
DKAL: DISTRIBUTED-KNOWLEDGE AUTHORIZATION LANGUAGE

YURI GUREVICH AND ITAY NEEMAN

Abstract. DKAL is an expressive declarative authorization language based on existential
fixed-point logic. It was inspired by SecPAL but is considerably more expressive within the
same bounds of computational complexity. Distributed knowledge is the most conspicuous
distinguishing feature of DKAL; in particular it makes DKAL appropriate for user-centric
access control. Other distinguishing features include
• targeted communication that is beneficial with respect to efficiency, privacy, security

and liability aspects,
• information order of facts that makes computations more efficient,
• reflection that allows principals to speak about what has been said to them,
• stronger delegation.

Contents

1. Introduction 2
2. State of Knowledge 5
2.1. Substrate 6
2.2. Superstrate relations 8
3. House Rules and Authorization Policy 9
3.1. Assertions 10
3.2. House rules 12
3.3. Some consequences and discussion 14
3.4. Queries and computability 16
4. Examples 20
5. Answering basic queries 23
5.1. Downward closure under ensue 25
5.2. Basic queries 32
6. SecPAL-to-DKAL Translation 40
Appendix A. Logic 44
A.1. Existential first-order logic 44
A.2. Logic Programs 45
References 49

Comments are welcome.
1



2 YURI GUREVICH AND ITAY NEEMAN

1. Introduction

This paper takes its departure in SecPAL, a declarative authorization language developed
by Becker, Fournet, and Gordon [2]. SecPAL covered many access control scenarios and
substantially advanced the state of art in the area. We noticed that the right way to see
SecPAL is in the context of existential fixed-point logic. This provides a solid model-theoretic
foundation for SecPAL. Then we realized that the same foundation supports a far more
expressive language within the same bounds of computational complexity. The new and more
expressive authorization language is called Distributed Knowledge Authorization Language,
in short DKAL.

We tried to make this paper self-contained. In particular, we do not presume that the
reader is familiar with SecPAL, but the familiarity with SecPAL is beneficial in a few places
where we discuss SecPAL. We do presume that the reader is familiar with the basics of
first-order logic.

Existential fixed-point logic (EFPL). EFPL is obtained from first-order logic as follows.
First restrict first-order logic to its existential fragment and then extend the existential
fragment by means of the least fixed-point operator [3]. The least fixed-point operator
enables induction. For example, given a directed graph with edge relation E, a logic program

T (x, y)← E(x, y),

T (x, y)← T (x, z) ∧ E(z, y).

computes the transitive closure T of relation E. The given structure is the substrate, and the
relations computed by the program are superstrate relations. In our example, the directed
graph is the substrate, the edge relation E is a substrate relation, and the transitive closure
T is a superstrate relation. In the appendix, we recall EFPL in the form appropriate for this
article.

SecPAL in the EFPL context. View the SecPAL domain of constants as a multi-sort
structure. Extend this structure by means of verbphrases and facts produced by SecPAL
predicates and SecPAL constructs can-say, can-say0 and can-act-as. The extended structure is
the substrate, and SecPAL predicates as well as the three constructs are substrate functions.
SecPAL has three deduction rules, called (cond), (cansay) and (can act as), that “capture
the semantics of the language.” In the new framework, the (cond) rule is not needed as it is
absorbed into the EFPL. The other two rules together with the given assertions form a logic
program that computes the superstrate relation says over the substrate in the same way the
logic program above computes the relation T over a given directed graph with edge relation
E. Theorem A.4 gives the complexity of the computation. The SecPAL polynomial data
complexity theorem [2, Theorem 8.2] easily follows from Theorem A.4.

Distributed knowledge. Distributed knowledge is the most conspicuous distinguishing
feature of DKAL, Distributed Knowledge Authorization Language. In the final account,
authorization is about knowledge: a resource manager allows you to use his resource if he1

knows that you are authorized to use the resource. Accordingly the key relation of DKAL
is a relation knows between principals and facts. Because of the communication among the
principals, the knowledge relation is recursive.

1It is convenient to use anthropomorphic language in connection with principals. But of course principals
could be and often are inanimate.



DKAL 3

The substrate and superstrate of a state of knowledge. A state of knowledge splits
into a substrate and a superstrate. The substrate is a multi-sort structure. A part of its
universe consists of regular elements, notably principals. This part is determined by the
intended application. For example, some elements may denote buildings, offices, printers,
etc. The regular part supports various relations and functions. For example, there may be
a binary relation “p is a secretary of q” or a unary function manager(p). The rest of the
substrate universe is constructed from the regular elements by free constructors. Some of
the free constructors are application-independent. For example, there is a free constructors
said of type Principal× Fact→ Speech.

The superstrate consists of relations knows, knows0, saysto, says0-to, ensues. The super-
strate relations are given by a logic program that operates over the substrate. Relations knows
and knows0 are of type Principal×Fact. Relation knows0 reflects the internal (or initial, prior)
knowledge of principals. Relations saysto and says0-to are of type Principal×Fact×Principal.
Intuitively they are communications. A communication of the form p says0 foo to q is based
on the internal knowledge of p. The intended meaning of communications is discussed in
§2.1. Here, in the introduction, we speak more about the relations knows and saysto than
their counterparets knows0 and says0-to.

Remark 1.1 (Facts). The term fact is used in DKAL in an unorthodox way. Facts are
substrate elements. It is never a question whether a fact foo is a true fact. A typical
question of interest is whether a principal p knows foo.

Targeted communication. The concept of knowledge would not be very interesting if,
as in SecPAL, the same facts are communicated to all principals. But DKAL is different.
DKAL communication is targeted. Normally communication is restricted to some addressees,
presumably those who need to know the information. The house rule

(1) p knows q said foo← q says foo to p

relates a targeted communication q says foo to p with the knowledge of p. Note that, by
house rule 1, p does not learn foo; he learns only that q said foo. The principal p is the
intended audience for the communication. The audience restriction appears already in SAML
[9]. But in our case learning is more consequential. The knowledge of a principal includes
(a) his internal knowledge, (b) facts communicated to him by other principals, and (c) facts
that ensue (a) + (b).

SecPAL communication is via relation says, a principal says a fact. This is really a broad-
cast. It can be modeled in DKAL by says to all where all is a fresh principal variable.
Targeted communication is important for privacy and security. It allows us to cut out irrel-
evant knowledge of principals and thus make the system more efficient; a principal has to
deal only with communications addressed to him. There is also a liability issue. Consider
for example two states, S1 and S2 such that, in S1, an 18 year old can buy alcohol, whereas,
in S2, one needs to be at least 21 to buy alcohol. An agency A of state S1 issues Bob a
document addressed to S1 wine shops that allows the shops to sell wine to Bob. If Bob buys
alcohol from a wine shop in state S2, in violation of S2 law, agency A is not liable. The
document has not been addressed to wine shops in S2.

Open-world scenario and the user-centric approach. One obvious DKAL scenario is
a close security system of an organization, e.g. a large corporation. A distributed system
of principals is aided by a trusted DKAL engine that computes the queries on behalf of the



4 YURI GUREVICH AND ITAY NEEMAN

principals. But there is also another DKAL scenario, an open-world scenario of communicat-
ing entities. The entities could be of different sizes, from single users to large corporations.
Each entity has its own state of knowledge influenced by communications from the other
entities. Each entity has its own DKAL engine.

The user-centric access control is conducive to the open-world scenario. A user is a separate
entity. She may want to buy some products from a company A without giving the company
A her credit card information. To this end, she may engage a security company B that will
mediate between the user and the company A. The company B will not know what the
user buys exactly, and the company A will have no information about the credit card of the
user. In this little example we have already three distinct entities with separate states of
knowledge.

This paper is not restricted to the close-world scenario but it is restricted to one vocabulary
and one global state of knowledge. The communication among entities involves interesting
issues. If an entity α communicates a fact to a different entity β, then the fact should
be in the vocabulary of β. What exactly should α know about β? How does α get that
information? We intend to consider the open-world scenario more generally elsewhere.

The ensue relation. One innovation of DKAL is the information order on facts. If a fact x
is less informative or precisely as informative as a fact y, we say that x ensues y and we write
x . y. (We resurrect the transitive meaning of ensue: “To follow as a result or consequence;
to result from. Obs.” [10].) The house rule

(2) p knows x← x . y ∧ (p knows y)

reflects our intention behind the ensue relation: the knowledge of every principal is closed
under the information order. The introduction of the information order that is independent
of any particular principal, enhances efficiency. The (can say) and (can act as) rules of
SecPAL gave rise to some ensue clauses of DKAL. One of these clauses is

(3) p attribute . (q attribute) & (p canActAs q).

