly incorporate new
kinds of sensors.

3.6 Other Challenges

Privacy and data ownership are big concerns for shar-
ing physical, real-time data. Sensor data may re-
veal other information about publishers and their sur-
roundings. A publisher may want to control how the
data are being used. Our approach to this is to have
an authentication framework and to allow a publisher

to decide the privacy level of his sensors: a sensor may
be viewed only by the publisher, or by a group he cre-
ates, or by everyone. However, this is not sufficient
in many cases. A much deeper social issue is the data
ownership. For example, just because one can set up
a web camera from his apartment window to look at
the restaurant across the street, he may not have the
right to publish the waiting time of that restaurant
on the web. These social concerns are beyond the
technical issues addressed in this paper, but it may
have profound implication of the success of web sites
like SensorMap.

4 Experience and Status

We have released the first version (V1) of Sen-
sorMap in July 2006 (http://atom.research.
microsoft.com/sensormap). In addition to the data
sources incorporated by us, a few groups (e.g., park-
ing spot availability in San Francisco by StreetLine
Networks Inc., soil data by John Hopkins University)
have volunteered to publish data on SensorMap.
During the course of design, implementation, and de-
ployment of this V1 version, we encountered a lot of
difficulties, some of which worth mentioning here.

We found that the web service framework, although
simple and easy to develop new applications, is still
very difficult to debug, especially when the appli-
cation depends on several other components. The
differences between the production environment out
side the firewall and the internal development envi-
ronment make the situation even worse. Most of the
time when we pushed SensorMap from our internal
development machine to the external production ma-
chine, we broke some dependencies and figuring out
the exact problem still remains an art to us. In fact,
our V1 release had fewer features than our internally
deployed version; mainly because porting them to the
external machine was tricky. We feel that more tools
are needed to easily deploy and debug web service.

In the beginning, we planned to host within Sen-
sorMap the data collected from all sensors. How-
ever, it posed a legal question: who will be responsi-
ble for the content of the data? For example, who
will be responsible if someone registers a webcam
and shows copyrighted or obscene images via Sen-
sorMap? After much discussion, we decided to move
to an architecture where the sensor data is owned by
the publishers and is downloaded directly from pub-
lisher’s site to the client. Moreover, a publishers need
to get an account from us and authenticate each time

6



he publishes data.
The architecture of downloading data from pub-

lisher to client introduces new security concerns.
In addition to predefined data types (like tempera-
ture, image, traffic, etc.), SensorMap also supports
HTML documents as sensor data. When a publisher
wants to publish data beyond our pre-specified data
types, he can simply make an HTML page contain-
ing his data. SensorMap displayed an icon for the
HTML data and showed HTML page as a pop up
window when user moused over the icon. We dis-
covered that this model was vulnerable, since mali-
cious publisher could put JavaScript code within the
HTML page which could compromise a system when
executed. To avoid this, we now only automatically
display the publisher name and the URL and require
users to click on the URL before we show the HTML
page in a new browser window. The effect is now
equivalent to browsing a new URL in a new browser
window.

5 Related Work

SensorMap combines the benefits of map-based
portals and query processing systems on wide-area
sensors. We here discuss the work related to these
two areas.

5.1 Map-based Portals

The current versions of Google Maps (and Google
Earth) and Windows Live Local provide a simple
API that allows developers to create custom maps
and draw their own data on top of standard maps
and satellite images. This has enabled an array
of applications that show static or semi-static data
on maps. Examples include real-time bus locator7,
movie finder 8, James Reserve data management sys-
tems [1], etc. As mentioned before, these applications
are mutually incompatible to each other; it is not pos-
sible, for example, to correlate the bus route to a the-
ater showing a movie. Moreover, Google Maps and
Windows Live Local API basically allows developer
to put a point (PushPin) over the map; it does not
provide useful functionalities such as query process-
ing, clustering, summarization, etc. over the data.
SensorMap is aimed to address these limitations.

7http://www.busmonster.com/
8http://www.25hoursaday.com/MovieFinder

5.2 Query Processing over Internet-
connected Sensors

Several projects including IrisNet [4], HourGlass [7],
Hi-Fi [3], etc. aim to provide infrastructure support
to process complex queries over distributed Internet-
connected sensors. The focus of these projects is com-
plimentary to that of SenseWeb; one can imagine re-
placing our current query processing component with
a distributed one. Based on our estimated workload
in near future, we feel that our current architecture
will perform reasonably well. Moreover, most dis-
tributed query processors require infrastructure sup-
port; e.g., they require controls over different ma-
chines in the infrastructure to execute query process-
ing components. SensorMap does not assume such
infrastructure at this point.

6 Conclusion

SenseWeb is an ongoing project with the goal of cre-
ating an online searchable portal of live data from the
physical world. The portal, called SensorMap, is
publicly available and allows data publishers to pub-
lish new data sources and users to query the collection
of data. We hope that simple interface and useful fea-
tures of SensorMap will encourage the community
to publish more data sources which can act as seeds
for world-wide sensor web.

References

[1] James reserve data management systems.
http://dms.jamesreserve.edu/.

[2] Sensor Model Language (SensorML),
by Open Geospatial Consortium Inc.
http://vast.nsstc.uah.edu/SensorML/.

[3] Cooper, O., Edakkunni, A., Franklin, M.,
Hong, W., Jeffery, S., Krishnamurthy, S.,
Reiss, F., Rizvi, S., and Wu, E. Hifi: A unified
architecture for high fan-in systems. In VLDB
(2004).

[4] Gibbons, P. B., Karp, B., Ke, Y., Nath,
S., and Seshan, S. Irisnet: An architecture for
world-wide sensor web. IEEE Pervasive Comput-
ing 2, 4 (2003).

[5] Hershberger, J., Shrivastava, N., and
Suri, S. Cluster hulls: A technique for main-

7



taining the shape of a point stream. In ICDE
(2006).

[6] Nath, S., Liu, J., Miller, J., Zhao, F., and
Santanche, A. Sensormap: A web site for sen-
sors world-wide. In Demo at ACM SenSys (2006).

[7] Shneidman, J., Pietzuch, P., Ledlie, J.,
Roussopoulos, M., Seltzer, M., and
Welsh, M. Hourglass: An infrastructure for con-
necting sensor networks and applications. Tech.
Rep. TR-21-04, Harvard University, 2004.

[8] Szalay, A., Gray, J., Fekete, G., Kun-
szt, P., Kukol, P., and Thakar, A. In-
dexing the sphere with the hierarchical triangular
mesh. Tech. Rep. MSR-TR-2005-123, Microsoft
Research, September 2005.

[9] Woo, A., Seth, S., Olson, T., Liu, J.,
and Zhao, F. A spreadsheet approach to pro-
gramming and managing sensor networks. In
IPSN/SPOTS (2006).

8


