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ABSTRACT 
Recent work has shown the feasibility and promise of template-
independent Web data extraction. However, existing approaches 
use decoupled strategies – attempting to do data record detection 
and attribute labeling in two separate phases. In this paper, we 
show that separately extracting data records and attributes is 
highly ineffective and propose a probabilistic model to perform 
these two tasks simultaneously. In our approach, record detection 
can benefit from the availability of semantics required in attribute 
labeling and, at the same time, the accuracy of attribute labeling 
can be improved when data records are labeled in a collective 
manner. The proposed model is called Hierarchical Conditional 
Random Fields. It can efficiently integrate all useful features by 
learning their importance, and it can also incorporate hierarchical 
interactions which are very important for Web data extraction. We 
empirically compare the proposed model with existing decoupled 
approaches for product information extraction, and the results 
show significant improvements in both record detection and 
attribute labeling.  

Categories and Subject Descriptors: I.5.1 [Pattern 
Recognition]: Models - Statistical 

General Terms: Algorithms, Experimentation 

Keywords: Data record detection, Attribute labeling, Web 
page segmentation, Conditional Random Fields, Hierarchical 
Conditional Random Fields. 

1. INTRODUCTION 
The World Wide Web is a vast and rapidly growing repository of 
information. There are various kinds of objects, such as products, 
people, conferences, etc., embedded in both statically and 
dynamically generated Web pages. Recent work has shown that 
using template-independent approaches to extracting meta-data 
for the same type of real-world objects is feasible and promising. 
However, existing approaches use highly ineffective decoupled 
strategies - attempting to do data record detection and attribute 

labeling in two separate phases. This paper studies how to extend 
existing Web data extraction methods to achieve the mutual 
enhancement of record detection and attribute labeling. 

1.1 Motivating Example 
We begin by illustrating the problem with an example, drawn 
from an actual application of product information extraction. The 
goal of the application is to extract meta-data about real-world 
products from every product page on the Web. Specifically, for 
each crawled Web page, we first use a classifier to decide whether 
it is a product page and then extract the name, image, price and 
description of each product from detected product pages.  

Our statistical study on 51K randomly crawled Web pages shows 
that about 12.6 percent are product pages. That is, there are about 
1 billion product pages within a search index containing 9 billion 
crawled Web pages. If all of these pages or just half of them are 
correctly extracted, we will have a huge collection of meta-data 
about real-world products that could be used for further 
knowledge discovery and data management tasks such as 
comparison shopping and user intention detection.  

However, how to extract product information from Web pages 
generated by many (maybe tens of thousands of) different 
templates is non-trivial. One possible solution is that we first 
distinguish Web pages generated by different templates, and then 
build an extractor for each template. We say that this type of 
solution is template-dependent. However, accurately identifying 
Web pages for each template is not a trivial task because even 
Web pages from the same website may be generated by dozens of 
templates. Even if we can distinguish Web pages, template-
dependent methods are still impractical because the learning and 
maintenance of so many different extractors for different 
templates will require substantial efforts. 

Fortunately, recent work in [18][31][27][33] has shown the 
feasibility and promise of template-independent meta-data 
extraction for the same type of objects, and it is possible to simply 
combine existing techniques to build a template-independent 
meta-data extractor for product pages. Two specific types of Web 
pages are treated differently by the existing extraction techniques: 
list pages and detail pages1. 

� List pages are web pages containing several structured data 
records (See Figure 1(a) for an example). We can build an 
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list pages and the rest are detail pages. 
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object meta-data extractor for list pages by first using the 
techniques in [31] or [18] to detect the data records and then 
use the techniques in [33] to label the data elements within the 
detected records. Specifically, the techniques in [31][18] 
segment the data records in a list page (this task is called 
record detection) and also further extract their data elements. 
However, there is no semantic label about these extracted data 
elements. That is, we do not know whether an extracted item 
is the name, the description or the price of a product. The 
work in [33], which is complementary to [31][18], provides a 
method to assign semantic labels to the data elements of each 
extracted data record (this task is called attribute labeling). 

� Detail Pages are Web pages containing only detailed 
information about a single object (See Figure 1(b) for an 
example). We can build an object meta-data extractor for 
detail pages by first using the techniques in [27] to identify 
the main data block of a detail page, and then use the 
techniques in [33] to do attribute labeling for the main block. 

However, it is highly ineffective to use decoupled strategies – 

attempting to do data record detection and attribute labeling in 
two separate phases. This is because: 

Error Propagation: Since record detection and attribute labeling 
are two separate phases, the errors in record detection will be 
propagated to attribute labeling. Thus, the overall performance is 
limited and upper-bounded by that of record detection. Suppose 
record detection and attribute labeling have precisions 0.8 and 0.9 
respectively, then the overall precision will be no more than 0.8. 
If they also perform independently, the precision will be 0.72. 

Lack of Semantics in Record Detection: Human readers always 
take into account the semantics of the text to understand Web 
pages. For instance, in Figure 1(a), when claiming a block is a 
data record, we use the evidence that it contains a product's name, 
image, price and description. Thus, a more effective record 
detection algorithm should take into account the semantics of the 
text, but existing methods [18][31][27] do not consider that. 

Lack of Mutual Interactions in Attribute Labeling: The data 
records in the same page are related. They always share a common 
template and the elements at the same position of different records 
always have similar features and semantics. For example, in 
Figure 1(a) the button "Add to Cart" appears in the same position 
in both records and the element on the left-top of each record is an 
image. So, if we label the elements of the records within the same 

page together in a collective manner, it is easier for us to detect 
that the repeated elements "Add to Cart" are less informative and 
more likely to be noise. However, existing method [33] fails to 
consider that because the data records are independently labeled. 