Remark 1.2 (Function &). One may wonder why we use function & rather than logical
conjunction ∧ in rule 3. This is related to the role that facts play in DKAL. Facts are not
formulas; they are substrate elements that don’t have truth values. The function & is the
conjunction of facts.

Delegation. Delegation is a strong side of SecPAL. DKAL is stronger yet in this respect.
DKAL has a powerful house rule

(4) q cansay r cansay x . (q cansay x) & (r exists)

Remark 1.3. The fact r exists may seem confusing: Are there non-existent principals? No,
there are no non-existen principals. But look at house rule 4 from the point of view of a
principal p of the house rule 2. If p knows q cansay x and wants to jump to the conclusion
q cansay r cansay x, he needs to know of r. This helps us to control the knowledge of p from
exploding. Rule 4 does not require that q necessarily knows of r. �

In Section 6, we give a natural translation of SecPAL into a “crippled” version of DKAL,
called Open DKAL, where in particular the audience restriction is removed. Under this
translation, every provable SecPAL formula is provable in Open DKAL. In addition, due to
the powerful delegation rule, some justifiable SecPAL formulas, unprovable in SecPAL, are



DKAL 5

provable in Open DKAL. Thus more justifiable requests expressible in SecPAL get positive
answers in DKAL.

Reflection. The Speaks-For [1] calculus enables one to speak about speeches which is im-
possible in SecPAL. For example, a Speaks-For formula may have the form A says B says x.
It may seem that reflection is not available in languages based on existential fixed-point logic
where superstrate relations cannot be nested. For example, one cannot have an assertion
A says (B says x to A) to C in DKAL. We get around this obstacle by means of a built-in
function said of type Principal × Fact → Speech. The missing assertion can be expressed
thus: A says (B said x) to C. And the function said can be nested. So we may have for
example assertions of the form A says (B said C said D said x) to E.

Worst-case complexity. A basic query has the form p knows t(v1, . . . , vk) or
p knows0 t(v1, . . . , vk) where p is a ground (that is with no variables) term of type Prin-
cipal, t is a term of type Fact, and the variables vi range over regular elements. In Section 5,
we construct an algorithm that works as follows over any fixed substrate: given an authoriza-
tion policy A and a basic query Q, the algorithm computes the complete answer to a Q under
a given authorization policy A. Here the complete answer is the set of tuples (b1, . . . , bk) of
regular elements of appropriate types such that the principal p knows the fact t(b1, . . . , bk)
under the authorization policy A. The runtime of the algorithm is bounded by a polynomial
in ` δ+w where

• ` is the length of the input, that is the length of A plus the length of Q,
• δ is the maximal depth to which said and said0 (possibly mixed) are nested in the

policy and query term, and
• w is the maximal number of variables in any assertion or in the query.

In the all-important case when δ and w are bounded, the runtime is polynomial in `. The
complexity proof is rather involved but one does not have to master the proof in order to
use the algorithm.

In §3.4, we introduce more general queries: first-order queries about the knowledge of a
single principal. We call them single-principal-centric queries. The basic-query algorithm
is generalized to work with arbitrary single-principal-centric queries. The time complexity
results remains valid.

Acknowledgements. Perceptive comments of Andreas Blass helped us greatly in debugging
the paper. Conversations with Slava Kavsan were educational. Close collaboration with M.
Paramasivam was most helpful.

2. State of Knowledge

We use a little bit of mathematical logic. All logic that we need in this paper is summarized
in the appendix.

A state of knowledge is a multi-sort first-order structure. It includes five relations

knows, knows0, saysto, saysto0, ensues

that are given to us implicitly, by means of a logic program composed of house rules and
assertions. The assertions form an authorization policy. The logic program operates on the
rest of the state of knowledge that we call the substrate. Formally, the substrate is the reduct



6 YURI GUREVICH AND ITAY NEEMAN

of the state of knowledge obtained by forgetting the five relations. The five relations are
superstrate relations.

We presume that the substrate is given to us in the sense that there is a feasible (and
certainly polynomial time) algorithm Eval for evaluating basic functions and relations of the
substrate. (We presume furthermore that substrate elements are given as strings. Eval takes
inputs of the form (F, b1, . . . , bj) where F is the name of a basic function or relation of the
substrate of arity j and where each ai is a substrate element. The arity j can be zero.)
In the rest of this section, we describe the substrate and then comment on the superstrate
relations.

2.1. Substrate. The vocabulary of the substrate contains only a finite number of sort sym-
bols, relation symbols, and function symbols of positive arity. However, it includes the
vocabulary of any authorization policy over the substrate and thus contains an infinite num-
ber of constants. For future reference, we define substrate constraints. A substrate constraint
is a quantifier-free formula in the substrate vocabulary.

The substrate may depend on application. Different applications may differ in what basic
functions and relations they need. For example, some applications may require a Time sort.
But there is an obligatory part of substrate, and we describe it here.

2.1.1. Regular and synthetic layers of the substrate. The substrate elements split
into two layers: regular and synthetic. Every substrate sort is a part of one of the layers;
accordingly we have regular sorts and synthetic sorts. There are exactly three synthetic sorts:
Attribute, Fact, and Speech. The regular sorts include at least the sort Principal.

Element of regular sorts regular elements, and elements of synthetic sorts are synthetic
elements. A basic substrate function is a synthetic function if it takes values of a synthetic
sort; otherwise it is a regular function. All basic substrate relations are regular relations.
Variables of regular sorts are regular variables, and variables of synthetic sorts are synthetic
variables. Compound terms f(t1, . . . , tj), where j may be zero, are regular terms if f is
regular, and are synthetic terms if f is synthetic.

Proviso 1. Every synthetic function is a free constructor and every synthetic element is
constructed, in a unique way, from regular elements by means of synthetic functions. �

The proviso allows us to assign to each substrate element b a unique ordered finite tree,
the semantic tree of b, satisfying the following conditions:

• If b is regular than semtree(b) consists of a single node that is b itself.
• Suppose that b is synthetic. Then b = F (b1, . . . , bn) for a some synthetic function
F and some elements b1, . . . , bn where F and the tuple (b1, . . . , bn) are unique. The
element b is the root of semtree(b). Under the root there are n subtrees in this order:
semtree(b1), . . . , semtree(bn).

2.1.2. Regular components. The substrate contains a binary relation a regcomp b that
holds if and only if element a is regular, element b is synthetic, and a is a leaf of semtree(b).
For example, consider a fact f = manager(Bob) can sing. The manager of Bob is a regular
component of f (but Bob is not). The relationship a regcomp b is semantic and holds or
fails independently of the syntactic presentation of a and b. If the manager of Bob happens
to be the husband of Alice then the husband of Alice is a regular component of f .



DKAL 7

We will need a syntactic counterpart of the regular component relation. For each term t
define a syntactic tree of t as follows:

• If term t is regular, then syntree(t) consists of a single node that is t itself.
• For a synthetic term t = F (t1, . . . , tn), the term t is the root of syntree(t). Under the

root there are n subtrees in this order: syntree(t1), . . . , syntree(tn).

A subterm s of t is a regular component of t if s is a leaf of syntree(t). For example, consider
a fact term t = manager(v) can sing. Then the subterm manager(v) is a regular component
of t (but v is not).

2.1.3. House constructors. Our framework requires the presence of the following synthetic
functions.

• Functions said and said0 of type Fact → Speech.
• Functions cansay and cansay0 of type Fact→ Attribute.
• A function fact of type (Principal× Speech) ∪ (Regular× Attribute)→ Fact.

Here Regular is the union of all regular sorts.
• A function & (pronounce “and”) of type Fact× Fact→ Fact.
• Functions canActAs and canSpeakAs of type Principal → Attribute.
• A constant exists of type Attribute.

Convention 2.1. Function symbols said and cansay can be written as said∞ and cansay∞
respectively. Thus saidd denotes said when d = ∞ and denotes said0 when d = 0, and
similarly for cansayd. In the case of functions saidd, cansayd, canActAs and canSpeakAs,
we write the function name of the house constructor followed by the argument, with no
parentheses. For example, canActAs Bob is the attribute obtained by applying the function
canActAs to the constant Bob. In the case of the function fact we generally omit the function
name altogether writing just Bob is a user rather than fact(Bob, is a user). �

Proviso 2. Every additional (to the house constructors) synthetic function takes attribute
values.

2.1.4. Discussion on house constructors. We give a few remarks on the intended mean-
ing of the house constructors. Formally, the meaning will be given by house rules below.

