Goldilocks: Efficiently Computing the Happens-Before
Relation Using Locksets

Tayfun Elmas Shaz Qadeer Serdar Tasiran
Kog University Microsoft Research Kog University

November 17, 2006

Technical Report
MSR-TR-2006-163

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Goldilocks: Efficiently Computing the Happens-Before Relation Using Locksets

Tayfun Elmas
Kog University

Abstract

We present a new lockset-based algorithm, Goldilocks, for
precisely computing the happens-before relation and thereby
detecting data-races at runtime. Dynamic race detection
algorithms in the literature are based on vector clocks or
locksets. Vector-clock-based algorithms precisely compute
the happens-before relation but have significantly more over-
head. Previous lockset-based race detection algorithms, on
the other hand, are imprecise. They check adherence to a
particular synchronization discipline, i.e., a sufficient condi-
tion for race freedom and may generate false race warnings.
Our algorithm, like vector clocks, is precise, yet it is efficient
since it is purely lockset based.

We have implemented our algorithm inside the Kaffe Java
Virtual Machine. Our implementation incorporates lazy
evaluation of locksets and certain “short-circuit checks”
which contribute significantly to its efficiency. Experimental
results indicate that our algorithm’s overhead is much less
than that of the vector-clock algorithm and is very close to
our implementation of the Eraser lockset algorithm.

1 Introduction

Race conditions on shared data are often symptomatic of
a bug and their detection is a central issue in the func-
tional verification of concurrent software. Numerous tech-
niques and tools have been developed to analyze races and
to guard against them [14, 18, 6, 1]. These techniques can
be broadly classified as static and dynamic. Some state-of-
the-art tools combine techniques from both categories. This
paper is about a dynamic race detection algorithm.
Algorithms for runtime race detection make use of two
key techniques: locksets and vector clocks. Roughly speak-
ing, lockset-based algorithms compute at each point during
an execution for each shared variable ¢ a set LS(g). The
lockset LS(gq) consists of the locks and other synchronization
primitives that, according to the algorithm, protect accesses
to ¢ at that point. Typically, LS(q) is a small set and can
be updated relatively efficiently during an execution. The
key weakness of lockset-based algorithms in the literature is
that they are specific to a particular locking discipline which
they try to capture directly in LS(g). For instance, the clas-
sic lockset algorithm popularized by the Eraser tool [14], is
based on the assumption that each potentially shared vari-
able must be protected by a single lock throughout the whole
computation. Other similar algorithms can handle more so-
phisticated locking mechanisms [1] by incorporating knowl-

Shaz Qadeer
Microsoft Research

Serdar Tasiran
Kog University

edge of these mechanisms into the lockset inference rules.
Still, lockset-based algorithms based on a particular syn-
chronization discipline have the fundamental shortcoming
that they may report false races when this discipline is not
obeyed. Vector-clock [10] based race detection algorithms,
on the other hand, are precise, i.e., declare a race exactly
when an execution contains two accesses to a shared variable
that are not ordered by the happens-before relation. How-
ever, they are significantly more expensive computationally
than lockset-based algorithms as argued and demonstrated
experimentally in this work.

In this paper we provide, for the first time, a lockset-
based algorithm, Goldilocks, that precisely captures the
happens-before relation. In other words, we provide a set
of lockset update rules and formulate a necessary and suf-
ficient condition for race-freedom based solely on locksets
computed using these rules. Goldilocks combines the pre-
cision of vector clocks with the computational efficiency of
locksets. We can uniformly handle a variety of synchroniza-
tion idioms such as thread-local data that later becomes
shared, shared data protected by different locks at different
points in time, and data protected indirectly by locks on
container objects.

For dynamic race detection tools used for stress-testing
concurrent programs, precision may not be desired or nec-
essary. One might prefer an algorithm to signal a warning
about not only about races in the execution being checked,
but also about “feasible” races in similar executions [11].
It is possible to incorporate this kind of capability into our
algorithm by slightly modifying the lockset update rules or
the race condition check. However, the target applications
for our race detection algorithm are continuous monitoring
for actual races during early development and deployment,
and partial-order reduction during model checking as is done
in [7]. False alarms and reports of feasible rather than actual
races unnecessarily interrupt execution and take up devel-
opers’ time in the first application and cause computational
inefficiency in the latter. For these reasons, for the targeted
applications, the precision of our algorithm is a strength and
not a weakness.

We present an implementation of our algorithm that
incorporates lazy computation of locksets and “short cir-
cuit checks”: constant time sufficient checks for race free-
dom. These implementation improvements contribute sig-
nificantly to the computational efficiency of our technique
and they appear not to be applicable to vector clocks. We
implemented our race-detection algorithm in C, integrated
with the Kaffe Java Virtual Machine [17]. An important

contribution of this paper is an experimental comparison
of the Goldilocks algorithm with the vector-clock algorithm
and our implementation of the Eraser algorithm. We demon-
strate that our algorithm is much more efficient than vector
clocks and about as efficient as Eraser.

This paper is organized as follows. Section 2 describes
the Goldilocks algorithm and presents an example which
contrasts our algorithm with existing locksets algorithms.
Section 3 explains the implementation of our algorithm in
the Kaffe JVM. Experimental evaluation of our algorithm
is presented in Section 4. Related work is discussed in Sec-
tion 5.

2 The Goldilocks algorithm

In this section, we describe our algorithm for checking
whether a given execution o has a data-race. We use
the standard characterization of data-races based on the
happens-before relation, i.e., there is a data race between
two accesses to a shared variable if they are not ordered by
the happens-before relation. The happens-before relation
for an execution is defined by the memory model. We use
a memory model similar to the Java memory model [9] in
this paper. Our algorithm is sound and precise, that is, it
reports a data-race on an execution iff there is a data-race
in that execution.

2.1 Preliminaries

A state of a concurrent program consists of a set of local
variables for each thread and a set of global objects shared
among all threads. Let T%d be the set of thread identifiers
and Addr be the set of object identifiers. Each object has
a finite collection of fields. Field represents the set of all
fields. and is a union of two disjoint sets, the set Data of
data fields and the set Volatile of volatile fields. A data
variable is a pair (o,d) of an object o and a data field d.
A synchronization variable is a pair (o,v) of an object o
and a volatile field v. A concurrent execution o is repre-
sented by a finite sequence s ﬂnl S2 ﬂm 2 Snad,
where s; is a program state for all ¢ € [1...n + 1] and «;
is one of the following actions for all ¢ € [1...n]: acq(o0),
rel(o), read (o, d), write(o, d), read (o, v), write(o,v), fork(u),
join(u), and alloc(o). We use a linearly-ordered sequence
of actions and states to represent an execution for ease of
expressing the lockset-update rules and the correctness of
the algorithm. This sequence can be any linearization of
the union of the following partial orders defined in [9]: (i)
the program order for each thread and (ii) the synchronizes-
with order for each synchronization variable. The particular
choice of the linearization is immaterial for our algorithm.
In our implementation (Section 3) each thread separately
checks races on a (linearly-ordered) execution that repre-
sents its view of the evolution of program state.

The actions acg(o) and rel(o) respectively acquire and
release a lock on object 0. There is a special field [€ Volatile
containing values from T%d U {null} to model the semantics
of an object lock. The action acq(o) being performed by
thread ¢ blocks until 0.l = null and then atomically sets o.l
to t. The action rel(0) being performed by thread ¢ fails if
0.l # t, otherwise it atomically sets 0.l to null. Although
we assume non-reentrant locks for ease of exposition in this
paper, our algorithm is easily extended to reentrant locks.
The actions read(o,d) and write(o, d) respectively read and

write the data field d of an object 0. A thread accesses a
variable (o0,d) if it executes either read(o,d) or write(o,d).
Similarly, the actions read (o, v) and write(o, v) respectively
read and write the volatile field v of an object 0. The action
fork(u) creates a new thread with identifier u. The action
join(u) blocks until the thread with identifier u terminates.
The action alloc(o) allocates a new object o. Of course, other
actions (such as arithmetic computation, function calls, etc.)
also occur in a real execution but these actions are irrelevant
for our exposition and have consequently been elided.
Following the Java Memory Model [9], we define the
happens-before relation for a given execution as follows.

Definition 1 Let o0 = s, ﬂnl S ﬂ)w co 2 Spa be
an ezecution of the program. The happens-before relation

LN for o is the smallest transitively-closed relation on the

set {1,2,...,n} such that for any k and 1, we have k LNy
if 1 <k <Il<mn and one of the following holds:

1. tp =1;.
2. ay = rel(o) and a; = acq(o).

3. ay = write(o,v) and a; = read(o,v).
4. oy = fork(tr).

5. oy = join(tr).

We use the happens-before relation to define data-race
free executions as follows. Consider a data variable (o, d) in
the execution o. The execution o is race-free on (o, d) if for
all k,1 € [1,n] such that ap,aq € {read(o,d), write(o,d)},

we have k =% 1 or | % k. For now, our definition does
not distinguish between read and write accesses. We are
currently refining our algorithm to make this distinction in
order to support concurrent-read/exclusive-write schemes.

2.2 The algorithm

Our algorithm for detecting data races in an execution
o uses an auxiliary map LS from (Addr x Data) to
Powerset((Addr x Volatile) U Tid). This map provides for
each data variable (o,d) its lockset LS(o,d) which contains
volatile variables, some of which represent locks and thread
identifiers. The algorithm updates LS with the execution of
each transition in o. The set of rules for these updates are
shown in Figure 1. Initially, the partial map LS is empty.
When an action a happens, the map LS is updated accord-
ing to the rules in the figure.

