Ligature: Combining node-and-link
graph rendering with a timeline for
sensemaking in software development

repositories

Gina Venolia

Microsoft Research

One Microsoft Way
Redmond, WA 98052 USA
gina.venolia@microsoft.com

Copyright © 2006 Microsoft Corporation. All rights reserved.
CHI 2006—Social Visualization Workshop, April 22—27, 2006,

Montreal, Canada.

Abstract

This paper describes an index over communication
artifacts related to software development, and proposes
a system for visualizing and browsing that combines
aspects of a node-and-link graph rendering with a
lifespan timeline, to support sensemaking in root-cause
analysis of software development failures.

Introduction

The software development process leaves a vast trail of
data behind it documenting the online activity of
developers, testers, project managers, and other
participants. The vast store of historical artifacts—old
emails, bug reports, check-in messages, specifications,
etc.—provide valuable, but mostly-untapped, resources
for answering crucial questions about the project, such
as, Why was this code written this way? Are there
known problems in this code? Why did the build break?
Why did this critical bug reach our customers?
Investigating questions like these is sometimes called
sensemaking, which may be defined as “the process of
searching for a representation and encoding data in
that representation to answer task-specific questions”



Figure 1. The Bridge index is a graph
over software-related artifacts (shown
here as a toy example) where the links
come from the structure of the source
schema (red lines), the structured
documents (yellow), plain-text
allusions (green), and other sources
(blue and purple).

[1]. Sometimes the answers can be found in a single
artifact. When this is the case a good search tool over
the relevant store could help the user to find the crucial
artifact. However it's common that the answer is spread
across many artifacts in the data trail. When this is the
case the user must explore many artifacts, understand
the relationships among them, and piece together the
answer from multiple bits of evidence. This suggests
that a simple search tool is not enough—what is needed
is a sophisticated interface for exploring a collection of
related artifacts.

One task that relies heavily on this kind of in-depth
exploration of software artifacts is root-cause analysis,
or RCA, which is the process of finding the reasons for
critical failures in the software development process. |
have interviewed one of the people responsible for this
activity at a large software corporation. The output of
each analysis that he completes is a report
documenting the chain of events that contributed to the
failure and suggesting solutions to prevent such failures
in the future. The framework that he uses for his
sensemaking process is a word-processor document
containing a chronological list of artifacts related to the
failure, including text snippets from the artifacts and
his own annotations interpreting them. There may be
hundreds of entries in a typical investigation
chronology. He discovers his source material by
laboriously searching the repositories containing
artifacts of potential interest, searching for keywords
and phrases, peoples’ names, and the identifying
numbers of key bugs, knowledge-base articles, and
builds. Each repository has its own unique search
interface so this process is quite tedious.

(It should be mentioned here that his process is much
like any other historical investigator examining
electronic records, whether historian, detective, or
lawyer. The general methods he uses are not unique to
software or RCA, but are a part of sensemaking in
general.)

The goal of the work | present here is to support RCA of
failures in the software development process.

The Bridge Index

I have built a system, called the Bridge, which creates
a single full-text search index over the bug database,
the source-code control system, and archives of several
key email discussion lists relating to the development
of a major computer operating system [2].

The Bridge goes beyond a simple search index in two
ways. First, it records directed links between related
pairs of artifacts. Link analysis is a crucial part of a
modern full-text search system [3]. For World Wide
Web search, it's easy to detect the links within HTML
documents. For software artifacts it’s not so simple—
my system uses several complementary means to
detect the relationships. Some relationships are explicit
in the source schema, e.g. a source-code control
system explicitly represents each check-in, the person
who performed it, and the files affected; these can be
represented in the index as links. Other links come
from the contents of structured files, e.g. a source code
file might contain a class which derives from another
class and contains methods which invoke other
methods. Interpersonal communication—bug
messages, emails, check-in messages, etc.—often
contain allusions to artifacts, e.g. “bug 123456” or “the
Account::Add method”. which can be detected and



A A AN I S A A e A
Firraripedontons

Fesvrefatria R P
X rarepifins.

TAriadgpiianes |Theee:

rreferr Ftnie Breclfed

N e desepdes A rratatle fee | *

L ) Efrerrrves

Sorralen | Zoreer o lorcten
1

_-f-'a"fn"f(nu

Dt s Falvp -
Aderdiaalal

[y ey

— e

3 5

Y > & 4 .
|
|

ad ey ifon
Lor. e
- . i‘ ‘P_?m'rtlun
brrrae o preenirmmet of
e — w
¥ erri il brag

'_P_kfriwf:m.r

Figure 2. Detail from Priestly’s A
Specimen of a Chart of Biography
(1765) showing the lifespans of
notable people in classical antiquity

[4].

Java15{;ri ot -
.5
C++ ANSLISO

1998

ECMAScript ECMAScript
June 1997 ed3

Dec., 1989 ActionScript

July, 2000

Figure 3. Detail from Lévénez’ History
of Programming Languages (2004)
showing lifespans of and influences
between programming languages [6].

aiork br

work breakdoy
projec
ables

assun

Figure 4. Detail of a view in Microsoft
Project showing a Gantt chart with
inter-task dependencies.

represented as links. These are the three primary
sources of links in the current implementation of the
Bridge but others are possible. The artifacts and links
together form a graph (see Figure 1). The graph can
become huge: the Bridge index representing the bug,
check-in, and some email activity related to the
development of the Microsoft Windows operating
system over July 2005 through January 2006 contains
about five million artifacts and ten million links.

