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Abstract: Science is increasingly driven by data 

collected automatically from arrays of inexpensive 

sensors.  The collected data volumes require a different 

approach from the scientist’s current Excel spreadsheet 

storage and analysis model. Spreadsheets work well for 

small data sets; but scientists want high level summaries 

of their data for various statistical analyses without 

sacrificing the ability to drill down to every bit of the raw 

data. This article describes our prototype end-to-end 

system that is as simple to use as a spreadsheet, but that 

can scale to much larger data sets. The project (1) collects 

data using an array of wireless moisture and temperature 

sensors as a part of a soil ecosystem study, (2) inserts the 

raw data into an on-line database through a simple 

workflow system, (3) calibrates and grids the data as part 

of this workflow, (4) builds an OLAP data cube of the 

results, and (5) integrates the cube and base relational data 

with various simple graphical tools.  

1. Introduction  

Wireless sensor networks are revolutionizing soil ecology 

studies by providing measurements at temporal and 

spatial granularities previously impossible. In doing so, 

they generate streams of raw data that must undergo 

several processing steps before being suitable for analysis.  

The raw data must be converted into scientifically 

meaningful, calibrated measurements [Szalay06]. 

Interpolation techniques must be applied to handle 

missing data. Results must be further aggregated and 

gridded to support typical analytic queries and reports.  

Both the raw and processed data must be retained to track 

provenance and to assemble new aggregated or 

recalibrated result data sets.  Finally, the requirements for 

data visualization and analyses of trends and correlations 

are most easily satisfied by using multidimensional 

databases (data cubes) and associated query tools.   

In 2005 we built and deployed LifeUnderYourFeet  

[LUYF], a soil ecology sensor network at an urban forest 

in Baltimore as a first step towards realizing this vision. 

The unique aspects of Life Under Your Feet are: (i) 

Unlike previous wireless sensor networks all the 

measurements are saved on each mote's local flash 

memory and periodically retrieved using a reliable 

transfer protocol. (ii) Non-trivial calibration techniques 

translate raw sensor measurements to science quality data. 

(iii) Both raw and calibrated measurements are stored in a 

relational database that is accessible via the Internet, 

providing reports and ad hoc access to the collected data 

through graphical and Web Services interfaces.  (iv)  

Cleansed, calibrated data is made available in OLAP data 

cubes supporting easy visualization of historical measurement 

trends, outliers and correlations, as well as analysis of 

arbitrary ‘slices’ of collected data.  The cube renders data 

along what-when-where dimensions at multiple granularities.   

This is a first step in the arduous process of transforming raw 

measurements into scientifically important results. However, 

it promises to improve ecology and ecologists' productivity – 

and we believe it has implications for other disciplines that 

collect sensor data.  

2. Soil Ecology 

Soil is the most spatially complex stratum of a terrestrial 

ecosystem. Soil harbors an enormous variety of plants, 

microorganisms, invertebrates and vertebrates. These 

organisms are not passive inhabitants; their movement and 

feeding activities significantly influence soil’s physical and 

chemical properties.  The soil biota are active agents of soil 

formation in the short and long term. At the same time, soil is 

an important water reservoir in terrestrial ecosystems and, 

thus, an important component for hydrology models. All 

these factors play fundamental roles in Earth’s life support 

system.  But, we poorly understand their interactions because 

of the enormous diversity of these organisms, and the 

complex ways they interact with their environment. 

Any field study of soil biota includes information on weather, 

soil temperature, moisture, and other physical factors. These 

data are usually collected by a technician visiting the field 

site once a week, month, or season and taking a few 

measurements that are subsequently averaged. These 

techniques are labor-intensive and do not capture spatial and 

temporal variation at scales meaningful to understand the 

dynamics of for soil biota. More frequent visits to a site might 

disturb the habitat and distort the results. Some sites are not 

easily accessible, e.g. monitoring wetland soils can be 

challenging, and some site visits involve property issues.  

Clearly, using in-situ sensors that can report results 

continuously and without visiting the site would be a huge 

productivity gain for ecologists. Such sensors could give 

them more data without perturbing the site after the   

installation. But, until recently, continuous-monitoring data 

loggers were prohibitively expensive.  That is about to 

change. Inexpensive sensors will generate much larger data 
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sets; so ecologist’s data management strategies must be 

redesigned. 