Goldilocks maintains for each lockset LS(o,d) the fol-
lowing invariants: 1) If (o',1) € LS(o,d) then the last ac-
cess to (o, d) happens-before a subsequent acq(o’). 2) If
(o',v) € LS(0,d) then the last access to (o, d) happens--
before a subsequent read(o’,v). 3) If t € LS(0,d) then the
last access to (o, d) happens-before any subsequent action
by thread ¢. The first two invariants indicate that LS(o,d)
contains the locks and volatile variables whose acquisitions
and reads, respectively, create a happens-before edge from
the last access of (o0, d) to any subsequent access of (o, d),
thereby preventing a race. As a result of the last invariant,
ift € LS(o,d) at an access to a data variable (o, d) by thread
t, then the previous access to (o,d) is related to this access
by the happens-before relation. A race on (o,d) is reported
in Rule 1, if LS(0,d) # 0 and t ¢ LS(o,d) just before the
update.

1. « € {read(o,d), write(o,d)}:
if LS(o,d) # 0 and t & LS(o,d)

report data race on (o, d)

LS(o,d) := {t}

2. a = read(o,v):

foreach (o', d):
if (0,v) € LS(0',d) add t to LS(0,d)

3. a = write(o,v):

foreach (o', d):
ift € LS(0',d) add (o,v) to LS(0,d)

4. a = acq(o):

foreach (o', d):
if (0,1) € LS(0',d) add t to LS (0, d)

5. a = rel(o):

foreach (o', d):
ift € LS(0',d) add (o,1) to LS(0,d)

6. a = fork(u):

foreach (o', d):
ift € LS(0',d) add u to LS(0',d)

7. a = join(u):

foreach (o', d):
ifue LS(d,d) add t to LS(o,d)

8. a = alloc(x):

foreach d € Data: LS(x,d) =0

Figure 1: The lockset update rules for the Goldilocks algo-
rithm (action « executed by thread ¢)

We now present the intuition behind our algorithm. Let
(0,d) be a data variable, a be the last access to it by a thread
a, and B be the current access to it by thread . Then «
happens-before 3 if there is a sequence of happens-before
edges connecting « to 3. The rules in Figure 1 are designed
to compute the transitive closure of such edges. When o
is executed, the lockset LS(o,d) is set to the singleton set
{a}. This lockset grows as synchronizing actions happen af-
ter the access. The algorithm maintains the invariant that
a thread identifier ¢ is in LS (o, d) iff there is a sequence of
happens-before edges between « and the next action per-
formed by thread t. The algorithm adds a thread identifier
to LS(o,d) as soon as such a sequence of happens-before
edges is established.

Note that each of the rules 2-7 requires updating the
lockset of each data variable. A naive implementation of
this algorithm would be too expensive for programs that
manipulate large heaps. In Section 3, we present a scheme
to implement our algorithm by applying these updates lazily.

The following theorem expresses the fact that our algo-
rithm is both sound and precise.

Theorem 1 (Correctness) Consider an ezecution o =

S1 ﬂ)tl S2 -+ Sp ﬁ)tn Sn+1 and let LS; be the value of
the lockset map LS as computed by the Goldilocks algorithm
when o reaches state s;. Let (o,d) be a data variable and
i € [1,n—1] be such that a; and o, access (o0,d) but a; does
not access (0,d) for all j € [i+1,n—1]. Thent, € LS, (o,d)

iff i 22 n.

The proof appears in the appendix.

Our algorithm has the ability to track happens-before
edges from a write to a subsequent read of a volatile vari-
able. Therefore, our algorithm can handle any synchro-
nization primitive, such as semaphores and barriers in the
java.util.concurrent package of the Java standard li-
brary, whose underlying implementation can be described
using a collection of volatile variables.

Goldilocks can also handle the happens-before edges in-
duced by the wait/notify mechanism of Java without need-
ing to add new rules. The following restrictions of Java
ensure that, for an execution the happens-before relation
computed by our lockset algorithm projected onto data vari-
able accesses remains unchanged even if the wait/notify syn-
chronization adds new happens-before edges: 1) Each call to
o.wait() and o.notify() be performed while holding the
lock on object o. 2) The lock of o released when o.wait()
is entered and it is again acquired before returning from
o.wait().

2.3 Example

In this section, we present an example of a concurrent pro-
gram execution in which lockset algorithms from the litera-
ture declare a false race while our algorithm does not. The
lockset algorithms that we compare ours with are based on
the Eraser algorithm [14], which is sound but not precise.

The pseudocode for the example is given below. The
code executed by each thread Ti is listed next to Ti:.

Class IntBox { Int x; }

IntBox a = new IntBox(); // IntBox object ol created
IntBox b = new IntBox(); // IntBox object 02 created

Ti: acq(Ll); a.x++; rel(Ll);
T2: acq(Ll); acq(L2);
tmp = a; a = b; b = tmp;
rel(L1); rel(L2);
T3: acq(L2); b.x++; rel(L2);

In this example, two IntBox objects ol and o2 are cre-
ated and locks L1 and L2 are used for synchronization. The
program follows the convention that L1 protects accesses to
a and a.x, similarly, L2 protects accesses to b and b.x. At
all times, each IntBox object and its integer field x are pro-
tected by the same lock. T2 swaps the objects referred to by
the variables a and b.

Consider the interleaving in which all actions of T1 are
completed, followed by those of T2 and then T3. T2 swaps
the objects referred to by variables a and b so that during
T3’s actions b refers to ol. ol.x is initially protected by L1
but is protected by L2 after T2’s actions are completed.

The most straightforward lockset algorithm is based on
the assumption that each shared variable is protected by
a fixed set of locks throughout the execution. Let LH (t)

represent the set of locks held by thread ¢ at a given point
in an execution. This algorithm attempts to infer this set
by updating LS (o, d) to be the intersection LH (t) N LS (o,d)
at each access to (o,d) by a thread ¢. If this intersection
becomes empty, a race is reported. This approach is too
conservative since it reports a false race if the lock protecting
a variable changes over time. In the example above, when T3
accesses b.x, the standard lockset algorithm declares a race
since LS(ol.x) = {L1} (b points to ol) before this access
and T3 does not hold L1.

A less conservative alternative is to update LS(o,d) to
LH(t) rather than LH (t)NLS(o,d) after a race-free access to
(0,d) by a thread t. For any given execution, this strategy,
just like the previous strategy, will report a data-race if there
is one but is still imprecise and might report false races.
In the example above, this approach is unable to infer the
correct new lockset for o1.x after T2’s actions are completed.
This is because T2 does not directly access ol.x and, as a
result, LS(ol.x) is not modified by T2’s actions.

Variants of lockset algorithms in the literature use addi-
tional mechanisms such as a state machine per shared vari-
able in order to handle special cases such as thread locality,
object initialization and escape. However these variants are
neither sound nor precise, and they all report false alarms
in scenarios similar to the one in the example above.

Our algorithm’s lockset update rules allow a variable’s
locksets to grow and change during the execution. The lock-
set of a variable may be modified even without the variable
being accessed. In this way, we are able handle dynamically
changing locksets and ownership transfers and avoid false
alarms. In the example above, the lockset of o1.x evolves
with our update rules during the execution as illustrated in
Figure 2.

The vector-clock algorithm does not declare a false race
in this example and similar scenarios. However, as discussed
in Section 3, it accomplishes this at significantly increased
computational cost compared to our optimized implementa-
tion of the lockset update rules.

3 Implementation with lazy evaluation

We implemented the Goldilocks algorithm in Kaffe [17], a
clean room implementation of the Java virtual machine in C.
Our implementation currently runs in the interpreting mode
of Kaffe’s runtime engine. The pseudocode is given in Fig-
ure 3. There are two important features that contribute to
the performance of the algorithm in practice: short-circuit
checks and lazy evaluation of lockset update rules. Short-
circuit checks are cheap, sufficient checks for a happens--
before edge between the last two accesses to a variable. We
use short-circuit checks to eliminate unnecessary application
of the lockset update rules. Lazy evaluation runs the lock-
set update rules in Figure 1 only when a data variable is
accessed and all the short-circuit checks fail to prove the
existence of a happens-before relationship.

There are two reasons we implemented our lockset algo-
rithm lazily: 1) Managing and updating a separate lockset
for each data variable have high memory and computational
cost. Our lockset rules are expressed in terms of set lookups
and insertions, and making the lockset a singleton set with
the current thread id after an access. These simple update
rules make possible a very easy and efficient form of comput-
ing locksets lazily only at an access. 2) For thread-local and
well-synchronized variables, there may be no need to run (all

of) the lockset update rules, because a short-circuit check or
a subset of synchronization actions may be sufficient to show
race freedom.

In our way of performing lazy evaluation, we do not ex-
plicitly associate a separate lockset LS(o,d) for each data
variable (o0,d). Instead, LS(o,d) is created temporarily,
when (o0, d) is accessed and the algorithm, after all short-
circuit checks fail, finds it necessary to compute happens--
before for that access using locksets. In addition, the lockset
update rule for a synchronization action in Figure 1 is not
applied to LS(o,d) when the action is performed. We defer
the application of these rules until (o, d) is accessed and the
lockset update rules are applied for that access. We store
the necessary information about a synchronization action in
a cell, consisting of the current thread and the action. Dur-
ing the execution, cells are kept in a list that we call update
list, which is represented by its head and taeil pointers in
the pseudocode. When a thread performs a synchronization
action, it atomically appends its corresponding cell to the
update list .

Each variable (o, d) is associated with an instance of Info.
info maps variables to Info instances. info(o, d) keeps track
of three pieces of information necessary to check an access
to (0,d): 1) pos is a pointer to a cell in the update list
(ref (Cell) is the reference type for Cell). 2) owner is the
identifier of the thread that last accessed (o,d). After each
access to (0,d) by thread t, info(o,d) is updated so that pos
is assigned to the reference of the cell at the tail of the up-
date list and owner is assigned to t. 3) alock is used in a
short-circuit check as explained below. Notice that because
locksets are created temporarily only when the full check-
ing for the lockset rules is to be done, there is no field of
info(o,d) that points to a lockset.