Spoken and attribute facts. Function fact has two subfunctions, one of the type Principal×
Speech → Fact, and the other of the type Regular× Attribute → Fact. The first generates
spoken facts, and the second attribute facts.

Internal knowledge and undelegatable authorization. The difference between p said foo
and p said0 foo is that the latter reflects the internal (initial, prior) knowledge of the principal
p. The difference between p cansay foo and p cansay0 foo is that the first allows p to delegate
the authority and the second does not.

Can internal knowledge be acquired? One may argue that a fact of the form
p said0 q said foo makes no sense as it reflects learned rather than internal knowledge of
the principal p. But we do not exclude such facts. The q-to-p communication might have
happened outside the official authorization policy so that the resulting knowledge of p is
internal as far as the system is concerned. See Example 4.5 in this connection.



8 YURI GUREVICH AND ITAY NEEMAN

Conjunction of facts. It may seem odd that & is a free constructor. Why distinguish
between f&g and g&f for example? The reason is to simplify the exposition. The oper-
ation & will be commutative, associative and idempotent but only modulo an appropriate
equivalence relation. Formally facts f&g and g&f are different.

Example 2.1. Here are examples of attributes, speeches and facts.

• canActAs Director is an attribute where Director is a principal. Syntactically it is an
attribute term where Director is a principal constant.
• Alice canActAs Director is a fact obtained by applying the function fact to the principal

Alice and the attribute canActAs Director. Syntactically it is an attribute fact term
with principal constants Alice and Director.
• canRead file is an attribute term where canRead is a function (more pedantically a

function name) of type File → Attribute and file is a variable of sort File. Here File
is a regular sort.
• is a trusted merchant is an attribute. Syntactically it is an attribute constant.
• p is a trusted merchant is a fact term obtained by applying the function fact to a

principal variable p and the attribute constant is a trusted merchant.
• said0 p is a trusted merchant is a speech term obtained by applying the function said0

to the fact term p is a trusted merchant.
• Alice said0 Bob is a trusted merchant is a spoken fact obtained by applying the function

fact to the principal Alice and the speech said0 Bob is a trusted merchant. Syntactically
it is a spoken-fact term.
• STS said Alice said0 Bob is a trusted merchant is a spoken fact obtained by applying

the function fact to the principal STS and the speech said Alice said0 Bob is a trusted
merchant. Syntactically it is a spoken-fact term.

2.2. Superstrate relations. In our approach, facts are state elements rather than propo-
sitions that can be true or false. One of the superstrate relations is knows of type
Principal × Fact. Intuitively it consists of pairs (p, x) so that fact x is known to princi-
pal p. We write p knows x rather than knows(p, x).

Principals may communicate parts of their knowledge to other principals. (We will
shortly introduce format for rules which the principals may write to manage their knowledge
and their communications.) For this we have another superstrate relation saysto of type
Principal× Fact× Principal. Formally saysto consists of triples (p, x, q) such that principal
p says fact x to principal q, but we write p says x to q rather than saysto(p, x, q).

Intentionally p says x to q is more than a simple communication. In DKAL (and in Sec-
PAL for that matter), saying is always an attempt to speak authoritatively. In other words,
p says x to q means that principal p makes an attempt to say fact x to principal q author-
itatively. Whether the attempt is successful depends on whether p has the authority to
promulgate x. In DKAL, the key property is the implication

(q knows p said x) ∧ (q knows p cansay x)→ q knows x.

(See Lemma 3.4.2.) If q knows that p has attempted to say x authoritatively and if q knows
that p has the authority to promulgate x then q knows the fact x.

We wish to keep track of whether a principal’s knowledge of a fact does or does not rely on
communications from other principals. For this we have a third superstrate relation knows0 of
type Principal×Fact. Formally it consists of pairs (p, x) such that fact x is known to principal



DKAL 9

p internally, independently of assertions made by other principals. We write p knows0 x
rather than knows0(p, x).

A principal may inform other principals not only that he knows a fact, but that he knows it
on the basis of his internal knowledge. For this purpose we have a fourth superstrate relation
saysto0 of type Principal×Fact×Principal. Formally it consists of triples (p, x, q) such that
principal p says to principal q that he knows fact x internally. We will put restrictions below
that prevent p from basing such assertions on anything other than (the given substrate and)
his internal knowledge. We write p says0 x to q rather than saysto0(p, x, q).

Formulas

p knows x, p says x to q

can be written in the form

p knows∞ x, p says∞ x to q,

respectively. Thus p knowsd x denotes p knows x when d =∞ and denotes p knows0 x when
d = 0, and similarly for p saysd x to q.

Our final superstrate relation ensues is of type Fact× Fact. Intuitively it consists of pairs
(f, g) such that f is less informative than g or precisely as informative as g, and we will say
what this means later on. We write x . y instead of ensues(x, y).

The superstrate relations satisfy various policy rules of the form:

P (t1, . . . , tr)← ϕ

where P is one of the superstrate relations and ϕ is an existential first-order formula in the
expanded vocabulary where negations are applied only to atomic formulas involving relations
of the substrate. Think of such a rule as a constraint on the superstrate relations over the
substrate. For any legitimate values of the free variables of the rule, if the body ϕ of the rule
is true then the head P (t1, . . . , tr) should be true as well.

For example, according to rule

q knows p said fact ← p says fact to q

the following holds for any p, q and any fact: if the triple (p, fact, q) satisfies relation saysto
then the pair (p, q said fact) satisfies knows.

The rules for our superstrate relations are taken up in the next section. It turns out that,
for every superstrate relation P , there is a unique set of tuples of elements of the substrate
such that the constraints imposed by the rules force these tuples to belong to P . That set
is the intended value of P . The intended values can be computed. We explain the details in
the appendix.

Remark 2.2. The restriction that the body is a formula of the existential first-order logic can
be relaxed but this issue will be taken up elsewhere.

3. House Rules and Authorization Policy

Recall logic programs of the logic appendix A. A logic program is a collection of logic
rules. Here we are interested in logic programs of a very particular kind. The rules split into
two categories: assertions and house rules. Assertions are placed by individual principals,
and the set of assertions is the current authorization policy.



10 YURI GUREVICH AND ITAY NEEMAN

3.1. Assertions. An assertion placed by a principal A has one of two forms. The first form
is

A knowsd x ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧
A knowsd t1 exists ∧ · · · ∧ A knowsd tk exists

(As1)

in short
A :d x ← x1, . . . , xn, con.

The second form is
A saysd x to p ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧

A knowsd t1 exists ∧ · · · ∧ A knowsd tk exists
(As2)

in short
A :d x to p ← x1, . . . , xn, con.

Here

• A is a ground principal term, d is zero or infinity (and the infinity subscript is usually
skipped);
• x, x1, . . . , xn are fact terms, and con is a substrate constraint, that is a quantifier-free

substrate formula;
• all variables are regular, and p is a variable of sort Principal;
• in (As1), the list t1, . . . , tk consists of (i) the variables in the assertion and (ii) the

non-ground regular components of x. (The sets (i) and (ii) may intersect but the list
has no repetitions.)
• in (As2), the list t1, . . . , tk is as above except that the principal variable p may not be

on the list (even though it occurs in the assertion and even if it is a regular component
of x).

The part of an assertion to the left of ← is the head of an assertion, and the part to the
right of ← is the body (or the premise).

Caution. It is convenient to write assertion in the short form. We do that even if n = 0
and there is no substrate constraint (and so we omit ← as well). In such a case the short
form shows no body but the full form body may have some conjuncts A knowsd ti exists.

This completes the description of the two assertion forms. We end the subsection with
several comments on these forms. Let R (an allusion to “rule”) be an assertion of the form
(As1) or (As2).

3.1.1. Assertion placement. R does not have to be literally placed by principal A. For
example, if A is an employee of a large organization, the assertion may be placed by his
manager or by the HR department. When we say that R is placed by A, we mean only
that R starts with A. For the purpose of exposition, it is convenient to pretend that the
assertions that start with a principal A are placed by A.

3.1.2. A-bound variables and regular components. For any variable v of R different
from p, the body of R contains the conjunct A knowsd v exists. In that sense, the variables
of R are A-bound.

Similarly, if t is a non-ground regular component of x and t differs from p then the body
of R contains the conjunct A knows t exists. In that sense t is A-bound. Thus R leads
to the knowledge by A, or to the communication from A to p, of a fact f such that every
regular component of f , with a possible exception of p, either is already known to A or else is



DKAL 11

explicitly named in R by means of a ground term. Notice that, in the case of communication,
the sender itself is explicitly named by the ground term A.

