
ABSTRACT STATE MACHINES CAPTURE
PARALLEL ALGORITHMS:

CORRECTION AND EXTENSION

ANDREAS BLASS AND YURI GUREVICH

Abstract. We consider parallel algorithms working in sequen-
tial global time, like circuits or parallel random access machines.
Parallel abstract state machines (parallel ASMs) are such parallel
algorithms, and the parallel ASM thesis asserts that every parallel
algorithm is behaviorally equivalent to a parallel ASM. In an earlier
paper, we axiomatized parallel algorithms, proved the ASM thesis
and proved that every parallel ASM satisfies the axioms. It turned
out, however, that the latter proof was flawed. We are forced to
liberalize our axioms and allow on-the-fly creation of new parallel
components. We prove the parallel thesis for the new, larger class
of parallel algorithms, and we check that parallel ASMs satisfy the
new axioms.

Contents

1. Introduction 1
2. The Problems and How to Solve Them 3
3. Postulates 6
4. Abstract State Machines As Algorithms 25
5. Algorithms Are Abstract State Machines 33
Acknowledgment 35
References 36

1. Introduction

Sequential algorithms, like C programs or sequential abstract state
machines (sequential ASMs), work in small steps, that is steps of
bounded complexity. Parallel algorithms, like circuits or parallel ran-
dom access machines (PRAMs) or parallel ASMs, work in wide shallow
steps. The steps are wide in the sense that the algorithm has no fixed
bound on the number of components executing in parallel during a
single step. The steps are shallow in the sense that the algorithm has
a fixed bound, independent of the input or state, on the number of

1



2 ANDREAS BLASS AND YURI GUREVICH

actions executed sequentially during a step. The sequential ASM the-
sis asserts that every sequential algorithm is behaviorally equivalent
to a sequential ASM. In [4], the second author axiomatized sequential
algorithms by means of three convincing postulates, proved the the-
sis and checked that every sequential ASM satisfies the postulates. In
[1], we extended that line of investigation to the more challenging case
of parallel algorithms. We axiomatized parallel algorithms by means
of pretty convincing postulates. It was relatively easy to check that
the usual parallel models, like circuits or PRAMs or even alternating
Turing machines, satisfy the postulates. It was harder to prove the
parallel thesis, and — somewhat surprisingly — it was harder to prove
that parallel ASMs satisfy the postulates. It turned out that the lat-
ter proof was flawed. Analysis revealed the root of the problem: Our
postulates allowed dynamic creation of proclets (that is parallel com-
ponents) but only in the inter-step manner: the next state can have
more proclets than the previous one, but the set of proclets does not
change within a single step. That was not general enough. Circuits,
PRAMs, alternating Turing machines did not require on-the-fly pro-
clet creation but parallel ASMs did. Here we liberalize accordingly the
postulates of [1] and thus expand the notion of parallel algorithms. We
show that the main theorem, the ASM thesis for parallel algorithms [1,
Theorem 10.1], remains true for the new, larger class of parallel algo-
rithms. And we check that parallel ASMs satisfy the new postulates.
We use the occasion to correct a couple of other, smaller errors in [1].

In Section 2, we describe the problems with the examples in Sec-
tions 8.4 and 8.5 of [1], we show how all but one of the problems can
easily be corrected, and we sketch the idea needed to correct the one
remaining problem. In Section 3 we develop this idea in detail. This
involves modifying the postulates from [1] to allow proclets to create
(or activate) additional proclets on the fly. In Section 4, we show that
this modification solves the one remaining problem in [1, Section 8].
Finally, in Section 5, we show how to extend the proof of the ASM
thesis for parallel algorithms, [1, Theorem 10.1], to the wider class of
algorithms defined by our modified postulates.

To avoid excessive repetitions, we assume that the reader is ac-
quainted with the content of [1]. We occasionally give references to
particular passages in [1], and we occasionally give reminders about
particular points there, but we try to keep these references and re-
minders minimal.



PARALLEL THESIS: CORRECTION AND EXTENSION 3

2. The Problems and How to Solve Them

The flaws that have been found in [1] concern two of the examples in
Section 8 of that paper. In this section, we explain what these flaws are,
we show how to easily correct all but one of them within the framework
of [1], and we indicate why the one remaining flaw requires a liberal-
ization of the framework. Specifically, we first remove the one error
from Section 8.4 of [1] and then turn our attention to Section 8.5. The
latter section contains two errors. One requires some adjustment of the
algorithm proposed in [1], but the other is more serious, requiring the
liberalization of the framework to allow intra-step creation of proclets.

Formally, all of these problems in Section 8 of [1] have the same
underlying cause: the use of comprehension terms in the description
of algorithms. Recall that comprehension terms, expressions of the
form {{t(x) : x ∈ r : ϕ(x)}} denoting multisets, are part of the syntax of
parallel ASMs, as introduced in Section 9 of [1]. They are not, however,
terms in the ordinary sense of first-order logic, and that is the sense in
which “term” is used in the postulates of [1, Section 7]. The errors in
the examples in Sections 8.4 and 8.5 arise from treating comprehension
terms as though they were terms in the sense of the postulates.

Inspection of the postulates reveals that the notion of term is used
there once explicitly and once implicitly. The explicit use is in the
last clause of the Background Postulate (page 600), where Proclet is
required to be a variable-free term. The implicit use is in the Pro-
clets Postulate (pages 605–606) which requires the proclets to execute
a sequential algorithm with output. The definition of sequential algo-
rithms with output (page 582) incorporates the Bounded Exploration
Postulate from [4] (“Bounded Sequentiality” at this point in [1] is a
typo), which requires a bounded exploration witness consisting of fi-
nitely many terms. These sequential algorithms with output are equiv-
alent to sequential ASMs with Output rules, as explained on page 631
of [1]. These ASMs use ordinary terms (of the vocabulary described
in the Proclets Postulate), not comprehension terms, in their updates,
guards, and outputs, because the bounded exploration witness consists
of ordinary terms. With these observations in mind, it is easy to see
what is wrong in the examples of Sections 8.4 and 8.5.

We begin with Section 8.4, which dealt with first-order and fixed-
point logic. The treatment of first-order logic is correct, but the ex-
planation (on page 621) of a step of the induction leading to a fixed
point used a comprehension term in the update of temp(p). The con-
text there (page 621) is that a proclet p is to calculate an inflationary



4 ANDREAS BLASS AND YURI GUREVICH

fixed point IFPP,x̄(ϕ(P, x̄))(t̄) by calculating the successive iterates

Φ0 = ∅ and Φn+1 = Φn ∪ {ā : ϕ(Φn, ā)}
at successive steps of the algorithm under construction. Other proclets
are available to carry out the subsidiary calculations associated with
ϕ and its subformulas. The step from Φn to Φn+1, as described in
[1] involved a comprehension term, in which the proclet p converts its
mailbox (the multiset of results from the subsidiary computations using
Φn) into the desired Φn+1.

Fortunately, the comprehension term here becomes unnecessary if
we modify slightly the format in which p stores (as temp(p) in the
notation of [1]) the sets Φn and the activity of the subsidiary proclets
that compute the value of ϕ.

Instead of taking temp(p) to be the set Φn itself, let temp(p) be the
characteristic function of this set, regarded as a set of ordered pairs,
i.e.,

{〈ā, true〉 : ā ∈ Φn} ∪ {〈ā, false〉 : ā ∈ Mk − Φn},
where M is the base set of the structure in which the formula is to be
evaluated and where k is the arity of P .

Also, when a subsidiary proclet has computed the truth value v of ϕ
at certain arguments ā, using Φn as the interpretation of P , let it push
to p the pair 〈ā, v′〉 where v′ is the disjunction of v and the truth value
of Φn(ā).

Note that this v′ is the truth value of ā ∈ Φn+1, and so the ordered
pair 〈ā, v′〉 is one of the pairs that p should have in temp(p) at the next
step of the computation. Thus, the update to be performed by p is
simply to give temp(p) the value of myMail (provided this is different
from the previous value of temp(p)). No comprehension term is needed.

Technically, we should mention another modification in the work of
the subsidiary proclets for ϕ and its subformulas. These proclets use
the current value of Φn, which they pull from p. With the new format
for storing Φn in temp(p), the subsidiary proclets will, of course, have to
take this format into account in their computations. This modification
has no effect on the discussion in [1], because that discussion didn’t
include such fine details about the work of the subsidiary proclets.

We turn next to the first difficulty in Section 8.5, namely in the work
of a term-proclet 〈û, ā〉 where u is a comprehension term {{t(x) : x ∈
r : ϕ(x)}} and where ā is a list of values for the pseudo-free variables
of u. (In [1] we wrote t for what we now call u; the new notation
avoids confusion with t(x).) This term-proclet 〈û, ā〉 has the task of
computing the value of u when its pseudo-free variables are given the
values ā, and [1] contains a three-part recipe for how to do this. The



PARALLEL THESIS: CORRECTION AND EXTENSION 5

first two parts of the recipe are correct: Activate the proclet 〈r̂, ā〉,
which will provide a value for r, say b. Then activate, for each c ∈ b,

the proclets 〈t̂(x), ā_c〉 and 〈ϕ̂(x), ā_c〉, which will provide the values
of t(c) and ϕ(c). The error is in the final step, where the right t(c)’s,
namely those corresponding to c’s for which ϕ(c) = true, are picked
out, assembled into a set, and equipped with the correct multiplicities.
As it stands, this requires the use of comprehension terms, which are
unavailable to proclets.

The key idea for repairing the problem is to arrange for the pro-
clet 〈û, ā〉 to find the multiset it needs, the value of u, as its mailbox,
rather than trying to assemble it. Carrying out this idea will require
careful attention to what messages are sent to 〈û, ā〉 by other proclets.
The messages must be just the right t(c)’s, each with its right multi-
plicity. Arranging this will require some additional proclets and static
functions, to do some of the work that was previously hidden in a com-
prehension term, for example the work of picking out the right t(c)’s.
We postpone the implementation of this idea until Section 4, because
the details depend on the repair of the other error in Section 8.5, which
we discuss next.