First-Order Markov Assumption: For Web pages and especially 
for detail pages, long distance dependencies always exist between 
different attribute elements. This is because there are always many 
irrelevant elements (i.e. noise) appearing between the attributes of 
an object. For example, in Figure 1(b) there is substantial noise, 
such as "Add to Cart" and "Select Quantity" between the price and 
description. However, traditional CRFs [17][33] cannot 
incorporate these long distance dependencies because of its first-
order Markov assumption (i.e. only the dependencies of 
neighboring nodes are considered and represented). 

1.2 Our Solution 
In this paper, we propose a novel graphical model called 
Hierarchical Conditional Random Field (HCRF) model to jointly 
optimize record detection and attribute labeling.  

By using the vision-based page segmentation (VIPS) technology 
[4], which makes use of page layout features such as font, color, 
and size to construct a vision-tree for a Web page, we can get a 
better representation of a page compared with the commonly used 
tag-tree. Given a vision-tree, record detection can be considered 
as the task of locating the minimum set of elements that contain 
the content of a record. In this way, both record detection and 
attribute labeling become the task of assigning labels to the nodes 
on a vision-tree, so they can be integrated in one probabilistic 
model as in this paper. In contrast to existing decoupled strategies 
that perform record detection and attribute labeling as two 
separate phases, our approach leverages the labeling results of 
attribute labeling for record detection, and at the same time 
benefits from the incorporation of some global features based on 
tree-alignment for attribute labeling. As a conditional model [17], 
HCRF can efficiently incorporate any useful feature for Web data 
extraction. By incorporating hierarchical interactions, HCRF 
could incorporate long distance dependencies and achieve 
promising results on detail Web pages. 

To the best of our knowledge, our approach is the first to 
simultaneously conduct record detection and attribute labeling for 
both list and detail pages. Specifically, we make the following 
contributions. 

Figure 1(b). A detail page containing detailed formation 

about a product. 
Figure 1(a). A sample Web page with two similar data 

records which are contained in red boxes. 



� A mutually beneficial integration of data record detection and 
attribute labeling. The integrated approach can extract data 
from both list and detail pages. 

� A novel graphical model called Hierarchical Conditional 
Random Fields. The model relaxes the first-order Markov 
assumption made in traditional CRFs [17][33] by 
incorporating hierarchical dependencies, and provides a way 
to efficiently incorporate any useful feature for Web data 
extraction. 

� An empirical study of our approach on the task of product 
information extraction. 

The rest of the paper is organized as follows. Section 2 formally 
defines our problem. Section 3 discusses the proposed 
Hierarchical Conditional Random Fields. Section 4 defines label 
spaces for the model. Section 5 presents the features we currently 
used. Section 6 presents our evaluation results and discussions. 
Section 7 discusses related work and section 8 brings this paper to 
a conclusion.  

2. PROBLEM DEFINITION 

2.1 Data Representation 
For Web data extraction, the first thing is to find a good 
representation format for Web pages. Good representation can 
make the extraction task easier and improve extraction accuracy. 
In most previous work, tag-tree, which is a natural representation 
of the tag structure, is commonly used to represent a Web page. 
However, as [4] pointed out, tag-trees tend to reveal presentation 
structure rather than content structure, and are often not accurate 
enough to discriminate different semantic portions in a Web page. 
Moreover, since authors have different styles to compose Web 
pages, tag-trees are often complex and diverse. 

To overcome these difficulties, [4] proposed a vision-based page 
segmentation (VIPS) approach. VIPS makes use of page layout 
features such as font, color, and size to construct a vision-tree for 
a page. It first extracts all suitable nodes from the tag-tree, and 
then finds the separators between these nodes. Here, separators 
denote the horizontal or vertical lines in a Web page that visually 
do not cross any node. Based on these separators, the vision-tree 
of the Web page is constructed. Each node on this tree represents 
a data region in the Web page, which is called a block. The root 
block represents the whole page. Each inner block is the 
aggregation of all its child blocks. All leaf blocks are atomic units 
(i.e. elements) and form a flat segmentation of the Web page. 
Since vision-tree can effectively keep related content together 
while separating semantically different blocks from one another, 
we use it as our data representation format. Figure 2 is a vision-
tree for the page in Figure 1(a), where we use rectangles to denote 
inner blocks and use ellipses to denote leaf blocks (or elements). 
Due to space limitations, the blocks denoted by dotted rectangles 
are not fully expanded. 

2.2 Record Detection and Attribute Labeling 
Based on the definition of vision-tree, we can now formally define 
the concepts of record detection and attribute labeling. 

Definition 2.1 (Record detection): Given a vision-tree, record 

detection is the task of locating the minimum set of blocks that 

contain the content of a record. For a list page containing 

multiple records, all the records need to be identified. In other 

words, record detection is equal to assigning “Data Record” 

labels to the blocks in the vision-tree. 

For instance, for the vision-tree in Figure 2, two blocks are 
detected as data records.  

Definition 2.2 (Attribute labeling): For each identified record, 

attribute labeling is the process of assigning attribute labels to 

the leaf blocks (or elements) within the record. 

In Figure 2, for the two records, attribute labels Name, Image, 
Price, Description (Desc) and Note are assigned to different parts 
within the records. We use Note to denote uninteresting elements 
or Web noise. 

It is obvious that, by sequentially combining record detection and 
attribute labeling algorithms, a complete algorithm can be 
constructed to extract records and the attributes. However, as 
explained in the introduction, this decoupled strategy will be 
highly ineffective. Therefore, in this paper, we explore an 
integrated approach that can simultaneously conduct record 
extraction and attribute labeling and achieve a joint optimization 
of both tasks. 

