
Goldilo
ks: EÆ
iently Computing the Happens-BeforeRelation Using Lo
ksetsTayfun ElmasKo�
 University Shaz QadeerMi
rosoft Resear
h Serdar TasiranKo�
 UniversityNovember 17, 2006Te
hni
al ReportMSR-TR-2006-163
Mi
rosoft Resear
hMi
rosoft CorporationOne Mi
rosoft WayRedmond, WA 98052

This page intentionally left blank.

Goldilo
ks: EÆ
iently Computing the Happens-Before Relation Using Lo
ksetsTayfun ElmasKo�
 University Shaz QadeerMi
rosoft Resear
h Serdar TasiranKo�
 University
Abstra
tWe present a new lo
kset-based algorithm, Goldilo
ks, forpre
isely
omputing the happens-before relation and therebydete
ting data-ra
es at runtime. Dynami
 ra
e dete
tionalgorithms in the literature are based on ve
tor
lo
ks orlo
ksets. Ve
tor-
lo
k-based algorithms pre
isely
omputethe happens-before relation but have signi�
antly more over-head. Previous lo
kset-based ra
e dete
tion algorithms, onthe other hand, are impre
ise. They
he
k adheren
e to aparti
ular syn
hronization dis
ipline, i.e., a suÆ
ient
ondi-tion for ra
e freedom and may generate false ra
e warnings.Our algorithm, like ve
tor
lo
ks, is pre
ise, yet it is eÆ
ientsin
e it is purely lo
kset based.We have implemented our algorithm inside the Ka�e JavaVirtual Ma
hine. Our implementation in
orporates lazyevaluation of lo
ksets and
ertain \short-
ir
uit
he
ks"whi
h
ontribute signi�
antly to its eÆ
ien
y. Experimentalresults indi
ate that our algorithm's overhead is mu
h lessthan that of the ve
tor-
lo
k algorithm and is very
lose toour implementation of the Eraser lo
kset algorithm.1 Introdu
tionRa
e
onditions on shared data are often symptomati
 ofa bug and their dete
tion is a
entral issue in the fun
-tional veri�
ation of
on
urrent software. Numerous te
h-niques and tools have been developed to analyze ra
es andto guard against them [14, 18, 6, 1℄. These te
hniques
anbe broadly
lassi�ed as stati
 and dynami
. Some state-of-the-art tools
ombine te
hniques from both
ategories. Thispaper is about a dynami
 ra
e dete
tion algorithm.Algorithms for runtime ra
e dete
tion make use of twokey te
hniques: lo
ksets and ve
tor
lo
ks. Roughly speak-ing, lo
kset-based algorithms
ompute at ea
h point duringan exe
ution for ea
h shared variable q a set LS(q). Thelo
kset LS(q)
onsists of the lo
ks and other syn
hronizationprimitives that, a

ording to the algorithm, prote
t a

essesto q at that point. Typi
ally, LS(q) is a small set and
anbe updated relatively eÆ
iently during an exe
ution. Thekey weakness of lo
kset-based algorithms in the literature isthat they are spe
i�
 to a parti
ular lo
king dis
ipline whi
hthey try to
apture dire
tly in LS(q). For instan
e, the
las-si
 lo
kset algorithm popularized by the Eraser tool [14℄, isbased on the assumption that ea
h potentially shared vari-able must be prote
ted by a single lo
k throughout the whole
omputation. Other similar algorithms
an handle more so-phisti
ated lo
king me
hanisms [1℄ by in
orporating knowl-

edge of these me
hanisms into the lo
kset inferen
e rules.Still, lo
kset-based algorithms based on a parti
ular syn-
hronization dis
ipline have the fundamental short
omingthat they may report false ra
es when this dis
ipline is notobeyed. Ve
tor-
lo
k [10℄ based ra
e dete
tion algorithms,on the other hand, are pre
ise, i.e., de
lare a ra
e exa
tlywhen an exe
ution
ontains two a

esses to a shared variablethat are not ordered by the happens-before relation. How-ever, they are signi�
antly more expensive
omputationallythan lo
kset-based algorithms as argued and demonstratedexperimentally in this work.In this paper we provide, for the �rst time, a lo
kset-based algorithm, Goldilo
ks, that pre
isely
aptures thehappens-before relation. In other words, we provide a setof lo
kset update rules and formulate a ne
essary and suf-�
ient
ondition for ra
e-freedom based solely on lo
ksets
omputed using these rules. Goldilo
ks
ombines the pre-
ision of ve
tor
lo
ks with the
omputational eÆ
ien
y oflo
ksets. We
an uniformly handle a variety of syn
hroniza-tion idioms su
h as thread-lo
al data that later be
omesshared, shared data prote
ted by di�erent lo
ks at di�erentpoints in time, and data prote
ted indire
tly by lo
ks on
ontainer obje
ts.For dynami
 ra
e dete
tion tools used for stress-testing
on
urrent programs, pre
ision may not be desired or ne
-essary. One might prefer an algorithm to signal a warningabout not only about ra
es in the exe
ution being
he
ked,but also about \feasible" ra
es in similar exe
utions [11℄.It is possible to in
orporate this kind of
apability into ouralgorithm by slightly modifying the lo
kset update rules orthe ra
e
ondition
he
k. However, the target appli
ationsfor our ra
e dete
tion algorithm are
ontinuous monitoringfor a
tual ra
es during early development and deployment,and partial-order redu
tion during model
he
king as is donein [7℄. False alarms and reports of feasible rather than a
tualra
es unne
essarily interrupt exe
ution and take up devel-opers' time in the �rst appli
ation and
ause
omputationalineÆ
ien
y in the latter. For these reasons, for the targetedappli
ations, the pre
ision of our algorithm is a strength andnot a weakness.We present an implementation of our algorithm thatin
orporates lazy
omputation of lo
ksets and \short
ir-
uit
he
ks":
onstant time suÆ
ient
he
ks for ra
e free-dom. These implementation improvements
ontribute sig-ni�
antly to the
omputational eÆ
ien
y of our te
hniqueand they appear not to be appli
able to ve
tor
lo
ks. Weimplemented our ra
e-dete
tion algorithm in C, integratedwith the Ka�e Java Virtual Ma
hine [17℄. An important

ontribution of this paper is an experimental
omparisonof the Goldilo
ks algorithm with the ve
tor-
lo
k algorithmand our implementation of the Eraser algorithm. We demon-strate that our algorithm is mu
h more eÆ
ient than ve
tor
lo
ks and about as eÆ
ient as Eraser.This paper is organized as follows. Se
tion 2 des
ribesthe Goldilo
ks algorithm and presents an example whi
h
ontrasts our algorithm with existing lo
ksets algorithms.Se
tion 3 explains the implementation of our algorithm inthe Ka�e JVM. Experimental evaluation of our algorithmis presented in Se
tion 4. Related work is dis
ussed in Se
-tion 5.2 The Goldilo
ks algorithmIn this se
tion, we des
ribe our algorithm for
he
kingwhether a given exe
ution � has a data-ra
e. We usethe standard
hara
terization of data-ra
es based on thehappens-before relation, i.e., there is a data ra
e betweentwo a

esses to a shared variable if they are not ordered bythe happens-before relation. The happens-before relationfor an exe
ution is de�ned by the memory model. We usea memory model similar to the Java memory model [9℄ inthis paper. Our algorithm is sound and pre
ise, that is, itreports a data-ra
e on an exe
ution i� there is a data-ra
ein that exe
ution.2.1 PreliminariesA state of a
on
urrent program
onsists of a set of lo
alvariables for ea
h thread and a set of global obje
ts sharedamong all threads. Let Tid be the set of thread identi�ersand Addr be the set of obje
t identi�ers. Ea
h obje
t hasa �nite
olle
tion of �elds. Field represents the set of all�elds. and is a union of two disjoint sets, the set Data ofdata �elds and the set Volatile of volatile �elds. A datavariable is a pair (o; d) of an obje
t o and a data �eld d.A syn
hronization variable is a pair (o; v) of an obje
t oand a volatile �eld v. A
on
urrent exe
ution � is repre-sented by a �nite sequen
e s1 �1�!t1 s2 �2�!t2 : : : �n�!tn sn+1,where si is a program state for all i 2 [1 : : : n + 1℄ and �iis one of the following a
tions for all i 2 [1 : : : n℄: a
q(o),rel(o), read(o; d), write(o; d), read(o; v), write(o; v), fork (u),join(u), and allo
(o). We use a linearly-ordered sequen
eof a
tions and states to represent an exe
ution for ease ofexpressing the lo
kset-update rules and the
orre
tness ofthe algorithm. This sequen
e
an be any linearization ofthe union of the following partial orders de�ned in [9℄: (i)the program order for ea
h thread and (ii) the syn
hronizes-with order for ea
h syn
hronization variable. The parti
ular
hoi
e of the linearization is immaterial for our algorithm.In our implementation (Se
tion 3) ea
h thread separately
he
ks ra
es on a (linearly-ordered) exe
ution that repre-sents its view of the evolution of program state.The a
tions a
q(o) and rel(o) respe
tively a
quire andrelease a lo
k on obje
t o. There is a spe
ial �eld l 2 Volatile
ontaining values from Tid [fnullg to model the semanti
sof an obje
t lo
k. The a
tion a
q(o) being performed bythread t blo
ks until o:l = null and then atomi
ally sets o:lto t. The a
tion rel(o) being performed by thread t fails ifo:l 6= t, otherwise it atomi
ally sets o:l to null . Althoughwe assume non-reentrant lo
ks for ease of exposition in thispaper, our algorithm is easily extended to reentrant lo
ks.The a
tions read(o; d) and write(o; d) respe
tively read and

write the data �eld d of an obje
t o. A thread a

esses avariable (o; d) if it exe
utes either read(o; d) or write(o; d).Similarly, the a
tions read(o; v) and write(o; v) respe
tivelyread and write the volatile �eld v of an obje
t o. The a
tionfork (u)
reates a new thread with identi�er u. The a
tionjoin(u) blo
ks until the thread with identi�er u terminates.The a
tion allo
(o) allo
ates a new obje
t o. Of
ourse, othera
tions (su
h as arithmeti

omputation, fun
tion
alls, et
.)also o

ur in a real exe
ution but these a
tions are irrelevantfor our exposition and have
onsequently been elided.Following the Java Memory Model [9℄, we de�ne thehappens-before relation for a given exe
ution as follows.De�nition 1 Let � = s1 �1�!t1 s2 �2�!t2 : : : �n�!tn sn+1 bean exe
ution of the program. The happens-before relationhb�! for � is the smallest transitively-
losed relation on theset f1; 2; : : : ; ng su
h that for any k and l, we have k hb�! lif 1 � k � l � n and one of the following holds:1. tk = tl.2. �k = rel(o) and �l = a
q(o).3. �k = write(o; v) and �l = read(o; v).4. �k = fork(tl).5. �l = join(tk).We use the happens-before relation to de�ne data-ra
efree exe
utions as follows. Consider a data variable (o; d) inthe exe
ution �. The exe
ution � is ra
e-free on (o; d) if forall k; l 2 [1; n℄ su
h that �k; �l 2 fread(o; d);write(o; d)g,we have k hb�! l or l hb�! k. For now, our de�nition doesnot distinguish between read and write a