We instrumented the JVM code by inserting calls to
Handle-Action. The procedure Handle-Action is invoked
each time a thread performs an action relevant to our al-
gorithm. We performed the instrumentation so that the
synchronizes-with order and the order of corresponding cells
in the update list are kept consistent throughout the exe-
cution. Similarly, the order of cells respects the program
order of the threads in the execution. We needed only for
volatile reads/writes to insert explicit locks to make atomic
the volatile access and appending the cell for that action to
the update list.

Handle-Action takes as input a thread ¢ and an action
a performed by t. If « is a synchronization action, Handle-
Action appends a cell referring to « to the end of the up-
date list (lines 1-6). If a reads from or writes to a data
variable (0,d) and it is the first access to (o,d) it creates
a new Info for (o0, d) and sets its alock to one of the locks
held by ¢ (lines 811). Otherwise, it first runs two short-
circuit checks (line 12). If both of the short-circuit checks
fail, the procedure Apply-Lockset-Rules is called. Before ex-
iting Handle-Action, info(o,d) is updated to reflect the last
access to (o0,d) (lines 19-20). Handle-Action also garbage
collects the cells in the update list that are no longer refer-
enced, by calling Garbage-Collect-Cells (line 21).

Apply-Lockset-Rules applies the lockset update rules
in Figure 1 but uses a local, temporarily-created lockset
LS(o,d). LS(o,d) is initialized to contain info(o,d).owner,
the identifier of the thread that last accessed (o, d), to reflect
the effect of Rule 1 for variable accesses. Then the rules for
the synchronization actions performed after the last access
to (o0,d) are applied to LS(0,d) in turn. The cells in the up-
date list between the cell pointed by info(o,d).pos and the

a = IntBox()

LS(o1.x) =&

b := IntBox()
T

a.x ++ First access

release(L1)

(T1e LS) > (add L1 to LS)

LS(01.x) = {T1}
LS(o1.x) = {T1, L1}

acquire(L1)

(L1€.LS)> (add T2to LS)

LS(o1.x) = {T1, L1, T2}

acquire(L2)

(L2 €. LS)> (add T2to LS)

T2
b := tmp
release(L1)

(T2.€.LS).2 (add L1.to LS)

LS(o1.x) = {T1, L1, T2}

LS(o1.x) = {T1, L1, T2}

release(L2)

(T2 €. LS) > (add L2 to LS)

acquire(L2)

(L2 € LS) > (add T3 1o LS)

LS(o1.x) = {T1, L1, T2, L2}

T3 b.x ++

(T3 € LS) > (No race)

LS(o1.x) = {T1, L1, T2, L2, T3}

R

release(L2)

(T3 €.LS) > (add L2 to LS)

LS(o1.x) = {T3}
LS(o1.x) = {T3, L2}

Figure 2: Evaluation of LS(o1.x) by Goldilocks.

cell pointed by tail are used in this computation. The access
causes no warning if the current thread ¢ is added to LS (o, d)
by some rule. This check is performed after handling each
cell and is also used to terminate the lockset computation
before reaching the tail of the update list. If ¢ is not found
in LS(o,d), a race condition on (o, d) is reported.
Short-circuit checks: Our current implementation con-
tains two constant time, sufficient checks for the happens--
before relation between the last two accesses to a variable
(see line 12 of Handle-Action). 1) We first check whether
the currently accessing thread is the same as the last thread
accessed the variable by comparing ¢ and info(o,d).owner.
This helps us to handle checking thread local variables in
constant time without needing the lockset rules. 2) The
second check handles variables that are protected by the
same lock for a long time. We keep track of a lock alock
for each variable (0,d). info(o,d).alock represents an ele-
ment of LS(o,d) chosen randomly. At the first access to
(0,d) info(o,d).alock is assigned one of the locks held by
the current thread randomly, or null if there is no such lock
(line 10). After the next access to (o,d) we check if the lock
info(o, d).alock is held by the current thread. If this check
fails, info(o,d).alock is reassigned by choosing a new lock
(line 15).

Comparison with the vector-clock algorithm: The
vector-clock algorithm is as precise as our algorithm. How-
ever, the vector-clock algorithm accomplishes this precision
at a significantly higher computational cost compared to
Goldilocks because lazy evaluation and the short circuit
checks make our approach very efficient. This fact is high-
lighted by the following example. Consider a program with
a large number of threads ti,...,t, all accessing the same
shared variable (o0,d), where all accesses to (o,d) are pro-
tected by a single lock [. At each synchronization operation,
acq(l) or rel(l), Goldilocks performs a constant-time opera-
tion to add the synchronization operation to the update list.
Moreover, once info(o,d).alock = [, then at each access to

(0,d) Goldilocks performs a constant-time look-up to deter-
mine the absence of a race. The vector-clock algorithm, on
the other hand, maintains a vector of size n for each thread
and for each variable. At each synchronization operation,
two such vectors are compared element-wise and updated.
At each access to (o, d), the vector-clock algorithm performs
constant-time work just like Goldilocks. While the vector--
clock algorithm does ©(n) work for each synchronization op-
eration and O(1) for each data variable access, Goldilocks
does O(1) work for every operation. Therefore, Goldilocks
is more efficient than the vector-clock algorithm in general.
The SharedSpot microbenchmark in Section 4 is based on
the example described above and the experiments confirm
the preceding analysis.

4 Evaluation

In order to evaluate the performance our algorithm, we ran
the instrumented version of the Kaffe JVM on a set of bench-
marks. In order to concentrate on the races in the applica-
tions, we disabled checks for fields of the standard library
classes. Arrays were checked by treating each array element
as a separate variable. We first present our experiments and
discuss their results in Section 4.1.

In order to compare our algorithm with traditional lock-
set and vector-clock algorithms, we implemented a basic ver-
sion of the Eraser algorithm that we call Basic-Eraser and
a vector-clock based algorithm similar to the one used by
Trade [5]. Where possible, we used the same data structure
implementations while implementing the three algorithms.
For Basic-Eraser, we used the same code for keeping and
manipulating locksets that we developed for Goldilocks.
Microbenchmarks: The Multiset microbenchmark con-
sists of a number of threads accessing a multiset of integers
concurrently by inserting, deleting and querying elements
to/from it. The SharedSpot benchmark illustrates the case
in which a number of integers, each of which is protected by

record Cell {
thread: Tid;
action: Action;
newxt: ref (Cell);}

record Info {
pos: ref (Cell);
owner: Tid;
alock: Addr; }

head, tail: ref (Cell); info: (Addr x Data) — Info;
Initially head := new Cell; tail := head; info := EmptyMap;

Handle-Action (t, «):

if (a € {acq(o), rel(o0), fork(u), join(u), read(o,v), write(o,v),

finalize(x), terminate(t)}) {
tail—thread :=t;
tail—action := «;
tail—next := new Cell;
tail := tail—nest;

else if (a € {read(o,d), write(o,d)}) {

if (info(o,d) is not defined) { //initialize info(o,d) for the first access to (o, d)

info(o, d) := newInfo;
(0,

info

} else {

o0,d).alock := (choose randomly a lock held by ¢, if any exists);

if ((info(o,d).owner # t) A (info(o,d).alock is not held by t)) {
Apply-Lockset-Rules (t, (0,d)); // run the lockset algorithm
// because short circuits failed, reassign the random lock for (o, d)
info(o,d).alock := (choose randomly a lock held by ¢, if any exists);

// reset info(o,d) after each access to (o, d)
info(o,d).owner :=t;

info(o,d).pos := tail;

Garbage-Collect-Cells (head, tail);

Figure 3: Implementation of the Goldilocks algorithm

a separate unique lock, are accessed concurrently by a num-
ber of threads for applying arithmetic operations on them.
The LocalSpot benchmark is similar to SharedSpot but each
variable is thread-local. We ran experiments parameterizing
the microbenchmarks with the number of threads starting
from 1 and doubling until 256. Figure 4 plots for three al-
gorithms the average time spent for checking each variable
access against increasing number of threads.

Large benchmarks: We used six benchmark programs
commonly used in the literature to compare the perfor-
mance of the three algorithms on large programs: Raja'

is a ray tracer (= 6K lines).

SciMark® is a composite

Java benchmark consisting of five computational kernels

(=~

2300 lines). Four of our benchmarks are from the Java

Grande Forum Benchmark Suite, which can be obtained at
http://www.epcc.ed.ac.uk/computing/research_activities/

java_grande/threads.html.

They are moldyn, a molecular

dynamics simulation (= 650 lines), raytracer, a 3D ray

tracer (=
lation (=

1200 lines), montecarlo, a Monte Carlo simu-
3K lines) and sor, a successive over-relaxation

program (= 220 lines).

algorithms on the benchmark programs.