2.3 Problem Definition 
Based on the above definitions, both record detection and 
attribute labeling are the processes of assigning labels to blocks of 
the vision-tree for a page, although the labels they use are 
different. Therefore, we can use a uniform probabilistic model to 
deal with both tasks. Formally, we define the Web data extraction 
problem as: 

Definition 2.3 (Joint optimization of record extraction and 

attribute labeling): Give a vision-tree of a page, let 

0 1x {x ,x , ,x }N= L  be the features of all the blocks and each 

component x i
 is a feature vector of one block, and let 

0 1y {y ,y , ,y }N= L  be one possible label assignment of the 

corresponding blocks. The goal of Web data extraction is to 

compute maximum a posteriori (MAP) probability of y  and 

extract data from this assignment *y : 
*y arg max (y | x)p=  

Based on the above definition, the main difficulty is the 
calculation of the conditional probability (y | x)p . In this paper, 
we introduce a Hierarchical Conditional Random Fields algorithm 
to compute it, which will be described in detail in the next section.  

Web Page

Data Record

Image

Name Desc Price Note

Desc

Note

Data Record

Image

Desc Desc Name Desc Price Note Note

Figure 2. The vision-tree of the page in Figure 1(a). 

 



3. HIERARCHICAL CONDITIONAL 

RANDOM FIELDS 
In this section, we first introduce some basic concepts of 
Conditional Random Fields and then describe our proposed model 
for integrated Web data extraction, including how to learn the 
parameters and how to perform extraction. 

3.1 Preliminaries 

Conditional Random Fields (CRFs) [17] are Markov random 
fields that are globally conditioned on observations. Let 

( , )G V E=  be an undirected model over a set of random variables 
Y  and X . X are variables over the observations to be labeled 
and Y are variables over the corresponding labels. The random 
variables Y  could have non-trivial structure, such as linear-chain 
in [17] and 2D grid in [33]. Although all the components of Y are 
usually assumed to range over a single label space Y , this 
assumption is not an innate character of CRFs and we will see that 
in our proposed model there are two label spaces for two different 
types of variables. The conditional distribution of the labels y (an 
instance of Y ) given the observations x  (an instance of X ) has 
the form,  

1
(y | x) (y | , x)   (1)

(x) c c

c C

p
Z

ϕ
∈

= ∏ LL  

where C is the set of cliques in G ; y |c  are the components of y  

associated with the clique c ; cϕ  is a potential function defined 

on y |c and takes non-negative real values; (x)Z is the 

normalization factor or partition function, and has the form,  

y

(x) (y | ,x)c c

c C

Z ϕ
∈

=∑∏  

The potential functions are expressed in terms of feature functions 
(y | ,x)k cf  and their weights

kλ :  

( ) ( )y | , x exp y | , xc c k k c

k

fϕ λ
 

=  
 
∑  

3.2 Hierarchical CRFs 
Based on the hierarchical representation of the data, a 
Hierarchical Conditional Random Field (HCRF) model can be 
easily constructed. For the page in Figure 1(a), the model is 
shown in Figure 3, where we also use rectangles to denote inner 
nodes and use ellipses to denote leaf nodes. The dotted rectangles 
are for the blocks that are not fully expanded. Each node on the 
graph is associated with a random variable 

iY . We currently 

model the interactions of sibling variables via a linear-chain, 
although more complex structure such as two-dimensional grid 
can be used. The observations which are globally conditioned on 
are omitted from this graph for simplicity. Here, we assume that 
every inner node contains at least two children. Otherwise, we 
replace the parent with its single child. Notice that this 
assumption has no affect on the performance because the parent is 
identical to its child in this case. We made this assumption just for 
easy explanation and implementation.  

The cliques of the graph in Figure 3 are its vertices, edges and 
triangles. So, the conditional probability in formula (1) can be 
concretely expressed as, 

( )
( )

, ,

,

(y | , x) (y | ,x)
1

y | x exp     (2)
x (y | ,x)

k k v k k e

v k e k

k k t

t k

g f

p
Z h

µ λ

γ

 +
 

=  
+ 
 

∑ ∑

∑
K  

where 
kg , 

kf  and 
kh  are feature functions defined on three types 

of cliques (i.e. vertex, edge and triangle) respectively; 
kµ , 

kλ  and 

kγ  are the corresponding weights; v V∈ , e E∈  and t  is a 

triangle. Although the feature functions can take real values, here 
we assume they are Boolean, that is, true if the feature matches 
and otherwise false. Some examples could be found in section 5. 

3.3 Learning the Parameters 
Given the training data 

1
{(y ,x )}i i N

i
D

=
=  with an empirical 

distribution (x,y)p% , the parameter learning problem is to find a set 
of parameters 1 2 1 2 1 2{ , , ; , , ; , , }µ µ λ λ γ γΘ = L L L  that optimize the 

log-likelihood function: 

( ) (x ,y ) log (y | x , )i i i i

i

L p pΘ = Θ∑ %  

To avoid over-fitting, we also use the spherical Gaussian prior 
with mean 0µ = and variance matrix 2

IσΣ =  to penalize the log-
likelihood. The concave function can be optimized by the 
techniques used in other models [17]. We use the gradient-based 
L-BFGS [21] for its outstanding performance over other 
algorithms [22]. Each element of the gradient vector is given by, 

(x,y) (y|x, ) 2

( )
[ ] [ ] k

p k p k

k

L
E f E f

λ

λ σ
Θ

∂ Θ
= − −

∂
%

 

where 
(x,y)[ ]

p k
E f

%
 is the expectation with respect to the empirical 

distribution, and it can be easily calculated and once for all; 

(y|x, )[ ]p kE fΘ
 is the expectation with respect to the model 

distribution. For example, the expectation of 
kf  is: 

(y|x, )
y|

[ ] (x ) (y | | x ) (y | ,x )
e

i i i

p k e k e

i e E

E f p p fΘ
∈

=∑ ∑∑%  

where y |e is any possible label assignment of the variables on the 

edge e . 