The remaining, serious error is the definition of the “terms” MDA(p)
and MA(p) on pages 624–625 of [1]. (There is also an obvious typograph-
ical error in the definition of MDA which, as it stands, never mentions
MDA; the intent was to have MDA(〈Â, ā〉) in all six places where 〈Â, ā〉
occurs.) With this definition, MDA(p) and MA(p) are not really terms, in
the sense required by the postulates for algorithms, because they in-
volve comprehension terms. The intention behind the definitions of MDA
and MA was, as explained in [1], to provide a finite set that contains
all proclets that might be activated by the algorithm. There seems
to be no way to achieve this intention without using comprehension
terms. That is, terms in the correct, first-order sense do not enable us
to name, in advance of executing a particular step of the algorithm, a
set guaranteed to contain all proclets that might be needed during that
step. In other words, an appropriate set of proclets, for a particular
step in the computation, can be described only during the execution
of this step, not before the step begins. This is the motivation for the
following extension of the notion of algorithm.

Do not require the full set of proclets for any step to be given by
a term Proclet of the algorithm’s vocabulary. Instead, require some
subset, called primary proclets, to be given by such a term, PriProclet.
Allow primary proclets to activate (or create) new secondary proclets
during the step. Furthermore, allow secondary proclets to activate



6 ANDREAS BLASS AND YURI GUREVICH

further proclets (which we still call secondary, not tertiary), etc. All
the proclets, primary as well as secondary, participate in the activities
of proclets described in [1] — pushing and receiving messages, setting
up and pulling displays, and updating the state. But only the primary
proclets are specified as part of the algorithm’s state. The secondary
ones are temporary, losing their proclet status at the end of the step.
In the terminology of [1, Section 7], the notion of secondary proclet is
given by the ken, not the state.

In somewhat more detail, our conventions for the activation of sec-
ondary proclets are as follows. To activate new proclets, a proclet p,
primary or secondary, must mark for activation a finite subset s of the
state. The secondary proclets thereby activated are not, however, the
members of s but rather the ordered pairs 〈q, p〉 where q ∈ s. Thus, a
secondary proclet 〈q, p〉 “knows” its creator p in the sense that it can
refer to p by a term in its local state, namely the term second(me).

This liberalization of the notion of algorithm requires changes in
several of the postulates and definitions of [1]; the next section spells
these changes out.

3. Postulates

The purpose of this section is to modify the definition of algorithms
from [1] by allowing proclets to activate other proclets.

Remark 1. The terminology “activate a proclet” was already used in
[1], but with a different meaning than here.

In [1] each state of an algorithm determined a set of proclets. The
notion of “active” proclet was not part of the state but rather a conve-
nient and intuitive way for us to informally describe certain aspects of
a ken, and it could have different meanings in the context of different
algorithms. In particular, an inactive proclet was still a proclet and
could, despite the terminology, engage in certain basic activities, for
example pulling information to see whether it should become active.

In the present paper, each state of an algorithm will determine a set
of primary proclets. Activation produces additional, secondary pro-
clets, which would not be proclets and could not engage in any activi-
ties at all if they were not activated. Activation will be a formal notion,
an essential ingredient in our postulates, not merely a convenient ab-
breviation for certain aspects of kens.

The distinction between the two notions of activation may be clari-
fied by noting that the present notion (but not that in [1]) of activat-
ing a proclet could as well be called “procletizing an element of the
state”. �



PARALLEL THESIS: CORRECTION AND EXTENSION 7

In broad terms, our modification of the notion of parallel algorithm
is to allow any proclet p to mark for activation, during the course of
a step, some finite subset Act(p) of the state X. The effect of this
activation is that the elements 〈q, p〉 for q ∈ Act(p) become proclets in
their own right.

For this to make sense, a few observations are in order. First, as
in [1], we regard subsets of X as multisets of elements of X in which
all the multiplicities are 1. The Background Postulate of [1] ensures
(and will continue to ensure even after we modify it below) that finite
multisets of elements of a state X are themselves elements of X. In
particular, Act(p) is an element of X.

Second, what does it mean for p to “mark” a set? It means to assign
that set as the value of a certain dynamic, nullary function symbol
myAct in its local state. (This myAct is not part of the global state of the
whole algorithm but of the local state of the individual proclet.) This
is exactly like the way proclets produced their displays, Display(p),
by setting a value for myDisplay in [1]. We adopt the conventions that
the initial value of myAct, at the beginning of any step, is the empty
set and that, if a proclet assigns to myAct a value in X that is not a
set, then nothing is thereby activated.

Third, not all proclets can arise from this activation process; there
must be some proclets already available at the beginning of a step to
get the activation process started. The set of these primary proclets
is to be given by the value of a term PriProclet in the state. We
could require that there is always just one primary proclet; if more are
wanted, they could be activated by the primary one at the beginning
of the step. This theoretical simplification, however, seems to bring no
real benefit, and would impose a cost: As was shown in Sections 8.1–8.4
of [1], most known types of parallel algorithms do not require intra-step
activation of proclets. If we insisted on starting each step with only a
single proclet, we would be forced to include intra-step activation even
in algorithms that otherwise have no need for it.

After this broad outline of how we intend to modify the notion of
parallel algorithm from [1], we turn to the details of revising the pos-
tulates in [1, Section 7] to accommodate this picture of activation of
proclets.

The Sequential Time Postulate, which was taken unchanged from
[4] to [1], requires no changes here.

The Abstract State Postulate, also unchanged from [4] to [1],
could remain unchanged again, but we take this opportunity to incor-
porate a small improvement that was first pointed out in [2], namely



8 ANDREAS BLASS AND YURI GUREVICH

that the sets S(A) of states and I(A) of initial states must be non-
empty.

In the Background Postulate of [1], the last item required a
variable-free term Proclet naming, in each state, a finite set, also
called Proclet. Modify this by changing Proclet to PriProclet. This
change, though only notational at the current point in the postulates,
reflects the fact that only the set of primary proclets is given with the
state; secondary proclets are activated during the computation steps.
The notation Proclet will be used later to refer to the whole set of
proclets, primary and secondary.

Remark 2. As in [1], the Background Postulate ensures the availability
of (among other things) the operation AsSet, defined as taking any x
to the multiset that has the same members as x has but with multi-
plicity only 1. In [1], we used this operation only when the argument is
a multiset, so that it simply removes the multiplicities. In the present
paper, there will be an additional use of AsSet, one in which the ar-
gument need not be a multiset. If x is not a multiset, then it has no
members, and so the definition gives AsSet(x) = ∅. It follows that,
using AsSet and equality, we can test for sethood; x is a set if and only
if x = AsSet(x). �

In [1, Definition 7.10], a ken K of a state X was defined to consist
of X together with two functions MailboxK and DisplayK , such that
each has the set of proclets as its domain and such that the values of
MailboxK are multisets. This definition needs significant changes to
accommodate activation of new proclets.

The most obvious change is that the ken must include information
about which proclets activate which other proclets. Activation takes
place entirely within a step. It does not persist across a step boundary
from one state to the next; any proclets that should remain proclets
for the next step should be added to PriProclet. Thus, activation
information is not part of the state. It is temporary information to
be changed and used by the algorithm within a step, just like the
mailboxes and displays of [1]; such information resides in the ken. So
a ken K should include a unary function ActK . The intended meaning
of ActK(p) is the set marked for activation, as myAct, by the proclet
p, but as far as the definition of “ken” is concerned, ActK is just some
function from proclets to sets in X. The intended meaning will be
formalized later in the notion of “correct ken”. In these respects, ActK

and myAct behave just like DisplayK and myDisplay in [1].
A more complicated change in the notion of ken arises from the

fact that the functions MailboxK , DisplayK , and ActK have as their



PARALLEL THESIS: CORRECTION AND EXTENSION 9

domain the set of proclets. In [1], that set was given with the state,
but now it depends on the ken via the activations described by ActK .
This interdependence between kens and the associated sets of proclets
accounts for the greater complexity of the following definition compared
to the corresponding Definition 7.10 in [1].

Definition 3. A ken of a state X consists of X together with three
functions, MailboxK , DisplayK , and ActK , with a common domain
ProcletK ⊆ X and with values in X, subject to the following require-
ments.

• The values of MailboxK are multisets.
• The values of ActK are sets.
• PriProcletX ⊆ ProcletK .
• If p ∈ ProcletK and q ∈ ActK(p), then 〈q, p〉 ∈ ProcletK .
• ProcletK is the smallest set satisfying the preceding two re-

quirements.

The elements of ProcletK are called the proclets of the ken K.

As usual in recursive definitions, the detailed meaning of the last
requirement is that, for all subsets Z of the state X, if PriProcletX ⊆
Z ⊆ ProcletK and if, for each p ∈ Z and each q ∈ ActK(p), we have
〈q, p〉 ∈ Z, then Z = ProcletK .

Notice that the closure condition on ProcletK incorporates our con-
vention that, if q is in the set Act(p) then it is not q itself but the pair
〈q, p〉 that becomes a proclet.

Remark 4. This convention allows the proclets 〈q, p〉 activated by p to
“know” which proclet activated them, i.e., they can refer to p in their
local states (see Definition 6 below) by means of the term second(me).
This sort of knowledge seems intuitively reasonable, and it also serves
two technical purposes.

First, it ensures that two proclets will not both activate the same
secondary proclet for different purposes.

Second, it provides a way for a proclet p to pass information to the
proclets it activates, namely by displaying it. Sending messages would
not suffice for this purpose, since the number of messages sent by a pro-
clet during a step will be bounded (because the proclets are sequential
algorithms with output) while the number of proclets activated by p
need not be bounded. So displaying and pulling are the only ways for p
to convey information to all the proclets it activates. For this to work,
all these proclets must know p, in order to pull the information.