Table 1 presents the performance statistics of the three
The purpose of

this batch of experiments is to contrast the overhead that

1
2

Raja can be obtained at http://raja.sourceforge.net/.
Scimark can be obtained at hittp://math.nist.gov/scimark2/.

each of the three approaches incur while checking for races.
In this batch of experiments, race checking for a variable
was not turned off after detecting a race on it, as would
be the case in normal usage of a race detection tool. The
purpose of this was to enable a fair comparison between al-
gorithms. On this set of benchmarks, Basic-Eraser conser-
vatively declared false races on many variables early in the
execution. If race checking on these variables were turned
off after Basic-Eraser detects a race on them, Basic-Eraser
would have ended up doing a lot less work and checking
a lot fewer accesses than the other two approaches, espe-
cially since these variables are typically very likely to have
races on them later in the execution as well. This would
have made the overhead numbers difficult to compare. In
Table 1, we give the number of threads created in each pro-
gram below the name of the benchmark. The column titled
“Uninstrumented” reports the total runtime of the program
in the uninstrumented JVM, and the total number of vari-
able accesses (fields+array indices) performed at runtime.
Each column for an algorithm presents, for each benchmark,
the total execution time and the slowdown ratio of the pro-
gram with instrumentation. The time values are given in
seconds. The slowdown ratio is the ratio of the difference
between the instrumented runtime and the uninstrumented
runtime to the uninstrumented runtime. The number of
variable accesses checked for races is important for assessing

Multiset SharedSpot LocalSpot
1200 . 3000 300
(=) Basic—Eraser | 4
— +— Vector—clock L7 /
. —*—Our lockset | - s o /
@ 1000 g @ 2500 /1 9 250 /A
1= v = i< /
S s ’ S
=} =1 , =3 /
o 7 o o
8 4 38 4 8 !
S 800r _ 1 .G 20001 / S 200 /
£ T = / = /)
0’ 7 @ @
£ / £ / £ /
> 600 , = 1500} = 150 /
= = £ /
= / = = /
S = =
D / D /
2 e 2 2
S S S ;
@ 400 4 o 1000} @ 100
1% o q o « /
4 4 4
Q 1 k=3 o /
8 38 8
& I IS IS4 o /
& 200} | & s00 & soff oA 1
To.o s too
v
o e e o
1 32 64 128 256 1 32 64 256 1 3264 128 256

Number of threads

128
Number of threads

Number of threads

Figure 4: Per access race checking time against the increasing number of threads

the amount of work carried out by the algorithm during ex-
ecution and average checking time for each variable access.

Table 2 lists the results of our experiments with
Goldilocks where checks for fields on which a race is de-
tected are disabled. This is a more realistic setting to judge
the overhead of our algorithm in absolute terms. The mea-
surements reported in the first three rows are the same as
the ones in Table 1, taken without disabling any checks.
The second three rows give the runtime statistics when we
followed the approach described above.

4.1 Discussion

The plots in Figure 4 show per access checking times of the
three algorithms. The very low acceleration in the per ac-
cess runtime overhead of our algorithm and Eraser in the
SharedSpot and LocalSpot examples is noteworthy. Short
circuit checks in our algorithm allow constant time over-
head for thread-local variables and variables protected by a
unique lock. This makes our algorithm asymptotically bet-
ter than the vector-clock algorithm.

The runtime statistics in Table 1 indicate that Goldilocks
performs better than the vector-clock algorithm for large-
scale programs. As the number of checks done for variable
accesses are the same, we can conclude that per variable
access checking time of our lockset algorithm on average is
less than the vector-clock algorithm.

SciMark, moldyn and sor are well-synchronized programs
with few races and a simple locking discipline. Thus the
short circuit checks mostly succeed and the overhead of the
lockset algorithm is low. However, more elaborate synchro-
nization policies in Raja, raytracer and montecarlo caused
long runs of the lockset algorithm, thus the slowdown ratio
increases. These programs have a relatively high number of
races.

The results indicate that our algorithm works as effi-
ciently as Basic-Eraser while Basic-Eraser can not handle all
the synchronization policies used in the benchmarks. The
main reason for our algorithm performing slightly better in
our experiments is the fact that Basic-Eraser does lockset
intersections while checking the accesses. Intersection is fun-
damentally an expensive operation. Our algorithm, on the
other hand, requires insertions and lookups, which can be
implemented in constant amortized time. Clearly, a more
optimized implementation of Eraser would have performed
better. The goal of the comparison with Basic-Eraser was to

demonstrate that our algorithm does not have significantly
more cost than other lockset algorithms.

Disabling checking accesses to fields on which races were
detected dramatically decreases the number of accesses to
be checked against races, thus the total runtime of the in-
strumented program. This can be seen from Table 1. For
the benchmarks moldyn, raytracer and sor, the differences
in the number of accesses point to this effect.

5 Related work

Dynamic race-detection methods do not suffer from false
positives as much as static methods do but are not exhaus-
tive. Eraser [14] is a well-known tool for detecting race
conditions dynamically by enforcing the locking discipline
that every shared variable is protected by a unique lock.
It handles object initialization patterns using a state-based
approach but can not handle dynamically changing locksets
since it only allows a lockset to get smaller. There is much
work that refines the Eraser algorithm by improving the
state machine it uses and the transitions to reduce the num-
ber of false positives. One such refinement is extending the
state-based handling of object initialization and making use
of object-oriented concepts [16]. Harrow used thread seg-
ments to identify the portions of the execution in which ob-
jects are accessed concurrently among threads [8]. Another
approach is using a basic vector-clock algorithm to capture
thread-local accesses to objects and thus eliminates unneces-
sary and imprecise applications of the Eraser algorithm [18].
Precise lockset algorithms exist for Cilk programs but their
use for real programs is still under question [2]. The gen-
eral algorithm in [2] is quite inefficient while the efficient
version of this algorithm requires programs to obey the um-
brella locking discipline, which can be violated by race-free
programs.

The approaches that check a happens-before relation [5,
13, 15] are based on vector clocks [10], which create a par-
tial order on program statements. Trade [5] uses a precise
vector-clock algorithm. Trade is implemented at the Java
byte code level and in interpreter mode of JVM as is our
algorithm. To reduce the overhead of the vector clocks for
programs with a large number of threads, they use reacha-
bility information through the threads, which makes Trade
more efficient than other similar tools. Schonberg computes
for each thread shared variable sets and concurrency lists to
capture the set of shared variables between synchronization
points of an execution [15]. His algorithm is imprecise for

Uninstrumented | Vector-clock Basic-Eraser Goldilocks
Benchmark | Runtime (sec.) Runtime (sec.) | Runtime (sec.) | Runtime (sec.)
threads # accesses Slowdown Slowdown Slowdown
Raja 8.6 145.1 105.9 70.2
3 5979629 15.7 11.1 7
SciMark 28.2 51.3 46.1 33.1
7 3647012 0.8 0.6 0.1
moldyn 11.2 195 138.9 92.8
7 8610585 16.3 11.3 7.2
raytracer 1.9 122.8 79.8 50
7 5299350 63.1 40.6 25.1
montecarlo 5.7 243.8 160 117.5
7 10491747 41.4 26.8 19.4
sor 27.2 145.9 157.5 107
7 7696597 4.3 4.7 2.9

Table 1: Runtime statistics of the benchmark programs

Algorithm Raja SciMark | moldyn raytracer | montecarlo | sor
Runtime 70.2 33.1 92.8 50 117.6 107
Slowdown 7 0.1 7.2 25.1 19.4 2.9

checks 5979629 | 3647012 | 8610585 | 5299350 10491747 7696597
Runtime* 65.8 35.5 57.0 17.6 111.2 63.8
Slowdown* | 6.5 0.2 4 8.2 18.3 1.3

checks* 5979629 | 4104754 | 5268021 | 1884836 10484544 3416928

* Results after disabling checks to the fields.

Table 2: Runtime statistics when fields with races detected on them are disabled

synchronization disciplines that use locks and needs to be
extended for asynchronous coordination to get precision for
these disciplines.

Hybrid techniques [12, 18] combine lockset and happens-
before analysis. For example, RaceTrack’s happens-before
computation is based on both vector clocks and locksets.
but is not sound as its lockset part of the algorithm is based
on Eraser algorithm. Our technique, for the first time, com-
putes a precise happens-before relation using an implemen-
tation that makes use of only locksets. Choi et.al. present
an unsound runtime algorithm [4] for race detection. They
used a static method [3] to eliminate unnecessary checks for
well-protected variables. This is a capability we intend to
integrate into Goldilocks in the future.

6 Conclusions

In this paper, we present a new sound and precise race-
detection algorithm. Goldilocks is based solely on the con-
cept of locksets and is able to capture all mutual-exclusion
synchronization idioms uniformly with one mechanism. The
algorithm can be used, both in the static or the dynamic
context, to develop analyses for concurrent programs, par-
ticularly those for detecting data-races, atomicity violations,
and failures of safety specifications. In our future work, we
plan to develop and integrate into Goldilocks a static anal-
ysis technique to reduce the cost of runtime checking.

Acknowledgements

We thank Madan Musuvathi for many interesting discus-
sions that contributed to the implementation technique de-
scribed in Section 3.

References

[1] C. Boyapati, R. Lee, and M. Rinard. A type system
for preventing data races and deadlocks in Java pro-
grams. In OOPSLA 02: Object-Oriented Programming,
Systems, Languages and Applications, pages 211-230.
ACM, 2002.

[2] Guang-lIen Cheng, Mingdong Feng, Charles E. Leiser-
son, Keith H. Randall, and Andrew F. Stark. Detect-
ing data races in cilk programs that use locks. In Pro-
ceedings of the ACM Symposium on Parallel Algorithms
and Architectures (SPAA ’98), pages 298-309, Puerto
Vallarta, Mexico, June 28-July 2 1998.

[3] J.-D. Choi, A. Loginov, and V. Sarkar. Static datarace
analysis for multithreaded object-oriented programs.
Technical Report RC22146, IBM Research, 2001.

[4] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov,
Robert O’Callahan, Vivek Sarkar, and Manu Sridha-
ran. Efficient and precise datarace detection for multi-
threaded object-oriented programs. In PLDI 02: Pro-
gramming Language Design and Implementation, pages
258-269. ACM, 2002.

[6] Mark Christiaens and Koen De Bosschere. Trade, a
topological approach to on-the-fly race detection in
Java programs. In JVM 01: Java Virtual Machine
Research and Technology Symposium, pages 105-116.
USENIX, 2001.

[6] C. Flanagan and S. N. Freund. Type-based race detec-
tion for Java. In PLDI 00: Programming Language De-
sign and Implementation, pages 219-232. ACM, 2000.

[7] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In POPL 05:
Principles of Programming Languages, pages 110-121.
ACM Press, 2005.