In the (As2) case, the body of R is not required to have a conjunct A knows p exists. A
may issue a proclamation to principals whose existence is not known to A. For example, an
assertion

A :d x to all ← x1, . . . , xn, con

where all is a “fresh” principal variable that does not appear in x, x1, . . . , xk, con addresses
all principals. But the set of addressees may be bound in one way or another. For example,
the substrate constraint may have a conjunct p = s where s is a term.

3.1.3. Regular elements that A knows of. We keep the number of regular elements that
a principal knows of (that is he knows that they exist) finite. That goal is behind our
requirement that, with a possible exception of p, the variables of R and the non-ground
regular components of x be A-bound. The requirement is then used to restrict the search
space for true instances of the body of R: only regular elements that A knows of need to be
tried as values for the variables of R.

Both requirements are necessary for decidability. Indeed, consider a substrate where the
regular layer includes arithmetic: natural numbers, constant zero, addition, multiplication
and the successor function S. By [8], there is no algorithm that, given an integer polynomial
G(u1, u2, u3, u4), determines whether G takes value 0. Let foo be a ground fact.

If we omit the requirement that the variables be A-bound in assertions, then any polyno-
mial G(u1, u2, u3, u4) gives rise to a legal assertion

A knows foo ← G(u1, . . . , u4) = zero.

Let AG be the authorization policy that consists of this one assertion. The decision problem
whether A knows foo under AG is undecidable.

If we require that the variables be A-bound but omit the requirement that the non-ground
regular components of x be A-bound then assertions

A knows zero exists

A knows S(u) exists ← A knowsd u exists,

A knows foo ← G(u1, . . . , u4) = zero ∧
A knows u1 exists ∧ · · · ∧ A knows u4 exists

are legal. Let AG be the authorization policy composed of these three assertions. Under
AG, A knows of all natural numbers, and the decision problem whether A knows foo is
undecidable. The trouble arises because of the second assertion where the role of x is played
by the fact term (S(u) exists); the non-ground regular component S(u) of the fact term is
not A-bound. In both counter-examples knows could be replaced with knows0.

3.1.4. Undesirable liberalization. One may be tempted to liberalize (As2) by replacing
A saysd x to p with A saysd x to t(p) where t(p) is a term whose only variable is p (without
requiring p to be A-bound). However it may be hard to decide which principles have the
form t(p), and the liberalization leads to undecidability.

Indeed, consider again a substrate where the regular layer includes arithmetic, and let
foo be a ground fact. Order quadruples of natural numbers first by the maximum and
then lexicographically. To simplify the exposition, we require this time that arithmetic



12 YURI GUREVICH AND ITAY NEEMAN

contain unary functions F1(n), F2(n), F3(n), F4(n) such that 〈F1(n), F2(n), F3(n), F4(n)〉 is
the nth quadruple. Suppose that every natural number represents a principal. Under the
liberalization in question, the assertion

A : foo to G((F1(p), F2(p), F3(p), F4(p))

is legal. Let AG be the authorization policy that consists of this one assertion. By the
first Say2know house rule (see the next subsection), principal zero knows that A said foo
if and only if G((F1(p), F2(p), F3(p), F4(p)) = 0 for some p which happens if and only if
G(u1, u2, u3, u4) takes value 0. Thus the decision problem whether zero knows (A said foo)
under AG is undecidable.

3.2. House rules. House rules reflect the inherent meaning of the house constructors. We
list our house rules together with short comments.

3.2.1. K0∞ house rule:

p knows x← p knows0 x.

Internal knowledge is knowledge.

3.2.2. Say2know house double rule:

p knows q saidd x← q saysd x to p.

Principal p knows whatever is said to him; he also knows whether the speech was based on
the internal knowledge of the speaker. The two Say2know rules, corresponding to the two
values of d, form a double rule. Note that p learns only the spoken fact q saidd x, not the
fact x itself.

3.2.3. K & house double rule:

p knowsd x&y ← (p knowsd x) ∧ (p knowsd y).

The converse will follow form the KMon and E& policy rules.

3.2.4. KMon house double rule:

p knowsd x← x . y ∧ (p knowsd y).

Knowledge is monotone with respect to the ensue relation.

The remaining house rules govern the ensue relation for which we use symbol .. The
intuition behind x . y is that x is less informative than y or precisely as informative as y.

3.2.5. EOrder house rules:

x . x,

x . z ← (x . y) ∧ (y . z).

Thus the ensue relation is a preorder relation on facts. These rules will be used so often
that, in many cases, they will be used implicitly.

Let x ∼ y abbreviate (x . y) ∧ (y . x). If x ∼ y, we say that facts x, y are equivalent.



DKAL 13

3.2.6. E & house rules:
x . x&y,

y . x&y,

x&y . z ← (x . z) ∧ ( y . z).

Thus x&y is the least upper bound for x and y in the preorder .. It follows that the
conjunction is commutative, associative and idempotent with respect to the equivalence
relation on facts.

Corollary 3.1. For any facts x, y, z in the state of knowledge, we have

x&y ∼ y&x

(x&y)&z ∼ x&(y&z)

x&x ∼ x.

3.2.7. Exists house rule:

q exists . x ← q regcomp x.

Here (q regcomp x) is a substrate constraint. To understand the Exists rule, consider an
instance of the rule where all variables have been instantiated so that q is a particular
principal and x is a particular fact. Then f = (q exists) is a particular fact, and facts do
not have truth values in DKAL. Think of the fact f in the context of the knowledge of some
principal p. The relevant question is not whether f is true but whether p knows this fact, in
other words whether p is aware of (the existence of) q. If p knows some fact x with regular
component q then p is aware of q. More precisely, given (p knowsd x) and (q regcomp x), the
Exists and KMon rules allows us to derive (p knowsd q exists).

3.2.8. Said0∞ house rule:
p said x . p said0 x.

Saying based on internal knowledge is saying. (See also Lemma 3.5.1 in this connection.)

3.2.9. SaidMon house double rule:

p saidd x . p saidd y ← x . y.

The function said is monotone with respect to the ensue relation.

3.2.10. Said & house double rule:

p saidd x&y . (p saidd x) & (p saidd y).

The converse follows from rules SaidMon and E&. Thus said and said0 distribute over &.

Corollary 3.2. p saidd x&y ∼ (p saidd x) & (p saidd y).

3.2.11. SelfQuote house double rule:

p saidd x . p saidd p saidd x.

3.2.12. Cansay0∞ house rule:

p cansay0 x . p cansay x.

The authority to promulgate a fact on the basis of internal knowledge follows from the
authority to promulgate the fact.



14 YURI GUREVICH AND ITAY NEEMAN

3.2.13. CansaySaid house double rule:

x . (p cansayd x) & (p saidd x).

A principal p with the authority to promulgate x, promulgates x by saying it; that double
rule is basically inheritted from SecPAL. Note that the subscript of said should match that
of cansay. For, consider the stronger rule x . (B cansay0 x) & (p said x) and suppose
A knows B cansay0 x so that B can cause A to know x by saying x. But B can bypass
the delegation restriction and delegate to C the ability to cause A to know x by placing
an assertion B : x to A ← B knows C said x. If C places an assertion C : x to B, we have
B says x to A by B’s assertion, hence we have A knows B said x by Say2know, and therefore
we have A knows x by CansaySaid.

3.2.14. Del house double rule:

p cansay q cansayd x . (p cansay x) & (q exists).

This is the delegation double rule. The authority to promulgate x includes the authority to
delegate the authority to promulgate x.

3.2.15. Del− house double rule:

p cansayd x . p cansayd p cansayd x.

3.2.16. Role house rules:

p attribute . (q attribute) & (p canActAs q),

q speech . (p speech) & (p canSpeakAs q).

Here attribute and speech are variables of types Attribute and Speech respectively. The
functions can act as and can speak as allow assigning roles. Notice that these house rules
transfer attributes and speeches in opposite directions. For example, if Bob can act as
director and if directors can hire then Bob can hire. If Bob can speak as director and Bob
says “Cathy is hired” then the director says “Cathy is hired.”

3.3. Some consequences and discussion. Let X be a substrate and A an authorization
policy. Further, let Π be the program that consists of the house rules and the assertions in
A. The state Π(X) is our state of knowledge.

3.3.1. Subrecursions.

Proposition 3.3. • The interpretation of ensues in the state of knowledge depends
only on the substrate and does not depend on the authorization policy.
• For any principal p, the set of facts f such that

p knows0 f holds in the state of knowledge

and the set of elements b such that

p knows0 b exists holds in the state of knowledge

depend only on the substrate and the assertions of the form (As1) placed by p himself.
• For any principal p, the set of pairs (q, f) such that p says0 f to q holds in the state

of knowledge depends only on the substrate and the assertions placed by p.