esses. We are
urrently re�ning our algorithm to make this distin
tion inorder to support
on
urrent-read/ex
lusive-write s
hemes.2.2 The algorithmOur algorithm for dete
ting data ra
es in an exe
ution� uses an auxiliary map LS from (Addr � Data) toPowerset ((Addr � Volatile) [Tid). This map provides forea
h data variable (o; d) its lo
kset LS(o; d) whi
h
ontainsvolatile variables, some of whi
h represent lo
ks and threadidenti�ers. The algorithm updates LS with the exe
ution ofea
h transition in �. The set of rules for these updates areshown in Figure 1. Initially, the partial map LS is empty.When an a
tion � happens, the map LS is updated a

ord-ing to the rules in the �gure.Goldilo
ks maintains for ea
h lo
kset LS(o; d) the fol-lowing invariants: 1) If (o0; l) 2 LS (o; d) then the last a
-
ess to (o; d) happens-before a subsequent a
q(o0). 2) If(o0; v) 2 LS(o; d) then the last a

ess to (o; d) happens--before a subsequent read(o0; v). 3) If t 2 LS(o; d) then thelast a

ess to (o; d) happens-before any subsequent a
tionby thread t. The �rst two invariants indi
ate that LS(o; d)
ontains the lo
ks and volatile variables whose a
quisitionsand reads, respe
tively,
reate a happens-before edge fromthe last a

ess of (o; d) to any subsequent a

ess of (o; d),thereby preventing a ra
e. As a result of the last invariant,if t 2 LS(o; d) at an a

ess to a data variable (o; d) by threadt, then the previous a

ess to (o; d) is related to this a

essby the happens-before relation. A ra
e on (o; d) is reportedin Rule 1, if LS(o; d) 6= ; and t 62 LS(o; d) just before theupdate.

1. � 2 fread (o; d);write(o; d)g:if LS(o; d) 6= ; and t 62 LS(o; d)report data ra
e on (o; d)LS(o; d) := ftg2. � = read(o; v):forea
h (o0; d):if (o; v) 2 LS(o0; d) add t to LS(o0; d)3. � = write(o; v):forea
h (o0; d):if t 2 LS (o0; d) add (o; v) to LS(o0; d)4. � = a
q(o):forea
h (o0; d):if (o; l) 2 LS(o0; d) add t to LS(o0; d)5. � = rel(o):forea
h (o0; d):if t 2 LS (o0; d) add (o; l) to LS(o0; d)6. � = fork(u):forea
h (o0; d):if t 2 LS (o0; d) add u to LS(o0; d)7. � = join(u):forea
h (o0; d):if u 2 LS(o0; d) add t to LS(o0; d)8. � = allo
(x):forea
h d 2 Data : LS(x; d) := ;Figure 1: The lo
kset update rules for the Goldilo
ks algo-rithm (a
tion � exe
uted by thread t)We now present the intuition behind our algorithm. Let(o; d) be a data variable, � be the last a

ess to it by a threada, and � be the
urrent a

ess to it by thread b. Then �happens-before � if there is a sequen
e of happens-beforeedges
onne
ting � to �. The rules in Figure 1 are designedto
ompute the transitive
losure of su
h edges. When �is exe
uted, the lo
kset LS(o; d) is set to the singleton setfag. This lo
kset grows as syn
hronizing a
tions happen af-ter the a

ess. The algorithm maintains the invariant thata thread identi�er t is in LS (o; d) i� there is a sequen
e ofhappens-before edges between � and the next a
tion per-formed by thread t. The algorithm adds a thread identi�erto LS(o; d) as soon as su
h a sequen
e of happens-beforeedges is established.Note that ea
h of the rules 2{7 requires updating thelo
kset of ea
h data variable. A naive implementation ofthis algorithm would be too expensive for programs thatmanipulate large heaps. In Se
tion 3, we present a s
hemeto implement our algorithm by applying these updates lazily.The following theorem expresses the fa
t that our algo-rithm is both sound and pre
ise.

Theorem 1 (Corre
tness) Consider an exe
ution � =s1 �1�!t1 s2 � � � sn �n�!tn sn+1 and let LS i be the value ofthe lo
kset map LS as
omputed by the Goldilo
ks algorithmwhen � rea
hes state si. Let (o; d) be a data variable andi 2 [1; n�1℄ be su
h that �i and �n a

ess (o; d) but �j doesnot a

ess (o; d) for all j 2 [i+1; n�1℄. Then tn 2 LSn(o; d)i� i hb�! n.The proof appears in the appendix.Our algorithm has the ability to tra
k happens-beforeedges from a write to a subsequent read of a volatile vari-able. Therefore, our algorithm
an handle any syn
hro-nization primitive, su
h as semaphores and barriers in thejava.util.
on
urrent pa
kage of the Java standard li-brary, whose underlying implementation
an be des
ribedusing a
olle
tion of volatile variables.Goldilo
ks
an also handle the happens-before edges in-du
ed by the wait/notify me
hanism of Java without need-ing to add new rules. The following restri
tions of Javaensure that, for an exe
ution the happens-before relation
omputed by our lo
kset algorithm proje
ted onto data vari-able a

esses remains un
hanged even if the wait/notify syn-
hronization adds new happens-before edges: 1) Ea
h
all too.wait() and o.notify() be performed while holding thelo
k on obje
t o. 2) The lo
k of o released when o.wait()is entered and it is again a
quired before returning fromo.wait().2.3 ExampleIn this se
tion, we present an example of a
on
urrent pro-gram exe
ution in whi
h lo
kset algorithms from the litera-ture de
lare a false ra
e while our algorithm does not. Thelo
kset algorithms that we
ompare ours with are based onthe Eraser algorithm [14℄, whi
h is sound but not pre
ise.The pseudo
ode for the example is given below. The
ode exe
uted by ea
h thread Ti is listed next to Ti:.Class IntBox { Int x; }IntBox a = new IntBox(); // IntBox obje
t o1
reatedIntBox b = new IntBox(); // IntBox obje
t o2
reatedT1: a
q(L1); a.x++; rel(L1);T2: a
q(L1); a
q(L2);tmp = a; a = b; b = tmp;rel(L1); rel(L2);T3: a
q(L2); b.x++; rel(L2);In this example, two IntBox obje
ts o1 and o2 are
re-ated and lo
ks L1 and L2 are used for syn
hronization. Theprogram follows the
onvention that L1 prote
ts a

esses toa and a.x, similarly, L2 prote
ts a

esses to b and b.x. Atall times, ea
h IntBox obje
t and its integer �eld x are pro-te
ted by the same lo
k. T2 swaps the obje
ts referred to bythe variables a and b.Consider the interleaving in whi
h all a
tions of T1 are
ompleted, followed by those of T2 and then T3. T2 swapsthe obje
ts referred to by variables a and b so that duringT3's a
tions b refers to o1. o1.x is initially prote
ted by L1but is prote
ted by L2 after T2's a
tions are
ompleted.The most straightforward lo
kset algorithm is based onthe assumption that ea
h shared variable is prote
ted bya �xed set of lo
ks throughout the exe
ution. Let LH (t)

represent the set of lo
ks held by thread t at a given pointin an exe
ution. This algorithm attempts to infer this setby updating LS(o; d) to be the interse
tion LH (t)\LS(o; d)at ea
h a

ess to (o; d) by a thread t. If this interse
tionbe
omes empty, a ra
e is reported. This approa
h is too
onservative sin
e it reports a false ra
e if the lo
k prote
tinga variable
hanges over time. In the example above, when T3a

esses b.x, the standard lo
kset algorithm de
lares a ra
esin
e LS(o1.x) = fL1g (b points to o1) before this a

essand T3 does not hold L1.A less
onservative alternative is to update LS (o; d) toLH (t) rather than LH (t)\LS(o; d) after a ra
e-free a

ess to(o; d) by a thread t. For any given exe
ution, this strategy,just like the previous strategy, will report a data-ra
e if thereis one but is still impre
ise and might report false ra
es.In the example above, this approa
h is unable to infer the
orre
t new lo
kset for o1.x after T2's a
tions are
ompleted.This is be
ause T2 does not dire
tly a

ess o1.x and, as aresult, LS(o1.x) is not modi�ed by T2's a
tions.Variants of lo
kset algorithms in the literature use addi-tional me
hanisms su
h as a state ma
hine per shared vari-able in order to handle spe
ial
ases su
h as thread lo
ality,obje
t initialization and es
ape. However these variants areneither sound nor pre
ise, and they all report false alarmsin s
enarios similar to the one in the example above.Our algorithm's lo
kset update rules allow a variable'slo
ksets to grow and
hange during the exe
ution. The lo
k-set of a variable may be modi�ed even without the variablebeing a

essed. In this way, we are able handle dynami
ally
hanging lo
ksets and ownership transfers and avoid falsealarms. In the example above, the lo
kset of o1.x evolveswith our update rules during the exe
ution as illustrated inFigure 2.The ve
tor-
lo
k algorithm does not de
lare a false ra
ein this example and similar s
enarios. However, as dis
ussedin Se
tion 3, it a

omplishes this at signi�
antly in
reased
omputational
ost
ompared to our optimized implementa-tion of the lo
kset update rules.3 Implementation with lazy evaluationWe implemented the Goldilo
ks algorithm in Ka�e [17℄, a
lean room implementation of the Java virtual ma
hine in C.Our implementation
urrently runs in the interpreting modeof Ka�e's runtime engine. The pseudo
ode is given in Fig-ure 3. There are two important features that
ontribute tothe performan
e of the algorithm in pra
ti
e: short-
ir
uit
he
ks and lazy evaluation of lo
kset update rules. Short-
ir
uit
he
ks are
heap, suÆ
ient
he
ks for a happens--before edge between the last two a

esses to a variable. Weuse short-
ir
uit
he
ks to eliminate unne
essary appli
ationof the lo
kset update rules. Lazy evaluation runs the lo
k-set update rules in Figure 1 only when a data variable isa

essed and all the short-
ir
uit
he
ks fail to prove theexisten
e of a happens-before relationship.There are two reasons we implemented our lo
kset algo-rithm lazily: 1) Managing and updating a separate lo
ksetfor ea
h data variable have high memory and
omputational
ost. Our lo
kset rules are expressed in terms of set lookupsand insertions, and making the lo
kset a singleton set withthe
urrent thread id after an a

ess. These simple updaterules make possible a very easy and eÆ
ient form of
omput-ing lo
ksets lazily only at an a

ess. 2) For thread-lo
al andwell-syn
hronized variables, there may be no need to run (all

of) the lo
kset update rules, be
ause a short-
ir
uit
he
k ora subset of syn
hronization a
tions may be suÆ
ient to showra
e freedom.In our way of performing lazy evaluation, we do not ex-pli
itly asso
iate a separate lo
kset LS (o; d) for ea
h datavariable (o; d). Instead, LS(o; d) is
reated temporarily,when (o; d) is a