3. System Architecture 

Figure 1 depicts the overall architecture of the system we 

developed and deployed during the fall of 2005 in an 

urban forest adjacent to the Homewood campus of the 

Johns Hopkins University [Musǎloiu-E.2006]. Each of the 

deployed motes measures soil moisture and temperature. 

The measurements are stored on the motes’ local flash 

memory and periodically retrieved via a wireless sensor 

gateway and inserted into a SQL database.  The data are 

then calibrated using sensor-specific calibration tables and   

cross-correlated with data from the weather service and 

from other sensors. The database acts both as a repository 

for collected data and also drives the derivation of Level 1 

and Level 2 data products. Data analysis and visualization 

tools use the database and provide access to the data 

through SQL-query and Web Services interfaces. 

4. Database Design 

The database design (Figure 2), follows naturally from the 

experiment design and the sensor system. Each entry in 

the Site table describes a geographic region with a 

distinct character (e.g., urban woodland or wetland).  

Each site is partitioned into Patches. Each patch is a 

coherent deployment area containing Motes.  A particular 

mote has an array of Sensors that report environmental 

measurements. Mote and sensor locations are precisely 

located relative to the reference coordinates of a patch. 

The Mote and Sensor types (metadata) are described in 

corresponding Type tables. Each mote has a record in the 

Motes table describing its model, deployment, and other 

metadata. Each Sensor table entry describes its type, 

position, calibration information, and error characteristics.  

The Event table records state changes of the experiment 

such as battery changes, maintenance, site visits, 

replacement of a sensor, sensor failure, etc. Global events 

are represented by pointing to the NULL patch or NULL Mote. 

The site configuration tables (Site, Patch, SiteMap) 

hardware configuration tables (Mote, Sensor, 

MoteType, SensorType), and sensor calibrations 

(DataConstants, RToSoilTemp) are loaded prior to data 

collection. As new motes or sensors are added, new records 

are added to those tables. When new types of mote or sensor 

are added, those types are added to the type tables. 

Measurements are recorded in the Measurement table which 

has a time-stamped entry containing each raw value reported 

by a mote.  The Measurement table is pivoted 

(sensor,time,value) to support heterogeneous sensor systems.   

Calibrated versions of the data and derived values are 

recorded in the Calibrated table  

4.1. Loading Raw Data 

The initial deployment collected 1.6M mote readings (soil 

moisture, soil temperature, ambient temperature, ambient 

light, and battery voltage), for a total of 6M measurements.  

Raw measurements arrive from the gateway as comma-

Figure 2. Sensor Network Database Schema. The raw 

measurements are converted to calibrated data that in turn 

is interpolated into data series with regular time steps.  

Some auxiliary tables are not shown. 

 
Figure 1: The overall data collection system architecture. 
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separated-list ASCII files. The loader performs the two-

step process common to data warehouse applications. (1) 

The data are first loaded into a quality-control (QC) table 

in which duplicate records and other erroneous data are 

removed. (2) Next, the quality-controlled data are copied 

into the Measurement table, with the processed flag 

set to 0.  

4.2 Deriving Calibrated Measurements 

Knowing and decreasing the sensor uncertainty requires a 

thorough calibration process before deployment ― testing 

both precision and accuracy.  Rather than attempting to do 

this in the motes, LUYF collects all the raw data and 

processes it at the host.  This allows much better 

conversion of raw data to scientific measurements.  The 

temperature sensors are easily calibrated; their output is a 

simple function of resistance. However, each moisture 

sensor requires a unique two-dimensional calibration 

function that relates resistance to both soil moisture and 

temperature. Each moisture sensor is calibrated 

individually by measuring resistance at nine points (three 

moisture contents each at three temperatures) and using 

these values to calculate individual coefficients to a 

published regression [Shock1998].   

The raw sensor data is converted to scientifically 

meaningful values by a multistage program pipeline run 

within the database as SQL stored procedures. These 

procedures are triggered by timers or by the arrival of new 

data.  The conversions apply to all Measurement values 

with processed=0.  Each conversion produces a 

calibrated measurement for the Measurement table, and 

sets the flag to processed=1.  

Calibrated data is saved in the Calibrated table, where 

each measurement from each sensor is stored in a separate 

row (i.e., the data is un-pivoted on (time, sensor, value, 

StdError)).  