[8] J.J. Harrow. Runtime checking of multithreaded appli-
cations with visual threads. In SPIN 00: Workshop on
Model Checking and Software Verification, pages 331—
342. Springer-Verlag, 2000.

[9] Jeremy Manson, William Pugh, and Sarita Adve. The
Java memory model. In POPL 05: Principles of

[10]

[11]

[12]

[15]

[16]

[17]

18]

Programming Languages, pages 378-391. ACM Press,
2005.

Friedemann Mattern. Virtual time and global states
of distributed systems. In International Workshop on
Parallel and Distributed Algorithms, pages 215-226.
North-Holland, 1989.

Robert H. B. Netzer and Barton P. Miller. What are
race conditions?: Some issues and formalizations. ACM
Lett. Program. Lang. Syst., 1(1):74-88, 1992.

E. Pozniansky and A. Schuster. Efficient on-the-fly race
detection in multithreaded c++ programs. In PPoPP
03: Principles and Practice of Parallel Programming,
pages 179-190. ACM, 2003.

M. Ronsse and K. De Bosschere. Recplay: A fully in-
tegrated practical record/replay system. ACM Trans-
actions on Computer Systems, 17(2):133-152, 1999.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A dy-
namic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 15(4):391—
411, 1997.

Edith Schonberg. On-the-fly detection of access anoma-
lies. In PLDI 89: Programming Language Design and
Implementation, pages 313-327, 1989.

Christoph von Praun and Thomas R. Gross. Object
race detection. In OOPSLA 01: Object-Oriented Pro-
gramming, Systems, Languages and Applications, pages
70-82. ACM, 2001.

T. Wilkinson. Kaffe: A JIT and
preting virtual machine to run Java
http://www.transvirtual.com/, 1998.

inter-
code.

Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack:
efficient detection of data race conditions via adaptive
tracking. In SOSP 05: Symposium on Operating Sys-
tems Principles, pages 221-234. ACM, 2005.

A Example: a task queue

The example in this section, for which pseudocode is pro-
vided in Figure 5, demonstrates the use of thread locality,
dynamically changing locksets, fork and join operations to
ensure mutually exclusive access and how our algorithm is
able to uniformly capture all of these idioms. This example
consists of a program that schedules tasks (represented by
class Task) into a queue named tQ, dequeues and executes
them one by one. Each Task instance contains an array
subTasks of subtasks. Each subtask is a SubTask instance.
The computation required for a single subtask is represented
by a function Perform that takes a SubTask and produces
an integer output. The sum of all the outputs are the final
result of the task and this value is also stored in its out field.
The Task object is protected by Tlock and the task queue
is protected by Qlock.

CreateTask, given an array sTs of subtasks, creates
a new task object and enqueues it in the task queue.
PerformNextTask dequeues a task from tQ and calls
ParallelTaskHelper, which actually performs the task.
ParallelTaskHelper forks for each subtask a new thread
that runs PerformSubTask. PerformSubTask computes the
partial result for the given subtask and adds it to the final
result of the task.

Consider the following interleaving of actions during a
scenario which begins with creation of two threads T1 and
T2:

1. A thread T1, by running CreateTask with an array contain-
ing two subtasks st0 and stl as input,

(a) creates a new task oneTask by calling the Task con-
structor (line 1),
(b) acquires Qlock, calls tQ.Enqueue (oneTask), releases
Qlock (lines 2-4).
2. A second thread T2, runs PerformNextTask which
(a) acquires Qlock and calls tQ.Dequeue () that returns
oneTask (lines 1-3),

(b) calls ParallelTaskHelper (oneTask) (line 4), which
creates two threads T_st0 and T_stl, to handle st0
and st1 respectively (lines 1-2).

3. T_st0, by running PerformSubTask (oneTask, 0),

(a) calls Perform () (line 1), acquires Tlock, and
(b) adds subTaskResult to oneTask.out, releases Tlock
(lines 2-4).

4. The second thread T_sti,
(oneTask, 1),

by running PerformSubTask

(a) calls Perform (oneTask.subTasks [1]) (line 1), acquires
Tlock, and

(b) adds subTaskResult to oneTask.out, releases Tlock
(lines 2-4).
5. Thread T2, continuing running ParallelTaskHelper,

(a) joins both threads T_st0 and T_st1 (lines 3-4),
(b) prints oneTask.out.

Let us focus on the shared variable oneTask.out. In the
execution described above, there is no race on oneTask.out
but the lock protecting it changes dynamically. For example,
oneTask.out is local to T1 at the beginning and to T2 at the
end of the scenario.

class Task {

SubTask[n] subTasks;

int out;

Task(SubTask[] sT) { subTasks = sT; out = 0;}
}
Queue<Task> tQ;

CreateTask(SubTask([] sTs)

ParallelTaskHelper (oneTask)

1 oneTask = new Task(sTs); 1 foreach (i < n)
2 acquire(Qlock) 2 children[i] = fork(PerformSubTask,oneTask,i);
3 tQ.Enqueue (oneTask) ; 3 foreach (i < n)
4 release(Qlock); 4 join(children[i]);
5 print(oneTask.out);
PerformNextTask() PerformSubTask(oneTask,
1 acquire(Qlock) 1 subTaskResult = Perform(oneTask.subTasks[i]);
2 oneTask = tQ.Dequeue(); acquire(Tlock);

3 release(Qlock);
4 ParallelTaskHelper(oneTask) ;

B W N

release(Tlock);

oneTask.out += subTaskResult;

Figure 5: Pseudocode for the task queue example.

We now show how our lockset algorithm handles this
execution. Each item below explains how LS (oneTask.out)
changes after each action during the scenario.

LS (oneTask.out) is initially undefined. Our algorithm
handles thread-locality by treating thread identifiers similar
to locks, and allowing LS to contain thread identifiers.

1. (a) In the constructor of Task, oneTask.out is first ac-
cessed by Ti. At this point the algorithm sets
LS (oneTask.out) = {T1}.

(b) After T1 releases Qlock, the rule for release ac-
tions adds Qlock to the lockset, which yields
LS (oneTask.out) = {T1,Qlock}.

2. (a) After T2 acquires Qlock, since Qlock €
LS(oneTask.out) the rule for acquire actions
adds T2 to the lockset so that LS(oneTask.out) =
{T1,Qlock, T2}.

(b) After T2 forks T_stO, since T2 € LS(oneTask.out),
T_st0 gets added to the lockset to yield
LS(oneTask.out) = {T1,Qlock,T2,T_st0}.

The same update applies when T2 creates T_st1 such
that
LS(oneTask.out) = {T1,Qlock,T2,T_st0,T_st1}.

3. (a) After T_st0O acquires Tlock, since Tlock €
LS(oneTask.out), T_stO gets added to the lock-
set which leaves the lockset unchanged.

(b) After oneTask.out is written we check whether T_st0 €
LS(oneTask.out). Since the check succeeds, no race is
declared and the lockset becomes LS(oneTask.out) =
{T_st0}. When T_stO releases Tlock, since T_st0 €
LS(oneTask.out) the rule for release actions adds
Tlock to the lockset to yield LS(oneTask.out) =
{T_st0, Tlock}.

4. (a) After T_stl acquires Tlock, since Tlock €
LS(oneTask.out), T_stl gets added to the
lockset, which yields LS(oneTask.out) =
{T_st0,Tlock, T_st1}.

(b) When oneTask.out is written, since T_stl €
LS(oneTask.out) before the write action, no race
is declared. After the write action we set
LS(oneTask.out) = {T_stl}. When T_stl releases
Tlock, since T_stl & LS(oneTask.out) the rule for
release actions adds Tlock to the lockset to yield
LS(oneTask.out) = {T_st1,Tlock}.

5. (a) Before T2 joins T_stl, T_stl € LS(oneTask.out),
therefore, after the join action, we add T2 to the lock-
set to obtain LS(oneTask.out) = {T_st1,Tlock,T2}.

(b) When oneTask.out is accessed by print, we check
whether T2 € LS(oneTask.out). This check succeeds
and we do not declare a race. After the access, we set
LS(oneTask.out) = {T2}.

The description above illustrates although
LS(oneTask.out) shrinks at an access to LS (oneTask.out),
it can grow whenever a thread executes a release or a fork
operation. It is this ability to grow the lockset that is
fundamental to capturing dynamic locking idioms.

B Correctness proof of the lockset algorithm

The following lemma defines the conditions that must hold
when there is a happens-before edge between a variable ac-
cess and another action of different threads. This lemma is
used in many places throughout the proof of Lemma 2 be-
low. Note that for each state (s;, LS;), LS; is the value of
the partial map LS at s;.

Lemma 1 Let ¢ = (Sl,le) ﬂ)tl (SQ,LSQ) ﬁ)w
.o (Sn,LSR) ﬂ)tn (Sn+1, LSnt1) be an ezecution of the
program. Let «; in o for some i € [1,n] be the last ac-
tion that accessed a variable (o,d).

If i 2y 1 and t; # tn hold, then there is an action oy such
that j € (i,n], i LN j and one of the following conditions
holds:
(a) o = fork(ts), or
(b) tj =tn and
- oy = acq(o,1) and 3k € (4,5). ar = rel(o,l) for a
lock (0,1), or

a; = read(o,v) and Ik € (i,7). ap = write(o,v)
for a volatile variable (o,v), or

aj = join(ti).

PROOF. For this proof we will first define “immediate”
happens-before (IHB) edges following Definition 1 for the

happens-before relation. There is an IHB edge between p

and ¢, denoted p LN q, only if one of the following condi-
tions holds:

1. ap = fork(tq) and g is the first action of thread ¢, or
2. ap = rel(o,1) and ag = acq(o,!l) for some lock (o,1) or

3. ap = write(o,v) and oy = read(o,v) for some volatile
variable (0, v) or

4. «p is the last action of thread ¢, and oy = join(t,) or

5. tp, =t, and ap £, oy where 22 is the program order
of thread ¢,.