10 ANDREAS BLASS AND YURI GUREVICH

If comprehension terms were available, then this second purpose
would not require our convention of automatically indicating the ac-
tivator in every secondary proclet. Indeed, if such indications were
wanted, then instead of marking a set s for activation, the proclet p
could mark {{〈q, p〉 : q ∈ s : true}}, i.e., p could attach the activa-
tor tags on its own. Indeed, p could similarly convey any bounded
amount of additional information to the proclets it creates, by building
this information into the proclets themselves. But, since comprehen-
sion terms are not available to the proclets, this approach will not
work. And in any case, it would not achieve the first purpose indicated
above. �

Remark 5. One can imagine a more powerful sort of activation, where
the tag added to a secondary proclet is not necessarily its activator but
some other element of the state chosen by the activator. In addition
to myAct, there would be another dynamic, nullary function myTag

(initially undef). When a proclet updates myAct to a set s and myTag

to e, the effect is to activate secondary proclets 〈q, e〉 for q ∈ s.
In this system, it would be possible for several proclets to activate the

same secondary proclet, so it would be up to the algorithm to prevent
unwanted clashes — for example by always including the activator p
as a component of e.

This system provides a powerful means of communication from a
proclet p to the proclets q that it activates. It avoids the need for p to
display information for these q’s since it can build the information into
the proclets themselves.

Indeed, this sort of tagging could, with some awkwardness, replace
displaying and pulling as a means of communication. One strategy for
doing this is as follows. Let all the proclets x that want to pull from p
instead send p a message, say of the form 〈x, pull〉. Instead of displaying
an entity d, p activates new auxiliary proclets 〈q, 〈d, p〉〉 for all q in its
mailbox. That is, it updates myAct to myMail and updates myTag to
〈d, me〉. Each new proclet 〈q, 〈d, p〉〉 checks whether its first component
q is of the form 〈x, pull〉. If so, it sends its second component 〈d, p〉
to x, which interprets this message as meaning that d is the display
of p. A careful presentation of this strategy would have to prevent
conflicts between the messages used here, to simulate displays, and
any messages that the proclets use for other purposes; we refrain from
looking at these details. �

In [1, Definition 7.11], we defined the local state of a proclet, given
a ken K for a state X. To accommodate activation, we expand the
local states of [1] to include a dynamic nullary symbol myAct whereby



PARALLEL THESIS: CORRECTION AND EXTENSION 11

a proclet indicates the set it wants to activate. The new definition,
replacing Definition 7.11 of [1], therefore reads as follows.

Definition 6. Suppose K is a ken of a state X and suppose p ∈
ProcletK . An initial local state for p in X is the structure X plus:

• a static, nullary symbol me, interpreted as p,
• a static, nullary symbol myMail, interpreted as some multiset

in X,
• a static, unary symbol Display, interpreted as some unary func-

tion X → X,
• a dynamic, nullary symbol myDisplay, interpreted as undef,

and
• a dynamic, nullary symbol myAct, interpreted as ∅.

The initial local state of p given by K is the initial local state for p in
X where

• myMail is interpreted as MailboxK(p) and
• Display is interpreted as DisplayK extended1 by Display(x) =
undef for x /∈ ProcletK .

Remark 7. The initial local state of p is the only local state of p that
we shall work with. In any step of the overall algorithm, a proclet
will execute the proclet algorithm only once, in the initial state. The
result of this execution can include, in addition to output (messages to
other proclets) and updates to the global state (to be executed at the
end of the overall algorithm’s step), updates to the dynamic symbols
myDisplay and myAct. These updates can be regarded as producing
a new non-initial local state, but no computation will be done in that
state.

We can therefore, when discussing the state in which a proclet com-
putes, speak of its local state, omitting the word “initial”. In fact, in
[1], we didn’t even introduce “initial” in this context. We have done
so here in order to emphasize that these states use the initial default
values for myDisplay and myAct, even in the case of a proclet p and
a ken K for which DisplayK(p) and ActK(p) have values different
from these defaults. The similarity between the names Display and
myDisplay does not entail any connection between the value of the
former (in some ken) and the initial value of the latter. Only in the
case of correct kens (defined later) is the syntactic similarity reflected
in a semantical connection, and that connection does not involve the
initial value of myDisplay but the final value, after execution of the

1This extension should also have been in the corresponding Definition 7.11 of
[1].



12 ANDREAS BLASS AND YURI GUREVICH

proclet algorithm (also defined below). The same comments apply to
Act and myAct. �

As in [1], we occasionally refer to the states of the entire algorithm
as global states, to distinguish them from the local states of proclets.

Remark 8. There is an analogy between myAct and myDisplay. Both
provide ways for a proclet to make a contribution to the overall ken,
specifically to ActK and DisplayK respectively, at least when we deal
(as we soon will) with correct kens. But there are two differences. The
lesser of the two is that ActK is required to take sets as values, whereas
the dynamic symbol myAct could, in principle, denote any element
of the state. We shall (in the definition of “correct” ken) adopt the
convention that if a proclet p gives myAct a value that is not a set,
then the resulting value of ActK(p) should be ∅.

The second difference is that DisplayK is part of the initial local
state given by K but ActK is not. That is, a proclet has access to what
other proclets have displayed but not to the activations performed by
other proclets. Why?

Allowing proclets to know what other proclets activate would intro-
duce a sneaky means of communication. A proclet p could activate
another proclet q, not so that q would participate in the computation
but rather so that other proclets, seeing that q is activated, would be
able to infer some information that p wants to transfer to them. If
we are not careful, such communication could make the computation
process circular, i.e., there might be no correct ken. For example, p
might activate q if and only if it has no incoming message, while r
might send a message to p if and only if q is activated. If there are no
other proclets that might send a message to p, then no correct ken is
possible; the message-sending and activating specified by the proclets’
programs are circular and contradictory.

This particular example could be rendered harmless by acknowledg-
ing that p is sending information to r and putting an edge from p to
r in the information flow digraph. That edge, together with the one
arising from the message r might send to p, would constitute a cycle
in that digraph, contrary to the Bounded Sequentiality Postulate. So
the example would be excluded by this postulate.

But the general problem cannot be removed so easily. If proclets
could know, in general, about each other’s activations, then the infor-
mation flow digraph should have edges from every proclet to every pro-
clet — a monstrous contradiction to Bounded Sequentiality. To avoid
such a disaster, we would have to perform an analysis of just which



PARALLEL THESIS: CORRECTION AND EXTENSION 13

proclets really do (in some ken) get information from which other pro-
clets. Such an analysis would be essentially the same as the analysis
leading to the definition of “pulls from”, Definition 7.18 in [1].

There is a simpler way to get activation information to those pro-
clets that might need it: If other proclets should find out what p has
activated, let p incorporate Act(p) into its display for the other proclets
to read. In this way, the analysis mentioned above is subsumed by the
analysis leading to “pulls from”, there is no need to include sneaky
transmission of information in the information flow digraph, and all
communication between proclets still fits the push and pull paradigms
of [1]. �

The Proclets Postulate of [1] needs one evident addition and some
reorganization. The addition is that the initial local state in which a
proclet operates should contain the dynamic, nullary symbol myAct.
The reorganization arises from the following considerations along with
a desire to stay conceptually close to the picture in [1]. The Proclets
Postulate of [1, Section 7.3] was written so as to refer only to states, not
to kens. Thus, for example, it says that myMail should denote (in the
local state of a proclet p) some multiset, not that this multiset should
be MailK(p) for a specific ken K. Kens appeared in the postulates
of [1] only in the subsequent Section 7.4, which dealt with interaction
between proclets. In our present context, we must give up either this
ken-independence of the Proclets Postulate or the mention of proclets
in the postulate. The reason is, of course, that the notion of proclet
now depends on the ken and not merely on the state. We choose the
second option. That is, we retain the general structure of the Proclets
Postulate, referring only to the state, and we therefore postpone any
mention of the proclets themselves in postulates.

Because the postulate is not about proclets but only about their al-
gorithm, we rename it as the Proclet Algorithm Postulate: The al-
gorithm A determines a single sequential algorithm with output, called
the proclet algorithm, in the vocabulary of the global algorithm plus
the static nullary symbols me and myMail, the static unary symbol
Display, and the dynamic nullary symbols myDisplay and myAct. The
outputs of the proclet algorithm are ordered pairs 〈addressee, content〉
of elements of the state.

During any step of the (overall) algorithm, each element p in the
current state X is to be regarded as potentially executing the proclet
algorithm for one step in a state consisting of X, p as the denotation
of me, some multiset as the denotation of myMail, some unary function
as the denotation of Display, undef as the initial value of myDisplay,



14 ANDREAS BLASS AND YURI GUREVICH

and ∅ as the initial value of myAct. “Potentially” here refers to the fact
that, once we define the correct ken K, only the elements of ProcletK

will actually run the proclet algorithm. Also, once we define the correct
ken K, the initial local state in which a proclet p operates will be the
initial local state given by K as in Definition 6.

We emphasize that, in each step of the global algorithm, the proclet
algorithm is to be executed for only one step by each proclet. Accord-
ingly, it will be very convenient to use the following abbreviation.

Definition 9. Let K be a ken of a state X, and let p ∈ ProcletK .
We abbreviate “one step of the proclet algorithm is executed in the
initial local state of p given by K” as “p fires in K.” Here “one step
is executed” means that the transition function is applied and outputs
are produced once; there is no iteration as in runs of an algorithm.

The remarks following the Proclet Algorithm Postulate in [1, Sec-
tion 7.3] apply here with the obvious additions, saying that myAct

behaves like myDisplay, being updated during (rather than at the end
of) a step and not retaining its value past the end of a step.

Section 7.4 of [1], about the interaction between proclets, needs sub-
stantial modification, especially because the very notion of proclet now
depends on a sort of interaction, namely activation.

The first modification here, in Definition 7.18 of “q pulls from p”,
is rather minor. The idea behind the definition was that q pulls from
p in state X if there are two kens for X, differing only in the values
of Display(p), such that q behaves differently in its initial local states
given by these kens. We do not change this idea, but the detailed mean-
ing of “behaves differently”, namely producing different updates or
sending different mailings, must now be extended to include activating
different elements. Formally, the required change in Definition 7.18 is
that “different updates (in the global state or in myDisplay)” becomes
“different updates (in the global state, in myDisplay, or in myAct)”.

In addition, we explicitly require the two kens in the definition to
agree that p and q are proclets. In fact, this was already implicit.
The definition involves Display(p), which is defined only when p is a
proclet. It also involves firing q, i.e., executing q in appropriate initial
local states; these states involve Mailbox(q), which is defined only if q
is a proclet.