essed and the algorithm, after all short-
ir
uit
he
ks fail, �nds it ne
essary to
ompute happens--before for that a

ess using lo
ksets. In addition, the lo
ksetupdate rule for a syn
hronization a
tion in Figure 1 is notapplied to LS(o; d) when the a
tion is performed. We deferthe appli
ation of these rules until (o; d) is a

essed and thelo
kset update rules are applied for that a

ess. We storethe ne
essary information about a syn
hronization a
tion ina
ell,
onsisting of the
urrent thread and the a
tion. Dur-ing the exe
ution,
ells are kept in a list that we
all updatelist, whi
h is represented by its head and tail pointers inthe pseudo
ode. When a thread performs a syn
hronizationa
tion, it atomi
ally appends its
orresponding
ell to theupdate list .Ea
h variable (o; d) is asso
iated with an instan
e of Info.info maps variables to Info instan
es. info(o; d) keeps tra
kof three pie
es of information ne
essary to
he
k an a

essto (o; d): 1) pos is a pointer to a
ell in the update list(ref (Cell) is the referen
e type for Cell). 2) owner is theidenti�er of the thread that last a

essed (o; d). After ea
ha

ess to (o; d) by thread t, info(o; d) is updated so that posis assigned to the referen
e of the
ell at the tail of the up-date list and owner is assigned to t. 3) alo
k is used in ashort-
ir
uit
he
k as explained below. Noti
e that be
auselo
ksets are
reated temporarily only when the full
he
k-ing for the lo
kset rules is to be done, there is no �eld ofinfo(o; d) that points to a lo
kset.We instrumented the JVM
ode by inserting
alls toHandle-A
tion. The pro
edure Handle-A
tion is invokedea
h time a thread performs an a
tion relevant to our al-gorithm. We performed the instrumentation so that thesyn
hronizes-with order and the order of
orresponding
ellsin the update list are kept
onsistent throughout the exe-
ution. Similarly, the order of
ells respe
ts the programorder of the threads in the exe
ution. We needed only forvolatile reads/writes to insert expli
it lo
ks to make atomi
the volatile a

ess and appending the
ell for that a
tion tothe update list.Handle-A
tion takes as input a thread t and an a
tion� performed by t. If � is a syn
hronization a
tion, Handle-A
tion appends a
ell referring to � to the end of the up-date list (lines 1-6). If � reads from or writes to a datavariable (o; d) and it is the �rst a

ess to (o; d) it
reatesa new Info for (o; d) and sets its alo
k to one of the lo
ksheld by t (lines 8-11). Otherwise, it �rst runs two short-
ir
uit
he
ks (line 12). If both of the short-
ir
uit
he
ksfail, the pro
edure Apply-Lo
kset-Rules is
alled. Before ex-iting Handle-A
tion, info(o,d) is updated to re
e
t the lasta

ess to (o; d) (lines 19-20). Handle-A
tion also garbage
olle
ts the
ells in the update list that are no longer refer-en
ed, by
alling Garbage-Colle
t-Cells (line 21).Apply-Lo
kset-Rules applies the lo
kset update rulesin Figure 1 but uses a lo
al, temporarily-
reated lo
ksetLS(o; d). LS(o; d) is initialized to
ontain info(o,d).owner ,the identi�er of the thread that last a

essed (o; d), to re
e
tthe e�e
t of Rule 1 for variable a

esses. Then the rules forthe syn
hronization a
tions performed after the last a

essto (o; d) are applied to LS(o; d) in turn. The
ells in the up-date list between the
ell pointed by info(o,d).pos and the

Figure 2: Evaluation of LS(o1:x) by Goldilo
ks.
ell pointed by tail are used in this
omputation. The a

ess
auses no warning if the
urrent thread t is added to LS(o; d)by some rule. This
he
k is performed after handling ea
h
ell and is also used to terminate the lo
kset
omputationbefore rea
hing the tail of the update list. If t is not foundin LS(o; d), a ra
e
ondition on (o; d) is reported.Short-
ir
uit
he
ks: Our
urrent implementation
on-tains two
onstant time, suÆ
ient
he
ks for the happens--before relation between the last two a

esses to a variable(see line 12 of Handle-A
tion). 1) We �rst
he
k whetherthe
urrently a

essing thread is the same as the last threada

essed the variable by
omparing t and info(o,d).owner .This helps us to handle
he
king thread lo
al variables in
onstant time without needing the lo
kset rules. 2) These
ond
he
k handles variables that are prote
ted by thesame lo
k for a long time. We keep tra
k of a lo
k alo
kfor ea
h variable (o; d). info(o; d):alo
k represents an ele-ment of LS(o; d)
hosen randomly. At the �rst a

ess to(o; d) info(o; d):alo
k is assigned one of the lo
ks held bythe
urrent thread randomly, or null if there is no su
h lo
k(line 10). After the next a

ess to (o; d) we
he
k if the lo
kinfo(o; d):alo
k is held by the
urrent thread. If this
he
kfails, info(o; d):alo
k is reassigned by
hoosing a new lo
k(line 15).Comparison with the ve
tor-
lo
k algorithm: Theve
tor-
lo
k algorithm is as pre
ise as our algorithm. How-ever, the ve
tor-
lo
k algorithm a

omplishes this pre
isionat a signi�
antly higher
omputational
ost
ompared toGoldilo
ks be
ause lazy evaluation and the short
ir
uit
he
ks make our approa
h very eÆ
ient. This fa
t is high-lighted by the following example. Consider a program witha large number of threads t1; :::; tn all a

essing the sameshared variable (o; d), where all a

esses to (o; d) are pro-te
ted by a single lo
k l. At ea
h syn
hronization operation,a
q(l) or rel(l), Goldilo
ks performs a
onstant-time opera-tion to add the syn
hronization operation to the update list.Moreover, on
e info(o; d):alo
k = l, then at ea
h a

ess to

(o; d) Goldilo
ks performs a
onstant-time look-up to deter-mine the absen
e of a ra
e. The ve
tor-
lo
k algorithm, onthe other hand, maintains a ve
tor of size n for ea
h threadand for ea
h variable. At ea
h syn
hronization operation,two su
h ve
tors are
ompared element-wise and updated.At ea
h a

ess to (o; d), the ve
tor-
lo
k algorithm performs
onstant-time work just like Goldilo
ks. While the ve
tor--
lo
k algorithm does �(n) work for ea
h syn
hronization op-eration and �(1) for ea
h data variable a

ess, Goldilo
ksdoes �(1) work for every operation. Therefore, Goldilo
ksis more eÆ
ient than the ve
tor-
lo
k algorithm in general.The SharedSpot mi
roben
hmark in Se
tion 4 is based onthe example des
ribed above and the experiments
on�rmthe pre
eding analysis.4 EvaluationIn order to evaluate the performan
e our algorithm, we ranthe instrumented version of the Ka�e JVM on a set of ben
h-marks. In order to
on
entrate on the ra
es in the appli
a-tions, we disabled
he
ks for �elds of the standard library
lasses. Arrays were
he
ked by treating ea
h array elementas a separate variable. We �rst present our experiments anddis
uss their results in Se
tion 4.1.In order to
ompare our algorithm with traditional lo
k-set and ve
tor-
lo
k algorithms, we implemented a basi
 ver-sion of the Eraser algorithm that we
all Basi
-Eraser anda ve
tor-
lo
k based algorithm similar to the one used byTrade [5℄. Where possible, we used the same data stru
tureimplementations while implementing the three algorithms.For Basi
-Eraser, we used the same
ode for keeping andmanipulating lo
ksets that we developed for Goldilo
ks.Mi
roben
hmarks: The Multiset mi
roben
hmark
on-sists of a number of threads a

essing a multiset of integers
on
urrently by inserting, deleting and querying elementsto/from it. The SharedSpot ben
hmark illustrates the
asein whi
h a number of integers, ea
h of whi
h is prote
ted by

re
ord Cell f re
ord Info fthread : Tid ; pos : ref (Cell);a
tion: A
tion; owner : Tid ;next : ref (Cell);g alo
k : Addr ; ghead , tail : ref (Cell); info: (Addr �Data) �! Info;Initially head := new Cell ; tail := head ; info := EmptyMap;Handle-A
tion (t, �):1 if (� 2 fa
q(o); rel(o); fork(u); join(u); read(o; v); write(o; v);�nalize(x); terminate(t)g) f2 tail!thread := t;3 tail!a
tion := �;4 tail!next := newCell ;5 tail := tail!next ;6 g7 else if (� 2 fread(o; d); write(o; d)g) f8 if (info(o; d) is not de�ned) f //initialize info(o; d) for the �rst a

ess to (o; d)9 info(o; d) := newInfo;10 info(o; d).alo
k := (
hoose randomly a lo
k held by t, if any exists);11 g else f12 if ((info(o; d).owner 6= t) ^ (info(o; d).alo
k is not held by t)) f13 Apply-Lo
kset-Rules (t, (o; d)); // run the lo
kset algorithm14 // be
ause short
ir
uits failed, reassign the random lo
k for (o; d)15 info(o; d).alo
k := (
hoose randomly a lo
k held by t, if any exists);16 g17 g18 // reset info(o; d) after ea
h a

ess to (o; d)19 info(o; d).owner := t;20 info(o; d).pos := tail ;21 Garbage-Colle
t-Cells (head , tail);22 g Figure 3: Implementation of the Goldilo
ks algorithma separate unique lo
k, are a

essed
on
urrently by a num-ber of threads for applying arithmeti
 operations on them.The Lo
alSpot ben
hmark is similar to SharedSpot but ea
hvariable is thread-lo
al. We ran experiments parameterizingthe mi
roben
hmarks with the number of threads startingfrom 1 and doubling until 256. Figure 4 plots for three al-gorithms the average time spent for
he
king ea
h variablea

ess against in
reasing number of threads.Large ben
hmarks: We used six ben
hmark programs
ommonly used in the literature to
ompare the perfor-man
e of the three algorithms on large programs: Raja1is a ray tra
er (� 6K lines). S
iMark2 is a
ompositeJava ben
hmark
onsisting of �ve
omputational kernels(� 2300 lines). Four of our ben
hmarks are from the JavaGrande Forum Ben
hmark Suite, whi
h
an be obtained athttp://www.ep

.ed.a
.uk/
omputing/resear
h a
tivities/java grande/threads.html. They are moldyn, a mole
ulardynami
s simulation (� 650 lines), raytra
er, a 3D raytra
er (� 1200 lines), monte
arlo, a Monte Carlo simu-lation (� 3K lines) and sor, a su

essive over-relaxationprogram (� 220 lines).Table 1 presents the performan
e statisti
s of the threealgorithms on the ben
hmark programs. The purpose ofthis bat
h of experiments is to
ontrast the overhead that1Raja
an be obtained at http://raja.sour
eforge.net/.2S
imark
an be obtained at http://math.nist.gov/s
imark2/.

