
Simultaneous Record Detection and Attribute Labeling
in Web Data Extraction

 Jun Zhu
*† Zaiqing Nie‡ Ji-Rong Wen‡

 †
Department of Computer Science & Technology

 Tsinghua University
 Beijing, China

 †{jun-zhu, dcszb}@mails.tsinghua.edu.cn

 Bo Zhang† Wei-Ying Ma‡

‡
Web Search & Mining Group

Microsoft Research Asia
 Beijing, China

‡{znie, jrwen, wyma}@microsoft.com

ABSTRACT
Recent work has shown the feasibility and promise of template-
independent Web data extraction. However, existing approaches
use decoupled strategies – attempting to do data record detection
and attribute labeling in two separate phases. In this paper, we
show that separately extracting data records and attributes is
highly ineffective and propose a probabilistic model to perform
these two tasks simultaneously. In our approach, record detection
can benefit from the availability of semantics required in attribute
labeling and, at the same time, the accuracy of attribute labeling
can be improved when data records are labeled in a collective
manner. The proposed model is called Hierarchical Conditional
Random Fields. It can efficiently integrate all useful features by
learning their importance, and it can also incorporate hierarchical
interactions which are very important for Web data extraction. We
empirically compare the proposed model with existing decoupled
approaches for product information extraction, and the results
show significant improvements in both record detection and
attribute labeling.

Categories and Subject Descriptors: I.5.1 [Pattern
Recognition]: Models - Statistical

General Terms: Algorithms, Experimentation

Keywords: Data record detection, Attribute labeling, Web
page segmentation, Conditional Random Fields, Hierarchical
Conditional Random Fields.

1. INTRODUCTION
The World Wide Web is a vast and rapidly growing repository of
information. There are various kinds of objects, such as products,
people, conferences, etc., embedded in both statically and
dynamically generated Web pages. Recent work has shown that
using template-independent approaches to extracting meta-data
for the same type of real-world objects is feasible and promising.
However, existing approaches use highly ineffective decoupled
strategies - attempting to do data record detection and attribute

labeling in two separate phases. This paper studies how to extend
existing Web data extraction methods to achieve the mutual
enhancement of record detection and attribute labeling.

1.1 Motivating Example
We begin by illustrating the problem with an example, drawn
from an actual application of product information extraction. The
goal of the application is to extract meta-data about real-world
products from every product page on the Web. Specifically, for
each crawled Web page, we first use a classifier to decide whether
it is a product page and then extract the name, image, price and
description of each product from detected product pages.

Our statistical study on 51K randomly crawled Web pages shows
that about 12.6 percent are product pages. That is, there are about
1 billion product pages within a search index containing 9 billion
crawled Web pages. If all of these pages or just half of them are
correctly extracted, we will have a huge collection of meta-data
about real-world products that could be used for further
knowledge discovery and data management tasks such as
comparison shopping and user intention detection.

However, how to extract product information from Web pages
generated by many (maybe tens of thousands of) different
templates is non-trivial. One possible solution is that we first
distinguish Web pages generated by different templates, and then
build an extractor for each template. We say that this type of
solution is template-dependent. However, accurately identifying
Web pages for each template is not a trivial task because even
Web pages from the same website may be generated by dozens of
templates. Even if we can distinguish Web pages, template-
dependent methods are still impractical because the learning and
maintenance of so many different extractors for different
templates will require substantial efforts.

Fortunately, recent work in [18][31][27][33] has shown the
feasibility and promise of template-independent meta-data
extraction for the same type of objects, and it is possible to simply
combine existing techniques to build a template-independent
meta-data extractor for product pages. Two specific types of Web
pages are treated differently by the existing extraction techniques:
list pages and detail pages1.

� List pages are web pages containing several structured data
records (See Figure 1(a) for an example). We can build an

1 Our empirical study shows that about 35% of product pages are

list pages and the rest are detail pages.

*The work is done when the author is visiting Microsoft
Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD'06, August 20-23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008...$5.00.

object meta-data extractor for list pages by first using the
techniques in [31] or [18] to detect the data records and then
use the techniques in [33] to label the data elements within the
detected records. Specifically, the techniques in [31][18]
segment the data records in a list page (this task is called
record detection) and also further extract their data elements.
However, there is no semantic label about these extracted data
elements. That is, we do not know whether an extracted item
is the name, the description or the price of a product. The
work in [33], which is complementary to [31][18], provides a
method to assign semantic labels to the data elements of each
extracted data record (this task is called attribute labeling).

� Detail Pages are Web pages containing only detailed
information about a single object (See Figure 1(b) for an
example). We can build an object meta-data extractor for
detail pages by first using the techniques in [27] to identify
the main data block of a detail page, and then use the
techniques in [33] to do attribute labeling for the main block.

However, it is highly ineffective to use decoupled strategies –

attempting to do data record detection and attribute labeling in
two separate phases. This is because:

Error Propagation: Since record detection and attribute labeling
are two separate phases, the errors in record detection will be
propagated to attribute labeling. Thus, the overall performance is
limited and upper-bounded by that of record detection. Suppose
record detection and attribute labeling have precisions 0.8 and 0.9
respectively, then the overall precision will be no more than 0.8.
If they also perform independently, the precision will be 0.72.

Lack of Semantics in Record Detection: Human readers always
take into account the semantics of the text to understand Web
pages. For instance, in Figure 1(a), when claiming a block is a
data record, we use the evidence that it contains a product's name,
image, price and description. Thus, a more effective record
detection algorithm should take into account the semantics of the
text, but existing methods [18][31][27] do not consider that.

Lack of Mutual Interactions in Attribute Labeling: The data
records in the same page are related. They always share a common
template and the elements at the same position of different records
always have similar features and semantics. For example, in
Figure 1(a) the button "Add to Cart" appears in the same position
in both records and the element on the left-top of each record is an
image. So, if we label the elements of the records within the same

page together in a collective manner, it is easier for us to detect
that the repeated elements "Add to Cart" are less informative and
more likely to be noise. However, existing method [33] fails to
consider that because the data records are independently labeled.