Definition 10. Let p and q be elements of a state X. Then q pulls
from p if there are two kens K and K ′ such that

• both p and q are in ProcletK ∩ ProcletK′ ,
• K and K ′ differ only in the values of Display(p), and



PARALLEL THESIS: CORRECTION AND EXTENSION 15

• when q fires in K and in K ′, the results differ either in up-
dates (of the global state or myDisplay or myAct) or in mailings
(counting multiplicities).

The information flow digraph of [1, Definition 7.19] should be modi-
fied so that if p activates q then there is an edge from p to q. Intuitively,
something has flowed from p to q, perhaps “activeness” or “proclet-
hood”; it is not obvious whether this consitutes information. But the
following example shows that, whether or not we call it information, it
must be included in the digraph.

Example 11. Suppose there is just one primary proclet p, which acti-
vates another proclet q if and only if p’s mailbox is empty (and p does
nothing else). Suppose further that q’s computation is just to send a
message to p. So the information flow digraph has an edge from q to
p, representing the possibility of a mailing, and we claim that it should
also have an edge from p to q, representing the possibility of activation.
By including this second edge, we introduce a cycle into the digraph, so
that the Bounded Sequentiality Postulate is violated and the instruc-
tions we gave for these two proclets do not constitute an algorithm.
Without the second edge, the instructions would satisfy the postulate.
Our claim is that the former outcome, “not an algorithm,” is correct.
The reason is that these instructions cannot be consistently executed.
p must activate q if and only if p’s mailbox is empty, which happens if
and only if q is not activated. (Once we define correctness of kens, we
can say that the circularity prevents the existence of a correct ken.)

Taking into account the preceding observations, the dependence of
the notion of proclet on the ken, and our desire to remain as close to
[1] as these considerations permit, we are led to the following definition
of the information flow digraph, replacing [1, Definition 7.19].

Definition 12. Let X be a (global) state. Its information flow digraph
has as vertices all those elements p ∈ X that belong to ProcletK for
at least one ken K. There is an edge from p to q if at least one of the
following conditions is satisfied.

• q pulls from p.
• There is a ken K, for which both p and q are proclets, such

that, when p fires in K, it sends a message to q.
• q is of the form 〈r, p〉 and there is a ken K, for which p is a

proclet, such that, when p fires in K, it updates myAct to a set
containing r.

Remark 13. The three clauses defining the edges of the information
flow digraph correspond to information flow by pulling, pushing, and



16 ANDREAS BLASS AND YURI GUREVICH

activating respectively. In all three clauses, as well as in the definition
of vertices, we have included everything that might be involved for
some reasonable ken. �

Remark 14. We explain briefly why our formulation of the third clause
in Definition 12, the one about activation, is preferable to two plausible-
looking alternatives. The first alternative is to replace the part about
p updating myAct to a set containing r with the simpler requirement
r ∈ ActK(p). The second is to require not only p but also q to be a
proclet of K. (Our definition requires q to be a proclet of some ken,
in order to be a vertex of our digraph, but it need not be a proclet of
the same ken K mentioned in the third clause.) Readers for whom our
definition is obviously better than these alternatives are invited to skip
the rest of this remark.

The defect in both alternatives arises from the fact that, in arbitrary
kens K (as opposed to the correct kens, which will be defined later),
no connection is required between the function ActK and the results of
the proclets’ computations of myAct in their local states given by K.

On the one hand, this means that we could have r ∈ ActK(p) even
when r is not at all the sort of thing that p might activate under the
proclet algorithm, indeed, even if the proclet algorithm is such that
myAct can never be updated. As a result, the first proposed alterna-
tive could put into our digraph a great many activation edges that have
nothing to do with any activation that the algorithm would ever per-
form. Indeed, we would have edges from each vertex p to all vertices
of the form 〈r, p〉, for arbitrary r in the state. In this situation, the
Bounded Sequentiality Axiom would be excessively difficult to satisfy.

On the other hand, if a proclet p, firing in K, activates 〈r, p〉 by
updating myAct to a set that contains r, there is no guarantee that
r ∈ ActK(p), and therefore there is no guarantee that 〈r, p〉 is a proclet
of K. As a result, the second proposed alternative would miss many
possible activations.

Both alternative formulations would be admissible if we were working
only with correct kens, but we are not, and for good reason. The
existence and uniqueness of correct kens (Theorem 22 below) depends
on the Bounded Sequentiality Postulate, which in turn is formulated in
terms of the information flow digraph. For more information about the
need to work with all kens rather than only correct ones, see Sections 7.4
and 12 of [1]. �

With the revised definition of the information flow digraph, we can
retain the Bounded Sequentiality Postulate from [1]: There is a
uniform bound B, depending only on the algorithm and not on the



PARALLEL THESIS: CORRECTION AND EXTENSION 17

state, for the lengths of all directed walks in the information flow di-
graphs of global states.

Definition 15. Let X be a state and p a vertex of its information flow
digraph. The level of p in this digraph is the length of the longest walk
in the digraph that ends at p. By length here we mean (as in [1]) the
number of vertices in the walk, not the number of edges, so levels begin
with 1, not 0.

Clearly, the level of p always exists and is no greater than the uniform
bound B given by the Bounded Sequentiality Postulate. It also follows
immediately from the definition that, if the information flow digraph
has en edge from p to q then the level of p is strictly smaller than that
of q.

Our next task is to prove the analog, in our new situation, of The-
orem 7.22 of [1], which asserts the existence of a unique correct ken
for each state. We begin with a definition of correctness, just like that
in [1] except that it takes activation into account, both explicitly in a
clause relating Act to myAct and implicitly by using the new notion of
ken.

Definition 16. Let X be a global state and K a ken for X. Then K
is a correct ken for X if the following three conditions are satisfied.

• For each p ∈ ProcletK , the members of MailboxK(p) are the
messages sent to p by the proclets q ∈ ProcletK when each such
q fires in K. (The multiplicity of a message m in MailboxK(p) is
the sum, over all q ∈ ProcletK , of the multiplicity with which
q sends m to p, i.e., the multiplicity of 〈p, m〉 in the output
multiset of q’s execution of the proclet algorithm).

• For each p ∈ ProcletK , the value of DisplayK(p) is the value
that myDisplay obtains when p fires in K.

• For each p ∈ ProcletK , the value of ActK(p) is the value that
myAct obtains when p fires in K, provided this value is a set.
Otherwise, ActK(p) = ∅.

For technical purposes, it is useful to have a name for the following
consequence of correctness.

Definition 17. Let X be a global state and K a ken for X. Then K
is a plausible ken for X if, whenever p ∈ ProcletK and q ∈ ActK(p),
then 〈q, p〉 is at a higher level than p in the information flow digraph
for X.

In connection with this definition, notice first that from p ∈ ProcletK

and q ∈ ActK(p) it follows that 〈q, p〉 is a proclet of K and is therefore
a vertex of the information flow digraph.



18 ANDREAS BLASS AND YURI GUREVICH

Notice also that, if K satisfies the third requirement in the defini-
tion of “correct”, then it is plausible. Indeed, if we assume the third
requirement and also assume p ∈ ProcletK and q ∈ ActK(p), then p
firing in K produces a value of myAct that contains q. That provides an
edge in the information flow digraph from p to 〈q, p〉 and thus ensures
that 〈q, p〉 is at a higher level than p.

Before proving that every state has a unique correct ken, we record
some preliminary information that will be needed in that proof.

Definition 18. Let K be a ken for a state X, and let l be a positive
integer. H(K, l) is defined to be the ken that is the same as K except
that DisplayH(K,l)(p) = undef for those p ∈ ProcletK that have level

≥ l in the information flow digraph for X. We refer to H(K, l) as the
result of hiding the displays of K from level l up.

Notice that ActH(K,l) = ActK and therefore ProcletH(K,l) = ProcletK .
In particular, in passing from K to H(K, l), we need not adjust the
domains of the functions.

Lemma 19. Let K be a ken for a state X, p a proclet of K, and l
its level in the information flow digraph of X. Consider the one-step
executions of the proclet algorithm by p in two initial local states, the
one given by K and the other by H(K, l). These two executions produce
the same updates (to the global state and to myDisplay and myAct) and
the same output multiset of messages.

Proof. Inspection of the definitions of initial local states and hiding
reveals that the two initial local states mentioned in the lemma differ
only in the values of Display(q) when q ∈ ProcletK = ProcletH(K,l)

and q has level ≥ l. Of these q’s, only finitely many are relevant to the
updates and outputs produced when p executes the proclet algorithm,
because this algorithm, being a sequential algorithm with output, sat-
isfies the Bounded Exploration Postulate. So we can connect K to
H(K, l) by a finite sequence of kens, in which

• at the first step we pass from K to a ken in which Display(q)
has been changed to undef for all the irrelevant q’s of level ≥ l,
so the new ken differs only finitely from H(K, l), and

• at each subsequent step, we change the value of Display(q) for
only one q ∈ ProcletK .

We already know that at the first step in this sequence the updates and
outputs of p are unchanged. It remains to check that the same is true
at all subsequent steps in our sequence of kens. So consider, for the
rest of this proof, a particular pair of consecutive kens in the rest of our



PARALLEL THESIS: CORRECTION AND EXTENSION 19

sequence; suppose, toward a contradiction, that they do not agree as to
p’s computation; and let q be the unique element where their Display
functions differ.

Because all the kens in the sequence have the same Act function,
they all have the same proclets as K. In particular, our q is a proclet
for both of the consecutive kens under consideration. This and the
assumed disagreement as to p’s computation imply that p pulls from
q and so there is an edge from q to p in the information flow digraph.
This is absurd, as q has level ≥ l and p has level l. �

Lemma 20. Let X be a state, K and K ′ two plausible kens for it, and
l a positive integer. Assume that, for all q ∈ ProcletK ∩ ProcletK′,

• if q has level ≤ l then MailboxK(q) = MailboxK′(q),
• if q has level < l then DisplayK(q) = DisplayK′(q), and
• if q has level < l then ActK(q) = ActK′(q).

Let p ∈ ProcletK have level l. Then p is also in ProcletK′, and the
executions of p in its initial local states given by K and by K ′ produce
the same updates and the same outputs.