Thus, the main computation is to compute the marginal 
probabilities (y | | x )i

e
p  needed when computing the gradients at 

every iteration. As the graph in Figure 3 is a chordal graph, we 
can efficiently do inference by using the junction tree algorithm 
[8]. For an undirected graph, this algorithm consists of three steps: 
junction tree construction, initialization, and belief propagation. 

It is straightforward to construct a junction tree for a chordal 
graph. Figure 4 is the junction tree of the sub-graph starting from 
the node 0 in Figure 3, and we will denote it by T  in the rest of  

0

1 2

3 4 5 6

7 8 9 1 0 1 1 1 2 1 3 1 4

1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6

Figure 3. The model’s graph of the page in Figure 1(a). 



 

the paper. In Figure 4, we use ellipses to denote clique nodes and 
use rectangles to denote separators. All the variables are denoted 
by their subscripts. Note that all the clique nodes on the junction 
tree have size 3 because the maximum cliques in the original 
graph are triangles. 

Once the junction tree has been constructed, the initialization can 
be finished with first initializing all the potentials on T  to have 
value unity, and then multiplying the potential of a vertex, an edge 
or a triangle into the potential of one of the clique nodes of T  
which cover the variables of the vertex, the edge or the triangle. 
The potential of a vertex v , an edge e  and a triangle t  is 
computed as follows respectively, 

(y | , x) exp (y | ,x)v v k k v

k

gϕ µ
 

=  
 
∑  

(y | , x) exp (y | ,x)e e k k e

k

fϕ λ
 

=  
 
∑ ,    (y | ,x) exp (y | ,x)t t k k t

k

hϕ γ
 

=  
 
∑  

Finally, we use the two-phase schedule algorithm [14] to schedule 
belief propagation on T . This algorithm requires the selection of 
an arbitrary clique node to be the root, and then is followed by a 
collection phase and a distribution phase. Once these two phases 
are finished, the potentials on all the cliques and separators are 
marginal potentials. The marginal probabilities can be directly 
computed with the marginal potentials by normalization. 

3.4 Finding the Most Likely Assignment 
As we have described in section 2.3, we are interested in finding 
the most probable configuration of Y . This can be done using the 
same junction tree algorithm [8] just with a simple modification 
of the two-phase schedule algorithm [14] by merely replacing the 
summation, which is an operator needed in the two-phase 
schedule algorithm, by maximization everywhere. After the 
modified algorithm has finished, the most likely assignment for 
each variable can be found from the potentials of any clique that 
contains the variable. The junction tree’s running intersection 
property guarantees that the most likely states of a variable found 
on different cliques are the same. We refer the readers to [8] for 
more details about the junction tree algorithm. 

4. LABEL SPACE DEFINITION 
When applying HCRF models for Web data extraction, we must 
determine the label spaces for variables Y . We now explain how 
to define these labels and also give an example of the label spaces 
which are used in our product information extraction. 

When defining the label spaces, we need to distinguish between 
the variables at leaf nodes and the variables at inner nodes. For 

Table 1. Label spaces for product information extraction 

Type Label Semantic Meaning 

Name The name of a product 

Image The image of a product 

Price The price of a product 

Desc The description of a product 

Leaf  
Label 
Space 

Note The non-interesting elements or noise 

Con_Image Contain product’s image 

Con_Name Contain product’s name 

Con_Price Contain product’s price 

Con_Desc Contain product’s description 

Con_ImgNam Contain product’s image and name 

Con_NamPrc Contain product’s name and price 

Con_ImgPrc Contain product’s image and price 

Page Head The head part of a Web page 

Page Tail The tail part of a Web page 

Nav Bar The navigation bar of a Web page 

Info Block 
Contain one or more data records and 
some additional information 

Data Region Contain only similar data records 

Data Record 
Contain all the attributes (i.e. name, 
price, image and description) if exist 

 
 
 
 
 
 
 
Inner 
Label 
Space 

Note Block 
Contain no interesting information 
and are also not meaningful parts of a 
Web page 

 

 

variables at leaf nodes, we are interested in deciding whether a 
leaf block is an attribute value of the object we want to extract. 
However, for variables at inner nodes, our interest shifts to the 
understanding of whether an inner block is a data record. So, we 
have two types of label spaces – leaf label space for variables at 
leaf nodes and inner label space for variables at inner nodes.  

The leaf label space consists of all the attribute names of the 
object we want to extract. For example, in product information 
extraction, we want to extract a product’s name, image, price and 
description, so the leaf label space consists of Name, Image, Price, 
Desc, and Note. The label Note is for the data we are not 
interested in (i.e. noise). All the labels for product information 
extraction are listed in Table 1 with their semantic meanings. 

The inner label space can be partitioned into an object-type 

independent part and an object-type dependent part. We explain 
how to define these two parts in turn: 

Object-type Independent Labels: Since we want to extract data 
from Web pages, the labels Page Head, Page Tail, Nav Bar, and 
Info Block are naturally required to denote different parts of a 
Web page. The labels Data Record and Data Region are also 
required for detecting data records. To denote blocks that do not 
contain any meaningful information, such as the attributes to be 
extracted and the head, tail or navigation bar of a Web page, the 
label Note Block is also required. All these labels are general to 
any Web data extraction problem, and they are independent of any 
specific object type. 