First-Order Markov Assumption: For Web pages and especially
for detail pages, long distance dependencies always exist between
different attribute elements. This is because there are always many
irrelevant elements (i.e. noise) appearing between the attributes of
an object. For example, in Figure 1(b) there is substantial noise,
such as "Add to Cart" and "Select Quantity" between the price and
description. However, traditional CRFs [17][33] cannot
incorporate these long distance dependencies because of its first-
order Markov assumption (i.e. only the dependencies of
neighboring nodes are considered and represented).

1.2 Our Solution
In this paper, we propose a novel graphical model called
Hierarchical Conditional Random Field (HCRF) model to jointly
optimize record detection and attribute labeling.

By using the vision-based page segmentation (VIPS) technology
[4], which makes use of page layout features such as font, color,
and size to construct a vision-tree for a Web page, we can get a
better representation of a page compared with the commonly used
tag-tree. Given a vision-tree, record detection can be considered
as the task of locating the minimum set of elements that contain
the content of a record. In this way, both record detection and
attribute labeling become the task of assigning labels to the nodes
on a vision-tree, so they can be integrated in one probabilistic
model as in this paper. In contrast to existing decoupled strategies
that perform record detection and attribute labeling as two
separate phases, our approach leverages the labeling results of
attribute labeling for record detection, and at the same time
benefits from the incorporation of some global features based on
tree-alignment for attribute labeling. As a conditional model [17],
HCRF can efficiently incorporate any useful feature for Web data
extraction. By incorporating hierarchical interactions, HCRF
could incorporate long distance dependencies and achieve
promising results on detail Web pages.

To the best of our knowledge, our approach is the first to
simultaneously conduct record detection and attribute labeling for
both list and detail pages. Specifically, we make the following
contributions.

Figure 1(b). A detail page containing detailed formation

about a product.
Figure 1(a). A sample Web page with two similar data

records which are contained in red boxes.

� A mutually beneficial integration of data record detection and
attribute labeling. The integrated approach can extract data
from both list and detail pages.

� A novel graphical model called Hierarchical Conditional
Random Fields. The model relaxes the first-order Markov
assumption made in traditional CRFs [17][33] by
incorporating hierarchical dependencies, and provides a way
to efficiently incorporate any useful feature for Web data
extraction.

� An empirical study of our approach on the task of product
information extraction.

The rest of the paper is organized as follows. Section 2 formally
defines our problem. Section 3 discusses the proposed
Hierarchical Conditional Random Fields. Section 4 defines label
spaces for the model. Section 5 presents the features we currently
used. Section 6 presents our evaluation results and discussions.
Section 7 discusses related work and section 8 brings this paper to
a conclusion.

2. PROBLEM DEFINITION

2.1 Data Representation
For Web data extraction, the first thing is to find a good
representation format for Web pages. Good representation can
make the extraction task easier and improve extraction accuracy.
In most previous work, tag-tree, which is a natural representation
of the tag structure, is commonly used to represent a Web page.
However, as [4] pointed out, tag-trees tend to reveal presentation
structure rather than content structure, and are often not accurate
enough to discriminate different semantic portions in a Web page.
Moreover, since authors have different styles to compose Web
pages, tag-trees are often complex and diverse.

To overcome these difficulties, [4] proposed a vision-based page
segmentation (VIPS) approach. VIPS makes use of page layout
features such as font, color, and size to construct a vision-tree for
a page. It first extracts all suitable nodes from the tag-tree, and
then finds the separators between these nodes. Here, separators
denote the horizontal or vertical lines in a Web page that visually
do not cross any node. Based on these separators, the vision-tree
of the Web page is constructed. Each node on this tree represents
a data region in the Web page, which is called a block. The root
block represents the whole page. Each inner block is the
aggregation of all its child blocks. All leaf blocks are atomic units
(i.e. elements) and form a flat segmentation of the Web page.
Since vision-tree can effectively keep related content together
while separating semantically different blocks from one another,
we use it as our data representation format. Figure 2 is a vision-
tree for the page in Figure 1(a), where we use rectangles to denote
inner blocks and use ellipses to denote leaf blocks (or elements).
Due to space limitations, the blocks denoted by dotted rectangles
are not fully expanded.

2.2 Record Detection and Attribute Labeling
Based on the definition of vision-tree, we can now formally define
the concepts of record detection and attribute labeling.

Definition 2.1 (Record detection): Given a vision-tree, record

detection is the task of locating the minimum set of blocks that

contain the content of a record. For a list page containing

multiple records, all the records need to be identified. In other

words, record detection is equal to assigning “Data Record”

labels to the blocks in the vision-tree.

For instance, for the vision-tree in Figure 2, two blocks are
detected as data records.

Definition 2.2 (Attribute labeling): For each identified record,

attribute labeling is the process of assigning attribute labels to

the leaf blocks (or elements) within the record.

In Figure 2, for the two records, attribute labels Name, Image,
Price, Description (Desc) and Note are assigned to different parts
within the records. We use Note to denote uninteresting elements
or Web noise.

It is obvious that, by sequentially combining record detection and
attribute labeling algorithms, a complete algorithm can be
constructed to extract records and the attributes. However, as
explained in the introduction, this decoupled strategy will be
highly ineffective. Therefore, in this paper, we explore an
integrated approach that can simultaneously conduct record
extraction and attribute labeling and achieve a joint optimization
of both tasks.

2.3 Problem Definition
Based on the above definitions, both record detection and
attribute labeling are the processes of assigning labels to blocks of
the vision-tree for a page, although the labels they use are
different. Therefore, we can use a uniform probabilistic model to
deal with both tasks. Formally, we define the Web data extraction
problem as:

Definition 2.3 (Joint optimization of record extraction and

attribute labeling): Give a vision-tree of a page, let

0 1x {x ,x , ,x }N= L be the features of all the blocks and each

component x i
 is a feature vector of one block, and let

0 1y {y ,y , ,y }N= L be one possible label assignment of the

corresponding blocks. The goal of Web data extraction is to

compute maximum a posteriori (MAP) probability of y and

extract data from this assignment *y :
*y arg max (y | x)p=

Based on the above definition, the main difficulty is the
calculation of the conditional probability (y | x)p . In this paper,
we introduce a Hierarchical Conditional Random Fields algorithm
to compute it, which will be described in detail in the next section.