The second way the Bridge goes beyond a typical
search index is that each artifact and link records a
range of dates indicating its lifespan. Virtually all of the
source data that contributes to the Bridge index is
associated with discrete dates. Each email, check-in,
and bug edit is dated, and so the lifespans of artifacts
and links created to represent them encompass those
dates.

Links and lifespans can help to improve basic search
functionality when utilized as terms in the search
scoring function. They can also provide rich data for
browsing over artifacts and visualizing the relationships
among them.

Timelines, Lifespans, and Links

Visualizations of timelines comparing multiple lifespans
have a long history (see Figure 2), both as one-off
charts and in interactive systems [5]. Timelines allow
visual comparison of the lifespans of the items
represented. They allow the viewer to eliminate some
hypothesized relationships among the items, e.g.
Socrates couldn’t have met Aristotle because their
lifespans didn’t overlap, and ActionScript couldn’t have
inspired the initial development of ECMAScript because
EcMAScript came first. Organization by time provides a

natural framework for the sensemaking process, and
allows narrative to be used as a sensemaking tool.

It’s not unusual for lifespan timelines to be augmented
with links showing relationships among the items, such
as seminal influences among world religions, world
languages, art movements, or computer languages (see
Figure 3). Gantt charts used in project management are
sometimes augmented with links depicting
dependencies between tasks (see Figure 4). UML
sequence diagrams show communication between
computer processes over time. The addition of links
further informs the viewer about hypothesized
relationships among the items.

Proposed Browser

Inspired by these techniques, I’'m proposing a browser
on the Bridge index, which I'm calling Ligature, which
uses a timeline visualization of the lifespans of artifacts
and shows links among the artifacts (see Figure 5).

The timeline of artifact lifespans is straightforward,
echoing Figure 2. Given the size of the Bridge index
only a tiny portion can be shown at once. This suggests
that a browser is needed, i.e. an interactive system
that allows the user to manipulate a subset of artifacts
which will be shown.

The links are somewhat more complicated. Each link
has a lifespan so links too should be rendered as a
range of dates. This is unduly complicated, so a simpler
visual representation is desirable. Intuition suggests
that a link’s birth is much more salient than its death,
so we can render a link as a moment in time, i.e. as a
vertical line connecting two artifacts.



g U4
b

8, L;;r!..-n-- iis'uﬂ“ (L-‘{gJ
Eﬂ%u& A %“SMe&

CA_M'EA-—M

Ll

Mar 05 Aor 6% N\a-j 05

CoA::—lc_-&— ety

\;Qx- B,
Sopisaieiron.., Sla

Figure 5. A sketch of the proposed browser. Time flows from left to right as in traditional timelines. Each
artifact is shown as a labeled, horizontal line whose extent indicates its lifespan. Each link whose
endpoints are both visible is shown as a curved line whose endpoints align with the start of the link’s
lifespan and whose shape indicates the link’s direction. A link with only one visible endpoint is shown as

an open circle.

A link is shown as a line only if both artifacts it relates
are visible. If only one is visible then a mark may be
placed on it to indicate the link. Taken together the
marks indicate a pattern of activity for the artifact.

As mentioned before, links are directed. They could be
rendered as straight lines with arrows. The resulting
overlap, and the necessity for reading the arrowheads,
suggests that an alternative representation of link
direction may be desirable. By curving the links into an
S or reverse S shape, the direction and length of the

link becomes apparent—even if only a bit of it is visible.

Also the overlapping of links is reduced.

Browsing is the act of adding to or removing from the
set of selected artifacts. One way to do that is by
following links. It may be reasonable to “expand” an
artifact by showing all the artifacts linked to it.

The set of selected artifacts is not merely a transitory
thing. The hundreds of items in the RCA investigation
chronology are essentially equivalent to the selected
set, so it’s crucial that the set be persistent and that
the user can maintain multiple, independent sets.

To support the complete requirements of software
development RCA the browser must include the ability
to annotate artifacts and be integrated with a search
ul.

Conclusion

This is the barest sketch of a browser to support
sensemaking in root-cause analysis for software
development failures. Much remains to be done to build
and evaluate the system. If it evolves into a useful tool
for that task then it may be appropriate to apply it to
other sensemaking domains.

The Ligature browser, which combines node-and-link
graph rendering with lifespan timelines, may be
appropriate for other datasets that associate a date
with each link.

Bibliography

[1] Daniel Russell, Mark Stefik, Peter Pirolli, and Stuart
Card, “The Cost Structure of Sensemaking” in Proc.
INTERCHI '93. ACM Press (1993), pp. 269-276.

[2] Gina Venolia, “Bridges between Silos: A Microsoft
Research Project” (2005).
http://research.microsoft.com/~ginav/bridges-
between-silos.doc

[8] Soumen Chakrabarti, Mining the Web: Discovering
Knowledge from Hypertext Data. Morgan Kauffman
(2003), pp. 203-254.

[4] Joseph Priestley, A Chart of Biography. London
(1765).

[5] Catherine Plaisant, Brett Milash, Anne Rose, Seth

Widoff, and Ben Schneiderman, “LifeLines: Visualizing
Personal Histories” in Proc. CHI '96. ACM Press (1996),
pp. 221-227.

[6] Eric Lévénez, History of Programming Languages.
O'Reilly (2004).