Proof. Just examine the rules and assertions that are used to compute ensues, knows0 and
saysto0. �



DKAL 15

3.3.2. Some simple consequences of house rules.

Lemma 3.4. The following formulas are universally true in the state of knowledge. The
subscript d could be 0 or ∞.

(1) (p knows x) ∧ (q regcomp x)→ p knows q exists.
(2) (p knows q cansayd x) ∧ (p knows q saidd x)→ p knows x.
(3) q2 cansayd x . (q1 cansayd x) & (q1 said q2 cansayd x),

(p knows q1 cansayd x) ∧ (p knows q1 said q2 cansayd x)→ p knows q2 cansayd x.
(4) p canActAs r . (p canActAs q)&(q canActAs r).

Proof. 1. By the Exists house rule, we have q exists . x. Now apply the appropriate
KMon house rule.

2. Suppose that p knows facts q cansayd x and q saidd x. By the appropriate K& house rule,
p knows the fact f = (q cansayd x)&(q saidd x). By the CansaySaid house rule, x . f . By
the KMon house rule, p knows x.

3. It suffices to prove only the first formula because the second formula follows from the
first by the appropriate KMon house rule. Let f = (q1 cansay x) & (q1 said q2 cansay x). By
1 and the appropriate Del house rule, we have q1 cansay q2 cansay x . f . Now apply the
appropriate CansaySaid house rule.

4. Apply the first Role house rule with attribute = canActAs r. �

3.3.3. Redundant rules. Consider extending the set of house rules with an additional rule
R. The rule R is redundant if the addition of R does not change the interpretation of knows
in any state. The reason for that definition is that our queries are all about knowledge.

Proposition 3.5. The following rules, where d ∈ {0,∞}, are redundant.

(1) p says x to q ← p says0 x to q.
(2) p saysd x&y to q ← (p saysd x to q) ∧ (p saysd y to q).
(3) p saysd x to q ← x . y ∧ (p saysd y to q).

Proof. We start with an obvious claim: For each d, there are no assertions with saystod in the
premise, and there is only one house rule where relation saystod occurs on the right, namely
the appropriate instance of the Say2know double rule.

1. By the claim above, with d =∞, there is only one way that p says z to q can be used: to
derive a fact q knows p said z. So it suffices to prove an implication

p says0 z to q → q knows p said z.

Suppose p says0 x to q. By Say2know, q knows p said0 x. By KMon and Said0∞,
q knows p said x.

2. By the claim above, it suffices to prove an implication

(p saysd x to q) ∧ (p saysd y to q)→ q knows p saidd x&y.

Suppose (p saysd x to q) and (p saysd y to q). Then (p saysd x to q) and
(p saysd y to q). By Say2know, q knows p saidd x and q knows p saidd y. By K&,
q knows

(
(p saidd x) & (p saidd y)

)
. By KMon and Said&, q knows p saidd x&y.

3. By the claim above, it suffices to prove an implication

x . y ∧ (p says y to q)→ q knows p said x.



16 YURI GUREVICH AND ITAY NEEMAN

Suppose x . y∧(p saysd y to q). By Says2know, q knows p saidd y. By KMon and SaidMon,
q knows p saidd x. �

3.3.4. Discussion about extending the set of house rules. One may want to require
that there is a least informative fact:

Vacuous . x.

Any principal that knows anything would know the Vacuous fact.
By Lemma 3.4.4, the canActAs relation happens to be transitive. We also have

r says foo ≤ (p says foo)&(p canSpeakAs q)&(q canSpeakAs r)

but the transitivity of canSpeakAs itself is not derivable from our house rules; also the
reflexivity of either relation (canActAs or canSpeakAs) is not derivable. One may want to
impose the transitivity of canSpeakAs and the reflexivity of canActAs and canSpeakAs. The
utility of that is debatable.

One may reasonably argue in favor of adding a Cartesian rule p knows p exists. But the
effect of the Cartesian rule is achieved by a single assertion

A: (p exists) to p

where A could be e.g. the system itself. By Say2know, it follows that p knows p exists for
every principal p.

We considered rules

(1) p cansayd x . p cansayd x&y,
(2) p cansayd x&y . (p cansayd x)&(p cansayd y)

as candidates for house rules but did not endorse them. Rule 1 asserts that cansayd is
monotone. But this is not necessarily so. For example a low-level administrator may be
allowed to give a package of rights to new hires but may not be allowed to pick and choose
which rights to give. Rule 2 looks more plausible but we have a counterexample for it as
well; see Example 4.7.

3.4. Queries and computability. Fix a substrate X, and let Υ be the vocabulary of X
extended with the superstrate relation names. A will denote an authorization policy over
X. For each A, let ΠA be the program that consists of the house rules and the assertions in
A.

First we define basic queries in the vocabulary Υ. Then we formulate two theorems; one
asserts the existence of an algorithm answering basic queries, and the other bounds the time
complexity of the answering algorithm; the answering algorithm itself will be presented in
Section 5 where the two theorems are also proved. Then we generalize the notion of basic
queries and prove that the two theorems remain valid.

3.4.1. Basic queries. A basic query is a formula p knowsd t(v1, . . . , vk) where:

• p is a ground principal term in the substrate vocabulary,
• v1, . . . , vk are variables of regular types,
• t is a fact term in the vocabulary Υ, with all its variables among v1, . . . , vk, and
• d is 0 or ∞.

Basic queries are evaluated over the state of knowledge ΠA(X) given by the fixed
substrate X with respect to an authorization policy A. The answer to a basic query



DKAL 17

Q = (p knowsd t(v1, . . . , vk)) under authorization policy A is denoted ansA(Q). It is the
set of tuples 〈b1, . . . , bk〉 of substrate elements such that the type of bi is that of vi and

ΠA(X) |=
(
p knowsd t(b1, . . . , bk) ∧ p knowsd b1 exists ∧ · · · ∧ p knowsd bk exists

)
.

The precise meaning of the displayed statement is this: the conjunction of the k + 1 atomic
formulas holds in the state of knowledge ΠA(X) under the assignment of elements b1, . . . , bk
to the variables v1, . . . , vk respectively.

If vi is a regular component of t(v1, . . . , vk) then the requirement p knowsd bi exists is
superfluous as it follows from p knowsd t(b1, . . . , bk) by the Exist house rule. But in general
the requirement is necessary. For example suppose that the substrate has a regular function
master that one way or another assigns principals to files and consider a term t(file) =
(master(file) cansay foo) where file is a regular variable and foo is a ground fact term. Term
master(file) is a regular component of t(file) but the variable file is not. And the answer to a
query p knows t(file) may be infeasibly large, even infinite, if we require that it contains all
files whose master can say foo, including those files whose existence is not known to p.

If k = 0, so that Q is ground, the answer set is either empty or contains one element,
namely the empty tuple. This is unnatural. The intended meaning of the answer is false in
the first case and true in the second. It would be reasonable but tedious to consider ground
queries separately. Instead we stipulate that, in the answers to ground queries, the empty
set represents false and the set that consists of the empty tuple represents true.

3.4.2. Computing basic queries. In Section 5, we present an algorithm for answering
basic queries. For the purpose of measuring time complexity we assume that there is an
algorithm Eval that evaluates the basic substrate functions and relations of X in constant
time; the assumption is discussed in §A.2. We also assume that our constants and variables
are strings in a fixed finite alphabet, so that all terms and formulas in the language of our
model are strings in the fixed finite alphabet. This allows us to speak about the length of
a term or formula. The length of an authorization policy is the sum of the lengths of its
assertions.

Theorem 3.6. The answer to any basic query is finite, and there is an algorithm that, given
a basic query Q and an authorization policy A, computes ansA(Q).

A particular algorithm for answering basic queries is constructed in Section 5.

Theorem 3.7. The time that our algorithm needs to answer a basic query Q under an

authorization policy A is bounded by a polynomial in
(
length(A) + length(Q)

)δ+w
, where

δ bounds the depth to which said and saidd (possibly mixed) are nested in the policy and
query term, and w bounds the number of free variables allowed in assertions and in the
query term. In particular, assuming a fixed bound on the nesting depth of saidd and on the
assertion and query width, the computation time of the answering algorithm is polynomial
in length(A) + length(Q).

The theorems are proved in Section 5.

3.4.3. Toward more general queries. There is an easy way to generalize basic queries in
a semantically sound way: view any first-order formula ϕ(v1, . . . , vk) of vocabulary Υ with
free variables v1, . . . , vk of regular types as a potential query with the answer

{〈b1, . . . , bk〉 : type(bi) = type(vi) for all i, and Π(X) |= ϕ(b1, . . . , bk)}.