Web Page

Data Record

Image

Name Desc Price Note

Desc

Note

Data Record

Image

Desc Desc Name Desc Price Note Note

Figure 2. The vision-tree of the page in Figure 1(a).

3. HIERARCHICAL CONDITIONAL

RANDOM FIELDS
In this section, we first introduce some basic concepts of
Conditional Random Fields and then describe our proposed model
for integrated Web data extraction, including how to learn the
parameters and how to perform extraction.

3.1 Preliminaries

Conditional Random Fields (CRFs) [17] are Markov random
fields that are globally conditioned on observations. Let

(,)G V E= be an undirected model over a set of random variables
Y and X . X are variables over the observations to be labeled
and Y are variables over the corresponding labels. The random
variables Y could have non-trivial structure, such as linear-chain
in [17] and 2D grid in [33]. Although all the components of Y are
usually assumed to range over a single label space Y , this
assumption is not an innate character of CRFs and we will see that
in our proposed model there are two label spaces for two different
types of variables. The conditional distribution of the labels y (an
instance of Y) given the observations x (an instance of X) has
the form,

1
(y | x) (y | , x) (1)

(x) c c

c C

p
Z

ϕ
∈

= ∏ LL

where C is the set of cliques in G ; y |c are the components of y

associated with the clique c ; cϕ is a potential function defined

on y |c and takes non-negative real values; (x)Z is the

normalization factor or partition function, and has the form,

y

(x) (y | ,x)c c

c C

Z ϕ
∈

=∑∏

The potential functions are expressed in terms of feature functions
(y | ,x)k cf and their weights

kλ :

() ()y | , x exp y | , xc c k k c

k

fϕ λ
 

=  
 
∑

3.2 Hierarchical CRFs
Based on the hierarchical representation of the data, a
Hierarchical Conditional Random Field (HCRF) model can be
easily constructed. For the page in Figure 1(a), the model is
shown in Figure 3, where we also use rectangles to denote inner
nodes and use ellipses to denote leaf nodes. The dotted rectangles
are for the blocks that are not fully expanded. Each node on the
graph is associated with a random variable

iY . We currently

model the interactions of sibling variables via a linear-chain,
although more complex structure such as two-dimensional grid
can be used. The observations which are globally conditioned on
are omitted from this graph for simplicity. Here, we assume that
every inner node contains at least two children. Otherwise, we
replace the parent with its single child. Notice that this
assumption has no affect on the performance because the parent is
identical to its child in this case. We made this assumption just for
easy explanation and implementation.

The cliques of the graph in Figure 3 are its vertices, edges and
triangles. So, the conditional probability in formula (1) can be
concretely expressed as,

()
()

, ,

,

(y | , x) (y | ,x)
1

y | x exp (2)
x (y | ,x)

k k v k k e

v k e k

k k t

t k

g f

p
Z h

µ λ

γ

 +
 

=  
+ 
 

∑ ∑

∑
K

where
kg ,

kf and
kh are feature functions defined on three types

of cliques (i.e. vertex, edge and triangle) respectively;
kµ ,

kλ and

kγ are the corresponding weights; v V∈ , e E∈ and t is a

triangle. Although the feature functions can take real values, here
we assume they are Boolean, that is, true if the feature matches
and otherwise false. Some examples could be found in section 5.

3.3 Learning the Parameters
Given the training data

1
{(y ,x)}i i N

i
D

=
= with an empirical

distribution (x,y)p% , the parameter learning problem is to find a set
of parameters 1 2 1 2 1 2{ , , ; , , ; , , }µ µ λ λ γ γΘ = L L L that optimize the

log-likelihood function:

() (x ,y) log (y | x ,)i i i i

i

L p pΘ = Θ∑ %

To avoid over-fitting, we also use the spherical Gaussian prior
with mean 0µ = and variance matrix 2

IσΣ = to penalize the log-
likelihood. The concave function can be optimized by the
techniques used in other models [17]. We use the gradient-based
L-BFGS [21] for its outstanding performance over other
algorithms [22]. Each element of the gradient vector is given by,

(x,y) (y|x,) 2

()
[] [] k

p k p k

k

L
E f E f

λ

λ σ
Θ

∂ Θ
= − −

∂
%

where
(x,y)[]

p k
E f

%
 is the expectation with respect to the empirical

distribution, and it can be easily calculated and once for all;

(y|x,)[]p kE fΘ
 is the expectation with respect to the model

distribution. For example, the expectation of
kf is:

(y|x,)
y|

[] (x) (y | | x) (y | ,x)
e

i i i

p k e k e

i e E

E f p p fΘ
∈

=∑ ∑∑%

where y |e is any possible label assignment of the variables on the

edge e .

Thus, the main computation is to compute the marginal
probabilities (y | | x)i

e
p needed when computing the gradients at

every iteration. As the graph in Figure 3 is a chordal graph, we
can efficiently do inference by using the junction tree algorithm
[8]. For an undirected graph, this algorithm consists of three steps:
junction tree construction, initialization, and belief propagation.

It is straightforward to construct a junction tree for a chordal
graph. Figure 4 is the junction tree of the sub-graph starting from
the node 0 in Figure 3, and we will denote it by T in the rest of

0

1 2

3 4 5 6

7 8 9 1 0 1 1 1 2 1 3 1 4

1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6

Figure 3. The model’s graph of the page in Figure 1(a).

the paper. In Figure 4, we use ellipses to denote clique nodes and
use rectangles to denote separators. All the variables are denoted
by their subscripts. Note that all the clique nodes on the junction
tree have size 3 because the maximum cliques in the original
graph are triangles.