Proof. We proceed by induction on l and observe that our assumptions
about K and K ′ imply that the same assumptions also hold if l is
replaced by any smaller l′. So, by induction hypothesis, any proclet of
K with level < l is also a proclet of K ′. Since p is a proclet of K, it is
either in PriProcletX or activated by some other q ∈ ProcletK (i.e.,
p = 〈r, q〉 for some r ∈ ActK(q)). In the former case, we immediately
have that p is also a proclet of K ′, because PriProclet is given by the
state, not the ken. In the latter case, the assumption of plausibility
implies that q has level < l. So q ∈ ProcletK′ and, by hypothesis,
ActK(q) = ActK′(q). In particular, q activates p in K ′, and so p ∈
ProcletK′ , as desired.

To prove that p produces the same updates and outputs whether it
fires in K or in K ′, we may, thanks to Lemma 19, work with the kens
H(K, l) and H(K ′, l) obtained by hiding displays from level l up. But
we claim that the initial local states of p given by these kens coincide.
Clearly, proving the claim would suffice to complete the proof of the
lemma.

To prove the claim, notice first that the only effect of a ken on
the initial local state of p is to provide the interpretations of myMail
and Display. Since p is at level l, the first assumption of the lemma
ensures that K and K ′ and therefore also H(K, l) and H(K ′, l) agree as
to Mailbox(p), which provides the value of myMail for p’s initial local
state. As for Display, the second assumption of the lemma ensures



20 ANDREAS BLASS AND YURI GUREVICH

that all of K, K ′, H(K, l), and H(K ′, l) agree as to the displays of those
elements of level < l that are proclets with respect to both K and K ′.
But the induction hypothesis implies, as in the first paragraph of this
proof, that an element of level < l is a proclet for all or none of K, K ′,
H(K, l), and H(K ′, l). So, for q of level < l, Display(q) will have the
same value for all of K, K ′, H(K, l), and H(K ′, l), either by the second
assumption of the lemma or because of the convention, in the definition
of initial local states, that Display of a non-proclet is always undef.
The same convention combined with the definition of hiding ensures
that Display(q) has the same value, namely undef, for H(K, l) and
H(K ′, l) whenever q has level ≥ l. (Notice that such a q might be a
proclet for just one of K and K ′. In that case, DisplayH(K,l)(q) and

DisplayH(K′,l)(q) would be undef for different reasons — once because
of hiding and once because of the convention concerning Display of
non-proclets. The need to deal with this situation blocks the easier
argument of [1, Lemma 7.25] and motivated the notion of hiding.) This
completes the proof that the initial local states of p given by H(K, l)
and H(K ′, l) are identical, as required. �

Remark 21. The hypothesis of the lemma may seem a bit awkward,
because it concerns Mailbox up to and including level l but Display

and Act only strictly below level l. We claim, however, that this situa-
tion is semantically natural even if syntactically awkward. The reason
is that the parts of the ken covered by this hypothesis at stage l are
exactly the parts relevant to the computations done by elements p at
level l. Indeed, the information relevant to the computation of such a
p consists of (1) whether p is a proclet and therefore should be doing
a computation at all, (2) the mailbox of p, and (3) the displays that
p reads. Here (1) involves Proclet at level l (namely at p), which is
determined by Act at strictly lower levels (because of plausibility); (2)
involves Mailbox at level l; and (3) involves Display at lower levels.

Another way to view the situation is that the hypothesis covers ex-
actly the information that is determined, in a correct ken, by the ac-
tivity of proclets at strictly lower levels than l. As a special case, for
l = 1, we have just the information that is determined by the state
without any need for computation by proclets, namely the proclets at
level 1 (determined by PriProclet as plausibility prevents any activa-
tion of proclets of level 1) and their mailboxes (empty as nothing can
send messages to them).

The general structure of this hypothesis, referring to Mailbox (and
implicitly to Proclet) for one level higher than Display and Act, will
recur in subsequent arguments. �



PARALLEL THESIS: CORRECTION AND EXTENSION 21

Theorem 22. For every state X, there is a unique correct ken.

Proof. We first prove uniqueness. Suppose both K and K ′ are correct
kens for the state X. We prove, by induction on l, that:

(1) ProcletK and ProcletK′ have the same elements of levels ≤ l.
So for levels ≤ l we can speak of proclets without specifying
which of the two kens we mean.

(2) MailboxK and MailboxK′ agree on all proclets of level ≤ l.
(3) DisplayK and DisplayK′ agree on all proclets of level < l.
(4) ActK and ActK′ agree on all proclets of level < l.

For the base case, l = 1, items (3) and (4) are vacuous. Item (1)
follows from the fact that a proclet at level 1 cannot be activated by
another proclet in a correct (or just plausible) ken. So at level 1 the
proclets for any plausible ken are just those in PriProcletX . Item (2)
at level 1 follows from the fact that messages always go from lower
to higher levels (because they produce edges) in the information flow
digraph. In particular, no message ever goes to a proclet of level 1.
Since K and K ′ are correct, it follows that MailboxK = MailboxK′ =
∅.

For the induction step, assume the assertions hold for a certain l. As
noted in item (1), it makes sense to speak of proclets at level l without
specifying K or K ′. For each such proclet p, we can apply Lemma 20
to conclude that its updates and outputs are the same whether K
or K ′ provides its initial local state. By correctness, it follows that
DisplayK(p) = DisplayK′(p) and ActK(p) = ActK′(p). Thus, we have
items (3) and (4) for l + 1 in place of l.

Furthermore, the mail sent by p is the same for K as for K ′. Since
this holds for all proclets p at level l and also for all proclets at lower
levels (by the same argument), and since proclets at level l + 1 can
receive mail only from proclets at levels ≤ l (because message-sending
produces edges in the information flow digraph), we conclude that every
proclet at level l + 1 receives the same messages, with the same multi-
plicity, whether the proclets are firing K or in K ′. Another application
of correctness gives us item (2) for proclets at level l + 1. Since we
already had this item for proclets of lower level, we now have item (2)
with l + 1 in place of l.

Finally, since proclets can be activated only by proclets of lower
level, and since PriProclet depends only on the state, not the ken,
the proclets at level l+1 are determined by Act(q) for proclets of levels
< l + 1. Thus, item (1) for l + 1 follows from item (4) for l + 1.

This completes the induction and thus, if we take l to be the number
of levels, the proof of uniqueness. To prove existence, we construct



22 ANDREAS BLASS AND YURI GUREVICH

the desired K by induction on levels l. After stage l, we will have
constructed a ken K(l), intended to have the following properties. Its
proclets are the proclets of the correct ken up to and including level l,
and its Mailbox function agrees with that of the correct ken on these
proclets. Furthermore, its Display and Act functions agree with those
of the correct ken on proclets at levels < l. On proclets of level l,
its Display and Act functions have the default values undef and ∅,
respectively.

For l = 1, let MailboxK(1), DisplayK(1), and ActK(1) be the constant
functions with domain PriProcletX and with values ∅, undef, and
∅, respectively. This is clearly a plausible ken, with ProcletK(1) =
PriProcletX .

For the induction step, suppose K(l) is already defined. Let each
proclet p ∈ ProcletK(l) of level ≤ l fire in K(l). Temporarily define
DisplayK(l+1)(p) to be the resulting value of myDisplay for each such
p and to be undef for all other elements p of the state. Similarly, tem-
porarily define ActK(l+1)(p) to be the resulting value of myAct for each
such p where this value is a set, and to be ∅ for all other elements
p of the state. (We have defined these functions on too large a do-
main and will correct for this later; this was the only reason for saying
“temporarily”.) Use this temporary ActK(l+1) to define ProcletK(l+1),
as in the definition of ken. Then restrict DisplayK(l+1) and ActK(l+1)

to ProcletK(l+1) as required in the definition of ken. Note that, by
restricting ActK(l+1) we have not changed what ProcletK(l+1) should
be, since the characterization of Proclet in terms of Act (in the last
three clauses in the definition of ken) uses Act only applied to elements
of Proclet.

To complete the induction step, we must define MailboxK(l+1)(p) for
all elements p ∈ ProcletK(l+1). Define it to be the multiset of messages
sent to p by the elements q of ProcletK(l) firing as in the preceding
paragraph, multiplicities being summed over q. This completes the
definition of K(l).

In the inductive step, if q ∈ ActK(l+1)(p), with p and therefore also
q in ProcletK(l+1), then, by definition of ActK(l+1), the ken K(l) wit-
nesses that the information flow digraph has an edge from p to 〈q, p〉.
Thus, K(l + 1) is plausible. Since K(1) is vacuously plausible, all
ActK(1)(p) being empty, we conclude that K(l) is plausible for all l.

We shall show that the sequence of kens K(l) gradually stabilizes in
the following sense. For each l, the kens K(l) and K(l + 1) agree as
to Proclet and Mailbox up to and including level l of the information



PARALLEL THESIS: CORRECTION AND EXTENSION 23

flow digraph, and they agree as to Display and Act at all levels strictly
below l. The proof is by induction on l.

For the basis of the induction, l = 1, notice that the assertions
of agreement concerning Display and Act are vacuous. Concerning
Proclet, the definition says that it contains only elements of PriProclet
when the ken is K(1), but when the ken is K(2) it can contain also
secondary 〈r, p〉, where r ∈ ActK(2)(p). As K(2) is plausible, such sec-
ondary proclets cannot be at level 1. Thus, K(1) and K(2) have the
same proclets at level 1. These proclets have, by definition, empty
mailboxes under K(1). Under K(2), their mailboxes contain the mes-
sages sent to them by proclets q firing in K(1). Any such message
would cause an edge from q to p in the information flow digraph, which
is impossible since p is at level 1. This completes the verification of the
claimed stabilization between K(1) and K(2) and thus the basis of our
induction.

For the induction step, suppose we have the desired stabilization
between K(l) and K(l+1). To prove the stabilization between K(l+1)
and K(l + 2), compare the definitions of these two kens. The former
fires the proclets of K(l) at levels ≤ l in their initial local states given
by K(l); the latter fires the proclets of K(l+1) at levels ≤ l+1 in their
initial local states given by K(l + 1). By induction hypothesis, these
two sets of firings involve the same proclets p at levels ≤ l (though there
may be different proclets at higher levels). Furthermore, for each such
proclet p, its two computations yield the same updates and outputs,
by Lemma 20 since the kens are plausible. This means, in particular,
that, in the definitions of K(l+1) and K(l+2), the temporary versions
of Display and Act agree up to and including level l.