ea
h of the three approa
hes in
ur while
he
king for ra
es.In this bat
h of experiments, ra
e
he
king for a variablewas not turned o� after dete
ting a ra
e on it, as wouldbe the
ase in normal usage of a ra
e dete
tion tool. Thepurpose of this was to enable a fair
omparison between al-gorithms. On this set of ben
hmarks, Basi
-Eraser
onser-vatively de
lared false ra
es on many variables early in theexe
ution. If ra
e
he
king on these variables were turnedo� after Basi
-Eraser dete
ts a ra
e on them, Basi
-Eraserwould have ended up doing a lot less work and
he
kinga lot fewer a

esses than the other two approa
hes, espe-
ially sin
e these variables are typi
ally very likely to havera
es on them later in the exe
ution as well. This wouldhave made the overhead numbers diÆ
ult to
ompare. InTable 1, we give the number of threads
reated in ea
h pro-gram below the name of the ben
hmark. The
olumn titled\Uninstrumented" reports the total runtime of the programin the uninstrumented JVM, and the total number of vari-able a

esses (�elds+array indi
es) performed at runtime.Ea
h
olumn for an algorithm presents, for ea
h ben
hmark,the total exe
ution time and the slowdown ratio of the pro-gram with instrumentation. The time values are given inse
onds. The slowdown ratio is the ratio of the di�eren
ebetween the instrumented runtime and the uninstrumentedruntime to the uninstrumented runtime. The number ofvariable a

esses
he
ked for ra
es is important for assessing

1 32 64 128 256
0

200

400

600

800

1000

1200

Number of threads

Pe
r a

cc
es

s
ch

ec
kin

g
tim

e
(m

icr
os

ec
on

ds
)

Multiset

1 32 64 128 256
0

500

1000

1500

2000

2500

3000

Number of threads

Pe
r a

cc
es

s
ch

ec
kin

g
tim

e
(m

icr
os

ec
on

ds
)

SharedSpot

1 32 64 128 256
0

50

100

150

200

250

300

Number of threads

Pe
r a

cc
es

s
ch

ec
kin

g
tim

e
(m

icr
os

ec
on

ds
)

LocalSpot

Basic−Eraser
Vector−clock
Our lockset

Figure 4: Per a

ess ra
e
he
king time against the in
reasing number of threadsthe amount of work
arried out by the algorithm during ex-e
ution and average
he
king time for ea
h variable a

ess.Table 2 lists the results of our experiments withGoldilo
ks where
he
ks for �elds on whi
h a ra
e is de-te
ted are disabled. This is a more realisti
 setting to judgethe overhead of our algorithm in absolute terms. The mea-surements reported in the �rst three rows are the same asthe ones in Table 1, taken without disabling any
he
ks.The se
ond three rows give the runtime statisti
s when wefollowed the approa
h des
ribed above.4.1 Dis
ussionThe plots in Figure 4 show per a

ess
he
king times of thethree algorithms. The very low a

eleration in the per a
-
ess runtime overhead of our algorithm and Eraser in theSharedSpot and Lo
alSpot examples is noteworthy. Short
ir
uit
he
ks in our algorithm allow
onstant time over-head for thread-lo
al variables and variables prote
ted by aunique lo
k. This makes our algorithm asymptoti
ally bet-ter than the ve
tor-
lo
k algorithm.The runtime statisti
s in Table 1 indi
ate that Goldilo
ksperforms better than the ve
tor-
lo
k algorithm for large-s
ale programs. As the number of
he
ks done for variablea

esses are the same, we
an
on
lude that per variablea

ess
he
king time of our lo
kset algorithm on average isless than the ve
tor-
lo
k algorithm.S
iMark, moldyn and sor are well-syn
hronized programswith few ra
es and a simple lo
king dis
ipline. Thus theshort
ir
uit
he
ks mostly su

eed and the overhead of thelo
kset algorithm is low. However, more elaborate syn
hro-nization poli
ies in Raja, raytra
er and monte
arlo
ausedlong runs of the lo
kset algorithm, thus the slowdown ratioin
reases. These programs have a relatively high number ofra
es.The results indi
ate that our algorithm works as eÆ-
iently as Basi
-Eraser while Basi
-Eraser
an not handle allthe syn
hronization poli
ies used in the ben
hmarks. Themain reason for our algorithm performing slightly better inour experiments is the fa
t that Basi
-Eraser does lo
ksetinterse
tions while
he
king the a

esses. Interse
tion is fun-damentally an expensive operation. Our algorithm, on theother hand, requires insertions and lookups, whi
h
an beimplemented in
onstant amortized time. Clearly, a moreoptimized implementation of Eraser would have performedbetter. The goal of the
omparison with Basi
-Eraser was to

demonstrate that our algorithm does not have signi�
antlymore
ost than other lo
kset algorithms.Disabling
he
king a

esses to �elds on whi
h ra
es weredete
ted dramati
ally de
reases the number of a

esses tobe
he
ked against ra
es, thus the total runtime of the in-strumented program. This
an be seen from Table 1. Forthe ben
hmarks moldyn, raytra
er and sor, the di�eren
esin the number of a

esses point to this e�e
t.5 Related workDynami
 ra
e-dete
tion methods do not su�er from falsepositives as mu
h as stati
 methods do but are not exhaus-tive. Eraser [14℄ is a well-known tool for dete
ting ra
e
onditions dynami
ally by enfor
ing the lo
king dis
iplinethat every shared variable is prote
ted by a unique lo
k.It handles obje
t initialization patterns using a state-basedapproa
h but
an not handle dynami
ally
hanging lo
ksetssin
e it only allows a lo
kset to get smaller. There is mu
hwork that re�nes the Eraser algorithm by improving thestate ma
hine it uses and the transitions to redu
e the num-ber of false positives. One su
h re�nement is extending thestate-based handling of obje
t initialization and making useof obje
t-oriented
on
epts [16℄. Harrow used thread seg-ments to identify the portions of the exe
ution in whi
h ob-je
ts are a

essed
on
urrently among threads [8℄. Anotherapproa
h is using a basi
 ve
tor-
lo
k algorithm to
apturethread-lo
al a

esses to obje
ts and thus eliminates unne
es-sary and impre
ise appli
ations of the Eraser algorithm [18℄.Pre
ise lo
kset algorithms exist for Cilk programs but theiruse for real programs is still under question [2℄. The gen-eral algorithm in [2℄ is quite ineÆ
ient while the eÆ
ientversion of this algorithm requires programs to obey the um-brella lo
king dis
ipline, whi
h
an be violated by ra
e-freeprograms.The approa
hes that
he
k a happens-before relation [5,13, 15℄ are based on ve
tor
lo
ks [10℄, whi
h
reate a par-tial order on program statements. Trade [5℄ uses a pre
iseve
tor-
lo
k algorithm. Trade is implemented at the Javabyte
ode level and in interpreter mode of JVM as is ouralgorithm. To redu
e the overhead of the ve
tor
lo
ks forprograms with a large number of threads, they use rea
ha-bility information through the threads, whi
h makes Trademore eÆ
ient than other similar tools. S
honberg
omputesfor ea
h thread shared variable sets and
on
urren
y lists to
apture the set of shared variables between syn
hronizationpoints of an exe
ution [15℄. His algorithm is impre
ise for

Uninstrumented Ve
tor-
lo
k Basi
-Eraser Goldilo
ksBen
hmark Runtime (se
.) Runtime (se
.) Runtime (se
.) Runtime (se
.)# threads # a

esses Slowdown Slowdown SlowdownRaja 8.6 145.1 105.9 70.23 5979629 15.7 11.1 7S
iMark 28.2 51.3 46.1 33.17 3647012 0.8 0.6 0.1moldyn 11.2 195 138.9 92.87 8610585 16.3 11.3 7.2raytra
er 1.9 122.8 79.8 507 5299350 63.1 40.6 25.1monte
arlo 5.7 243.8 160 117.57 10491747 41.4 26.8 19.4sor 27.2 145.9 157.5 1077 7696597 4.3 4.7 2.9Table 1: Runtime statisti
s of the ben
hmark programsAlgorithm Raja S
iMark moldyn raytra
er monte
arlo sorRuntime 70.2 33.1 92.8 50 117.6 107Slowdown 7 0.1 7.2 25.1 19.4 2.9#
he
ks 5979629 3647012 8610585 5299350 10491747 7696597Runtime* 65.8 35.5 57.0 17.6 111.2 63.8Slowdown* 6.5 0.2 4 8.2 18.3 1.3#
he
ks* 5979629 4104754 5268021 1884836 10484544 3416928* Results after disabling
he
ks to the �elds.Table 2: Runtime statisti
s when �elds with ra
es dete
ted on them are disabledsyn
hronization dis
iplines that use lo
ks and needs to beextended for asyn
hronous
oordination to get pre
ision forthese dis
iplines.Hybrid te
hniques [12, 18℄
ombine lo
kset and happens-before analysis. For example, Ra
eTra
k's happens-before
omputation is based on both ve
tor
lo
ks and lo
ksets.but is not sound as its lo
kset part of the algorithm is basedon Eraser algorithm. Our te
hnique, for the �rst time,
om-putes a pre
ise happens-before relation using an implemen-tation that makes use of only lo
ksets. Choi et.al. presentan unsound runtime algorithm [4℄ for ra
e dete
tion. Theyused a stati
 method [3℄ to eliminate unne
essary
he
ks forwell-prote
ted variables. This is a
apability we intend tointegrate into Goldilo
ks in the future.6 Con
lusionsIn this paper, we present a new sound and pre
ise ra
e-dete
tion algorithm. Goldilo
ks is based solely on the
on-
ept of lo
ksets and is able to
apture all mutual-ex
lusionsyn
hronization idioms uniformly with one me
hanism. Thealgorithm
an be used, both in the stati
 or the dynami

ontext, to develop analyses for
on
urrent programs, par-ti
ularly those for dete
ting data-ra
es, atomi
ity violations,and failures of safety spe
i�
ations. In our future work, weplan to develop and integrate into Goldilo
ks a stati
 anal-ysis te
hnique to redu
e the
ost of runtime
he
king.A
knowledgementsWe thank Madan Musuvathi for many interesting dis
us-sions that
ontributed to the implementation te
hnique de-s
ribed in Se
tion 3.Referen
es[1℄ C. Boyapati, R. Lee, and M. Rinard. A type systemfor preventing data ra
es and deadlo
ks in Java pro-grams. In OOPSLA 02: Obje
t-Oriented Programming,Systems, Languages and Appli
ations, pages 211{230.ACM, 2002.