0,1, 2

1 2

1,3, 4 2,5,6

3,7,8

3 54 6

10,18

10

4,9,10

9,15,16

9

10,17,18 10,18,19

5,11,12 6,13,14

12, 20, 21

12

13, 22, 23

13

14, 24, 25

14

14, 25 14,25,26

Figure 4. The junction tree of the sub-graph starting 

from 0 in Figure 3. 



Object-type Dependent Labels: Between data record blocks and 
leaf blocks, there are intermediate blocks on a vision-tree. So, we 
must define some intermediate labels between Data Record and 
the labels in the leaf label space. These labels are object-type 
dependent because these intermediate blocks contain some object-
type specific attribute values, but they are still inferior to a 
complete data record. A natural method is to use the combinations 
of the attributes to define intermediate labels. Of course, if we use 
all the possible combinations, the state space could be too large. If 
this is the case, we can discard unimportant combinations by 
considering the co-occurrence frequencies of their corresponding 
attribute values in the training data records. The object-type 
dependent labels in our product information extraction are listed 
in Table 1 with the format Con_*.  

5. FEATURES FOR HCRFS 
As a conditional model [17], Hierarchical Conditional Random 
Fields have the power to incorporate any useful feature for Web 
data extraction. In this section, we present the types of features 
that are essential for record detection and attribute labeling, and 
discuss how to incorporate them into our HCRF model. As we 
explain below, some of the features were first introduced as 
heuristic rules in some existing methods [31][32] to detect data 
records. The contribution of our work is that we provide a 
principled integration of them by defining feature functions and 
learning their importance weights. 

5.1 Features of Elements 
For each element, we extract both content and visual features as 
listed in table 2. All the features can be obtained from the vision-
tree since VIPS assigns position information for each node 
through rendering a page. Previous work [4][32][33][27] has 
shown the effectiveness of visual features for Web page analysis 
and information extraction. 

5.2 Features of Blocks 
After extracting the features for all the elements, a bottom-up 
procedure is taken to extract the visual and content features for 
inner blocks. We also compute the following distances for each 
block to exploit the regularity of similar data records in a page. 

Tree Distance Features: On a vision tree, if the blocks are 
visually similar, usually their sub-trees are also similar. We define 
the tree distance of two blocks as a measure of their structure 
similarity. The tree distance of two blocks is defined as the edit 
distance of their corresponding sub-trees. Although the time-
complexity of computing this distance could be quite high, we can 
substantially reduce the computation with some rules. For 
example, if the depth difference of two sub-trees is too large, they 
are not likely to be similar and this computation is not necessary. 

Once we have computed the tree distances, we can use some 
thresholds to define Boolean-valued feature functions. For 
example, an f  function is defined as: 

( ) ( )
1

1 1

,         y  ,  y   

y ,y ,x                    x ,x 0.2 

,     

i i

k i i i i

true if Data Record Data Record

f and TreeDist

false otherwise

+

+ +

= =


= ≤



 

That is, if the tree distance of two adjacent blocks x i
 and 1xi+  is 

not more than 0.2, they are both likely to be data records. 

Table 2. The content and visual features of each element 

Name Description 

Content The Content of a text element 
Link URL The action URL of an element if it exists 

Font Size The font size of an element 

Font Weight The font weight of an element 

Position The coordinates of an element 

Height The height of an element’s rectangle 

Width The width of an element’s rectangle 
Area The area of an element’s rectangle 

Image Source 
URL 

The source URL of an image element 

Image Alt-Text The alternative text of an image element 
Tag The tag name of an element 

 

Shape Distance & Type Distance Features: Based on the ideas 
in [32], we also compute the shape distance and type distance of 
two blocks to exploit their similarity. For shape distance, we use 
the same definition of shape codes and also use the same shape 
distance calculation method as in [32]. Due to space limitations, 
we would like to refer the readers to [32] for more details. 

To compute the type distance of two blocks, we define the 
following types for each element: 

� IMAGE: the element is an image. 

� JPEG IMAGE: the image element that is also a jpeg picture. 

� CODED IMAGE: the image element whose source URL 
contains at least three succeeding numbers, such as 
“/products/s_thumb/eb04iu_0190893_200t1.jpg”. 

� TEXT: the element has text content. 

� LINK TEXT: the text element that contains an action URL. 

� DOLLAR TEXT: the text element that contains dollar sign. 

� NOTE TEXT: the text element whose tag is “input”, “select” 
or “option”. 

� NULL: the default type of each element. 

After defining each element’s type code, a block’s type code is 
defined as a sequence of the type codes of its children. As in [32], 
we also compress the multiple consecutive occurrences of each 
type to one occurrence and take the edit distance of type codes as 
the type distance of two blocks. 

Similar to the use of tree distance, we can easily incorporate shape 
distance and type distance into our model by defining other 
Boolean-valued feature functions with some pre-determined 
thresholds. Notice that our method will not be sensitive to these 
thresholds because the defined feature functions are softened by 
learning a weight for each of them. As in formula (2), each feature 
function contributes its weight to the probability only when it is 
active, that is, the returned value is true. If a feature function is 
always true or false, it has no effect on the probability; and if 
some feature functions appear sparsely in the training set, 
smoothing techniques [6] can be used to avoid over-fitting. Here, 
we use the spherical Gaussian prior to penalize the log-likelihood 
function as in section 3.3. 