We claim next that that Proclet is the same, for K(l+1) and K(l+
2), up to and including level l + 1. Suppose, toward a contradiction,
that some q of level ≤ l + 1 is a proclet in one of the kens K(l + 1)
and K(l + 2) but not in the other. Consider such a q of minimum
possible level in the information flow digraph. Clearly, q cannot be in
PriProcletX , for then it would be a proclet of both kens. So it is of the
form q = 〈r, p〉 where, for one of the kens p is a proclet and r ∈ Act(p),
while for the other ken either p is not a proclet or r /∈ Act(p). As
the kens are plausible, p is of lower level than q, so, by our choice of
q to minimize the level, p is a proclet of both kens. So we must have
r ∈ Act(p) for one ken and not for the other. We already saw that the
Act functions of these two kens agree up to and including level l, so p
must have level ≥ l+1. That contradicts the fact that p has lower level
than q. This contradiction completes the proof that the kens K(l + 1)
and K(l + 2) have the same proclets up to and including level l + 1.



24 ANDREAS BLASS AND YURI GUREVICH

Finally, for these common proclets at levels ≤ l + 1, the two kens
K(l + 1) and K(l + 2) have the same mailboxes, since these mailboxes
come from the outputs of the computations by proclets of levels ≤ l, in
initial local states given by K(l) and K(l + 1), and we have seen that
these outputs are the same in both cases.

This completes the inductive proof of the claimed agreement between
K(l) and K(l + 1) up to level l. Apply this result with l greater than
the maximum length B of walks allowed by the Bounded Sequentiality
Postulate. For such an l, we have K(l) = K(l + 1); the whole kens
are identical. Rereading the definition of K(l + 1) in the light of this
equality, we find that it says precisely that K(l) is correct. �

Now that we have the existence and uniqueness of the correct ken
for any state, we can formulate the Update Postulate: The update
set of the algorithm in a (global) state is the set of all the updates of
global dynamic functions produced by all the proclets of the correct
ken, firing in the correct ken.

This is exactly like the corresponding postulate in [1] except that the
notion of proclet now depends explicitly on the ken.
AB added another paragraph to the next remark. Note that the last
sentence in that paragraph (“We could . . . ”) is somewhat sloppy —
nothing was said about what the ken should be for firings after the first,
and the details of this could affect the reduction from a bounded num-
ber of firings to just one. I wouldn’t mind omitting that last sentence.

Remark 23. The fact that, in each step of an algorithm, each proclet
fires just once is formally contained in the Update Postulate. This
postulate refers to a single firing, and so do the definitions on which
it depends, like the definition of correct kens. And this postulate de-
scribes the whole influence of the proclets on the overall computation,
since only the updated state persists to the next step.

The intuitive notion of bounded sequentiality requires bounds not
only on the number of proclets that act in sequence, as formalized
in the Bounded Sequentiality Postulate, but also on the sequentiality
in the actions of a single proclet. The latter bound is ensured, in
our postulates, by the requirements that proclets execute a sequential
algorithm and that they fire only once per step. We could, without
violating the idea of bounded sequentiality, allow proclets to fire a
bounded number of times per step, but this would complicate our work
without really increasing the generality, since a bounded number of
steps could be coded into one. �



PARALLEL THESIS: CORRECTION AND EXTENSION 25

Remark 24. The Update Postulate implies that the updates of global
dynamic functions produced by the various proclets do not clash. This
is because the update set of an algorithm, as defined in connection
with the Sequential Time Postulate in [1], will never contain conflicting
updates. �

The next definition is like that in [1] but using our modified postu-
lates.

Definition 25. A parallel algorithm is an algorithm satisfying the Se-
quential Time, Abstract State, Background, Proclet Algorithm, Bounded
Sequentiality, and Update Postulates.

4. Abstract State Machines As Algorithms

This section is devoted to showing that ASMs can be viewed as
parallel algorithms in the sense defined above. That is, we prove what
was claimed in Section 8.5 of [1]. We do not repeat all the parts of
Section 8.5 that are correct but concentrate on correcting the errors.

It will be useful first to make a few comments about the nature
of the examples in Section 8 of [1]. Those examples involved various
approaches to parallel computation — PRAMs, circuits, alternating
Turing machines, first-order logic, fixed-point logic, and ASMs — and
indicated how the algorithms of these models fit our postulates. The
most important work here was to analyze these algorithms down to
the level of proclets in order to say what the proclets and the pro-
clet algorithm should be. Another aspect was adjoining, if necessary,
the multisets, ordered pairs, etc., required by the Background Postu-
late, but this second aspect was fairly routine. Except for Proclet,
everything required by the Background Postulate is determined once
the “atomic” elements of the state are known. Thus, to make these
other models of parallel computation fit our postulates, the procedure
is roughly as follows. First analyze the algorithms to see what entities
are directly involved. The small sequential processes that make up the
parallel algorithm are among these entities, as proclets, and the way
they work is the proclet algorithm. Then, if Boolean values, multisets,
and ordered pairs are not already present, adjoin them, along with the
basic operations on them. (See [1, Section 7], particularly Remarks 7.3
and 7.5, for comments on the naturality of adjoining these things.)

In the particular case of ASMs, the definition in [1, Section 9] re-
quired their vocabularies to contain everything listed in the Background
Postulate. The ASMs constructed in the proof of the main result, The-
orem 10.1, of [1] will indeed contain all these things, because they are



26 ANDREAS BLASS AND YURI GUREVICH

behaviorally equivalent to algorithms, as defined by the postulates; be-
havioral equivalence demands that the states and therefore the vocabu-
lary are the same. But one can also consider other ASMs, for example
the parallel ASMs of [3] (but without interactive features like exter-
nal functions and importing reserve elements), and they should also fit
our postulates when equipped with suitable proclets and a background
containing multisets and ordered pairs.

For simplicity, we consider in detail only one version of ASMs, namely
that defined in Section 9 of [1], with one clarification. Where we
said that the vocabulary of an ASM should contain “all the items
required by the Background Postulate”, the last item in that postu-
late, “a variable-free term Proclet . . . ” (which would now become
PriProclet) is to be omitted. If an ASM’s voicabulary happens to con-
tain a nullary function symbol PriProclet, then that symbol should be
renamed to avoid a conflict with the PriProclet involved in our pos-
tulates. Note that a symbol PriProclet in some arbitrary ASM need
not have anything to do with the actual proclets, the sequential sub-
processes of which the algorithm is composed; the name PriProclet

could be purely accidental. We prefer to reserve this name for the
actual primary proclets.

Although we concentrate on one version of ASMs, the same ideas
could be used to handle other versions, for example without multisets
or without ordered pairs in the background. (These things, if missing
from the ASM states, would, of course, be added when we define the
states to be used in the postulates.) We believe that the version we
consider exhibits all the difficulties of the natural ones, so that, given
the following treatment of it, the reader will be able to treat the others
also. The vocabulary of the algorithm we describe will consist of the
vocabulary of the given ASM plus two new, static, unary function
symbols defined as follows.

Mult(x, y) = multiplicity of element x in multiset y

and
pred(n) = {0, 1, . . . , n− 1}

for natural numbers n. (Mult amd pred abbreviate “multiplicity” and
“predecessors”. What exactly the natural numbers are, in a state of
our algorithm, is irrelevant to the functioning of the algorithm; we
postpone discussion of the issue to Remark 26 after the presentation
of the algorithm.)

The exposition in [1, Section 8.5] began with a rough but intuitively
understandable description of the algorithm, containing three explicitly
acknowledged difficulties, and it continued with a discussion of how to



PARALLEL THESIS: CORRECTION AND EXTENSION 27

circumvent these difficulties. In an attempt to retain intuitive under-
standability for our present, somewhat more complicated (but correct)
algorithm, we again want to separate the main idea from the circum-
vention of the old difficulties. In this way, we can concentrate attention
on the new aspects of the construction. Furthermore, of the three dif-
ficulties mentioned and circumvented in [1], two can be treated here in
the same way as there, and one disappears entirely. We explain this
first, in order to get all of these difficulties out of the way. (In [1], we
described the algorithm first and eliminated the difficulties afterward,
but in hte present context it seems clearer to handle the difficulties
first.)

The first difficulty was that the rough description assumed that the
ASM never produced conflicting updates. It was solved by showing, in
[1, Section 9.2], how to convert any ASM into one that never produces
such clashes. The same solution applies in the present context.

The second difficulty was that there are infinitely many proclets,
though only finitely many become active in any step. This difficulty
disappears in the present context. Our postulates require only the set of
primary proclets to be finite, and the algorithm we describe will involve
only a single primary proclet. Any element of the state is potentially
a secondary proclet, and by activating some of these we can obtain all
the proclets used by the construction in [1]. Thus, we no longer need
the terms MDA(p) and MA(p) that we defined — incorrectly because we
used comprehension terms — on pages 624–625 of [1].

The third difficulty concerned cycles in the information flow digraph,
where one proclet activated another and gave it some information, and
then the second proclet returned some information to the first. This
difficulty was solved by replacing each proclet by two or three others,
each performing a part of the original proclet’s task. We shall refer to
these two or three proclets as incarnations of the original one. Thus,
the first incarnation of one proclet might activate another proclet, but
the reply from the second proclet would then go to the second or third
incarnation of the first. (More precisely, the first incarnation of the
first proclet might activate the first incarnation of the second proclet,
and eventually the last incarnation of the second proclet would reply
to the second or third incarnation of the first proclet.) This solution
continues to work in the present setting. “Activate” has, of course, a
new meaning, the meaning given by our postulates, rather than merely
displaying some information that is read by the proclet to be activated.
But the idea remains the same. In fact, we shall describe our algorithm
in the same format as in [1], numbering a proclet’s tasks in a way that
indicates which tasks are to be done by which incarnations.