[2℄ Guang-Ien Cheng, Mingdong Feng, Charles E. Leiser-son, Keith H. Randall, and Andrew F. Stark. Dete
t-ing data ra
es in
ilk programs that use lo
ks. In Pro-
eedings of the ACM Symposium on Parallel Algorithmsand Ar
hite
tures (SPAA '98), pages 298{309, PuertoVallarta, Mexi
o, June 28{July 2 1998.[3℄ J.-D. Choi, A. Loginov, and V. Sarkar. Stati
 datara
eanalysis for multithreaded obje
t-oriented programs.Te
hni
al Report RC22146, IBM Resear
h, 2001.[4℄ Jong-Deok Choi, Keunwoo Lee, Alexey Loginov,Robert O'Callahan, Vivek Sarkar, and Manu Sridha-ran. EÆ
ient and pre
ise datara
e dete
tion for multi-threaded obje
t-oriented programs. In PLDI 02: Pro-gramming Language Design and Implementation, pages258{269. ACM, 2002.[5℄ Mark Christiaens and Koen De Boss
here. Trade, atopologi
al approa
h to on-the-
y ra
e dete
tion inJava programs. In JVM 01: Java Virtual Ma
hineResear
h and Te
hnology Symposium, pages 105{116.USENIX, 2001.[6℄ C. Flanagan and S. N. Freund. Type-based ra
e dete
-tion for Java. In PLDI 00: Programming Language De-sign and Implementation, pages 219{232. ACM, 2000.[7℄ C. Flanagan and P. Godefroid. Dynami
 partial-orderredu
tion for model
he
king software. In POPL 05:Prin
iples of Programming Languages, pages 110{121.ACM Press, 2005.[8℄ J. J. Harrow. Runtime
he
king of multithreaded appli-
ations with visual threads. In SPIN 00: Workshop onModel Che
king and Software Veri�
ation, pages 331{342. Springer-Verlag, 2000.[9℄ Jeremy Manson, William Pugh, and Sarita Adve. TheJava memory model. In POPL 05: Prin
iples of

Programming Languages, pages 378{391. ACM Press,2005.[10℄ Friedemann Mattern. Virtual time and global statesof distributed systems. In International Workshop onParallel and Distributed Algorithms, pages 215{226.North-Holland, 1989.[11℄ Robert H. B. Netzer and Barton P. Miller. What arera
e
onditions?: Some issues and formalizations. ACMLett. Program. Lang. Syst., 1(1):74{88, 1992.[12℄ E. Pozniansky and A. S
huster. EÆ
ient on-the-
y ra
edete
tion in multithreaded
++ programs. In PPoPP03: Prin
iples and Pra
ti
e of Parallel Programming,pages 179{190. ACM, 2003.[13℄ M. Ronsse and K. De Boss
here. Re
play: A fully in-tegrated pra
ti
al re
ord/replay system. ACM Trans-a
tions on Computer Systems, 17(2):133{152, 1999.[14℄ Stefan Savage, Mi
hael Burrows, Greg Nelson, Patri
kSobalvarro, and Thomas Anderson. Eraser: A dy-nami
 data ra
e dete
tor for multithreaded programs.ACM Transa
tions on Computer Systems, 15(4):391{411, 1997.[15℄ Edith S
honberg. On-the-
y dete
tion of a

ess anoma-lies. In PLDI 89: Programming Language Design andImplementation, pages 313{327, 1989.[16℄ Christoph von Praun and Thomas R. Gross. Obje
tra
e dete
tion. In OOPSLA 01: Obje
t-Oriented Pro-gramming, Systems, Languages and Appli
ations, pages70{82. ACM, 2001.[17℄ T. Wilkinson. Ka�e: A JIT and inter-preting virtual ma
hine to run Java
ode.http://www.transvirtual.
om/, 1998.[18℄ Yuan Yu, Tom Rodehe�er, and Wei Chen. Ra
etra
k:eÆ
ient dete
tion of data ra
e
onditions via adaptivetra
king. In SOSP 05: Symposium on Operating Sys-tems Prin
iples, pages 221{234. ACM, 2005.

A Example: a task queueThe example in this se
tion, for whi
h pseudo
ode is pro-vided in Figure 5, demonstrates the use of thread lo
ality,dynami
ally
hanging lo
ksets, fork and join operations toensure mutually ex
lusive a

ess and how our algorithm isable to uniformly
apture all of these idioms. This example
onsists of a program that s
hedules tasks (represented by
lass Task) into a queue named tQ, dequeues and exe
utesthem one by one. Ea
h Task instan
e
ontains an arraysubTasks of subtasks. Ea
h subtask is a SubTask instan
e.The
omputation required for a single subtask is representedby a fun
tion Perform that takes a SubTask and produ
esan integer output. The sum of all the outputs are the �nalresult of the task and this value is also stored in its out �eld.The Task obje
t is prote
ted by Tlo
k and the task queueis prote
ted by Qlo
k.CreateTask, given an array sTs of subtasks,
reatesa new task obje
t and enqueues it in the task queue.PerformNextTask dequeues a task from tQ and
allsParallelTaskHelper, whi
h a
tually performs the task.ParallelTaskHelper forks for ea
h subtask a new threadthat runs PerformSubTask. PerformSubTask
omputes thepartial result for the given subtask and adds it to the �nalresult of the task.Consider the following interleaving of a
tions during as
enario whi
h begins with
reation of two threads T1 andT2:1. A thread T1, by running CreateTask with an array
ontain-ing two subtasks st0 and st1 as input,(a)
reates a new task oneTask by
alling the Task
on-stru
tor (line 1),(b) a
quires Qlo
k,
alls tQ.Enqueue (oneTask), releasesQlo
k (lines 2-4).2. A se
ond thread T2, runs PerformNextTask whi
h(a) a
quires Qlo
k and
alls tQ.Dequeue () that returnsoneTask (lines 1-3),(b)
alls ParallelTaskHelper (oneTask) (line 4), whi
h
reates two threads T st0 and T st1, to handle st0and st1 respe
tively (lines 1-2).3. T st0, by running PerformSubTask (oneTask, 0),(a)
alls Perform () (line 1), a
quires Tlo
k, and(b) adds subTaskResult to oneTask.out, releases Tlo
k(lines 2-4).4. The se
ond thread T st1, by running PerformSubTask(oneTask, 1),(a)
alls Perform (oneTask.subTasks [1℄) (line 1), a
quiresTlo
k, and(b) adds subTaskResult to oneTask.out, releases Tlo
k(lines 2-4).5. Thread T2,
ontinuing running ParallelTaskHelper,(a) joins both threads T st0 and T st1 (lines 3-4),(b) prints oneTask.out.Let us fo
us on the shared variable oneTask:out. In theexe
ution des
ribed above, there is no ra
e on oneTask:outbut the lo
k prote
ting it
hanges dynami
ally. For example,oneTask.out is lo
al to T1 at the beginning and to T2 at theend of the s
enario.

lass Task {SubTask[n℄ subTasks;int out;Task(SubTask[℄ sT) { subTasks = sT; out = 0;}}Queue<Task> tQ;CreateTask(SubTask[℄ sTs) ParallelTaskHelper(oneTask)1 oneTask = new Task(sTs); 1 forea
h (i < n)2 a
quire(Qlo
k) 2
hildren[i℄ = fork(PerformSubTask,oneTask,i);3 tQ.Enqueue(oneTask); 3 forea
h (i < n)4 release(Qlo
k); 4 join(
hildren[i℄);5 print(oneTask.out);PerformNextTask() PerformSubTask(oneTask, i)1 a
quire(Qlo
k) 1 subTaskResult = Perform(oneTask.subTasks[i℄);2 oneTask = tQ.Dequeue(); 2 a
quire(Tlo
k);3 release(Qlo
k); 3 oneTask.out += subTaskResult;4 ParallelTaskHelper(oneTask); 4 release(Tlo
k);Figure 5: Pseudo
ode for the task queue example.We now show how our lo
kset algorithm handles thisexe
ution. Ea
h item below explains how LS (oneTask:out)
hanges after ea
h a
tion during the s
enario.LS(oneTask:out) is initially unde�ned. Our algorithmhandles thread-lo
ality by treating thread identi�ers similarto lo
ks, and allowing LS to
ontain thread identi�ers.1. (a) In the
onstru
tor of Task, oneTask.out is �rst a
-
essed by T1. At this point the algorithm setsLS(oneTask:out) = fT1g.(b) After T1 releases Qlo
k, the rule for release a
-tions adds Qlo
k to the lo
kset, whi
h yieldsLS(oneTask:out) = fT1; Qlo
kg.2. (a) After T2 a
quires Qlo
k, sin
e Qlo
k 2LS(oneTask:out) the rule for a
quire a
tionsadds T2 to the lo
kset so that LS(oneTask:out) =fT1; Qlo
k; T2g.(b) After T2 forks T st0, sin
e T2 2 LS(oneTask:out),T st0 gets added to the lo
kset to yieldLS(oneTask:out) = fT1; Qlo
k; T2; T st0g.The same update applies when T2
reates T st1 su
hthatLS(oneTask:out) = fT1; Qlo
k; T2; T st0; T st1g.3. (a) After T st0 a
quires Tlo
k, sin
e Tlo
k 2LS(oneTask:out), T st0 gets added to the lo
k-set whi
h leaves the lo
kset un
hanged.(b) After oneTask.out is written we
he
k whether T st0 2LS(oneTask:out). Sin
e the
he
k su

eeds, no ra
e isde
lared and the lo
kset be
omes LS(oneTask:out) =fT st0g. When T st0 releases Tlo
k, sin
e T st0 2LS(oneTask:out) the rule for release a
tions addsTlo
k to the lo
kset to yield LS(oneTask:out) =fT st0; Tlo
kg.4. (a) After T st1 a
quires Tlo
k, sin
e Tlo
k 2LS(oneTask:out), T st1 gets added to thelo
kset, whi
h yields LS(oneTask:out) =fT st0; Tlo
k; T st1g.(b) When oneTask.out is written, sin
e T st1 2LS(oneTask:out) before the write a
tion, no ra
eis de
lared. After the write a
tion we setLS(oneTask:out) = fT st1g. When T st1 releasesTlo
k, sin
e T st1 2 LS(oneTask:out) the rule forrelease a
tions adds Tlo
k to the lo
kset to yieldLS(oneTask:out) = fT st1; Tlo
kg.