5.3 Global Features 
As described in the introduction, data records in the same Web 
page are always related and mutually constrained. Based on the 
work in [31], we try to align the elements of the two adjacent 
blocks in the same Web page and extract some global features to 
help the labeling of related records.  

For two neighboring blocks, we try to align their elements using 
the partial tree-alignment algorithm [31]. An alignment is 
discarded if most of the elements are not aligned. For successful 
alignments, the following feature is extracted. 

Repeated elements are less informative: This feature is based on 
the observation that repeated elements in different records are 
more likely to be less useful while important information such as 
the name of a product is not likely to repeat in multiple records in 
the same Web page. For example, the “Add to cart” button 
appears in both data records as in Figure 1(a), but each record has 
a unique name. Similar ideas have been exploited in [30] to 
remove Web noise. Currently, we just denote repeated elements in 
different blocks and do not take a complex information measure 
as in [30]. More complex measures can be easily adopted if 
needed in the future. An example feature function is defined as: 

( )
,       y   x    

y ,x
,    

i i

k i

true if Note and is repeated
g

false otherwise

=
= 


 

That is, if the element x i
 repeatedly appears in the aligned 

records, it will be more likely to be labeled as Note. 

6. EXPERIMENTS 
In this section, we report empirical results by applying our HCRF 
model to extract structured product information from both list and 
detail pages. We compare our proposed model with a sequential 
approach that combines the state-of-the-art record detection and 
attribute labeling algorithms. The results show that our model 
achieves significant improvements in both record detection and 
attribute labeling on list pages, and also performs promisingly on 
detail pages. We also analyze to what extent the gains come from: 
joint optimization of record detection and attribute labeling, the 
global features, and long distance dependencies. 

6.1 Methods 
We build the baseline methods by sequentially combining the 
record detection algorithm DEPTA [31] and 2D CRFs [33], and 
for detail pages, which the DEPTA algorithm cannot deal with, 
we first detect the main data block using [27] and then use a 2D 
CRF model to do attribute labeling on the detected main block. 
Our method is built by combining VIPS [4], and the HCRF model. 
A Web page is first segmented by VIPS to construct the vision-
tree, and then an HCRF model is used to label both records and 
attributes in the vision-tree. 

To see the effect of the global features as in section 5.3, we 
evaluate an HCRF model that does not incorporate the global 
features. We denote this model by HCRF_NG (without global 
features). Similarly, we evaluate DEPTA and two 2D CRF models 
in the baseline methods. As in [33], a basic 2D CRF model is 
setup with only the basic features (see Table 2) of the elements 
when labeling each detected data record. A variant model is setup 
with both the basic features and the global features as in section 

5.3. We denote the basic model by 2D CRF and denote the variant 
model by 2D CRF_G. For 2D CRF_G, we first cache all the 
detected records from one Web page and then extract the global 
features as in section 5.3. Both the basic features and the extracted 
global features are used during model learning and attribute 
labeling. As there is no tree-structure here, the alignments are 
based on the elements’ relative positions in each record.  

To evaluate the separate effect of our approach on record 
detection and attribute labeling, we first detect data records on the 
parsed vision-trees using the content features and the tree distance, 
shape distance, and type distance features. Then we use HCRF 
models to label the detected records. When doing attribute 
labeling, we also evaluate two HCRF models with and without the 
global features. These two models are denoted by HCRF_S and 
HCRF_SNG respectively. 

6.2 Datasets 
We setup two general datasets with randomly crawled product 
Web pages. The list dataset (LDST) contains 771 list pages and 
the detail dataset (DDST) contains 450 detail pages. All of the 
pages are parsed by VIPS. For HCRF models, we use 200 list 
pages and 150 detail pages together to learn their parameters. All 
these pages are hierarchically labeled, that is, every block in the 
parsed vision-trees is labeled. We use the same 200 list pages to 
train a 2D CRF model for extraction on list pages, and use the 
same 150 detail pages to train another 2D CRF model for 
extraction on detail pages. The reason for training two models for 
list and detail pages separately is that, for a 2D CRF model, the 
features and parameters for list and detail pages are quite different 
and a uniform model cannot work well. In the training stage, all of 
the algorithms converge quickly, within 20 iterations. We use the 
remaining pages (571 list pages and 300 detail pages) for testing. 
Totally 6387 data records are found in the testing set LDST. 

6.3 Evaluation Metrics 
For data record detection, we use the standard precision, recall 
and F1 measures to evaluate the methods. A block is considered 
as a correctly detected data record if it contains all the appeared 
attributes, otherwise it's not a data record. In our experiments, a 
data record could tolerate (miss or contain) some non-important 
information like “Add to Cart” button. 

For attribute labeling, we use the same measures defined in [33]. 
The performance on each attribute is evaluated by precision (i.e. 
the percentage of returned elements that are correct), recall (i.e. 
the percentage of correct elements that are returned), and their 
harmonic mean F1. We also use two comprehensive evaluation 
criteria:  

Block Instance Accuracy (BLK_IA): the percentage of data 
records of which the key attributes (name, image, and price) 
are all correctly labeled;  

Average F1 (AVG_F1): the average of F1 values of different 
attributes. 

6.4 Experimental Results and Discussions 
We compare our approach with DEPTA [31] on LDST for data 
record detection. The running results of DEPTA on our dataset 
are kindly provided by its authors. DEPTA has a similarity  



Table 3. Evaluation results of different methods on both LDST and DDST, where Desc stand for ‘Description’. 

 

threshold, and it is set at 60% in this experiment. Some simple 
heuristics are also used in DEPTA to remove some noise records. 
For example, a data region that is far from the centre or contains 
neither image nor dollar sign is removed. The evaluation results 
are shown in Table 3. 