28 ANDREAS BLASS AND YURI GUREVICH

In addition to getting these difficulties out of the way, we must make
another preliminary comment, on the nature of the proclets used in
our algorithm. In the rough description (before addressing the three

difficulties) in [1, pages 622–623], the proclets were ordered pairs 〈Ẑ, ā〉,
where Z is an occurrence of a term or rule in the given ASM, Ẑ is a
“name” for it, and ā is a tuple of values for its pseudo-free variables.
Recall that the names were assigned rather arbitrarily in [1]; they just
need to be elements of the state that can be explicitly named, and this
is easy to arrange since there are only finitely many of them. Recall also
that a variable x is pseudo-free in an occurrence Z if Z lies in the scope
of a comprehension term or a parallel rule that binds x; since an ASM
program has no free variables, all the free variables of a term or rule are
among its pseudo-free variables. To list the values of these variables in
a tuple, we implicitly assume a particular ordering of the variables. It
will be convenient to assume that the pseudo-free variables of any term
or rule Z are listed in decreasing order of their scopes; these scopes
are linearly ordered because they all contain Z. (This convention was
already tacitly used in [1].)

Our proclets will be more complicated for two reasons. First, as in-
dicated above in the solution of the third difficulty, each of the proclets
in the rough description will actually have two or three incarnations,
different proclets that divide the work in such a way as to avoid cycles.
Some care will be needed in the choice of just which elements of the
state serve as the second and third incarnations of proclets; we post-
pone the details until after we have presented enough of the algorithm
to motivate the details. For now, the reader can use the following
simple picture of incarnations. Because the necessary number of incar-
nations of a proclet 〈Ẑ, ā〉 is entirely determined by the nature of the

term or rule Z, we can simply include, with Ẑ, a marker distinguish-
ing the various incarnations of the proclet. Thus, instead of 〈Ẑ, ā〉, we

would have 〈Ẑ, k, ā〉 for the kth incarnation of 〈Ẑ, ā〉.
The second complication in our proclets arises from the convention

that each secondary proclet p is an ordered pair whose second compo-
nent is the proclet that activated p. Thus, where one might intuitively
think of a chain of activations, say

x ∈ PriProclet, y ∈ Act(x), z ∈ Act(y), w ∈ Act(z),

the actual chain would look like

x ∈ PriProclet, y ∈ Act(x), z ∈ Act(〈y, x〉), w ∈ Act(〈z, 〈y, x〉〉),



PARALLEL THESIS: CORRECTION AND EXTENSION 29

the last proclet activated here being 〈w, 〈z, 〈y, x〉〉〉. In our situation,

this means that our proclets will not have the simple form 〈Ẑ, k, ā〉 but
will be ordered pairs whose first components have this form and whose
second components are themselves proclets. The proclet previously

called 〈Ẑ, k, ā〉 will thus encode the list of all the occurrences of terms
and rules within which Z lies.

Both of these complications in the proclets — exhibiting the incarna-
tion numbers and the ancestors of the proclets — will contribute little
to the essential ideas of the algorithm that we shall describe, but they
threaten to obscure the ideas by cluttering the notation. Accordingly,
we adopt the convention of writing simply 〈Ẑ, ā, . . . 〉; the intention is
that the “. . . ” reminds us of all the extra information coded in the pro-
clet, but we refrain from exhibiting this information and thus remain
close to the 〈Ẑ, ā〉 notation used in [1].

In addition to the proclets 〈Ẑ, ā, . . . 〉 that will play essentially the

same roles as 〈Ẑ, ā〉 in the rough description in [1], our algorithm will
involve some additional proclets. Most of these arise from the need
to avoid comprehension terms in the proclet algorithm. In describing
the activity of proclets 〈û, ā〉 where u is a comprehension term, we
incorrectly used comprehension terms in [1]. Now, the “work” done by
these comprehension terms will be described honestly, using additional
proclets.

There will also be some additional proclets in our description of the
activity of proclets 〈R̂, ā, . . . 〉 when R is a parallel rule do forall x ∈
r, R0(x) enddo. These are needed in order to get the right format for

the subsidiary proclets 〈R̂0(x), ā_c, . . . 〉.
The work of all these additional proclets will be described in the

context of the work of their activators (or activators of activators).

The “main” proclets 〈Ẑ, ā, . . . 〉 serve the same purpose as 〈Ẑ, ā〉 did in
[1]. When Z is a term, the purpose is to compute its value v, using ā
for the values of (pseudo-)free variables, and to push v to the parent

(i.e., to the activator). More precisely, it pushes the pair 〈v, 〈Ẑ, ā, . . . 〉〉,
so the parent knows which child computed this v. When Z is a rule,
the purpose is to ensure the execution of the updates that the rule
produces, again using ā to supply the values of free variables. To
“ensure the execution” here means either to execute the updates or to
activate enough other proclets that will ensure the execution.

In the following description of our algorithm, it is to be understood
that, when a proclet (of the rough description) has several incarnations
(in the precise description), then each of these incarnations except the



30 ANDREAS BLASS AND YURI GUREVICH

last is to activate the next one. This activation is to be added to the
activations explicitly mentioned in the following description.

In the light of the preceding discussion, we can use, in our present
algorithm, much of what was done in the rough description in [1].
Specifically, the activity of the proclets corresponding to variables, to
terms of the form f(t1, . . . , tn), to update rules, and to conditional
rules can be described exactly as in [1, pages 622–623] with just two
modifications:

• Change every 〈Ẑ, ā〉 to 〈Ẑ, ā, . . . 〉.
• Delete the parenthetical comment that activation is done “by

displaying an appropriate signal”, since activation is now done
by updating myAct.

Notice that, in each of these cases, a proclet activates a bounded set
of other proclets, so the desired myAct can be explicitly given by the
proclet algorithm.

There remain the proclets corresponding to comprehension terms
and to parallel rules — the two ASM constructs that introduce un-
bounded parallelism. For these proclets, we cannot proceed exactly as
in [1]. Indeed, the instructions in [1] for the second incarnation of such
a proclet (i.e., the instructions labeled (2) in the rough description)
involve activating an unbounded set of secondary proclets. To do so,
a proclet would update myAct to mark a set for activation, but the
necessary set could be described only by a comprehension term. The
following instructions for these two sorts of proclets avoid this difficulty
by marking for activation only a set directly available to the activat-
ing proclet, i.e., a set that can be named in the proclet’s initial local
state. The price for this is that the comprehension term to be avoided
involved some parallel work, which must now be done by additional
proclets. Here are the details.

Let p be the proclet 〈û, ā, . . . 〉 where u is a comprehension term
{{t(x) : x ∈ r : ϕ(x)}}. As in [1], the work of p will be in three parts
(i.e., p will have three incarnations).

(1) Activate 〈r̂, ā, . . . 〉.
(2) After receiving the value b computed by this secondary proclet,

display b and mark AsSet(b) for activation.
(3) Push 〈myMail, me〉 to your parent.

Obviously, for this to be correct, a lot has to happen between instruc-
tions (2) and (3). Specifically, the proclets activated in (2) must some-
how ensure that the mailbox of p is exactly the multiset that p is
supposed to compute, the value of {{t(x) : x ∈ r : ϕ(x)}} when the free
variables have values given by ā. That is achieved as follows.



PARALLEL THESIS: CORRECTION AND EXTENSION 31

The proclets activated as a result of (2) are 〈c, p, . . . 〉 for all c ∈ b.
(The “. . . ” here refer only to an indication of the fact that the activator
is the second incarnation of p.) Each such 〈c, p, . . . 〉 does the following.

(1) Read b from the display of (the second incarnation of) p and
mark for activation

{{〈t̂(x), ā_c〉, 〈ϕ̂(x), ā_c〉}} ] pred(Mult(c, b)).

Recall that pred(Mult(c, b)) = {0, 1, . . . ,m− 1} where m is the
multiplicity of c as an element of b.

(2) When the proclets 〈t̂(x), ā_c〉 and 〈ϕ̂(x), ā_c〉 return values, if
ϕ(c) = true then display {t(c)}; otherwise display ∅.

The additional proclets 〈k, . . . 〉 (for 0 ≤ k < Mult(c, b)) activated
here read the display of (the second incarnation of) 〈c, p, . . . 〉 and, if it
is nonempty, extract its element (using TheUnique) and mail that to
(the third incarnation of) p. As a result of all this work, the proclets
activated by 〈c, p, . . . 〉 will contribute to the mailbox of p either nothing,
if ϕ(c) = false, or exactly Mult(c, b) copies of t(c), if ϕ(c) = true.
Combining the results from all elements c of AsSet(b), we obtain as the
mailbox of p exactly the required multiset, the value of {{t(x) : x ∈ r :
ϕ(x)}} with free variables interpreted according to ā.

Finally, we consider the somewhat easier case of a parallel rule.
Let p be the proclet 〈R̂, ā, . . . 〉, where R is the rule do forall x ∈
r, R0(x) enddo. Its instructions are

(1) Activate 〈r̂, ā, . . . 〉.
(2) After receiving the value b computed by this secondary proclet

mark AsSet(b) for activation.

Each proclet 〈c, p, . . . 〉 activated in (2) merely activates 〈R̂0(x), ā_c, . . . 〉.
These proclets will then ensure the execution of R0(c) for all c ∈ b, as
required.

To complete the description of our algorithm, we still have two tasks
to accomplish. We must provide the term PriProclet, and we must
keep our promise to provide details about which elements of the state
serve as the second and third incarnations of our proclets.

The first of these tasks is remarkably easy. We need only a single
primary proclet, the one corresponding to the whole ASM program
Π, considered as a rule; all other proclets that we need are activated
during the execution of the algorithm. We therefore define PriProclet
to be {{〈Π̂, 〈〉〉}}. (Here 〈〉 is the empty tuple, since Π has no pseudo-free
variables.)