Then it is obvious that the happens-before relation is the
transitive-closure of the immediate happens-before edges.
. ihb ihb ihb ihb ihb
Now let y =i——=pi—p2— - — Dy — Dug1 =
n be a shortest chain of IHB edges between ¢ and n. Let
ap,, be the first action in v executed by t,. Then consider

the edge pm—1 lﬂ pm and the types of IHB edges defined
above.

o If prr LN Ppm 1s due to condition 1 for THB edges,
then choosing j = p.,—1 satisfies requirement (a) of the

lemma because i —2 pm due to the chain of IHB edges
and ap,,_, = fork(tp,,) must hold.

o If pp_1 LN Pm 1S due to one of conditions 2-4 for IHB
edges, then choosing j = p,, and k = p,,_1 satisfies

requirement (b) of the lemma because i L2 b due to
the chain of IHB edges, t,,, = t, and «p,, must be an
acquire, volatile read or join action.

® D1 LN Pm can not be due to condition 5 for THB
edges because we assumed that «,,, is the first action
of tp,, in v, thus t,, _, #tp,..

Finally, we conclude that we can always find an action «;
satisfying the lemma as there is at least one shortest chain
of THB edges between i and n. a

The following lemma captures the correctness invariant
of our algorithm. It formally characterizes the relationship
between the current lockset of each variable and the syn-
chronization operations that occurred in the history of the
execution.

Lemma 2 Let 0 = (s1,LS1) —%4 (s2,LS2) a—2>t2

oo 2 (Snt1, LSnt1) e an execution of the program. Let
(0,d) be a variable that was last accessed by action a; in o
for some i € [1,n].

(a) Let | € Volatile be the field modeling the object lock.
Then for all x € Addr, we have (z,l) € LSny1(0,d)
iff there exists j such that j € (i,n], i ﬂ)j and o =
rel(x).

(b) Let v € Volatile be some volatile field other than the
field 1 modeling the object lock. Then for all x € Addr,
we have (z,v) € LSn41(0,d) iff there exists j such that

J € (i,n], iﬂhj and a; = write(z,v).
(c) For allt € Tid, we have t € LS.41(0,d) iff there exists

J such that j € [i,n], i 2% § and either tj =t or
aj = fork(t).

PROOF. We prove the lemma by induction over the length
|o| of the execution o.

Base case: When |o| = 0, the claim in the lemma holds
trivially because there is no variable (o, d) that is accessed
by an action in the execution.

Inductive step: Suppose that the claim in the lemma

holds for (si1,LS1) —%: (s2,LS2) —3, a:)1tn_1
($n, LSn). Consider the transition (s,,LSy) ﬂnn
($n+1, LSn41). Let a; be such that (o, d) was last accessed
by a; where ¢ € [1,n]. The inductive step will consist
of proving the lemma for (si,LS1) inl (s2, LS2) ﬂ),g?

. aL)ltn71 (Sn,LSn) ﬁ)tn (Sn+1,LSn+1). We perform a
case analysis on a,.

1. Local operation: LS does not change. Therefore the
proof follows by a straightforward application of the
inductive hypothesis.

2. Non-volatile variable access: a, = read(o',d') or
ay, = write(o’,d")
Let (o',d") be the variable accessed by «,. We prove
the two cases, i = n and i # n, separately.
First, suppose i = n, then (0,d) = (0',d'). In this case,
after a, is performed, LS,1(0,d) is set to {t,} even
if a race is detected.

(a) If direction: LSpi1(0,d) = {tn} soV(o,1). (0,1) ¢
LST,,+1 (O7 d)
Only If direction: Since i = n, there is no action
a; = rel(o,1) such that j € (i, n].

(b) If direction: LSnwy1(0,d) = {t.} so
V(O, U)' (O: U) ¢ LS"-‘rl(O: d)
Only If direction: Since i = n, there is no action
a; = write(o,v) such that j € (i, n].

(c) If direction: Since LSp41(0,d) = {tn}, i = oj =
an. The happens-before relation is reflexive, so
. hb .
¢t — n holds for i = n.
Only if direction: o; = aj = apn and thus ¢ ﬁ) n
since t; = t; = tn. In this case t, € LSn+1(0,d)
results from the rule for variable access.

Second, suppose i # n. Then (o,d) # (o',d') and
LSn(O, d) = LSnJ,_l(O, d)

(a) If direction: Let (0,l) € LSp+1(0,d), then (0,1) €

LS, (0,d). The inductive hypothesis gives an ac-
tion a; = rel(o,1l) such that ¢ Lty J.
Only if direction: Suppose that there is some ac-
tion «;j = rel(o,l) such that i 2Py §. As an is not
a release action, j # n—1. The inductive hypoth-
esis gives (0,1) € LS, (0,d). As (o,d) # (o', d"),
LSnt1(0,d) = LS, (0,d) so (o,1) € LS 41(0,d).

(b) If direction: Let (o,v) € LSn41(0,d), then
(0,v) € LS, (0,d). The inductive hypothesis gives
an action a; = write(o,v) such that i SLN J.
Only if direction: Suppose that there is an action
aj = write(o,v) such that i ﬁ)j and j € (4,n).
As «, is not a volatile write action, j # n.
The inductive hypothesis gives (0,v) € LS, (o0, d).
As (0,d) # (o',d'), LSp+1(0,d) = LSy,(0,d) so
(O) 11) € LSTHL]-(O) d)

()

If direction: Let t € LSpt+1(o,d), then ¢t €
LS, (0,d). The inductive hypothesis gives an ac-
tion «; such that t; =t or a;j = fork(t) and thus
i 22 j for j € (i,n).

Only of direction: Suppose that there is some j €
[¢,n] such that i LN tj =t or aj = fork(t).
We will prove this direction for the smallest such
j. Either j = n or j # n holds. Consider the case
when j # n. Then due to the inductive hypothesis
t € LS,(o,d). In this case the rule for variable
access guarantees that ¢t € LS,,+1(0,d).

Now consider the case 7 = n. In this case
t = t,, thus we will prove that ¢, € LS,+1(0,d).
Suppose, aiming to reach a contradiction, that
tn ¢ LSny1(0,d). Because (o0,d) # (o,d),
t, ¢ LSn(o,d) as LSn(0,d) = LSnt1(0,d).
Because of the inductive hypothesis, there is no
k € [t,5 — 1] such that 4 2% %, but we have
. hb. . . . b . . .

t — j = n. In this case i — j = n is possible
only if there is a direct happens-before edge
between a; and «,. Because both actions access
different variables, this is only possible if ¢; = ¢,,.
But then it must be true that ¢, € LS,(o,d)
because the variable update rule provides
t; € LSi+1(o,d) and LS(o,d) does not change
from (si4+1,LSi+1) to (sn, LSy). This contradicts
with our assumption that ¢, ¢ LS, +1(0,d). Thus
it must be the case that ¢, € LSn+1(0,d).

3. Lock acquire: a, = acq(o,l)

(a)

If direction: Let (o',l') € LSyp+1(0,d) for some
lock (0',1'). The rule for acquire guarantees that
(o',1') € LS,(0,d). The inductive hypothesis
gives an action o = rel(o',l'), j € (i,n — 1].
Only if direction: Suppose that there is an ac-
tion «; = rel(o’,l') such that @ L0y G As an
is not a release action, j # n — 1. In this case
due to the inductive hypothesis gives (o',I') €
LS, (o0,d). The rule for acquire guarantees that
(O’, l,) S LSn_H(O, d)

If direction: Let (o,v) € LSn41(0,d). The rule
for acquire guarantees that (o,v) € LSy(o,d).
The inductive hypothesis gives an action «a; =
write(o,v), j € [i,n —1].

Only if direction: Suppose that there is an ac-
tion «; = write(o,v) such that i LN j. As an
is not a volatile write action, j # n — 1. In
this case the inductive hypothesis gives (o,v) €
LS, (0,d). The rule for acquire guarantees that
(O) 11) € LSTHL]-(O) d)

If direction: Let t € LSp4+1(0,d). Either t €
LS. (o,d) or t ¢ LS,(o,d). Consider the case
of t € LS, (0,d). Then the inductive hypothesis
gives an action «; (j € (¢,n)) such that t; = ¢
or aj = fork(t). Now consider the case when
t ¢ LS.(o,d). Then, since t € LS,(o,d) gets
added by the rule for acquire, it must hold that
t =t, and (0,l) € LS,(0,d). In this case the
inductive hypothesis gives j € [¢,n — 1] such that

a; = rel(o,l) and 4 LN a; and «;, access
the same lock (o,1) j 22 n. i 22 n follows from
s hb

transitivity of —».

Only if direction: Suppose that there is some j €
[¢,n] such that ¢ LN tj =t or aj = fork(t).
We will prove this direction for the smallest such
j. Either j = n or j # n holds. Counsider the case
when j # n. Then due to the inductive hypothesis
t € LSy(0,d). In this case the rule for acquire
guarantees that ¢t € LS, +1(0,d).

Now consider the case 7 = n. In this case
t = t,, thus we will prove that ¢, € LS,+1(0,d).
Then suppose, aiming for a contradiction,
that t, ¢ LSnt+1(0,d). The rule for acquire
guarantees that t, ¢ LS,.(o,d). It also holds
that (o,l) ¢ LSn(o,d) because otherwise t,
would be in LS,ti(o,d). Due to the induc-
tive hypothesis, this implies that there is no

k € [i,n) such that ¢ LN k, and t, = t, or
ar = fork(tn) or ar = rel(o). If t; = tn,
because t; € LS;+1(0,d) and LS(o,d) does not
change between (sit1,LSit+1) and (sn, LSy), it
results in t; = t, € LSn(o0,d) contradicting our
assumption that ¢, ¢ LSnyi(o,d). If t; # tn,

the happens-before edge ¢ 2ty 5 contradicts with
Lemma 1 and the minimality of j because, as
stated above, the inductive hypothesis implies

that there is no k € [i,n) such that i AN
and ay = fork(ty) or t, = t, or ay = rel(o,l).
However, Lemma 1 and the minimality of j imply
that 3k € (i,n) such that ay = rel(o,l). Thus it
must be the case that ¢, € LS,+1(0,d).