6.4.1 Record Detection 
For record detection, we can see that both HCRF and HCRF_NG 
significantly outperform DEPTA in recall, improved by 8.1 points, 
and precision, improved by 7.5 points. The improvements come 
from two parts:  

Advanced data representation and more features: in our model, 
we incorporate more features such as content features and the 
shape distance & type distance features as in section 5.2 than 
DEPTA. We also adopt an advanced representation of Web pages 
– vision-trees which have been shown to outperform tag-tree 
representation in other work [4]. As we can see from Table 3, 
HCRF_SNG and HCRF_S outperform DEPTA, and we gain 
about 2 points in precision, 7.3 points in recall, and 4.6 points in 
F1.  

Incorporation of semantics during record detection: DEPTA 
just detects the blocks with regular patterns (i.e. regular tree 
structures) and does not take semantics into account. Thus, 
although some heuristics are used to remove some noise blocks, 
the results could still contain blocks that are not data records or 
just parts of data records. In contrast, our approach can integrate 
attribute labeling into block detection, and can consider the 
semantics during detecting data records. So, the blocks detected 
are of better quality and are more likely to be data records. For 
instance, a block containing a product's name, image, price and 
some descriptions is almost certain to be a data record, but a block 
containing only irrelevant information is unlikely to be a data 
record. The lower precisions of HCRF_SNG and HCRF_S 
demonstrate this. When not considering the semantics of the 
elements, HCRF_SNG and HCRF_S extracts more noise blocks 
compared with HCRF_NG or HCRF, so the precisions of record 

detection decrease by 5.5 points and the overall F1 measures 
decrease by 3.2 points.  

6.4.2 Attribute Labeling 
As we can see from Table 3, our HCRF model significantly 
outperforms the baseline approach. On list pages, HCRF_NG 
gains 18.7 points over 2D CRF in block instance accuracy and the 
achievements of HCRF are 13.9 points compared with 2D CRF_G. 
On detail pages, our approach gains about 58 points over 2D CRF 
in block instance accuracy. The reasons for the better performance 
are: 

Attribute labeling benefits from good quality records: One 
reason for this better performance is that attribute labeling can 
benefit from the good results of record detection. For example, if 
a detected record is not a data record or misses some important 
information such as name, the attribute labeling will fail to find 
the missed information back or just finds a wrong one. So, 
HCRF_SNG outperforms 2D CRF and HCRF_S outperforms 2D 
CRF_G. Of course the achievements of HCRF_SNG and 
HCRF_S may also come from the incorporation of long distance 
dependencies in hierarchical CRFs which will be discussed later. 

Global Features help Attribute Labeling: Another reason for 
the improvements in attribute labeling is the incorporation of the 
global features as in section 5.3. From the results, we can see that 
when considering the global features, attribute labeling is more 
accurate. For example, 3.4 points are gained in block instance 
accuracy by HCRF compared with the basic HCRF_NG model. 
For two separate HCRF models, HCRF_S achieve 2.7 points in 
block instance accuracy compared with HCRF_SNG; for the two 
baseline methods, compared with 2D CRF which uses only the 
features of the elements in each detected record, more than 8 
points are gained in block instance accuracy by 2D CRF_G which 
incorporates the global features. 

HCRF Models incorporate Long Distance Dependencies: The 
third reason for the better performance in attribute labeling is the 

Data Sets LDST DDST 

Methods 
HCRF 
_SNG 

HCRF 
_S 

HCRF 
_NG 

HCRF 
DEPTA+  
2D CRF 

DEPTA+ 
2D CRF _G 

HCRF 2D CRF 

Precision 0.904 0.904 0.959 0.959 0.884 0.884 —  — 
Recall 0.921 0.921 0.930 0.930 0.849 0.849 — — Record Detection 

F1 0.912 0.912 0.944 0.944 0.866 0.866 —  — 
Name 0.836 0.860 0.880 0.911 0.763 0.851 0.835 0.398 
Image 0.901 0.905 0.952 0.966 0.842 0.838 0.978 0.546 
Price 0.906 0.903 0.959 0.963 0.913 0.915 0.986 0.809 

Precision 

Desc 0.783 0.766 0.792 0.788 0.769 0.779 0.663 0.588 
Name 0.851 0.875 0.854 0.882 0.735 0.822 0.761 0.398 
Image 0.917 0.921 0.924 0.936 0.811 0.809 0.892 0.546 
Price 0.922 0.919 0.930 0.933 0.879 0.883 0.899 0.809 

Recall 

Desc 0.797 0.780 0.768 0.764 0.741 0.752 0.604 0.395 
Name 0.843 0.867 0.867 0.896 0.749 0.836 0.796 0.398 
Image 0.909 0.913 0.938 0.951 0.826 0.823 0.933 0.546 
Price 0.914 0.911 0.944 0.948 0.896 0.899 0.940 0.809 

F1 

Desc 0.790 0.773 0.780 0.776 0.755 0.765 0.632 0.473 
AVG_F1  0.864 0.866 0.882 0.893 0.807 0.831 0.825 0.556 

 
Attribute 
Labeling 

BLK_IA  0.789 0.816 0.856 0.890 0.669 0.751 0.817 0.231 



incorporation of long distance dependencies. From the results on 
detail pages, we can see that hierarchical models could get 
promising results while 2D CRFs perform poorly. For a detected 
record or a main block, 2D CRFs put its elements in a two-
dimensional grid. Although they could incorporate more 
interactions compared with linear-chain CRFs [17], long distance 
interactions cannot be incorporated due to their first-order 
Markov assumption. In contrast, HCRF models can incorporate 
dependencies at various levels of granularity and thus incorporate 
long distance dependencies. So, HCRF models perform much 
better than 2D CRF models. For detail pages, as there is no record 
detection, HCRF_SNG and HCRF_S are not applicable here. Also 
there are no global features, so we just list the results of HCRF 
and 2D CRF on detail pages in Table 3. 