5. (a) Before T2 joins T st1, T st1 2 LS(oneTask:out),therefore, after the join a
tion, we add T2 to the lo
k-set to obtain LS(oneTask:out) = fT st1; Tlo
k; T2g.(b) When oneTask.out is a

essed by print, we
he
kwhether T2 2 LS(oneTask:out). This
he
k su

eedsand we do not de
lare a ra
e. After the a

ess, we setLS(oneTask:out) = fT2g.The des
ription above illustrates althoughLS(oneTask:out) shrinks at an a

ess to LS(oneTask:out),it
an grow whenever a thread exe
utes a release or a forkoperation. It is this ability to grow the lo
kset that isfundamental to
apturing dynami
 lo
king idioms.B Corre
tness proof of the lo
kset algorithmThe following lemma de�nes the
onditions that must holdwhen there is a happens-before edge between a variable a
-
ess and another a
tion of di�erent threads. This lemma isused in many pla
es throughout the proof of Lemma 2 be-low. Note that for ea
h state (si;LS i), LS i is the value ofthe partial map LS at si.Lemma 1 Let � = (s1;LS1) �1�!t1 (s2;LS2) �2�!t2: : : (sn;LSn) �n�!tn (sn+1;LSn+1) be an exe
ution of theprogram. Let �i in � for some i 2 [1; n℄ be the last a
-tion that a

essed a variable (o; d).If i hb�! n and ti 6= tn hold, then there is an a
tion �j su
hthat j 2 (i; n℄, i hb�! j and one of the following
onditionsholds:(a) �j = fork (tn), or(b) tj = tn and- �j = a
q(o; l) and 9k 2 (i; j): �k = rel(o; l) for alo
k (o; l), or- �j = read(o; v) and 9k 2 (i; j): �k = write(o; v)for a volatile variable (o; v), or- �j = join(ti).PROOF. For this proof we will �rst de�ne \immediate"happens-before (IHB) edges following De�nition 1 for the

happens-before relation. There is an IHB edge between pand q, denoted p ihb7�! q, only if one of the following
ondi-tions holds:1. �p = fork (tq) and �q is the �rst a
tion of thread tq or2. �p = rel(o; l) and �q = a
q(o; l) for some lo
k (o; l) or3. �p = write(o; v) and �q = read(o; v) for some volatilevariable (o; v) or4. �p is the last a
tion of thread tp and �q = join(tp) or5. tp = tq and �p po�! �q where po�! is the program orderof thread tp.Then it is obvious that the happens-before relation is thetransitive-
losure of the immediate happens-before edges.Now let
 = i ihb7�! p1 ihb7�! p2 ihb7�! � � � ihb7�! pu ihb7�! pu+1 =n be a shortest
hain of IHB edges between i and n. Let�pm be the �rst a
tion in
 exe
uted by tn. Then
onsiderthe edge pm�1 ihb7�! pm and the types of IHB edges de�nedabove.� If pm�1 ihb7�! pm is due to
ondition 1 for IHB edges,then
hoosing j = pm�1 satis�es requirement (a) of thelemma be
ause i hb�! pm due to the
hain of IHB edgesand �pm�1 = fork(tpm) must hold.� If pm�1 ihb7�! pm is due to one of
onditions 2-4 for IHBedges, then
hoosing j = pm and k = pm�1 satis�esrequirement (b) of the lemma be
ause i hb�! pm due tothe
hain of IHB edges, tpm = tn and �pm must be ana
quire, volatile read or join a
tion.� pm�1 ihb7�! pm
an not be due to
ondition 5 for IHBedges be
ause we assumed that �pm is the �rst a
tionof tpm in
, thus tpm�1 6= tpm .Finally, we
on
lude that we
an always �nd an a
tion �jsatisfying the lemma as there is at least one shortest
hainof IHB edges between i and n. 2The following lemma
aptures the
orre
tness invariantof our algorithm. It formally
hara
terizes the relationshipbetween the
urrent lo
kset of ea
h variable and the syn-
hronization operations that o

urred in the history of theexe
ution.Lemma 2 Let � = (s1;LS1) �1�!t1 (s2;LS2) �2�!t2: : : �n�!tn (sn+1;LSn+1) be an exe
ution of the program. Let(o; d) be a variable that was last a

essed by a
tion �i in �for some i 2 [1; n℄.(a) Let l 2 Volatile be the �eld modeling the obje
t lo
k.Then for all x 2 Addr, we have (x; l) 2 LSn+1(o; d)i� there exists j su
h that j 2 (i; n℄, i hb�! j and �j =rel(x).(b) Let v 2 Volatile be some volatile �eld other than the�eld l modeling the obje
t lo
k. Then for all x 2 Addr,we have (x; v) 2 LSn+1(o; d) i� there exists j su
h thatj 2 (i; n℄, i hb�! j and �j = write(x; v).(
) For all t 2 Tid, we have t 2 LSn+1(o; d) i� there existsj su
h that j 2 [i; n℄, i hb�! j and either tj = t or�j = fork (t).

PROOF. We prove the lemma by indu
tion over the lengthj�j of the exe
ution �.Base
ase: When j�j = 0, the
laim in the lemma holdstrivially be
ause there is no variable (o; d) that is a

essedby an a
tion in the exe
ution.Indu
tive step: Suppose that the
laim in the lemmaholds for (s1;LS1) �1�!t1 (s2;LS2) �2�!t2 : : : �n�1�! tn�1(sn;LSn). Consider the transition (sn;LSn) �n�!tn(sn+1;LSn+1). Let �i be su
h that (o; d) was last a

essedby �i where i 2 [1; n℄. The indu
tive step will
onsistof proving the lemma for (s1;LS1) �1�!t1 (s2;LS2) �2�!t2: : : �n�1�! tn�1 (sn;LSn) �n�!tn (sn+1;LSn+1). We perform a
ase analysis on �n.1. Lo
al operation: LS does not
hange. Therefore theproof follows by a straightforward appli
ation of theindu
tive hypothesis.2. Non-volatile variable a

ess: �n = read(o0; d0) or�n = write(o0; d0)Let (o0; d0) be the variable a

essed by �n. We provethe two
ases, i = n and i 6= n, separately.First, suppose i = n, then (o; d) = (o0; d0). In this
ase,after �n is performed, LSn+1(o; d) is set to ftng evenif a ra
e is dete
ted.(a) If dire
tion: LSn+1(o; d) = ftng so 8(o; l): (o; l) =2LSn+1(o; d).Only If dire
tion: Sin
e i = n, there is no a
tion�j = rel(o; l) su
h that j 2 (i; n℄.(b) If dire
tion: LSn+1(o; d) = ftng so8(o; v): (o; v) =2 LSn+1(o; d).Only If dire
tion: Sin
e i = n, there is no a
tion�j = write(o; v) su
h that j 2 (i; n℄.(
) If dire
tion: Sin
e LSn+1(o; d) = ftng, �i = �j =�n. The happens-before relation is re
exive, soi hb�! n holds for i = n.Only if dire
tion: �i = �j = �n and thus i hb�! nsin
e ti = tj = tn. In this
ase tn 2 LSn+1(o; d)results from the rule for variable a

ess.Se
ond, suppose i 6= n. Then (o; d) 6= (o0; d0) andLSn(o; d) = LSn+1(o; d).(a) If dire
tion: Let (o; l) 2 LSn+1(o; d), then (o; l) 2LSn(o; d). The indu
tive hypothesis gives an a
-tion �j = rel(o; l) su
h that i hb�! j.Only if dire
tion: Suppose that there is some a
-tion �j = rel(o; l) su
h that i hb�! j. As �n is nota release a
tion, j 6= n�1. The indu
tive hypoth-esis gives (o; l) 2 LSn(o; d). As (o; d) 6= (o0; d0),LSn+1(o; d) = LSn(o; d) so (o; l) 2 LSn+1(o; d).(b) If dire
tion: Let (o; v) 2 LSn+1(o; d), then(o; v) 2 LSn(o; d). The indu
tive hypothesis givesan a
tion �j = write(o; v) su
h that i hb�! j.Only if dire
tion: Suppose that there is an a
tion�j = write(o; v) su
h that i hb�! j and j 2 (i; n).As �n is not a volatile write a
tion, j 6= n.The indu
tive hypothesis gives (o; v) 2 LSn(o; d).As (o; d) 6= (o0; d0), LSn+1(o; d) = LSn(o; d) so(o; v) 2 LSn+1(o; d).

(
) If dire
tion: Let t 2 LSn+1(o; d), then t 2LSn(o; d). The indu
tive hypothesis gives an a
-tion �j su
h that tj = t or �j = fork(t) and thusi hb�! j for j 2 (i; n).Only if dire
tion: Suppose that there is some j 2[i; n℄ su
h that i hb�! j, tj = t or �j = fork(t).We will prove this dire
tion for the smallest su
hj. Either j = n or j 6= n holds. Consider the
asewhen j 6= n. Then due to the indu
tive hypothesist 2 LSn(o; d). In this
ase the rule for variablea

ess guarantees that t 2 LSn+1(o; d).Now
onsider the
ase j = n. In this
aset = tn, thus we will prove that tn 2 LSn+1(o; d).Suppose, aiming to rea
h a
ontradi
tion, thattn =2 LSn+1(o; d). Be
ause (o; d) 6= (o0; d0),tn =2 LSn(o; d) as LSn(o; d) = LSn+1(o; d).Be
ause of the indu
tive hypothesis, there is nok 2 [i; j � 1℄ su
h that i hb�! k, but we havei hb�! j = n. In this
ase i hb�! j = n is possibleonly if there is a dire
t happens-before edgebetween �i and �n. Be
ause both a
tions a

essdi�erent variables, this is only possible if ti = tn.But then it must be true that tn 2 LSn(o; d)be
ause the variable update rule providesti 2 LS i+1(o; d) and LS(o; d) does not
hangefrom (si+1;LS i+1) to (sn;LSn). This
ontradi
tswith our assumption that tn =2 LSn+1(o; d). Thusit must be the
ase that tn 2 LSn+1(o; d).3. Lo
k a
quire: �n = a
q(o; l)(a) If dire
tion: Let (o0; l0) 2 LSn+1(o; d) for somelo
k (o0; l0). The rule for a
quire guarantees that(o0; l0) 2 LSn(o; d). The indu
tive hypothesisgives an a
tion �j = rel(o0; l0), j 2 (i; n� 1℄.Only if dire
tion: Suppose that there is an a
-tion �j = rel(o0; l0) su
h that i hb�! j. As �nis not a release a
tion, j 6= n � 1. In this
asedue to the indu
tive hypothesis gives (o0; l0) 2LSn(o; d). The rule for a
quire guarantees that(o0; l0) 2 LSn+1(o; d).(b) If dire
tion: Let (o; v) 2 LSn+1(o; d). The rulefor a
quire guarantees that (o; v) 2 LSn(o; d).The indu
tive hypothesis gives an a
tion �j =write(o; v), j 2 [i; n � 1℄.Only if dire
tion: Suppose that there is an a
-tion �j = write(o; v) su
h that i hb�! j. As �nis not a volatile write a
tion, j 6= n � 1. Inthis
ase the indu
tive hypothesis gives (o; v) 2LSn(o; d). The rule for a
quire guarantees that(o; v) 2 LSn+1(o; d).(
) If dire
tion: Let t 2 LSn+1(o; d). Either t 2LSn(o; d) or t =2 LSn(o; d). Consider the
aseof t 2 LSn(o; d). Then the indu
tive hypothesisgives an a
tion �j (j 2 (i; n)) su
h that tj = tor �j = fork(t). Now
onsider the
ase whent =2 LSn(o; d). Then, sin
e t 2 LSn(o; d) getsadded by the rule for a
quire, it must hold thatt = tn and (o; l) 2 LSn(o; d). In this
ase theindu
tive hypothesis gives j 2 [i; n� 1℄ su
h that