The calibrated data is aggregated and gridded into the 

DataSeries table, which contains calibrated data values 

averaged over a predefined intervals, defined by the 

TimeStep table. This time-and-space gridded 

DataSeries representation is convenient for analysis. 

Each load and calibration step is recorded in the 

LoadHistory table, with the input filename, the 

timestamp of the loading, and its own unique 

loadVersion value, and some metadata information 

about what procedures were used, and what errors were 

seen. This LoadVersion value is also saved with every 

entry in the Measurement table and the version of the 

calibration software is recorded in each Calibrated 

table entry. This tracks data provenance (i.e., the origin of 

each data value). 

There are two ways to deal with missing data, either 

interpolate over them, or treat them as missing. We believe 

that both approaches are necessary, their applicability 

depends on the scientific context. In any case, in the database 

the processing history must be clearly recorded, so that we 

can always tell how the calibrated data was derived from the 

raw measurements. 

Background weather data from the Baltimore (BWI) airport is 

automatically harvested from wunderground.com and loaded 

into the WeatherInfo table. This data includes 

temperature, precipitation, humidity, pressure as well as 

weather events (rain, snow, thunderstorms, etc.). In the next 

version of the database the weather data will be treated as 

values from just other sensors. 

4.3 OLAP Cube for Data Analysis 

The calibrated and interpolated data, available in the 

relational database, can answer a variety of scientific 

questions exploring both the time and spatial dimensions for 

small soil ecosystems  such as: 

1. Look for unusual patterns and outliers such as a mote 

behaving differently or an unusual spike in 

measurements.  

2. Look for extreme events, e.g. rainstorms or people 

watering their lawns, and show data in time-after-event 

coordinates.  

3. Correlate measurements with external datasets (e.g., with 

weather data, the CO2 flux tower data, or runoff data).  

4. Notify the user in real-time if the data has unexpected 

values, indicating that sensors might be damaged and 

need to be checked or replaced.  

5. Visualize the habitat heterogeneity, preferentially in 

three dimensions integrated with maps (e.g. LIDAR 

maps, with vegetation data, animal density data).  

However, equally important to examining individual 

measurements and looking for unusual cases, ecologists want 

a high level view of the measured quantities. They want to 

analyze aggregations and functions of the sensor data, 

visualize trends, and cross-correlate them with other 

biological measurements.  

These requirements for slicing, aggregation and analysis can 

be summarized by general ad-hoc query requests such as: 

• Display the measurements (average, min, max, standard 

deviation) for a particular time (e.g., when animal 

samples are taken) or time interval, for one sensor, for a 

patch, for all sensors at a site, or for all sites. 

• Show the results as a function of depth, time, and 

category (land cover, age of vegetation, crop 

management type, upslope, downslope, etc.).  
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These later questions are ideally suited for a specialized 

database design typical of online analytical processing — 

a data cube that supports rollup and drill down across 

many dimensions [Gray1996].  The data cube and unified 

dimension model based on the relational database shown 

in Figure 3 follows fairly directly from the relational 

database design in Figure 2.  It is built and maintained 

using modern database tools.  

The cube provides access to all sensor measurements 

including air and soil temperature, soil water pressure and 

light flux averaged over 10-minute measurement 

intervals, in addition to daily averages, minima and 

maxima of weather data including precipitation, cloud 

cover and wind. 

The cube also defines calculations of average, min, max, 

median and standard deviation that can be applied to any 

type of sensor measurement over any selected spatio-

temporal range. Analysis tools querying the cube can 

display these aggregates easily and quickly, as well as 

apply richer computations such as correlations that are 

supported by the multidimensional query language MDX 

[MDX]. Users can aggregate and pivot on a variety of 

attributes: position on the hillside, depth in the soil, under 

the shade vs. in the open, etc.  

The cube organizes the measurements in the DataSeries 

table around three dimensions when-where-what:  Time 

(DateTimes), Location/Sensor (Sensor), and 

Measurement Type (MeasurementType) (see Figure 3.)   

Arrows connecting elements within the Sensor and Time 

dimensions document one-to-many relationships, and are 

essential to specify as attribute relationships.   

The cube dimensions are materialized by queries to tables 

or views in the underlying relational database. 

The DateTimes dimension includes a hierarchy 

providing natural aggregation levels for measurement data 

at the resolution of year, season, week, day, hour and 

minute (to the grain of 10-minute interval).  Not only can 

data be summarized to any of these levels (e.g. average 

temperature by week), but this summarized data can then 

also be easily grouped by recurring cyclic attributes such 

as hour-of-day and week-of-year. 