Once the junction tree has been constructed, the initialization can
be finished with first initializing all the potentials on T to have
value unity, and then multiplying the potential of a vertex, an edge
or a triangle into the potential of one of the clique nodes of T
which cover the variables of the vertex, the edge or the triangle.
The potential of a vertex v , an edge e and a triangle t is
computed as follows respectively,

(y | , x) exp (y | ,x)v v k k v

k

gϕ µ
 

=  
 
∑

(y | , x) exp (y | ,x)e e k k e

k

fϕ λ
 

=  
 
∑ , (y | ,x) exp (y | ,x)t t k k t

k

hϕ γ
 

=  
 
∑

Finally, we use the two-phase schedule algorithm [14] to schedule
belief propagation on T . This algorithm requires the selection of
an arbitrary clique node to be the root, and then is followed by a
collection phase and a distribution phase. Once these two phases
are finished, the potentials on all the cliques and separators are
marginal potentials. The marginal probabilities can be directly
computed with the marginal potentials by normalization.

3.4 Finding the Most Likely Assignment
As we have described in section 2.3, we are interested in finding
the most probable configuration of Y . This can be done using the
same junction tree algorithm [8] just with a simple modification
of the two-phase schedule algorithm [14] by merely replacing the
summation, which is an operator needed in the two-phase
schedule algorithm, by maximization everywhere. After the
modified algorithm has finished, the most likely assignment for
each variable can be found from the potentials of any clique that
contains the variable. The junction tree’s running intersection
property guarantees that the most likely states of a variable found
on different cliques are the same. We refer the readers to [8] for
more details about the junction tree algorithm.

4. LABEL SPACE DEFINITION
When applying HCRF models for Web data extraction, we must
determine the label spaces for variables Y . We now explain how
to define these labels and also give an example of the label spaces
which are used in our product information extraction.

When defining the label spaces, we need to distinguish between
the variables at leaf nodes and the variables at inner nodes. For

Table 1. Label spaces for product information extraction

Type Label Semantic Meaning

Name The name of a product

Image The image of a product

Price The price of a product

Desc The description of a product

Leaf
Label
Space

Note The non-interesting elements or noise

Con_Image Contain product’s image

Con_Name Contain product’s name

Con_Price Contain product’s price

Con_Desc Contain product’s description

Con_ImgNam Contain product’s image and name

Con_NamPrc Contain product’s name and price

Con_ImgPrc Contain product’s image and price

Page Head The head part of a Web page

Page Tail The tail part of a Web page

Nav Bar The navigation bar of a Web page

Info Block
Contain one or more data records and
some additional information

Data Region Contain only similar data records

Data Record
Contain all the attributes (i.e. name,
price, image and description) if exist

Inner
Label
Space

Note Block
Contain no interesting information
and are also not meaningful parts of a
Web page

variables at leaf nodes, we are interested in deciding whether a
leaf block is an attribute value of the object we want to extract.
However, for variables at inner nodes, our interest shifts to the
understanding of whether an inner block is a data record. So, we
have two types of label spaces – leaf label space for variables at
leaf nodes and inner label space for variables at inner nodes.

The leaf label space consists of all the attribute names of the
object we want to extract. For example, in product information
extraction, we want to extract a product’s name, image, price and
description, so the leaf label space consists of Name, Image, Price,
Desc, and Note. The label Note is for the data we are not
interested in (i.e. noise). All the labels for product information
extraction are listed in Table 1 with their semantic meanings.

The inner label space can be partitioned into an object-type

independent part and an object-type dependent part. We explain
how to define these two parts in turn:

Object-type Independent Labels: Since we want to extract data
from Web pages, the labels Page Head, Page Tail, Nav Bar, and
Info Block are naturally required to denote different parts of a
Web page. The labels Data Record and Data Region are also
required for detecting data records. To denote blocks that do not
contain any meaningful information, such as the attributes to be
extracted and the head, tail or navigation bar of a Web page, the
label Note Block is also required. All these labels are general to
any Web data extraction problem, and they are independent of any
specific object type.

0,1, 2

1 2

1,3, 4 2,5,6

3,7,8

3 54 6

10,18

10

4,9,10

9,15,16

9

10,17,18 10,18,19

5,11,12 6,13,14

12, 20, 21

12

13, 22, 23

13

14, 24, 25

14

14, 25 14,25,26

Figure 4. The junction tree of the sub-graph starting

from 0 in Figure 3.

Object-type Dependent Labels: Between data record blocks and
leaf blocks, there are intermediate blocks on a vision-tree. So, we
must define some intermediate labels between Data Record and
the labels in the leaf label space. These labels are object-type
dependent because these intermediate blocks contain some object-
type specific attribute values, but they are still inferior to a
complete data record. A natural method is to use the combinations
of the attributes to define intermediate labels. Of course, if we use
all the possible combinations, the state space could be too large. If
this is the case, we can discard unimportant combinations by
considering the co-occurrence frequencies of their corresponding
attribute values in the training data records. The object-type
dependent labels in our product information extraction are listed
in Table 1 with the format Con_*.

5. FEATURES FOR HCRFS
As a conditional model [17], Hierarchical Conditional Random
Fields have the power to incorporate any useful feature for Web
data extraction. In this section, we present the types of features
that are essential for record detection and attribute labeling, and
discuss how to incorporate them into our HCRF model. As we
explain below, some of the features were first introduced as
heuristic rules in some existing methods [31][32] to detect data
records. The contribution of our work is that we provide a
principled integration of them by defining feature functions and
learning their importance weights.

5.1 Features of Elements
For each element, we extract both content and visual features as
listed in table 2. All the features can be obtained from the vision-
tree since VIPS assigns position information for each node
through rendering a page. Previous work [4][32][33][27] has
shown the effectiveness of visual features for Web page analysis
and information extraction.

5.2 Features of Blocks
After extracting the features for all the elements, a bottom-up
procedure is taken to extract the visual and content features for
inner blocks. We also compute the following distances for each
block to exploit the regularity of similar data records in a page.

Tree Distance Features: On a vision tree, if the blocks are
visually similar, usually their sub-trees are also similar. We define
the tree distance of two blocks as a measure of their structure
similarity. The tree distance of two blocks is defined as the edit
distance of their corresponding sub-trees. Although the time-
complexity of computing this distance could be quite high, we can
substantially reduce the computation with some rules. For
example, if the depth difference of two sub-trees is too large, they
are not likely to be similar and this computation is not necessary.