�j = rel(o; l) and i hb�! j. As �j and �n a

essthe same lo
k (o; l) j hb�! n. i hb�! n follows fromtransitivity of hb�!.Only if dire
tion: Suppose that there is some j 2[i; n℄ su
h that i hb�! j, tj = t or �j = fork (t).We will prove this dire
tion for the smallest su
hj. Either j = n or j 6= n holds. Consider the
asewhen j 6= n. Then due to the indu
tive hypothesist 2 LSn(o; d). In this
ase the rule for a
quireguarantees that t 2 LSn+1(o; d).Now
onsider the
ase j = n. In this
aset = tn, thus we will prove that tn 2 LSn+1(o; d).Then suppose, aiming for a
ontradi
tion,that tn =2 LSn+1(o; d). The rule for a
quireguarantees that tn =2 LSn(o; d). It also holdsthat (o; l) =2 LSn(o; d) be
ause otherwise tnwould be in LSn+1(o; d). Due to the indu
-tive hypothesis, this implies that there is nok 2 [i; n) su
h that i hb�! k, and tk = tn or�k = fork(tn) or �k = rel(o). If ti = tn,be
ause ti 2 LS i+1(o; d) and LS(o; d) does not
hange between (si+1;LS i+1) and (sn;LSn), itresults in ti = tn 2 LSn(o; d)
ontradi
ting ourassumption that tn =2 LSn+1(o; d). If ti 6= tn,the happens-before edge i hb�! n
ontradi
ts withLemma 1 and the minimality of j be
ause, asstated above, the indu
tive hypothesis impliesthat there is no k 2 [i; n) su
h that i hb�! k,and �k = fork (tn) or tk = tn or �k = rel(o; l).However, Lemma 1 and the minimality of j implythat 9k 2 (i; n) su
h that �k = rel(o; l). Thus itmust be the
ase that tn 2 LSn+1(o; d).4. Lo
k release: �n = rel(o; l)(a) If dire
tion: Let (o0; l0) 2 LSn+1(o; d) for somelo
k (o0; l0). Suppose (o0; l0) 2 LSn(o; d). Thenthe indu
tive hypothesis gives i hb�! n. Sup-pose (o0; l0) =2 LSn(o; d). Be
ause (o0; l0) 2LSn+1(o; d), (o0; l0) is only added if tn 2LSn(o; d). In this
ase due to the indu
tive hy-pothesis, there exists j 2 (i; n � 1℄ su
h thattj = tn and i hb�! j. Sin
e tj = tn, j hb�! nholds and this results in i hb�! n from the transi-tive
losure.Only if dire
tion: Suppose that there exists j 2(i; n℄ su
h that �j = rel(o0; l0) and i hb�! j. Either(o; l) = (o0; l0) or (o; l) 6= (o0; l0). Consider the
asewhen (o; l) 6= (o0; l0). Then (o0; l0) 2 LSn(o; d) andj < n by the indu
tive hypothesis. Be
ause of therule for release, (o0; l0) 2 LSn+1(o; d).Now
onsider the
ase when (o; l) = (o0; l0). Inthis
ase suppose, aiming for a
ontradi
tion,that (o; l) =2 LSn+1(o; d). Due to the rule forrelease, (o; l) =2 LSn(o; d). It also holds thattn =2 LSn(o; d) be
ause otherwise (o; l) wouldbe in LSn+1(o; d). By the indu
tive hypothe-sis, this implies that there is no k 2 [i; n) su
hthat i hb�! k, and tk = tn or �k = fork (tn)

or �k = rel(o). If ti = tn, be
ause ti 2LS i+1(o; d) and LS(o; d) does not
hange be-tween (si+1;LS i+1) and (sn;LSn), it results inti = tn 2 LSn(o; d)
ontradi
ting our assumptionthat tn =2 LSn+1(o; d). If ti 6= tn, the happens-before edge i hb�! n
ontradi
ts with Lemma 1and the minimality of j be
ause, as stated above,the indu
tive hypothesis implies that there is noi hb�! k, and �k = fork(tn) or tk = tn or�k = rel(o). Thus it must be the
ase that(o; l) 2 LSn+1(o; d).(b) If dire
tion: Let (o; v) 2 LSn+1(o; d), then(o; v) 2 LSn(o; d). The indu
tive hypothesis im-plies what we need. Only if dire
tion: Sup-pose that there exists j 2 [i; n℄ su
h that �j =write(o; v) and i hb�! j. In this
ase j < n � 1.Then the indu
tive hypothesis applies and (o; v) 2LSn(o; d) so (o; v) 2 LSn+1(o; d) due to the rulefor release.(
) If dire
tion: Let t 2 LSn+1(o; d), then t 2LSn(o; d) be
ause of the rule for release. The in-du
tive hypothesis implies what we want.Only if dire
tion: Suppose that there is some j 2[i; n℄ su
h that i hb�! j, tj = t or �j = fork(t).We will prove this dire
tion for the smallest su
hj. Either j = n or j 6= n holds. Consider the
asewhen j 6= n. Then due to the indu
tive hypothesist 2 LSn(o; d). In this
ase the rule for releaseguarantees that t 2 LSn+1(o; d).Now
onsider the
ase j = n. In this
aset = tn, thus we will prove that tn 2 LSn+1(o; d).Suppose, aiming for a
ontradi
tion, thattn =2 LSn+1(o; d). Thus tn =2 LSn(o; d) from therule for release. By the indu
tive hypothesis,this implies there is no k 2 [i; n) su
h thati hb�! k, and �k = fork(tn) or tk = tn. If ti = tn,be
ause ti 2 LS i+1(o; d) and LS(o; d) does not
hange between (si+1;LS i+1) and (sn;LSn), itresults in ti = tn 2 LSn(o; d)
ontradi
ting ourassumption that tn =2 LSn+1(o; d). If ti 6= tn,the happens-before edge i hb�! n
ontradi
ts withLemma 1 and the minimality of j be
ause, asstated above, the indu
tive hypothesis impliesthat there is no k 2 [i; n) su
h that i hb�! k, and�k = fork(tn) or tk = tn. Thus it must be the
ase that tn 2 LSn+1(o; d).5. Volatile read: �n = read(o; v) where (o; v) is avolatile variable.(a) If dire
tion: Let (o; l) 2 LSn+1(o; d), then (o; l) 2LSn(o; d). The indu
tive hypothesis gives an a
-tion �j = rel(o; l), j 2 [i; n � 1℄.Only if dire
tion: Suppose that there is an a
-tion �j = rel(o; l) su
h that i hb�! j. As �nis not a release a
tion, j 6= n � 1. In this
asethe indu
tive hypothesis gives (o; l) 2 LSn(o; d).Then the rule for volatile read guarantees that(o; l) 2 LSn+1(o; d).

(b) If dire
tion: Let (o0; v0) 2 LSn+1(o; d) forsome volatile variable (o0; v0). Then (o0; v0) 2LSn(o; d). The indu
tive hypothesis gives an a
-tion �j = write(o0; v0), j 2 [i; n� 1℄.Only if dire
tion: Suppose that there is an a
tion�j = write(o0; v0) su
h that i hb�! j. As �n isnot a volatile write a
tion, j 6= n� 1. In this
asethe indu
tive hypothesis gives (o0; v0) 2 LSn(o; d).Then the rule for volatile read guarantees that(o0; v0) 2 LSn+1(o; d).(
) If dire
tion: Let t 2 LSn+1(o; d). Eithert 2 LSn(o; d) or t =2 LSn(o; d). Suppose t 2LSn(o; d). Then the indu
tive hypothesis holds.Suppose t =2 LSn(o; d). Then (o; v) 2 LSn(o; d).In this
ase due to the indu
tive hypothesis, thereexists j 2 [i+ 1; n� 1℄ su
h that �j = write(o; v)and i hb�! j. Sin
e j hb�! n, i hb�! n from thetransitive
losure.Only if dire
tion: Suppose that there is some j 2[i; n℄ su
h that i hb�! j, tj = t or �j = fork (t).We will prove this dire
tion for the smallest su
hj. Either j = n or j 6= n holds. Consider the
asewhen j 6= n. Then due to the indu
tive hypothesist 2 LSn(o; d). In this
ase the rule for volatileread guarantees that t 2 LSn+1(o; d).Now
onsider the
ase j = n. In this
aset = tn, thus we will prove that tn 2 LSn+1(o; d).Then suppose, aiming for a
ontradi
tion, thattn =2 LSn+1(o; d). Thus the rule for volatile readguarantees that tn =2 LSn(o; d). It also holds that(o; v) =2 LSn(o; d) be
ause otherwise tn would bein LSn+1(o; d). By the indu
tive hypothesis, thisimplies there is no k 2 [i; n) su
h that i hb�! k,and �k = fork(tn) or tk = tn or �k = write(o; v).If ti = tn, be
ause ti 2 LS i+1(o; d) and LS(o; d)does not
hange between (si+1;LS i+1) and(sn;LSn), it results in ti = tn 2 LSn(o; d)
on-tradi
ting our assumption that tn =2 LSn+1(o; d).If ti 6= tn, the happens-before edge i hb�! n
ontradi
ts with Lemma 1 and the minimalityof j be
ause, as stated above, the indu
tivehypothesis implies that there is no i hb�! k, and�k = fork(tn) or tk = tn or �k = write(o; v).However, Lemma 1 and the minimality of j implythat 9k 2 (i; n) su
h that �k = write(o; v). Thusit must be the
ase that tn 2 LSn+1(o; d).6. Volatile write: �n = write(o; v) where (o; v) is avolatile variable.(a) If dire
tion: Let (o; l) 2 LSn+1(o; d), then (o; l) 2LSn(o; d). The indu
tive hypothesis implies whatwe need. Only if dire
tion: Suppose that thereexists j 2 [i; n℄ su
h that �j = rel(o; l) andi hb�! j. In this
ase j < n � 1. Then the in-du
tive hypothesis applies and (o; l) 2 LSn(o; d)so (o; l) 2 LSn+1(o; d) due to the rule for volatilewrite.(b) If dire
tion: Let (o0; v0) 2 LSn+1(o; d) for somevolatile variable (o0; v0). Consider the
ase when