18 YURI GUREVICH AND ITAY NEEMAN

But this approach is flawed as it leads to infeasible queries.
Consider for example a query v knows t where v is a variable and t has no variables and

thus evaluates to a fact in X. The answer to the query would be the list of all principals
that know the fact. If the fact is broadcasted then the list includes all principals in X which
may well be infinite. This explains why p is forbidden to have variables in the definition of
basic queries.

For another example, consider the negation ¬Q of a basic query Q = (p knows t(v)).
The answer to ¬Q would contain all elements of X of the type of v except for the finite
set ans(Q). Again the answer may be infinite. Notice that both, Q and its negation, are
about the knowledge (or the lack thereof) of p. In that sense they are p-centered. As far as
p-centered queries are concerned, it is natural to restrict attention to elements known to p.

3.4.4. Single-principal-centric queries. Let’s fix an arbitrary principal term p without
variables and restrict attention to p-centered queries, that is queries about the knowledge —
or the lack thereof — of p. A basic query q knowsd t(v1, . . . , vk) is p-centric if the term q is
literally the term p. A more general definition of p-centric queries is needed.

Remark 3.8. The requirement that term q is literally term p can be weakened to require only
that q evaluates to the same value as p in X. The current definition has the advantage of
being independent of the choice of substrate. �

For every regular type T , let

TA(p) = ansA
(
p knows (v exists)

)
where v is a variable of type T .

Any first-order formula ϕ(v1, . . . , vk) of vocabulary Υ with free variables v1, . . . , vk of regular
types can be treated as a p-centric query, with the p-bounded answer

{〈b1, . . . , bk〉 : every bi ∈ T iA(p), and Π(X) |= ϕ(b1, . . . , bk)}.

But this more refined approach is still flawed. There are two problems with it. One is that
the formula ϕ may have superstrate atomic subformulas, like q knows t where q is different
from p in the substrate X; in such cases ϕ is only artificially p-centric. The other problem is
that the quantified variables of the formula ϕ may range over their whole sorts; as a result
it may be infeasible to evaluate statements ϕ(b1, . . . , bk) even though every bi ∈ T iA(p). This
little analysis brings us to a definition of p-centric queries.

A p-centric query is a first-order formula ϕ in the vocabulary Υ such that every atomic
superstrate subformula of ϕ is of the form p knowsd t, every variable is of regular type, and
every quantification is of the form ∃v ∈ TA(p) or ∀v ∈ TA(p) where T is the type of v.
Alternatively, p-centric queries can be defined inductively.

• every substrate constraint is a p-centric query, and every p-centric basic query is a
p-centric query,
• if Q1, Q2 are p-centric queries then ¬Q1, Q1 ∧Q2 and Q1 ∨Q2 are p-centric queries,
• if Q(v) is a p-centric query with a free variable v of type T (and possibly other free

variables) then
(
∃v ∈ TA(p)

)
Q(v) and

(
∀v ∈ TA(p)

)
Q(v) are p-centric queries.

The answer to a p-centric query ϕ(v1, . . . , vk) under an authorization policy A is the p-
bounded answer mentioned above:

ansA(ϕ(v1, . . . , vk)) = {〈b1, . . . , bk〉 : every bi ∈ T iA(p), and Π(X) |= ϕ(b1, . . . , bk)}.



DKAL 19

In particular, a Boolean combination of substrate constraints and p-centric basic queries
is a p-centric query.

Lemma 3.9. For any p-centric queries Q and R, we have

ans(Q ∨R) = ans
(
¬
(
(¬Q) ∧ (¬R)

))
ans
(
∀v ∈ TA(p)

)
Q(v)) = ans

(
¬(
(
∃v ∈ TA(p)

)
¬Q(v)).

The proof is obvious.

3.4.5. Answering single-principal-centered queries. We start by defining an (answer)
envelope of a p-centric query under an authorization policy A. If Q(v1, . . . , vk) is a p-centric
query where vi is a variable of regular type T i then

env(Q(v1, . . . , vk)) = T 1
A(p)× · · · × T kA(p).

We have

ansA(Q(v1, . . . , vk)) ⊆ env(Q(v1, . . . , vk)),

ansA(¬Q(v1, . . . , vk)) = env(Q(v1, . . . , vk))− ansA(Q(v1, . . . , vk)).

Lemma 3.10. There is a polynomial time algorithm that,

• given a p-centric query Q and
• given the sets ansA(ϕ) and envA(ϕ) for every atomic subformula of Q,

computes ansA(Q) and envA(Q).

Proof. We explain how to compute ansA(Q) by induction on Q. It will be obvious that the
algorithm is polynomial time. Note that, every subquery R of Q is p-centric, and we are
given the sets ansA(ϕ) and envA(ϕ) for every atomic subformula of R. Due to the previous
lemma, we may assume for brevity that Q does not use disjunction and does not use the
universal quantifier. And, also for brevity, we omit the subscript A in the rest of the proof.

The case when Q is atomic is trivial. The case when Q = ¬R is obvious: ans(Q) =
env(R)− ans(R), and env(Q) = env(R).

Suppose that Q is a conjunction

R1(u1, . . . , uj, v1, . . . , vk) ∧R2(v1, . . . , vk, w1, . . . , w`)

where all j + k + ` variables are distinct. From the relational-database point
of view, ansA(Q1(u1, . . . , uj, v1, . . . , vk)) is a table with j + k columns. Similarly,
ansA(Q2(v1, . . . , vk, w1, . . . , w`)) is a table with k+` columns. The join of the two tables over
the k columns corresponding to the common variables v1, . . . , vk gives ansA(Q). Similarly
env(Q) is the join of env(R1) and env(R2).

Finally suppose that Q(v1, . . . , vk) =
(
∃v0 ∈ T (p)

)
R(v0, . . . , vk) where T is the type of v0.

In this case, ans(Q) is the projection

{(b1, . . . , bk) : (b0, b1, . . . , bk) ∈ ans(R) for some b0.}
Similarly env(Q) is a projection of env(R). �

Theorem 3.11. The answer to any single-principal-centric query is finite, and there is
an algorithm that, given a single-principal-centric query Q and an authorization policy Q,
computes ans(Q).



20 YURI GUREVICH AND ITAY NEEMAN

Proof. The desired algorithm is the algorithm of Lemma 3.10 that uses the substrate evalua-
tion algorithm Eval and the basic query evaluation algorithm of Theorem 3.6 to compute the
givens of Lemma 3.10. Let Q be a p-centric query, and ϕ(v1, . . . , vk) be an atomic subformula
of Q. Since

envA(ϕ(v1, . . . , vk)) = ansA(p knows (v1 exists & · · · vk exists)),

a single call to the basic query evaluation algorithm results in env(ϕ(v1, . . . , vk)). If
ϕ(v1, . . . , vk) is a basic query then another call to the basic query evaluation algorithm
results in ans(ϕ(v1, . . . , vk)). If ϕ(v1, . . . , vk) is a substrate constraint, we need a number of
calls to Eval. Since

ans(ϕ(v1, . . . , vk)) = {(b1, . . . , bk) ∈ env(ϕ(v1, . . . , vk)) : X |= ϕ(b1, . . . , bk)},
the number of calls is the cardinality of env(ϕ(v1, . . . , vk)). �

Theorem 3.12. The time bound of Theorem 3.7 remains valid for our algorithm for an-
swering single-principal-centric queries. In other words, Theorem 3.7 remains valid if “basic
query” is replaced with “single-principal-centric query.”

Proof. Let Q be a single-principal-centric query. The number of atomic subformulas of Q is
bounded by length(Q). According to the previous proof, the number of calls to the basic
query evaluation algorithm is O(length(Q)), and the number of calls to Eval is bounded by
the cardinality of the cumulative output of the calls to the basic query evaluation algorithm.
It remains to recall that every call to Eval costs us only 1 time unit. �

4. Examples

We give a few examples illustrating some features of DKAL. Later examples may build on
the previous ones. We say that a principal p knows of q if p knows the fact q exists.

Example 4.1 (Delegation). We make some assumptions about the substrate. There is a
sort File and a function owner: File → Principal that assigns to each file the owner of the
file. There is an attribute function canRead with one argument of type File, and the rights
to read files are controlled by a read-rights manager RR: a principal p is allowed to read file
f just in case that RR knows the fact p canRead f .

The policy is that each principal is allowed to read his files (that is the files that he owns),
is allowed to let others read his files, and is allowed to let them delegate the right:

1. RR: p canRead file ← owner(file) = p,
2. RR: p cansay r canRead file ← owner(file) = p.

Recall that we write assertions in an abbreviated form §3.1. Since this is our first example,
let us rewrite the two assertions in full.