Once we have computed the tree distances, we can use some
thresholds to define Boolean-valued feature functions. For
example, an f function is defined as:

() ()
1

1 1

, y , y

y ,y ,x x ,x 0.2

,

i i

k i i i i

true if Data Record Data Record

f and TreeDist

false otherwise

+

+ +

= =


= ≤



That is, if the tree distance of two adjacent blocks x i
 and 1xi+ is

not more than 0.2, they are both likely to be data records.

Table 2. The content and visual features of each element

Name Description

Content The Content of a text element
Link URL The action URL of an element if it exists

Font Size The font size of an element

Font Weight The font weight of an element

Position The coordinates of an element

Height The height of an element’s rectangle

Width The width of an element’s rectangle
Area The area of an element’s rectangle

Image Source
URL

The source URL of an image element

Image Alt-Text The alternative text of an image element
Tag The tag name of an element

Shape Distance & Type Distance Features: Based on the ideas
in [32], we also compute the shape distance and type distance of
two blocks to exploit their similarity. For shape distance, we use
the same definition of shape codes and also use the same shape
distance calculation method as in [32]. Due to space limitations,
we would like to refer the readers to [32] for more details.

To compute the type distance of two blocks, we define the
following types for each element:

� IMAGE: the element is an image.

� JPEG IMAGE: the image element that is also a jpeg picture.

� CODED IMAGE: the image element whose source URL
contains at least three succeeding numbers, such as
“/products/s_thumb/eb04iu_0190893_200t1.jpg”.

� TEXT: the element has text content.

� LINK TEXT: the text element that contains an action URL.

� DOLLAR TEXT: the text element that contains dollar sign.

� NOTE TEXT: the text element whose tag is “input”, “select”
or “option”.

� NULL: the default type of each element.

After defining each element’s type code, a block’s type code is
defined as a sequence of the type codes of its children. As in [32],
we also compress the multiple consecutive occurrences of each
type to one occurrence and take the edit distance of type codes as
the type distance of two blocks.

Similar to the use of tree distance, we can easily incorporate shape
distance and type distance into our model by defining other
Boolean-valued feature functions with some pre-determined
thresholds. Notice that our method will not be sensitive to these
thresholds because the defined feature functions are softened by
learning a weight for each of them. As in formula (2), each feature
function contributes its weight to the probability only when it is
active, that is, the returned value is true. If a feature function is
always true or false, it has no effect on the probability; and if
some feature functions appear sparsely in the training set,
smoothing techniques [6] can be used to avoid over-fitting. Here,
we use the spherical Gaussian prior to penalize the log-likelihood
function as in section 3.3.

5.3 Global Features
As described in the introduction, data records in the same Web
page are always related and mutually constrained. Based on the
work in [31], we try to align the elements of the two adjacent
blocks in the same Web page and extract some global features to
help the labeling of related records.

For two neighboring blocks, we try to align their elements using
the partial tree-alignment algorithm [31]. An alignment is
discarded if most of the elements are not aligned. For successful
alignments, the following feature is extracted.

Repeated elements are less informative: This feature is based on
the observation that repeated elements in different records are
more likely to be less useful while important information such as
the name of a product is not likely to repeat in multiple records in
the same Web page. For example, the “Add to cart” button
appears in both data records as in Figure 1(a), but each record has
a unique name. Similar ideas have been exploited in [30] to
remove Web noise. Currently, we just denote repeated elements in
different blocks and do not take a complex information measure
as in [30]. More complex measures can be easily adopted if
needed in the future. An example feature function is defined as:

()
, y x

y ,x
,

i i

k i

true if Note and is repeated
g

false otherwise

=
= 


That is, if the element x i
 repeatedly appears in the aligned

records, it will be more likely to be labeled as Note.

6. EXPERIMENTS
In this section, we report empirical results by applying our HCRF
model to extract structured product information from both list and
detail pages. We compare our proposed model with a sequential
approach that combines the state-of-the-art record detection and
attribute labeling algorithms. The results show that our model
achieves significant improvements in both record detection and
attribute labeling on list pages, and also performs promisingly on
detail pages. We also analyze to what extent the gains come from:
joint optimization of record detection and attribute labeling, the
global features, and long distance dependencies.

6.1 Methods
We build the baseline methods by sequentially combining the
record detection algorithm DEPTA [31] and 2D CRFs [33], and
for detail pages, which the DEPTA algorithm cannot deal with,
we first detect the main data block using [27] and then use a 2D
CRF model to do attribute labeling on the detected main block.
Our method is built by combining VIPS [4], and the HCRF model.
A Web page is first segmented by VIPS to construct the vision-
tree, and then an HCRF model is used to label both records and
attributes in the vision-tree.

To see the effect of the global features as in section 5.3, we
evaluate an HCRF model that does not incorporate the global
features. We denote this model by HCRF_NG (without global
features). Similarly, we evaluate DEPTA and two 2D CRF models
in the baseline methods. As in [33], a basic 2D CRF model is
setup with only the basic features (see Table 2) of the elements
when labeling each detected data record. A variant model is setup
with both the basic features and the global features as in section

5.3. We denote the basic model by 2D CRF and denote the variant
model by 2D CRF_G. For 2D CRF_G, we first cache all the
detected records from one Web page and then extract the global
features as in section 5.3. Both the basic features and the extracted
global features are used during model learning and attribute
labeling. As there is no tree-structure here, the alignments are
based on the elements’ relative positions in each record.

To evaluate the separate effect of our approach on record
detection and attribute labeling, we first detect data records on the
parsed vision-trees using the content features and the tree distance,
shape distance, and type distance features. Then we use HCRF
models to label the detected records. When doing attribute
labeling, we also evaluate two HCRF models with and without the
global features. These two models are denoted by HCRF_S and
HCRF_SNG respectively.