The Sensor dimension includes a geographic hierarchy 

permitting aggregation or slicing by site, patch, mote or 

individual sensor, as well as a variety of positional or 

device-specific attributes (patch coordinates, mote 

position, sensor manufacturer, etc.)  This dimension is 

represented as a view joining the relational database 

tables Sensor, Site, Patch and Node. 

The MeasurementType dimension is defined as a simple 

view displaying all combinations of sensor type and 

depth from the Sensor table, with a constructed label 

(e.g. “SoilTemperature10cm”.) 

To populate the actual measurement data associated with 

these dimensions, we first create a view, 

MeasurementFacts, to serve as the cube’s fact table.  This 

view joins the DataSeries, TimeStep and Sensor tables 

in the relational database on their natural keys, and presents 

four columns to serve as a data source for the cube’s Sensor 

measure group:  

• sensorID – the key to the sensor in DataSeries 

• time – the DateTime value, from the TimeStep table, 

joined to the DataSeries row on the common clock 

value.  This is the key to the DateTimes dimension. 

• measurementTypeKey – an integer identifier 

distinguishing between soil termperatures at various 

depths, surface temperature, moisture content, etc.  It is 

derived from the type in the joined Sensor table, and 

serves as the key to the MeasurementType dimension. 

• value – the measurement itself from DataSeries 

In defining the cube’s measures, we actually reference and 

store the value column 4 times, each with different 

AggregationFunctions: sum, min, max, and count, to speed 

common calculations.  Less common aggregates require 

MDX expressions; therefore, we use stored calculations to 

define the measures avg, median and standard deviation. 

 

The weather data available in the cube, sourced from a 

separate fact table, WeatherInfo, references the 

DateTimes and Sensor dimensions as well, although at a 

different time and space grain, since it is measured per-day 

and per-site respectively.  By sharing the same dimensions as 

the sensor measurements, relationships between weather and 

sensor information can be readily analyzed and visualized 

side-by-side .   We also chose to associate all weather 

measurements with a special, reserved value of 

site

patch

node

sensortype

depth

tenMinute

hour

day

week

year

make/model

day of year

wk. of year

hour of day

all

all

measurement

type

Sensor Dimension Measurement
Type

Dimension

Time Dimension

Measures (sum, count, min, 

max, median, std deviation)  

Figure 3.  Sensor data cube dimensional model. 
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measurementTypeKey to facilitate queries combining 

weather and sensors. 

Data visualization, trending and correlation analysis is 

most effective when measurement data is available for 

uniform measurement points.  While it is straightforward 

to handle large contiguous data gaps by eliminating a gap 

period from consideration, frequent gaps can interfere 

with calculations of daily or hourly averages.  To avoid 

these problems, we plan to use interpolation techniques to 

fill small holes in the data prior to populating the cubes.   

4.4 Data Access   

This OLAP data cube will be accessible via the Web and 

Web Services interface. We are experimenting with the 

built-in Reporting Services [RepSrv] to provide 

interactive charting and reports to any web browser. 

In addition, cube data is made available to Excel [Excel], 

Proclarity [Proclarity], and Tableau [Tableau] desktop 

data analysis tools that provide a graphical browsing 

interface to data cubes and interactive graphing and 

analysis.    

In addition, both the raw and calibrated relational data are 

available over the Web. Standard reports present the data 

in tabular and graphical form at common aggregation 

levels (tools/visual/timeseries.aspx). The reports are useful 

both for analyzing scientific data and for managing the 

sensor system. They present cross-tabulated values for 

either selected sensors across all nodes or a single sensor 

across selected motes. Another display shows the motes 

on a small map of the site with the sensor values shown in 

color (see sensorMap/MapView.aspx.)  

The time series data can also be displayed in a graphical 

format, using a .NET Web service. The Web service 

generates an image of the raw or calibrated data series 

with the option to overlay the background weather 

information: temperature, humidity, rainfall, etc. The web 

service uses a freely downloadable graphics library 

TeeChartLite [TeeChart]. 