1*. RR knows p canRead file ← owner(file) = p ∧
RR knows p exists ∧ RR knows file exists.

2*. RR knows p cansay r canRead file ← owner(file) = p ∧
RR knows p exists ∧ RR knows r exists ∧ RR knows file exists.

The ability of p to allow q to pass the reading right is implicit in 2 due to the Del house
rule in §3.2. Let us illustrate that on the following scenario. Alice lets Bob read her file
Alice/Poem but not to pass the right to others:



DKAL 21

3. Alice: (Bob canRead Alice/Poem) to RR.

She lets him pass along the right to read Alice/Recipe:

4. Alice: (Bob cansay r canRead Alice/Recipe) to RR.

Bob allows Cathy to read Alice/Recipe and notifies Alice about that:

5.1. Bob: (Cathy canRead Alice/Recipe) to RR,
5.2. Bob: (Cathy canRead Alice/Recipe) to Alice.

As a result, Cathy can read Alice/Recipe. The proof that Cathy can read Alice/Recipe is
routine and obvious but it may be instructive and so we provide it.

By 5.1 (and the appropriate Say2know house rule), we have

5.1′. RR knows Bob said Cathy canRead Alice/Recipe.

Similarly Alice knows Bob said Cathy canRead Alice/Recipe, which, by the Exist and KMon
house rules, gives us

5.2′. Alice knows Cathy exists.

By Lemma 3.4.1, RR knows of Bob, Cathy and the file Alice/Recipe. By 4 and 5.2′, with r
= Cathy, we have

4′. RR knows Alice said Bob cansay Cathy canRead Alice/Recipe,

which allows to conclude that RR knows of Alice. By 2, with p = Alice, r = Cathy and
file = Alice/Recipe (and taking into account that Alice is the owner of Alice/Recipe), we have

2′. RR knows Alice cansay Cathy canRead Alice/Recipe.

Apply the Del house rule (with p = Alice and q = Bob) to 2′ to infer

6. RR knows Alice cansay Bob cansay Cathy canRead Alice/Recipe.

From 6 and 4′, by Lemma 3.4.2, we have

7. RR knows Bob cansay Cathy canRead Alice/Recipe.

Similarly, from 7 and 5′, we have

8. RR knows Cathy canRead Alice/Recipe,

which means that Cathy indeed can read the file Alice/Recipe.

Example 4.2 (Post-authentication). When a user p connects from a remote system, he
shows up as a remote user q, for example “User number 24 on remote machine Zelda.”
There is an authentication server A1S, and the read-rights manager RR trusts A1S on
authentication but does not allow A1S to delegate authentication. If q is authenticated as
p, then the read-rights manager RR gives q all the rights of p. All this is exressed by assertions

RR: A1S cansay0 q authenticatedAs p,
RR: q canActAs p ← q authenticatedAs p,
RR: q canSpeakAs p ← q authenticatedAs p.

Example 4.3 (Targeted communication). There is a write-rights manager WR, with policy
similar to that of RR. WR too trusts A1S to do the authentications. But A1S requires only
the password authentication for reading, while it requires the password and the smartcard



22 YURI GUREVICH AND ITAY NEEMAN

authentication for writing. (This is a system security requirement.) Accordingly, A1S places
an assertion

A1S (q authenticatedAs p) to RR

when q authenticates as p using just a password, and A1S places assertion

A1S (q authenticatedAs p) to RR
A1S (q authenticatedAs p) to WR,

when q is authenticated as p using both a password and a smartcard.

Example 4.4 (Targeted communication). A company has regular review of employees.
The employee records are maintained by HR. A special Auditor sets up a review committee
for every employee p; the members of the committee can read the record of p. The employee
p should not know who is on his review committee. Accordingly HR places the assertion

HR: (q canRead record(p)) to RR ← Auditor said q is-on-review-committee-of p.

We presume that HR owns the records of the employees, and so, in accordance with the
assertion 2 in the Delegation Example above,

RR knows HR cansay q canRead record(p).

It’s important that Auditor’s assertions about the composition of the review committees
are targeted to HR and not broadcast to all. Otherwise the employee p would know who is
on his review committee.

Example 4.5 (Internal knowledge acquired a priori). A principal called Guest owns no files
but other principals may permit Guest to read some of their files. Employees of a partner
company Parcom are given guest privileges provided that they have a proper confirmation
from Parcom.

1. RR: p canActAs Guest ← Parcom said p is a Parcom employee.

The authentication server A1S is responsible for validating the confirmation. The server
cannot delegate the trust to others.

2. RR: A1S cansay0 Parcom said p is a Parcom employee.

Now suppose that A1S validated Parcom’s confirmation that Alice is a Parcom employee.
Note that the validation procedure is not visible to our system. As far as the system is
concerned, the server’s speech is based on its internal knowledge.

3. A1S:0 (Parcom said Alice is a Parcom employee) to RR.

From 3, by the appropriate Say2know rule, we have

3′. RR knows A1S said0 Parcom said Alice is a Parcom employee.

It follows that RR knows of Alice. This gives us an appropriate instance of assertion 2:

2′. RR knows A1S cansay0 Parcom said Alice is a Parcom employee.

From 2′ and 3′, by Lemma 3.4.2, we have

4. RR knows Parcom said Alice is a Parcom employee.

Finally, from 4 and (the appropriate instance of) 1, we have

5. RR knows Alice canActAs Guest.



DKAL 23

Example 4.6 (A user centric scenario). Alice finds an article on Charlie’s website. Alice
writes to Charlie, and he allows her to download the article. But Charlie does not have the
copyright. The article is published by the Best publishing house which has the copyright.
Alice writes to Best, and Best replies to her that Charlie can allow the download.

Alice uses DKAL to verify that she is allowed to download the article. She places the fol-
lowing assertions where OK stands for the fact that she has the right to download that article.

1. Alice: Best cansay OK.
2. Best: (Charlie cansay OK) to Alice
3. Charlie: OK to Alice.

It follows that Alice knows OK (and thus can go ahead and download the article). The key
in the derivation is an application of the Del house rule:

Best cansay Charlie cansay OK . (Best cansay OK) & (Charlie exists).

By 1, Alice knows that Best can say OK, and of course she knows of Charlie (e.g. from 3).
So she knows that Best can say that Charlie can say OK. Taking into account assertion 2,
she knows that Charlie can say OK. Taking into account assertion 3, she knows OK.

Example 4.7 ( cansay x&y 6. ( cansay x) & ( cansay y)). A composer Alice produced two
CD’s, which we imaginatively call CD1 and CD2, to be sold by shops. A shop pays a fee for
the right to sell a CD. (The shop also pays the composer a portion of the proceeds but that
is irrelevant for us here.) Accordingly an attribute canSell(v1, v2) takes two arguments: a
CD and the fee amount. Bob is Alice’s agent. Alice could couple the two CDs by asserting
only that Bob

1. cansay
(
shop canSell(CD1,$100) & shop canSell(CD2,$100)

)
.

Then Bob would be unable allow a shop to sell just one of the two CDs. But Alice does not
want the CDs to be coupled:

2. Alice: Bob cansay (shop canSell(CD1,$100)) &
Bob cansay (shop canSell(CD2,$100))

Bob may be flexible if he wants. He can allow a shop to sell only CD1 for example. All he
needs to do is to say to Alice that a shop can sell CD1 for a $100 fee.

Now, Bob wants to delegate sell authorization to Charlie. He should not and does not
have an option to couple the two CDs and delegate to Charlie only the right 1. But the
rejected house rule

cansay x&y . ( cansay x) & ( cansay y)

would give him just such an option. Indeed, using the rejected rule, one can derive

3. Alice knows Bob cansay
(
shop canSell(CD1,$100) & shop canSell(CD2,$100)

)
.

from 2. Now, using Del, Bob can delegate the right 1 to Charlie.

5. Answering basic queries

In this section, we describe an algorithm for answering basic queries. As in the appendix,
substructures are in general partial.

Let X be a substrate structure, and let A be an authorization policy. Fix a basic query
Q = (a knowsd t(v1, . . . , vk)) where a is a ground principal term and t is a term of type
Fact with the k variables as shown. The basic idea behind the algorithm is quite simple:



24 YURI GUREVICH AND ITAY NEEMAN

isolate a finite (partial) substructure X̊ of the substrate X which is rich enough so that the

computation of the answer can be done by means of a logic program Π̄ over X̊. As X̊ is
finite, the fixed point for Π̄ can be computed, see Theorem A.4.