The quite different performance of 2D CRFs on list and detail 
pages also shows the effectiveness of long distance dependencies. 
For list pages, the inputs are data records that always contain a 
small number of elements. In this case, 2D CRFs can effectively 
model the dependencies of the attributes and achieve reasonable 
accuracy. However, noisy elements always exist between attribute 
values in a detail page. So, 2D CRFs perform very poorly for their 
failure in incorporating long distance dependencies.  

7. RELATED WORK 
Wrapper learning approaches like [23][16] are template-
dependent. They take in some manually labeled Web pages and 
learn some extraction rules (i.e. wrappers). Since the learned 
wrappers can only be used to extract data from similar pages, 
maintaining the wrappers as Web sites change will require great 
efforts. Furthermore, in wrapper learning a user must provide 
explicit information about each template. So it will be expensive 
to train a system that extracts data from many Web sites as in our 
application. [32][10][3][5][9][1] are also template-dependent, but 
they do not need labeled training samples. They automatically 
produce wrappers from a collection of similar Web pages. 

[31][18] are two template-independent methods. [18] segments 
data on list pages using the information contained in their detail 
pages. The need of detail pages is a limitation because 
automatically identifying links that point to detail pages is non-
trivial and there are also many pages that do not have detail pages 
behind them. [31] mines data records by string matching and also 
incorporates some visual features to achieve better performance. 
However, [31] detects data records only using tree regularities and 
not consider semantics. Furthermore, the data extracted by 
[31][18] have no semantic labels.  

[12][33] are two methods that treat Web information extraction as 
a classification problem. [12] uses a support vector machine to 
identify the start and end tags for a single attribute. For the task of 
extracting multiple attributes, this method loses the dependencies 
between different attributes. [33] shows that these dependencies 
are common among several types of objects and also proposes 2D 
CRFs to better incorporate these dependencies. However, it has 
two assumptions: (1) data records are independently and 
identically distributed; (2) data records have been perfectly 
extracted. As described in the introduction, these assumptions will 
result in highly ineffective de-coupled solutions. 

The idea of exploring mutual benefits by integrating two tasks has 
been attempted in previous work. [24] attempts a mutually 

beneficial integration of information extraction and data mining. 
Information extraction makes possible the text mining which 
needs to handle unstructured text documents, and data mining 
could provide additional clues to improve the recall of an IE 
system. [29] proposes an integrated model to do information 
extraction and coreference. Incorporating extraction uncertainty 
could help coreference, and leveraging the identified coreference 
could improve extraction accuracy. However, [29] is not a fully 
closed integration. Due to its model’s complexity, separate 
learning and inference for different substructures is employed in 
[29]. [28] proposes a factorial CRF to jointly solve two NLP tasks 
(noun phrase chunking and part of speech tagging) on the same 
observation sequence. The difference is that our data are 
hierarchical trees and the data in [28] are sequences. 

[26] uses Hierarchical Hidden Markov models (HHMMs) [11] to 
extract relation instances from biomedical articles. Our work 
differs from this one in two key aspects. First, as discriminative 
models HCRFs have the flexibility to incorporate arbitrary and 
non-independent features of the observations, but HHMMs, which 
are generative models, must make some strong independence 
assumption to achieve inference tractability. This is the key idea 
underlying the Conditional Random Fields [17]. Second, the data 
in [26] are two-level representations of sentences, but our data are 
arbitrary vision-trees. Recently, several hierarchical structured 
Conditional Random Field models [13][15][20] have been 
proposed in different domains. Unlike [13], our HCRF model is 
not a simple multi-scale model because it has inter-level 
interactions. In [15], a two-layer structured CRF model is 
proposed to incorporate both local and global label interactions 
for robust image classification. Unlike our model which is a 
Conditional Random Field as a whole, each layer of [15] is a 
separate Conditional Random Field and the two layers are 
coupled with directed links. In [20], a three layer Conditional 
Random Field model is dynamically constructed for activity 
recognition. In contrast, we use a layout data structure ‘vision 
tree’ and our hierarchical CRF model is built upon it. Due to its 
dynamic nature, [20] must take an iterative process and the whole 
inference is approximate. But our HCRF model can find the 
optimal labeling results.  

Other work, such as collective information extraction [2] and 
Semi-Markov extraction models [7][25], could achieve higher 
performance in named entity extraction problems on flat text 
documents. However, for the integrated Web data extraction, 
where the data are hierarchically represented, the proposed 
hierarchical CRF model is the natural and efficient method. 

8. CONCLUSIONS 
In this paper, we propose a probabilistic model called Hierarchical 
Conditional Random Fields (HCRFs) to exploit the mutually 
beneficial integration of data record detection and attribute 
labeling. In this model, record detection can benefit from the 
availability of semantics which are required in attribute labeling, 
and attribute labeling could benefit from the collective labeling of 
similar records in the same Web page. Parameter estimation and 
labeling could be efficiently performed by applying the standard 
junction tree algorithm. As a conditional model, HCRFs can 
incorporate any useful feature for Web data extraction in a 
principled way; as a hierarchical model, HCRFs provide a way to 
incorporate long distance dependencies for Web data. Empirical 



studies show that mutual enhancement of record detection and 
attribute labeling can be achieved in our joint approach, and 
HCRFs can perform very well on both list and detail Web pages.  
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