4. Lock release: «a, = rel(o,!)

(a) If direction: Let (o',1') € LSp+1(0,d) for some

lock (o',1"). Suppose (0',I') € LS, (0,d). Then
the inductive hypothesis gives ¢ L Sup-
pose (o',l') ¢ LS,(o0,d). Because (0,l') €
LSp+1(0,d), (o',1') is only added if ¢, €
LS. (0,d). In this case due to the inductive hy-
pothesis, there exists j € (i,n — 1] such that

tj:tnandiﬁj. Sincetj:tn,jﬁn

holds and this results in i —= n from the transi-
tive closure.

Only if direction: Suppose that there exists j €
(i,n] such that a; = rel(o',l') and i X% j. Either
(0,1) = (o', 1") or (0,1) # (0,1'). Consider the case
when (0,1) # (0',1'). Then (0',1") € LS, (0,d) and
j < n by the inductive hypothesis. Because of the
rule for release, (0',l') € LSp+1(0,d).

Now consider the case when (o,1) = (¢o/,1'). In
this case suppose, aiming for a contradiction,
that (o,1) ¢ LSp4+1(0,d). Due to the rule for
release, (0,1) ¢ LS,(o,d). It also holds that
tn, ¢ LS.(0,d) because otherwise (o,l) would
be in LS,+1(o,d). By the inductive hypothe-
sis, this implies that there is no k € [i,n) such

that i % k, and ty, = tn, or ar = fork(tn)

5. Volatile read: «, =

or a = rel(o). If t; = tn, because t; €
LSi+1(o,d) and LS(o,d) does not change be-
tween (si4+1,LSi+1) and (sn, LSy), it results in
t; =t, € LSy (0,d) contradicting our assumption
that ¢, ¢ LSn+1(o,d). If t; # t,, the happens-

before edge 2% 1 contradicts with Lemma 1
and the minimality of j because, as stated above,
the inductive hypothesis implies that there is no
i 2 k, and ar = fork(t,) or t, = t, or
ar = rel(o). Thus it must be the case that
(0) l) € LS”+1(07 d)

If direction: Let (o,v) € LSp+1(0,d), then
(o,v) € LSn(0,d). The inductive hypothesis im-
plies what we need. Only if direction: Sup-
pose that there exists j € [i,n] such that o; =
write(o,v) and ¢ LN j. In this case j < n —1.
Then the inductive hypothesis applies and (0, v) €
LS. (0,d) so (o,v) € LS,41(0,d) due to the rule
for release.

If direction: Let t € LSp4+1(o,d), then ¢t €
LS, (0,d) because of the rule for release. The in-
ductive hypothesis implies what we want.

Only if direction: Suppose that there is some j €
[¢,n] such that i LN tj =t or aj = fork(t).
We will prove this direction for the smallest such
j. Either j = n or j # n holds. Counsider the case
when j # n. Then due to the inductive hypothesis
t € LSn(0,d). In this case the rule for release
guarantees that ¢t € LS, 41(0,d).

Now consider the case 7 = n. In this case
t = t,, thus we will prove that ¢, € LS,+1(0,d).
Suppose, aiming for a contradiction, that
tn ¢ LSn+1(0,d). Thus ¢, ¢ LS, (0,d) from the
rule for release. By the inductive hypothesis,
this implies there is no k € [i,n) such that

TRLN k, and ay = fork(t,) or ty, = t,. If t; = tn,
because t; € LS;+1(0,d) and LS(o,d) does not
change between (sit+1,LSit+1) and (sn,LSy), it
results in ¢; = t, € LS,(0,d) contradicting our
assumption that ¢, ¢ LSnyi1(o,d). If t; # tn,
the happens-before edge @ 22 1 contradicts with
Lemma 1 and the minimality of j because, as
stated above, the inductive hypothesis implies
that there is no k € [i,n) such that ¢ LN k, and
ar = fork(tn) or tp = t,. Thus it must be the
case that t, € LSn+1(0,d).

read(o,v) where (o0,v) is a

volatile variable.

(a)

If direction: Let (o0,1) € LSn+1(0,d), then (o,1) €
LS, (0,d). The inductive hypothesis gives an ac-
tion a; = rel(o,1), j € [i,n —1].

Only if direction: Suppose that there is an ac-
tion a; = rel(o,l) such that i AN j. As ap
is not a release action, j # n — 1. In this case
the inductive hypothesis gives (0,1) € LS, (o,d).
Then the rule for volatile read guarantees that
(O) l) € LS”+1(07 d)

(b)

If direction: Let (o',v') € LSnt1(0,d) for
some volatile variable (o’,v"). Then (o',v') €
LS, (0,d). The inductive hypothesis gives an ac-
tion aj = write(o’,v"), j € [¢i,n — 1].
Only if direction: Suppose that there is an action
a; = write(o’,v') such that i =2 j. As ay, is
not a volatile write action, j # n — 1. In this case
the inductive hypothesis gives (o', v") € LS, (o, d).
Then the rule for volatile read guarantees that
(o',v") € LS w+1(0,d).
If direction: Let t € LSnt+1(o,d). Either
t € LSy(o,d) or t ¢ LS,(o,d). Suppose t €
LS. (o0,d). Then the inductive hypothesis holds.
Suppose t ¢ LSy (0,d). Then (o,v) € LSy (o0,d).
In this case due to the inductive hypothesis, there
exists j € [i +1,n — 1] such that «; = write(o, v)
CRb. C o hb . hb
and ¢ — j. Since j — n, i — n from the
transitive closure.
Only if direction: Suppose that there is some j €
[¢,n] such that i LN tj =t or aj = fork(t).
We will prove this direction for the smallest such
j. Either j = n or j # n holds. Counsider the case
when j # n. Then due to the inductive hypothesis
t € LSy(o,d). In this case the rule for volatile
read guarantees that ¢t € LS, +1(0,d).
Now consider the case 7 = n. In this case
t = t,, thus we will prove that ¢, € LS,+1(0,d).
Then suppose, aiming for a contradiction, that
tn ¢ LSny1(0,d). Thus the rule for volatile read
guarantees that ¢, ¢ LS, (o,d). It also holds that
(0,v) ¢ LS, (0,d) because otherwise ¢, would be
in LS,+1(0,d). By the inductive hypothesis, this

implies there is no k € [i,n) such that ¢ LN k,
and ay = fork(tn) or ty = t, or ay = write(o,v).
If t; = t,, because t; € LS;+1(0,d) and LS(o,d)
does not change between (sit1,LSi+1) and
($n, LSn), it results in ¢; = t, € LS,(0,d) con-
tradicting our assumption that ¢, ¢ LS, +1(0,d).

If t; # t,, the happens-before edge i 2n
contradicts with Lemma 1 and the minimality
of j because, as stated above, the inductive

hypothesis implies that there is no ¢ LN k, and
ar = fork(tn) or tp = t, or ap = write(o,v).
However, Lemma 1 and the minimality of j imply
that 3k € (4, n) such that o = write(o,v). Thus
it must be the case that ¢, € LS,+1(0,d).

6. Volatile write: «, = write(o,v) where (o,v) is a
volatile variable.

(a)

If direction: Let (0,1) € LSn+1(0,d), then (o,1) €
LS, (0,d). The inductive hypothesis implies what
we need. Only if direction: Suppose that there
exists j € [i,n] such that «; = rel(o,l) and
i 2% j. In this case j < n — 1. Then the in-
ductive hypothesis applies and (o0,1) € LS (o0,d)
so (0,1) € LSp+1(0,d) due to the rule for volatile
write.

If direction: Let (0',v") € LSp41(0,d) for some
volatile variable (0’,v"). Consider the case when

(o',v") € LS, (0,d). Then the inductive hypothe-
sis implies what we need. Now consider the case
when (o',v") ¢ LS.(o,d). Then ¢, € LS, (o,d),
since (0',v") € LSp+1(0,d) as a result of the rule
for volatile writes. In this case due to the induc-
tive hypothesis, there exists j € (i,n — 1] such
that t; = t, or aj = fork(t,) and ¢ LN j. Since
i L 1 as they are both executed by t,, ¢ LN
e hb

from transitivity of —.

Only if direction: Suppose that there exists j €
[i,n] such that a; = write(o',v') and i =2 j. Ei-
ther (o,v) = (0',v") or (0,v) # (o',v"). Consider
the case when (o0,v) # (0',v'). Then (0',0') €
LS, (0o,d). Due to the rule for volatile write,
(o',v") € LSn1(0,d).

Now consider the case when (o,v) = (o,v').
In this case suppose, aiming for a contradic-
tion, that (o,v) ¢ LS.+1(0,d). Due to the rule
for volatile write, (0,v) ¢ LSn(o,d). It also
holds that ¢, ¢ LS, (0, d) because otherwise (o, v)
would be in LS,+1(o,d). By the inductive hy-
pothesis, this implies that there is no k € [i,n)

such that i =% k, and ap = write(o,v) or
ty = tn or a = fork(tn). If t; = t,, because
t; € LSiy1(0,d) and LS(o,d) does not change be-
tween (si+1,LSi+1) and (sn, LSy), it results in
t; = t, € LSy (0,d) contradicting our assumption
that ¢, ¢ LSn+1(o,d). If t; # t,, the happens-

before edge 2% n contradicts with Lemma 1
and the minimality of j because, as stated above,
the inductive hypothesis implies that there is no
AN k, and ar = fork(t,) or tp = t, or
a = write(o,v). Thus it must be the case that
(0,v) € LSp+1(0,d).