Finally, we turn to incarnations. When a proclet p activates its
next incarnation p′, it does so by including an appropriate element q



32 ANDREAS BLASS AND YURI GUREVICH

in its myAct, so that p′ = 〈q, p〉. But what is an appropriate q? The
proclet 〈q, p〉 had better be distinct from all the other proclets activated
by p. We need not worry about coincidences with other secondary
proclets, activated by proclets other than p, for these will have their
activators, not p, as their second components. We also need not worry
about a coincidence with the primary proclet 〈Π̂, 〈〉〉, since its second
component 〈〉 is distinct from p. In most cases, our description of
the algorithm tells what the other proclets activated by p are, and it is
easy to find a suitable q. If, as suggested in [1], we use certain multisets

as the codes Ẑ, then true will work as the required q in all but two
cases. To see this, just use the fact that true is not a multiset or an
ordered pair or a natural number. (See Remark 26 below about natural
numbers.) The two cases where this choice might fail are those where p

is the second incarnation of 〈Ẑ, ā, . . . 〉 and Z is a comprehension term
or a parallel rule. In those cases, the other proclets activated by p
include 〈c, p〉 for all members c of b (in the notation used for describing
the algorithm above). So we must ensure that q /∈ b. Fortunately,
there is a standard (in set theory) trick for getting an object that is
not a member of a given (multi)set b, namely to take the object b itself.
(There are also other options, for example {{b}}.) Thus, we can obtain
the next incarnation, in the two cases where q = true might not work,
by taking q = b instead. One final comment is needed here, namely
that, in these cases, p should display b, so that the proclets it creates
can tell, by reading the display, whether they are the next incarnation
of p or one of the other proclets, 〈c, p〉 for c ∈ b, that p activated.

Remark 26. Our algorithm depended on the availability of natural
numbers and the functions Mult and pred. There are at least two
plausible ways to represent natural numbers by elements of the states
of our algorithms. One is the coding, due to von Neumann, that has be-
come standard in set theory. It sets (inductively) n = {0, 1, . . . , n−1}.
With this coding pred is simply the identity function. An alternative
coding, quite natural when multisets are available, is to represent n by
a multiset consisting of n copies of some standard entity, for example
true or ∅.

But in fact, we could do without any particular representation of the
natural numbers. The algorithm never used Mult and pred individually
but only in the combination pred ◦ Mult, and it never mattered that
the elements of pred ◦ Mult(c, b) were numbers, only that they were
Mult(c, b) distinct objects, all distinct from true. (Distinctness from
true was used only in our discussion of using q = true for producing



PARALLEL THESIS: CORRECTION AND EXTENSION 33

second and third incarnations.) Thus, we could simply assume the
existence of some such function to serve in place of pred ◦ Mult. �

5. Algorithms Are Abstract State Machines

Our goal in this section is to show that the ASM thesis, that all al-
gorithms are behaviorally equivalent to ASMs, holds for parallel algo-
rithms in the sense of Definition 25. That is, the thesis is not damaged
by our extension of the notion of parallel algorithm from [1] to allow
intra-step creation of proclets. We do not change the definitions of
ASMs [1, Section 9.1] and of behavioral equivalence [1, Definition 2.3].
Recall that behavioral equivalence is a very strong equivalence rela-
tion, requiring the same states, the same initial states, and the same
one-step transition function. In particular, when we construct an ASM
equivalent to a given algorithm A, it is obvious what the states and
initial states of the ASM must be; the only issue is constructing an
ASM program that produces the same transition function as A.

Theorem 27. Every parallel algorithm is behaviorally equivalent to an
ASM.

Proof. The proof is very similar to the proof of the corresponding,
weaker result, Theorem 10.1, in [1], so we only explain the changes
that are required by our present, broader notion of algorithm.

The first part of the proof in [1], expressing the proclet algorithm as
a sequential ASM with output, Π, requires only a notational change:
Since the initial local state now interprets the dynamic, nullary symbol
myAct, this symbol is added to the vocabulary of Π.

The next part of the proof in [1], starting at the bottom of page 631,
gives a rough description of how the ASM’s computation will proceed.
As pointed out there, the most natural approach to computing the
correct ken, namely imitating the level-by-level recursion used in the
proof of Theorem 7.22, needs to be modified because information about
the levels is not available to the proclets. So in [1] the rough description
of the ASM’s work is called a “rough description of the modification”
of the natural approach.

We must now make a further modification because the notion of
proclet is not fixed by the state (as it was in [1]) but changes from
phase to phase as a result of activations. The work of the ASM still
proceeds in B phases, with all proclets executing the proclet algorithm
in certain initial local states at each phase, but the set of proclets
here depends on the phase. In the first phase, the proclets are the
elements of PriProclet. At any later phase, say phase k, the proclets
are the elements of PriProclet and the elements activated by proclets



34 ANDREAS BLASS AND YURI GUREVICH

at phase k−1. The latter are, of course, the elements of the form 〈q, p〉
where p was a proclet at phase k− 1 and it updated its myAct to a set
containing q.

At each phase, the proclets of that phase execute the proclet algo-
rithm in an initial local state where myMail and Display are inter-
preted as the results of the preceding phase (with myMail = ∅ and
Display(q) = undef in phase 1), exactly as in [1]. The argument in [1,
page 632] showing that, in phase k, all proclets of level ≤ k are comput-
ing in the initial local states given by the correct ken carries over to the
present context. It follows that these proclets do the correct pushing,
displaying, and activating at this phase and that, as a result, the next
phase has the correct set of proclets up to and including level k + 1.
(The reference to Lemma 7.25 in [1] is now replaced with a reference
to Lemma 20.)

Just as in [1], the rough description must be supplemented with
a decision to suppress all updates of the global state until phase B,
during which the ASM is using the correct set of proclets with the
correct initial local states at all levels.

In the formal presentation of the ASM, starting on page 633 of
[1], the following extensions are needed to handle activation of pro-
clets. First, in addition to the terms (or more precisely term schemas)
Outmail(p, M, D) and Dspl(p, M, D) used there, we also have Asp(p, M, D).
Here Asp stands for “activate secondary proclets”; the intended mean-
ing is that proclet p, with M as its mailbox and D as the display func-
tion, would execute updates of myAct, and Asp(p, M, D) is the multiset
of all the elements x such that p would update myAct to x, just as in [1]
Dspl(p, M, D) is the multiset of those x such that p updates myDisplay
to x. (The ASM program Π can be arranged so that it produces at most
one update of myAct and myDisplay, but it is convenient to give the
definitions in a general form that does not presuppose this uniqueness.)

The definitions of OutmailR and DsplR by induction on rules R, as
given in [1], must be supplemented with clauses to define AspR. To
formulate these clauses, we use for terms t the notation t′, defined just
as in [1] with the extra clause that myAct in t is to be replaced with
∅ in t′. Now the clauses defining AspR are exactly analogous to the
clauses for DsplR in [1]:

• If R is an update rule of the form myAct := t, then AspR(p, M, D)
is {{t′}}.

• If R is any other update rule, then AspR(p, M, D) is ∅.
• If R is Push t0 to t1, then AspR(p, M, D) is ∅.



PARALLEL THESIS: CORRECTION AND EXTENSION 35

• If R is do in parallel R0, . . . , Rk enddo, then AspR(p, M, D)
is the sum AspR0

(p, M, D) ] · · · ] AspRk
(p, M, D).

• If R is if ϕ then R0 else R1 endif, then AspR(p, M, D) is

{{z : z ∈ AspR0
(p, M, D) : ϕ′}} ] {{z : z ∈ AspR1

(p, M, D) : ¬ϕ′}}

Continuing in analogy with how we handled Dspl, we define Asp(p, M, D)
to be TheUnique(AsSet(AspΠ(p, M, D))). One more definition is needed,
to incorporate both the automatic tagging of secondary proclets with
their activators and the convention that, if a proclet marks for acti-
vation something other than a set, then it thereby activates nothing.
Accordingly, we define TP(p, M, D) to be

{{〈q, p〉 : q ∈ Asp(p, M, D) : AsSet(Asp(p, M, D)) = Asp(p, M, D)}};

the notation TP stands for “tagged proclets”.
Next, we modify the definitions in [1, page 634] of Mailboxk(p)

and Displayk(p) to take into account the possible variation of the
set of proclets from one phase to another. The (unique) occurrence of
Proclet in these definitions is to be replaced with Procletk, which in
turn is defined by induction on k simultaneously with Mailboxk(p) and
Displayk(p), as follows.

• Proclet0 is PriProclet.
• Procletk+1 is PriProclet]

⊎
{{TP(p, Mailboxk(p), Displayk) :

p ∈ Procletk : true}}.
It was shown in [1] that Mailboxk(p) and Displayk(p) give the mail-

box and display functions after k phases of the computation in our
description of how the desired ASM works. The argument there ex-
tends to show that TPk(p) gives the set of proclets activated by p in
phase k and therefore that Procletk is the set of proclets that execute
during phase k + 1. Arguing as on page 635 of [1], we find that the
updates of the given algorithm A are matched by the ASM program

do forall p ∈ ProcletB−1 Π∗(p) enddo

(the same as in [1] except for the subscript B − 1 on Proclet), where
Π∗(p) is obtained from Π by the same substitutions as in [1], except
that Skip replaces not only updates of myDisplay but also updates of
myAct. �

Acknowledgment. We thank Dean Rosenzweig for pointing out that
we had incorrectly used comprehension terms in [1, Section 8] and for
subsequent helpful discussions.



36 ANDREAS BLASS AND YURI GUREVICH

References

[1] Andreas Blass and Yuri Gurevich, “Abstract state machines capture parallel
algorithms,” A. C. M. Trans. Computational Logic 4 (2003) 578–651.

[2] Andreas Blass, Yuri Gurevich, “Ordinary interactive small-step algorithms, I,”
A. C. M. Trans. Computational Logic 7 (2006).

[3] Yuri Gurevich, “Evolving algebra 1993: Lipari guide,” in Specification and Val-
idation Methods, E. Börger, ed., Oxford Univ. Press (1995) 9–36.

[4] Yuri Gurevich, “Sequential abstract state machines capture sequential algo-
rithms,” A. C. M. Trans. Computational Logic 1 (2000) 77–111.

Mathematics Department, University of Michigan, Ann Arbor, MI
48109–1043, U.S.A.

E-mail address: ablass@umich.edu

Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.
E-mail address: gurevich@microsoft.com


	1. Introduction
	2. The Problems and How to Solve Them
	3. Postulates
	4. Abstract State Machines As Algorithms
	5. Algorithms Are Abstract State Machines
	Acknowledgment

	References