As a way to allow arbitrary analysis, the Web and Web 

service interfaces allow SQL queries to be sent directly to 

the database (tools/search/sql.asp). This guru-interface 

has proven invaluable for scientists using the Sloan 

Digital Sky Survey [SDSS], and has already been very 

useful.  If there is some question you want to ask that is 

not built-in, this interface lets you ask that question. In 

order to enable the users to formulate their queries, we 

have designed a searchable schema browser help system 

(help/browser/browser.asp), which was built from using 

markup tags in the comments of the database schema, 

parsing the schema files to generate the metadata tables in 

the database, and database functions tied to ASP pages to 

render the hyperlinked documentation on the web. 

5. Results 

We deployed 10 motes into an urban forest environment 

nearby an academic building on the edge of the Homewood 

campus at Johns Hopkins University in September 2005.  The 

motes are configured as a slanted grid with motes 

approximately 2m apart.  A small stream runs through the 

middle of the grid; its depth depends on recent rain events. 

The motes are positioned along the landscape gradient and 

above the stream so that no mote is submerged. 

A wireless base station connected to a PC with Internet 

access resides in an office window facing the deployment.  

During a 147 day deployment, the sensors collected over 6M 

data points. A subset of the temperature and moisture data is 

shown on Figure 4. Temperature changes in the study site are 

in good agreement with the regional trend. An interesting 

comparison can be made between air temperature at the soil 

surface and soil temperature at 10cm depth. While surface 

temperature dropped below 0ºC several times, the soil itself 

was never frozen. This might be due to the vicinity of the 

stream, the insulating effect of the occasional snow cover, 

and heat generated by soil metabolic processes. Several soil 

invertebrate species are still active even a few degrees above 

0ºC and, thus, this information is helpful for the soil zoologist 

in designing a field sampling strategy. 

 

a

b

c

 
Figure 4. Temperature data recorded by three motes in 

January 2006 of (a) air at the surface, (b) at 10 cm soil 

depth (note the difference in the temperature scales), and 

(c) soil moisture superimposed with precipitation data 

(bars). Each point represents a 10-minute average.  All 

graphs are generated from the data cube using Proclarity. 
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Precipitation events triggered several cycles of quick 

wetting and slower drying. In the initial installation, 

saturated Watermark sensors were placed in the soil and 

the gaps were filled with slurry. We found that about a 

week was necessary for the sensor to equilibrate with its 

surrounding. Although the curves on Figure 4 reflect 

typical wetting and drying cycles, they are unique to our 

field site because the soil water characteristic response 

depends on soil type, primarily on texture and organic 

matter content. 

The data cube representation combined with visualization 

tools like Proclarity, Tableau, or Excel allow scientists to 

navigate the data, quickly generate charts, and 

interactively explore their data.  The visualization tools 

are also useful for operations – showing device status and 

anomalous readings.  We expect to have all these tools 

available to users over the Internet by the end of 2006, 

and we expect that they will become a standard way that 

ecologists interact with their data.  

 

6. Conclusions 

A wireless sensor network is only the first component in 

an end-to-end system that transforms raw measurements 

to scientifically significant data and results. This end-to-

end system includes calibration, interfaces with external 

data sources (e.g., weather data), databases, Web Services 

interfaces, analysis, and visualization tools. 

Our experiment was highly successful, and the usefulness 

of having both the database and the data cube is apparent 

after even a short period of usage. What is required to 

make it even more useful?  There is a lot of external data 

available, some of it is the result of several years of 

biological field experiments, measurements of the soil 

fauna. These data sets are all in a diverse set of Excel 

spreadsheets. In order to cross-correlate with the data 

cube, all these data needs to be harvested and brought into 

the database.  

There is quite detailed GIS information available about 

the research sites and about their hydrological properties, 

developed by the Baltimore Ecosystem Study project (an 

NSF-funded Long Term Ecological Research site). Our 

system needs to be able to interface to this GIS system. 

We have started this effort, and should have a working 

interface later in the year.  

We expect to deploy a 200 node system with 800 sensors 

in the Baltimore area later this year, where the generated 

data rate will be substantially higher. It would be 

impossible to handle that data volume without an end-to-

end system. 

We believe this data management, analysis and 

presentation approach can applies to a wide variety of 

data-intensive scientific projects.  Techniques including 

the preservation of raw data, calibration and summarization 

pipelines that populate an analysis-ready relational database, 

and use of OLAP and visualization tools for ad-hoc data 

exploration is relevant to most observational disciplines and 

experimental designs.  It represents a way for scientists to 

access their data. 
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