If direction: Let t € LSn4+1(o,d), then ¢t €
LS, (0,d). The inductive hypothesis implies what
we need.

Only if direction: Suppose that there is some j €
[¢,n] such that 4 LN j, tj =t or aj = fork(t).
We will prove this direction for the smallest such
j. Either j = n or j # n holds. Consider the case
when j # n. Then due to the inductive hypothesis
t € LSn(o,d). In this case the rule for volatile
write guarantees that t € LS, +1(0,d).

Now consider the case 7 = n. In this case
t = t,, thus we will prove that ¢, € LS,+1(0,d).
Suppose, aiming for a contradiction, that
tn ¢ LSny1(o,d). Thus ¢, ¢ LS, (o,d) from the
rule for volatile write. By the inductive hypoth-
esis, this implies there is no k € [¢,n) such that

AN k, and ay = fork(t,) or ty = t,. If t; = tn,
because t; € LSi11(0,d) and LS(o,d) does not
change between (sit1,LSi+1) and (sn, LSy), it
results in t; = t, € LSn(o0,d) contradicting our
assumption that t, ¢ LSnyi1(o,d). If t; # ty,
the happens-before edge @ L2 1 contradicts with
Lemma 1 and the minimality of j because, as
stated above, the inductive hypothesis implies

that there is no i -3 k, and ap = fork(t,)
or ty = tp. Thus it must be the case that

t, € LST,,+1 (O7 d)

7. Thread fork: a, = fork(t)

(a)

If direction: Let (o0,1) € LSny1(0,d). Then the
rule for fork guarantees that (o,l) € LS, (o,d).
The inductive hypothesis gives an action «a; =
rel(o,l), j € [i,n —1].

Only if direction: Suppose that there is an action
a; = rel(o,l) such that i LN j. As a, is not a
release action, j # n — 1. In this case due to the
inductive hypothesis (0,1) € LS, (0,d). The rule
for fork guarantees that (o,1) € LS,+1(0,d).

If direction: Let (o,v) € LSp+1(o,d), then
(0,v) € LS, (0,d). The inductive hypothesis gives
an action «; = write(o,v), j € [i,n — 1].

Only if direction: Suppose that there exists j €
[¢,n] such that a; = write(o,v) and i LN j. As
vy, is not a volatile write action, j # n — 1. In
this case due to the inductive hypothesis (o0,v) €
LS,(0,d). The rule for fork guarantees that
(0,v) € LSn+1(0,d).

If direction: Let t' € LSpt1(0,d). There are
two cases: t' € LSn(o,d) or t' ¢ LS.(0,d)
Consider the case t' € LS,(0o,d). Then the in-
ductive hypothesis gives an action a; such that
t; =t or o = fork(t'). Now consider the case
t" ¢ LS.(0o,d). Then the forked thread is ¢,
namely ¢t = t'. Then «; = y,, there is a fork of ¢/
by t,. This means the rule for fork was applied
to add ' to LS,+1(0,d) so t, € LS,(o,d). The
inductive hypothesis gives us some k € [i,n — 1]

such that i =% k and t = t, or a, = fork(ty).
And from transitivity of i =2 k and k -2 n (o

and a;, are by the same thread), i ﬁ) n holds.
Only if direction: Suppose that there is some
J € [i,n] such that i LN J, tj =tor a; = fork(t).
We will prove this direction for the smallest such
j. Either j = n or j # n holds. Consider the case
when j # n. Then due to the inductive hypoth-
esis t € LSy (0,d). In this case the rule for fork
guarantees that ¢t € LS, +1(0,d).

Now consider the case 7 = n. In this case
t = t,, thus we will prove that ¢, € LS,+1(0,d).
Then suppose, aiming for a contradiction, that
tn, ¢ LSnt+1(0,d). Due to the rule for fork,
t, ¢ LSn(0,d). Due to the inductive hypothesis,
this implies there is no k € [i,n) such that

i by k, and ay = fork(ty) or ty, = tn. If t; = tn,
because t; € LSi11(0,d) and LS(o,d) does not
change between (sit1,LSi+1) and (sn, LSy), it
results in t; = t, € LSn(o0,d) contradicting our
assumption that ¢, ¢ LSnyi(o,d). If t; # tn,

the happens-before edge @ L2 1 contradicts with
Lemma 1 and the minimality of j because, as
stated above, the inductive hypothesis implies
that there is no i —2 k, and ar = fork(ty)

or tx = t,. Thus it must be the case that
tn € LSn+1(0, d)

8. Thread join: a, = join(t)

(a)

If direction: Let (o0,1) € LSn+1(0,d), then (o,1) €
LS, (0,d). The inductive hypothesis gives an ac-
tion a; = rel(o,1), j € [i,n —1].

Only if direction: Suppose that there is an action
a; = rel(o,1) such that 4 LN j. As a, is not a
release action, j # n — 1. In this case due to the
inductive hypothesis (0,1) € LS, (0,d). The rule
for join guarantees that (o,!) € LS,+1(0,d).

If direction: Let (o,v) € LSp41(0,d), then
(o,v) € LS, (0,d). The inductive hypothesis gives
an action a; = write(o,v), j € [¢i,n — 1].

Only if direction: Suppose that there exists j €
[¢, n] such that a; = write(o,v) and i LN
ay is not a volatile write action, j # n — 1. In
this case due to the inductive hypothesis (o0,v) €
LS. (0,d). The rule for join guarantees that
(0,v) € LSp+1(0,d).

If direction: Let t' € LS,+1(0,d). There are two
cases: t' € LS, (0,d) or t' ¢ LS,(0,d) Consider
the case t' € LS, (0,d). Then the inductive hy-
pothesis gives an action «; such that t; = ¢’ or

aj = fork(t') and i 2% j. Now consider the
case t' ¢ LS, (0,d). Then due to the rule for join
t' =t, and t € LS,(0,d) hold. The inductive
hypothesis gives us some k € [i,n — 1] such that

i b k and ty = tn or ar = fork(t,). And from
transitivity of i = k and k —2 n (between an

action by ¢ and join(t)), i L% n holds.

Only if direction: Suppose that there is some
J € [i,n] such that i ﬂ)j, tj =tor aj = fork(t).
We will prove this direction for the smallest such
j. Either j = n or j # n holds. Consider the case
when j # n. Then due to the inductive hypoth-
esis t € LS,(0,d). In this case the rule for join
guarantees that ¢t € LS, +1(0,d).

Now consider the case 7 = n. In this case
t = t,, thus we will prove that ¢, € LS,+1(0,d).
Then suppose, aiming for a contradiction, that
t, ¢ LSpti1(o,d). Due to the rule for join,
t, ¢ LS.(o,d). It also holds that ¢t ¢ LS, (o,d)
because otherwise ¢, would be in LS, 11(o,d).
By the inductive hypothesis, these imply that

there is no k € [i,n) such that ¢ L%k, and
ar = fork(t,) or tp = t,, and 2)there is no
k € [i,n) such that ¢ 2% k, and ay, = fork(t)
or t = t. The latter implies t # t;. If t; = tn,
because t; € LSi11(0,d) and LS(o,d) does not
change between (sit1,LSi+1) and (sn, LSy), it
results in t; = t, € LS»(0,d) contradicting our
assumption that ¢, ¢ LSnyi1(o,d). If t; # ty,

the happens-before edge i 22 1 contradicts with
Lemma 1 and the minimality of j because, as
stated above, the inductive hypothesis implies
that there is no i -2 k, and ap = fork(t,)

or tp = tn. 1 b 1 also contradicts with the
last condition of Lemma 1 because t # ¢; thus

an # join(t;). Thus it must be the case that

tn € LSn_H (0, d)

O
Theorem 1 (Correctness). Consider a program eze-
cution o = (s1,LS1) 54, (s2,L82) - (sn, LSyn) ¢,
(Snt1, LSn+1). Let (0,d) be a data variable and i € [1,n—1]
be such that o and o, access (o,d) but aj does not access
(o,d) for all j € [i + 1,n — 1]. Then t, € LSyp(o,d) iff
PROOF.
If direction: Suppose that t, € LS,(o,d). Because of
Lemma 2 there is an action «; (j € [i,n]) such that t; = ¢,

or aj = fork(tyn), and i LN j. Both of the cases t; = t,
and a; = fork(t,) imply j 28 n. i 2 follows from the
transitivity of Ly

Only if direction: Suppose that ¢ L2 . Aiming for a
contradiction suppose that ¢, ¢ LS,(o0,d). There are two
cases t; = t,, and t; # ty.

Consider the first case t; = t,,. Because of the fact that
t; € LSi+1(0,d) and no rule removes t; from the lockset until
the next access to (o0, d), t, € LS, (0,d) holds at state sy,
causing a contradiction with our assumption ¢,, ¢ LS, (o,d).

Now consider the other case ¢; # t,. Then Lemma 1
implies that there exists an action «; (j € (4,n]) such

that i —2 j and j Ly n. Because we assumed that
tn ¢ LSn(0,d) aj can not be a fork (a; # fork(tn)) be-
cause of Lemma 2. Thus either a; = acq(o,1) for some lock
(0,1) or aj = read(o,v) for some volatile variable (o, v) or
aj = join(t;). In all the cases it must hold that t; = t,
because of Lemma 1. In addition, Lemma 2 implies that
tj € LS;j+1(0,d) because of the edge ¢ LN j. Therefore we
can conclude that ¢, = t; € LS, (0,d) because no rule re-
moves t; from LS(o,d) until the next access to (o, d). This
contradicts with our assumption ¢, ¢ LS,(0,d). Thus it

must hold that t, € LS, (o0,d) if i LN O