6.2 Datasets
We setup two general datasets with randomly crawled product
Web pages. The list dataset (LDST) contains 771 list pages and
the detail dataset (DDST) contains 450 detail pages. All of the
pages are parsed by VIPS. For HCRF models, we use 200 list
pages and 150 detail pages together to learn their parameters. All
these pages are hierarchically labeled, that is, every block in the
parsed vision-trees is labeled. We use the same 200 list pages to
train a 2D CRF model for extraction on list pages, and use the
same 150 detail pages to train another 2D CRF model for
extraction on detail pages. The reason for training two models for
list and detail pages separately is that, for a 2D CRF model, the
features and parameters for list and detail pages are quite different
and a uniform model cannot work well. In the training stage, all of
the algorithms converge quickly, within 20 iterations. We use the
remaining pages (571 list pages and 300 detail pages) for testing.
Totally 6387 data records are found in the testing set LDST.

6.3 Evaluation Metrics
For data record detection, we use the standard precision, recall
and F1 measures to evaluate the methods. A block is considered
as a correctly detected data record if it contains all the appeared
attributes, otherwise it's not a data record. In our experiments, a
data record could tolerate (miss or contain) some non-important
information like “Add to Cart” button.

For attribute labeling, we use the same measures defined in [33].
The performance on each attribute is evaluated by precision (i.e.
the percentage of returned elements that are correct), recall (i.e.
the percentage of correct elements that are returned), and their
harmonic mean F1. We also use two comprehensive evaluation
criteria:

Block Instance Accuracy (BLK_IA): the percentage of data
records of which the key attributes (name, image, and price)
are all correctly labeled;

Average F1 (AVG_F1): the average of F1 values of different
attributes.

6.4 Experimental Results and Discussions
We compare our approach with DEPTA [31] on LDST for data
record detection. The running results of DEPTA on our dataset
are kindly provided by its authors. DEPTA has a similarity

Table 3. Evaluation results of different methods on both LDST and DDST, where Desc stand for ‘Description’.

threshold, and it is set at 60% in this experiment. Some simple
heuristics are also used in DEPTA to remove some noise records.
For example, a data region that is far from the centre or contains
neither image nor dollar sign is removed. The evaluation results
are shown in Table 3.

6.4.1 Record Detection
For record detection, we can see that both HCRF and HCRF_NG
significantly outperform DEPTA in recall, improved by 8.1 points,
and precision, improved by 7.5 points. The improvements come
from two parts:

Advanced data representation and more features: in our model,
we incorporate more features such as content features and the
shape distance & type distance features as in section 5.2 than
DEPTA. We also adopt an advanced representation of Web pages
– vision-trees which have been shown to outperform tag-tree
representation in other work [4]. As we can see from Table 3,
HCRF_SNG and HCRF_S outperform DEPTA, and we gain
about 2 points in precision, 7.3 points in recall, and 4.6 points in
F1.

Incorporation of semantics during record detection: DEPTA
just detects the blocks with regular patterns (i.e. regular tree
structures) and does not take semantics into account. Thus,
although some heuristics are used to remove some noise blocks,
the results could still contain blocks that are not data records or
just parts of data records. In contrast, our approach can integrate
attribute labeling into block detection, and can consider the
semantics during detecting data records. So, the blocks detected
are of better quality and are more likely to be data records. For
instance, a block containing a product's name, image, price and
some descriptions is almost certain to be a data record, but a block
containing only irrelevant information is unlikely to be a data
record. The lower precisions of HCRF_SNG and HCRF_S
demonstrate this. When not considering the semantics of the
elements, HCRF_SNG and HCRF_S extracts more noise blocks
compared with HCRF_NG or HCRF, so the precisions of record

detection decrease by 5.5 points and the overall F1 measures
decrease by 3.2 points.

6.4.2 Attribute Labeling
As we can see from Table 3, our HCRF model significantly
outperforms the baseline approach. On list pages, HCRF_NG
gains 18.7 points over 2D CRF in block instance accuracy and the
achievements of HCRF are 13.9 points compared with 2D CRF_G.
On detail pages, our approach gains about 58 points over 2D CRF
in block instance accuracy. The reasons for the better performance
are:

Attribute labeling benefits from good quality records: One
reason for this better performance is that attribute labeling can
benefit from the good results of record detection. For example, if
a detected record is not a data record or misses some important
information such as name, the attribute labeling will fail to find
the missed information back or just finds a wrong one. So,
HCRF_SNG outperforms 2D CRF and HCRF_S outperforms 2D
CRF_G. Of course the achievements of HCRF_SNG and
HCRF_S may also come from the incorporation of long distance
dependencies in hierarchical CRFs which will be discussed later.

Global Features help Attribute Labeling: Another reason for
the improvements in attribute labeling is the incorporation of the
global features as in section 5.3. From the results, we can see that
when considering the global features, attribute labeling is more
accurate. For example, 3.4 points are gained in block instance
accuracy by HCRF compared with the basic HCRF_NG model.
For two separate HCRF models, HCRF_S achieve 2.7 points in
block instance accuracy compared with HCRF_SNG; for the two
baseline methods, compared with 2D CRF which uses only the
features of the elements in each detected record, more than 8
points are gained in block instance accuracy by 2D CRF_G which
incorporates the global features.

HCRF Models incorporate Long Distance Dependencies: The
third reason for the better performance in attribute labeling is the

Data Sets LDST DDST

Methods
HCRF
_SNG

HCRF
_S

HCRF
_NG

HCRF
DEPTA+
2D CRF

DEPTA+
2D CRF _G

HCRF 2D CRF

Precision 0.904 0.904 0.959 0.959 0.884 0.884 — —
Recall 0.921 0.921 0.930 0.930 0.849 0.849 — — Record Detection

F1 0.912 0.912 0.944 0.944 0.866 0.866 — —
Name 0.836 0.860 0.880 0.911 0.763 0.851 0.835 0.398
Image 0.901 0.905 0.952 0.966 0.842 0.838 0.978 0.546
Price 0.906 0.903 0.959 0.963 0.913 0.915 0.986 0.809

Precision

Desc 0.783 0.766 0.792 0.788 0.769 0.779 0.663 0.588
Name 0.851 0.875 0.854 0.882 0.735 0.822 0.761 0.398
Image 0.917 0.921 0.924 0.936 0.811 0.809 0.892 0.546
Price 0.922 0.919 0.930 0.933 0.879 0.883 0.899 0.809