(o0; v0) 2 LSn(o; d). Then the indu
tive hypothe-sis implies what we need. Now
onsider the
asewhen (o0; v0) =2 LSn(o; d). Then tn 2 LSn(o; d),sin
e (o0; v0) 2 LSn+1(o; d) as a result of the rulefor volatile writes. In this
ase due to the indu
-tive hypothesis, there exists j 2 (i; n � 1℄ su
hthat tj = tn or �j = fork(tn) and i hb�! j. Sin
ej hb�! n as they are both exe
uted by tn, i hb�! nfrom transitivity of hb�!.Only if dire
tion: Suppose that there exists j 2[i; n℄ su
h that �j = write(o0; v0) and i hb�! j. Ei-ther (o; v) = (o0; v0) or (o; v) 6= (o0; v0). Considerthe
ase when (o; v) 6= (o0; v0). Then (o0; v0) 2LSn(o; d). Due to the rule for volatile write,(o0; v0) 2 LSn+1(o; d).Now
onsider the
ase when (o; v) = (o0; v0).In this
ase suppose, aiming for a
ontradi
-tion, that (o; v) =2 LSn+1(o; d). Due to the rulefor volatile write, (o; v) =2 LSn(o; d). It alsoholds that tn =2 LSn(o; d) be
ause otherwise (o; v)would be in LSn+1(o; d). By the indu
tive hy-pothesis, this implies that there is no k 2 [i; n)su
h that i hb�! k, and �k = write(o; v) ortk = tn or �k = fork(tn). If ti = tn, be
auseti 2 LS i+1(o; d) and LS(o; d) does not
hange be-tween (si+1;LS i+1) and (sn;LSn), it results inti = tn 2 LSn(o; d)
ontradi
ting our assumptionthat tn =2 LSn+1(o; d). If ti 6= tn, the happens-before edge i hb�! n
ontradi
ts with Lemma 1and the minimality of j be
ause, as stated above,the indu
tive hypothesis implies that there is noi hb�! k, and �k = fork(tn) or tk = tn or�k = write(o; v). Thus it must be the
ase that(o; v) 2 LSn+1(o; d).(
) If dire
tion: Let t 2 LSn+1(o; d), then t 2LSn(o; d). The indu
tive hypothesis implies whatwe need.Only if dire
tion: Suppose that there is some j 2[i; n℄ su
h that i hb�! j, tj = t or �j = fork(t).We will prove this dire
tion for the smallest su
hj. Either j = n or j 6= n holds. Consider the
asewhen j 6= n. Then due to the indu
tive hypothesist 2 LSn(o; d). In this
ase the rule for volatilewrite guarantees that t 2 LSn+1(o; d).Now
onsider the
ase j = n. In this
aset = tn, thus we will prove that tn 2 LSn+1(o; d).Suppose, aiming for a
ontradi
tion, thattn =2 LSn+1(o; d). Thus tn =2 LSn(o; d) from therule for volatile write. By the indu
tive hypoth-esis, this implies there is no k 2 [i; n) su
h thati hb�! k, and �k = fork(tn) or tk = tn. If ti = tn,be
ause ti 2 LS i+1(o; d) and LS(o; d) does not
hange between (si+1;LS i+1) and (sn;LSn), itresults in ti = tn 2 LSn(o; d)
ontradi
ting ourassumption that tn =2 LSn+1(o; d). If ti 6= tn,the happens-before edge i hb�! n
ontradi
ts withLemma 1 and the minimality of j be
ause, asstated above, the indu
tive hypothesis impliesthat there is no i hb�! k, and �k = fork (tn)or tk = tn. Thus it must be the
ase that

tn 2 LSn+1(o; d).7. Thread fork: �n = fork(t)(a) If dire
tion: Let (o; l) 2 LSn+1(o; d). Then therule for fork guarantees that (o; l) 2 LSn(o; d).The indu
tive hypothesis gives an a
tion �j =rel(o; l), j 2 [i; n � 1℄.Only if dire
tion: Suppose that there is an a
tion�j = rel(o; l) su
h that i hb�! j. As �n is not arelease a
tion, j 6= n � 1. In this
ase due to theindu
tive hypothesis (o; l) 2 LSn(o; d). The rulefor fork guarantees that (o; l) 2 LSn+1(o; d).(b) If dire
tion: Let (o; v) 2 LSn+1(o; d), then(o; v) 2 LSn(o; d). The indu
tive hypothesis givesan a
tion �j = write(o; v), j 2 [i; n � 1℄.Only if dire
tion: Suppose that there exists j 2[i; n℄ su
h that �j = write(o; v) and i hb�! j. As�n is not a volatile write a
tion, j 6= n � 1. Inthis
ase due to the indu
tive hypothesis (o; v) 2LSn(o; d). The rule for fork guarantees that(o; v) 2 LSn+1(o; d).(
) If dire
tion: Let t0 2 LSn+1(o; d). There aretwo
ases: t0 2 LSn(o; d) or t0 =2 LSn(o; d)Consider the
ase t0 2 LSn(o; d). Then the in-du
tive hypothesis gives an a
tion �j su
h thattj = t0 or �j = fork(t0). Now
onsider the
aset0 =2 LSn(o; d). Then the forked thread is t0,namely t = t0. Then �j = �n, there is a fork of t0by tn. This means the rule for fork was appliedto add t0 to LSn+1(o; d) so tn 2 LSn(o; d). Theindu
tive hypothesis gives us some k 2 [i; n � 1℄su
h that i hb�! k and tk = tn or �k = fork(tn).And from transitivity of i hb�! k and k hb�! n (�kand �n are by the same thread), i hb�! n holds.Only if dire
tion: Suppose that there is somej 2 [i; n℄ su
h that i hb�! j, tj = t or �j = fork (t).We will prove this dire
tion for the smallest su
hj. Either j = n or j 6= n holds. Consider the
asewhen j 6= n. Then due to the indu
tive hypoth-esis t 2 LSn(o; d). In this
ase the rule for forkguarantees that t 2 LSn+1(o; d).Now
onsider the
ase j = n. In this
aset = tn, thus we will prove that tn 2 LSn+1(o; d).Then suppose, aiming for a
ontradi
tion, thattn =2 LSn+1(o; d). Due to the rule for fork,tn =2 LSn(o; d). Due to the indu
tive hypothesis,this implies there is no k 2 [i; n) su
h thati hb�! k, and �k = fork (tn) or tk = tn. If ti = tn,be
ause ti 2 LS i+1(o; d) and LS(o; d) does not
hange between (si+1;LS i+1) and (sn;LSn), itresults in ti = tn 2 LSn(o; d)
ontradi
ting ourassumption that tn =2 LSn+1(o; d). If ti 6= tn,the happens-before edge i hb�! n
ontradi
ts withLemma 1 and the minimality of j be
ause, asstated above, the indu
tive hypothesis impliesthat there is no i hb�! k, and �k = fork (tn)or tk = tn. Thus it must be the
ase thattn 2 LSn+1(o; d).

8. Thread join: �n = join(t)(a) If dire
tion: Let (o; l) 2 LSn+1(o; d), then (o; l) 2LSn(o; d). The indu
tive hypothesis gives an a
-tion �j = rel(o; l), j 2 [i; n � 1℄.Only if dire
tion: Suppose that there is an a
tion�j = rel(o; l) su
h that i hb�! j. As �n is not arelease a
tion, j 6= n � 1. In this
ase due to theindu
tive hypothesis (o; l) 2 LSn(o; d). The rulefor join guarantees that (o; l) 2 LSn+1(o; d).(b) If dire
tion: Let (o; v) 2 LSn+1(o; d), then(o; v) 2 LSn(o; d). The indu
tive hypothesis givesan a
tion �j = write(o; v), j 2 [i; n� 1℄.Only if dire
tion: Suppose that there exists j 2[i; n℄ su
h that �j = write(o; v) and i hb�! j. As�n is not a volatile write a
tion, j 6= n � 1. Inthis
ase due to the indu
tive hypothesis (o; v) 2LSn(o; d). The rule for join guarantees that(o; v) 2 LSn+1(o; d).(
) If dire
tion: Let t0 2 LSn+1(o; d). There are two
ases: t0 2 LSn(o; d) or t0 =2 LSn(o; d) Considerthe
ase t0 2 LSn(o; d). Then the indu
tive hy-pothesis gives an a
tion �j su
h that tj = t0 or�j = fork(t0) and i hb�! j. Now
onsider the
ase t0 =2 LSn(o; d). Then due to the rule for joint0 = tn and t 2 LSn(o; d) hold. The indu
tivehypothesis gives us some k 2 [i; n � 1℄ su
h thati hb�! k and tk = tn or �k = fork (tn). And fromtransitivity of i hb�! k and k hb�! n (between ana
tion by t and join(t)), i hb�! n holds.Only if dire
tion: Suppose that there is somej 2 [i; n℄ su
h that i hb�! j, tj = t or �j = fork(t).We will prove this dire
tion for the smallest su
hj. Either j = n or j 6= n holds. Consider the
asewhen j 6= n. Then due to the indu
tive hypoth-esis t 2 LSn(o; d). In this
ase the rule for joinguarantees that t 2 LSn+1(o; d).Now
onsider the
ase j = n. In this
aset = tn, thus we will prove that tn 2 LSn+1(o; d).Then suppose, aiming for a
ontradi
tion, thattn =2 LSn+1(o; d). Due to the rule for join,tn =2 LSn(o; d). It also holds that t =2 LSn(o; d)be
ause otherwise tn would be in LSn+1(o; d).By the indu
tive hypothesis, these imply thatthere is no k 2 [i; n) su
h that i hb�! k, and�k = fork(tn) or tk = tn, and 2)there is nok 2 [i; n) su
h that i hb�! k, and �k = fork(t)or tk = t. The latter implies t 6= ti. If ti = tn,be
ause ti 2 LS i+1(o; d) and LS(o; d) does not
hange between (si+1;LS i+1) and (sn;LSn), itresults in ti = tn 2 LSn(o; d)
ontradi
ting ourassumption that tn =2 LSn+1(o; d). If ti 6= tn,the happens-before edge i hb�! n
ontradi
ts withLemma 1 and the minimality of j be
ause, asstated above, the indu
tive hypothesis impliesthat there is no i hb�! k, and �k = fork (tn)or tk = tn. i hb�! n also
ontradi
ts with thelast
ondition of Lemma 1 be
ause t 6= ti thus

�n 6= join(ti). Thus it must be the
ase thattn 2 LSn+1(o; d). 2Theorem 1 (Corre
tness). Consider a program exe-
ution � = (s1;LS1) �1�!t1 (s2;LS2) � � � (sn;LSn) �n�!tn(sn+1;LSn+1). Let (o; d) be a data variable and i 2 [1; n�1℄be su
h that �i and �n a

ess (o; d) but �j does not a

ess(o; d) for all j 2 [i + 1; n � 1℄. Then tn 2 LSn(o; d) i�i hb�! n.PROOF.If dire
tion: Suppose that tn 2 LSn(o; d). Be
ause ofLemma 2 there is an a
tion �j (j 2 [i; n℄) su
h that tj = tnor �j = fork(tn), and i hb�! j. Both of the
ases tj = tnand �j = fork(tn) imply j hb�! n. i hb�! n follows from thetransitivity of hb�!.Only if dire
tion: Suppose that i hb�! n. Aiming for a
ontradi
tion suppose that tn =2 LSn(o; d). There are two
ases ti = tn and ti 6= tn.Consider the �rst
ase ti = tn. Be
ause of the fa
t thatti 2 LS i+1(o; d) and no rule removes ti from the lo
kset untilthe next a

ess to (o; d), tn 2 LSn(o; d) holds at state sn,
ausing a
ontradi
tion with our assumption tn =2 LSn(o; d).Now
onsider the other
ase ti 6= tn. Then Lemma 1implies that there exists an a
tion �j (j 2 (i; n℄) su
hthat i hb�! j and j hb�! n. Be
ause we assumed thattn =2 LSn(o; d) �j
an not be a fork (�j 6= fork(tn)) be-
ause of Lemma 2. Thus either �j = a
q(o; l) for some lo
k(o; l) or �j = read(o; v) for some volatile variable (o; v) or�j = join(ti). In all the
ases it must hold that tj = tnbe
ause of Lemma 1. In addition, Lemma 2 implies thattj 2 LS j+1(o; d) be
ause of the edge i hb�! j. Therefore we
an
on
lude that tn = tj 2 LSn(o; d) be
ause no rule re-moves tj from LS(o; d) until the next a

ess to (o; d). This
ontradi
ts with our assumption tn =2 LSn(o; d). Thus itmust hold that tn 2 LSn(o; d) if i hb�! n. 2