Recall

Desc 0.797 0.780 0.768 0.764 0.741 0.752 0.604 0.395
Name 0.843 0.867 0.867 0.896 0.749 0.836 0.796 0.398
Image 0.909 0.913 0.938 0.951 0.826 0.823 0.933 0.546
Price 0.914 0.911 0.944 0.948 0.896 0.899 0.940 0.809

F1

Desc 0.790 0.773 0.780 0.776 0.755 0.765 0.632 0.473
AVG_F1 0.864 0.866 0.882 0.893 0.807 0.831 0.825 0.556

Attribute
Labeling

BLK_IA 0.789 0.816 0.856 0.890 0.669 0.751 0.817 0.231

incorporation of long distance dependencies. From the results on
detail pages, we can see that hierarchical models could get
promising results while 2D CRFs perform poorly. For a detected
record or a main block, 2D CRFs put its elements in a two-
dimensional grid. Although they could incorporate more
interactions compared with linear-chain CRFs [17], long distance
interactions cannot be incorporated due to their first-order
Markov assumption. In contrast, HCRF models can incorporate
dependencies at various levels of granularity and thus incorporate
long distance dependencies. So, HCRF models perform much
better than 2D CRF models. For detail pages, as there is no record
detection, HCRF_SNG and HCRF_S are not applicable here. Also
there are no global features, so we just list the results of HCRF
and 2D CRF on detail pages in Table 3.

The quite different performance of 2D CRFs on list and detail
pages also shows the effectiveness of long distance dependencies.
For list pages, the inputs are data records that always contain a
small number of elements. In this case, 2D CRFs can effectively
model the dependencies of the attributes and achieve reasonable
accuracy. However, noisy elements always exist between attribute
values in a detail page. So, 2D CRFs perform very poorly for their
failure in incorporating long distance dependencies.

7. RELATED WORK
Wrapper learning approaches like [23][16] are template-
dependent. They take in some manually labeled Web pages and
learn some extraction rules (i.e. wrappers). Since the learned
wrappers can only be used to extract data from similar pages,
maintaining the wrappers as Web sites change will require great
efforts. Furthermore, in wrapper learning a user must provide
explicit information about each template. So it will be expensive
to train a system that extracts data from many Web sites as in our
application. [32][10][3][5][9][1] are also template-dependent, but
they do not need labeled training samples. They automatically
produce wrappers from a collection of similar Web pages.

[31][18] are two template-independent methods. [18] segments
data on list pages using the information contained in their detail
pages. The need of detail pages is a limitation because
automatically identifying links that point to detail pages is non-
trivial and there are also many pages that do not have detail pages
behind them. [31] mines data records by string matching and also
incorporates some visual features to achieve better performance.
However, [31] detects data records only using tree regularities and
not consider semantics. Furthermore, the data extracted by
[31][18] have no semantic labels.

[12][33] are two methods that treat Web information extraction as
a classification problem. [12] uses a support vector machine to
identify the start and end tags for a single attribute. For the task of
extracting multiple attributes, this method loses the dependencies
between different attributes. [33] shows that these dependencies
are common among several types of objects and also proposes 2D
CRFs to better incorporate these dependencies. However, it has
two assumptions: (1) data records are independently and
identically distributed; (2) data records have been perfectly
extracted. As described in the introduction, these assumptions will
result in highly ineffective de-coupled solutions.

The idea of exploring mutual benefits by integrating two tasks has
been attempted in previous work. [24] attempts a mutually

beneficial integration of information extraction and data mining.
Information extraction makes possible the text mining which
needs to handle unstructured text documents, and data mining
could provide additional clues to improve the recall of an IE
system. [29] proposes an integrated model to do information
extraction and coreference. Incorporating extraction uncertainty
could help coreference, and leveraging the identified coreference
could improve extraction accuracy. However, [29] is not a fully
closed integration. Due to its model’s complexity, separate
learning and inference for different substructures is employed in
[29]. [28] proposes a factorial CRF to jointly solve two NLP tasks
(noun phrase chunking and part of speech tagging) on the same
observation sequence. The difference is that our data are
hierarchical trees and the data in [28] are sequences.

[26] uses Hierarchical Hidden Markov models (HHMMs) [11] to
extract relation instances from biomedical articles. Our work
differs from this one in two key aspects. First, as discriminative
models HCRFs have the flexibility to incorporate arbitrary and
non-independent features of the observations, but HHMMs, which
are generative models, must make some strong independence
assumption to achieve inference tractability. This is the key idea
underlying the Conditional Random Fields [17]. Second, the data
in [26] are two-level representations of sentences, but our data are
arbitrary vision-trees. Recently, several hierarchical structured
Conditional Random Field models [13][15][20] have been
proposed in different domains. Unlike [13], our HCRF model is
not a simple multi-scale model because it has inter-level
interactions. In [15], a two-layer structured CRF model is
proposed to incorporate both local and global label interactions
for robust image classification. Unlike our model which is a
Conditional Random Field as a whole, each layer of [15] is a
separate Conditional Random Field and the two layers are
coupled with directed links. In [20], a three layer Conditional
Random Field model is dynamically constructed for activity
recognition. In contrast, we use a layout data structure ‘vision
tree’ and our hierarchical CRF model is built upon it. Due to its
dynamic nature, [20] must take an iterative process and the whole
inference is approximate. But our HCRF model can find the
optimal labeling results.

Other work, such as collective information extraction [2] and
Semi-Markov extraction models [7][25], could achieve higher
performance in named entity extraction problems on flat text
documents. However, for the integrated Web data extraction,
where the data are hierarchically represented, the proposed
hierarchical CRF model is the natural and efficient method.

8. CONCLUSIONS
In this paper, we propose a probabilistic model called Hierarchical
Conditional Random Fields (HCRFs) to exploit the mutually
beneficial integration of data record detection and attribute
labeling. In this model, record detection can benefit from the
availability of semantics which are required in attribute labeling,
and attribute labeling could benefit from the collective labeling of
similar records in the same Web page. Parameter estimation and
labeling could be efficiently performed by applying the standard
junction tree algorithm. As a conditional model, HCRFs can
incorporate any useful feature for Web data extraction in a
principled way; as a hierarchical model, HCRFs provide a way to
incorporate long distance dependencies for Web data. Empirical

studies show that mutual enhancement of record detection and
attribute labeling can be achieved in our joint approach, and
HCRFs can perform very well on both list and detail Web pages.

9. ACKNOWLEDGMENTS
The authors are grateful to Yanhong Zhai and Bing Liu for
providing the running results of their system DEPTA on our
dataset LDST. The authors Jun Zhu and Bo Zhang are supported
by National Natural Science Foundation of China (60135010,
60321002), and Chinese National Key Foundation Research and
Development Plan (2004CB318108).

10. REFERENCES
[1] Arasu, A., and Garcia-Molina, H. Extracting Structured Data

from Web Pages. In Proc. of ACM SIGMOD, 2003.

[2] Bunescu, R. C., and Mooney, R. J. Collective information
extraction with relational Markov networks. In Proc. of ACL,
2004.

[3] Buttler, D., Liu, L., and Pu, C. A Fully Automated Object
Extraction System for the World Wide Web. In Proc. of

IEEE ICDCS, 2001.

[4] Cai, D., Yu, S., Wen, J.-R. and Ma, W.-Y. Block-based Web
Search. In Proc. of SIGIR, 2004.

[5] Chang, C.-H., and Liu, S.-L. IEPAD: Information Extraction
Based on Pattern Discovery. In Proc. of WWW, 2001.

[6] Chen, S. F., and Rosenfeld, R. A Gaussian Prior for Smooth-
ing Maximum Entropy Models. Technical Report CMU-CS-
99-108, Carnegie Mellon University, 1999.

[7] Cohen, W. W., and Sarawagi, S. Exploiting Dictionaries in
Named Entity Extraction: Combining Semi-Markov
Extraction Processes and Data Integration Methods. In Proc.

of SIGKDD, 2004.

[8] Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and
Spiegelhalter, D. J. Probabilistic Networks and Expert
Systems. Springer, 1999.

[9] Crescenzi, V., Mecca, G., and Merialdo, P. ROADRUNNER:
Towards Automatic Data Extraction from Large Web Sites.
In Proc. of VLDB, 2001.

[10] Embley, D. W., Jiang, Y., and Ng, Y.-K. Record-Boundary
Discovery in Web Documents. In Proc. of SIGMOD, 1999.

[11] Fine, S., Singer Y., and Tishby, N. The hierarchical hidden
Markov model: Analysis and applications. Machine Learning,
32:41-62, 1998.

[12] Finn, A., and Kushmerick, N. Multi-level boundary classi-
fication for information extraction. In Proc. of ECML, 2004.

[13] He, X., Zemel, R. S., and Carreira-Perpiñán, M. Á. Multi-
scale Conditional Random Fields for Image Labeling. In
Proc. of CVPR, 2004.

[14] Jensen, F. V., Lauritzen, S. L., and Olesen, K. G. Bayesian
updating in causal probabilistic networks by local comput-
ation. Computational Statistics Quarterly, 4:269-82, 1990.

[15] Kumar, S., and Hebert, M. A Hierarchical Field Framework
for Unified Context-Based Classification. In Proc. of ICCV,
2005.

[16] Kushmerick, N. Wrapper induction: efficiency and
expressiveness. Artificial Intelligence, 118:15-68, 2000.

[17] Lafferty, J., McCallum, A., and Pereira, F. Conditional
random fields: Probabilistic models for segmenting and
labelling sequence data. In Proc. of ICML, 2001.

[18] Lerman, K., Getoor, L., Minton, S., and Knoblock, C. Using
the Structure of Web Sites for Automatic Segmentation of
Tables. In Proc. of ACM SIGMOD, 2004.

[19] Lerman, K., Minton, S., and Knoblock, C. Wrapper
maintenance: A machine learning approach. Journal of
Artificial Intelligence Research, 18:149-181, 2003.

[20] Liao, L., Fox, D., and Kautz, H. Location-based activity
recognition. In Proc. of NIPS, 2005.

[21] Liu, D. C., and Nocedal, J. On The Limited Memory BFGS
Method for Large Scale Optimization. Mathematical
Programming 45, pp. 503-528, 1989.

[22] Malouf, R. A comparison of algorithms for maximum
entropy parameter estimation. In Sixth Conf. on Natural

Language Learning, pages 49-55, 2002.

[23] Muslea, I., Minton, S., and Knoblock C. A. Hierarchical
Wrapper Induction for Semi-structured Information Sources.
Autonomous Agents and Multi-Agent 4, 1/2 (2001), 2001.

[24] Nahm, U. Y., and Mooney, R. J. A Mutually Beneficial
Integration of Data Mining and Information Extraction. In
Proc. of AAAI, 2001.

[25] Sarawagi, S., and Cohen, W. W. Semi-Markov Conditional
Random Fields for Information Extraction. In Proc. of NIPS,
2004.

[26] Skounakis, M., Craven, M., and Ray S. Hierarchical Hidden
Markov Models for Information Extraction. In Proc. of

IJCAI, 2003.

[27] Song, R., Liu, H., Wen, J.-R., and Ma, W-Y. Learning Block
Importance Models for Web Pages. In Proc. of WWW, 2004.

[28] Sutton, C., Rohanimanesh, K., and McCallum, A. Dynamic
Conditional Random Fields: Factorized Probabilistic Models
for Labeling and Segmenting Sequence Data. In Proc. of

ICML, 2004.

[29] Wellner, B., McCallum, A., Peng, F., and Hay, M. An
Integrated, Conditional Model of Information Extraction and
Coreference with Application to Citation Matching. In Proc.

of UAI, 2004.

[30] Yi, L., Liu, B., and Li, X. Eliminating Noisy Information in
Web Pages for Data Mining. In Proc. of SIGKDD, 2003.

[31] Zhai, Y., and Liu, B. Web Data Extraction Based on Partial
Tree Alignment. In Proc. of WWW, 2005.

[32] Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C. Fully
Automatic Wrapper Generation for Search Engines. In Proc.

of WWW, 2005.

[33] Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y. 2D
Conditional Random Fields for Web Information Extraction.
In Proc. of ICML, 2005.