The finite substructure X̊ must satisfy the following conditions.

(1) Consider any assertion in A. It has the form (As1) or (As2) in §3.1. X̊ contains the
principal ValX(A) that placed the assertion as well as the values in X of all ground

regular components of the fact x in the head of the assertion. In addition, X̊ contains
the value of the term a in the query Q.

(2) Consider any term τ that occurs in A or occurs in Q or has the form A saidd x such
that A has an assertion with the head A saysd x to p. Consider any assignment ξ of
values (of appropriate types) obtained in 1 to the variables, if any, of τ . The value

of τ in X under the assignment ξ belongs to X̊ or is a conjuction of elements in X̊.
(3) The restriction of the ensue relation to X̊ can be computed over X̊.

We can satisfy the first two conditions by putting the relevant elements into X̊. Since A
is finite, the resulting set X̊ is finite too.

Condition 3 is more difficult to satisfy. We cannot close X̊ under ensue consequences; that
may lead to an infinite set due to the Del rule. And we cannot ignore consequences which
do not belong to X̊ as the following example demonstrates. Suppose that facts

(a) p cansay r cansay foo,
(b) p said q cansay foo, and
(c) q cansay r cansay foo,

belong to X̊ but facts

(d) p cansay q cansay r cansay foo, and
(e) p said q cansay r cansay foo

do not. Note that (d) ensues (a) by Del, (e) ensues (b) by Del and SaidMon, and (c) ensues

(d) & (e) by CansaySaid. Hence (c) ensues (a) & (b), which may not be provable over X̊
that does not contain (d) and (e).

Our solution is not to increase X̊, as this may force us to deal with an infinite model, but
add a rule to the ensue program used over X̊ that brings the missing ensue relationships
into the fixed point. The rule we add is identified in §5.1 as (P-Superfluous). The example
described above is taken care of by the third subrule of (P-Superfluous). The other two
subrules take care of similar but simpler problems, relieving us of the need to ensure that p
said f belongs to X̊ whenever p cansay f belongs to X̊, and vice versa.

It turns out that the addition of the superfluous rule allows computing the restriction of
the ensue relation to X̊ using a logic program over X̊. We prove this in §5.1. Then in §5.2
we show how to use this in computing the answer to a basic query. Our algorithm proceeds
as follows: First, compute the relevant finite substrate X̊. Second, create a logic program
Π̄ over X̊ that incorporates all the assertions of the given policy, the house rules Say2know
and K0∞, and the knowledge consequences of the ensue house rules (for example the rules

p knows q said foo ← p knows q said0 foo for all facts foo in X̊; these rules are the knowledge
consequences of the ensue rule Said0∞), including also the knowledge consequences of the
superfluous rule. Π̄ does not include K&; we separate each fact into a conjunction of facts
that we call canonical, and compute only knowledge of canonical facts. Third, compute the



DKAL 25

fixed point Π̄(X̊). This is typically the most intensive part computationally. It can be done

using Theorem A.4, as X̊ is finite. Fourth, go over all instances of the query term using
regular elements in X̊ to instantiate its variables, and check for each instance whether all
of its canonical components hold in Π̄(X̊). If yes, then write down the variable assignment
leading to this instance of the query term. We prove that the set of these variable assignments
is the answer to the basic query.

5.1. Downward closure under ensue. The results here will allow us to compute enough
of the ensue relation to answer queries about knowledge in a superstrate for a given autho-
rization policy.

A fact (that is a fact term) is canonical if it has the form p1 saidd1 p2 saidd2 . . . pk saiddk

q attribute. The number k, which may be zero, is the quotation depth of the fact. We refer
to p1 saidd1 . . . pi saiddi

for i ≤ k as prefixes of the fact, and in general refer to sequences of
the form p1 saidd1 . . . pi saiddi

as prefixes.

Claim 5.1. Every fact f is equivalent to a conjunction of canonical facts.

Proof. Facts are produced only by means of the function fact of type
(
(Principal×Speech)∪

(Regular × Attribute)
)
→ Fact and the function & of type Fact × Fact → Fact. The proof

is by induction on fact f . The only non-trivial case is when f is of the form p saidd g and g
is a conjunction of canonical facts gi. By Corollary 3.2, said and said0 distribute over &. So
f is equivalent to the conjuction of canonical facts p saidd gi. �

Note that the proof is constructive and gives rise to a simple procedure for converting a
given fact f into an equivalent conjunction of canonical facts.

In the rest of this subsection we describe an algorithm to decide whether a canonical fact
y ensues the conjunction &Z of a set Z of canonical facts. Fix a set Z of canonical facts.

We begin by describing rules which allow us to deduce all canonical facts that ensue
&Z. The rules paraphrase the ensue house rules in §3.2, with two changes: we absorb the
SaidMon double rule into the other rules; and we distribute saidd over conjunctions, pulling
conjunctions out whenever possible, so that the rules deal only with canonical facts. The
list of rules is as follows. In the list, pref ranges over prefixes, f and f1, . . . , fn range over
facts, and p and q range over regular elements (of just the type Principal when appearing
before a speech).

(P-Exists) If q regcomp f , then pref q exists . pref f .

(P-Said0∞) pref p said f . pref p said0 f .

(P-SelfQuote) pref p saidd f . pref p saidd p saidd f .

(P-Cansay0∞) pref p cansay0 f . pref p cansay f .

(P-CansaySaid) For each f ∈ {f1, . . . , fn}: pref f . &{pref p cansayd f1& . . .&fn, pref p
saidd f1, . . . , pref p saidd fn}.

(P-Del) pref p cansay q cansayd f . &{pref p cansay f , pref q exists}.

(P-Del−) pref p cansayd f . pref p cansayd p cansayd f .



26 YURI GUREVICH AND ITAY NEEMAN

(P-Role) pref p attribute . &{pref q attribute, pref p canActAs q}. Similarly, pref q speech .
&{pref p speech, pref p canSpeakAs q}.
Definition 5.2. An ensue-deduction from a setX of canonical facts is a sequence of canonical
facts x1, . . . , xr so that for each i ≤ r, either xi ∈ X, or xi . &{xj1 , . . . , xjn} is an instance
of one of the above rules, with j1, . . . , jn < i. An ensue-deduction of y is an ensue-deduction
x1, . . . , xr so that xr = y. And y is ensue-deducible from X if there is an ensue-deduction of
y from X.

In this subsection we only deal with ensue-deductions, and so we will refer to them simply
as deductions.

Lemma 5.3. A canonical fact y ensues &Z (according to the ensue house rules in Section 3)
if and only if y is deducible from Z (according to the previous definition).

Proof. The right-to-left direction is straightforward by induction on the length of the given
deduction. We prove the left-to-right direction.

By the previous claim, any fact y is equivalent to a conjuction of canonical facts, the
canonical components of y. Let R be the following relation on facts: y R z if and only if
every canonical component of y is deducible from the set of canonical components of z. It
suffices to show that R is a fixed point for the ensue house rules of Section 3. Indeed suppose
that R is a fixed point. Since . is the least fixed point, it is a subset of R. If a canonical
fact y . &Z then y R &Z and therefore y is deducible from Z.
R is a fixed point for EOrder since deductions can be composed. R is by definition

a fixed point for E& and for Said&. Each of the remaining ensue rules except Said-
Mon have exact counterparts among the (P) rules, and from this it follows directly that
R is a fixed point for these rules. Thus it remains to show that R is a fixed point for
SaidMon. To this end, we assume that y R z and we show that p saidd y R p saidd z.
Let y1, . . . , ym be the canonical components of y, and z1, . . . , zn be the canonical compo-
nents of z. Then p saidd y1, . . . , p saidd ym are the canonical components of p saidd y, and
p saidd z1, . . . , p saidd zn are the canonical components of p saidd z. We have to show that
every p saidd yi is deducible from {p saidd z1, . . . , saidd zn}. By the assumption, there is a
deduction x1, . . . , xr of yi from {z1, . . . , zn}. Then the sequence p saidd x1, . . . , p saidd xr is
a deduction of p saidd yi from {p saidd z1, . . . , saidd zn}. �

Definition 5.4. A deduction is simple if it only uses the rules (P-Del) and (P-Cansay0∞).
And y is simply deducible from X if it can be obtained from X by a simple deduction.

Definition 5.5. A term x is an H-germ for a term y if either x = y or else

• x has the form p cansay f ,
• y has the form p cansayd0 q1 cansayd1 . . . qn cansaydn f , and
• q1, . . . , qn ∈ H.

In the case x 6= y, we say that x is a strict germ for y and that q1, . . . , qn (and no other
principals) are essential for obtaining y from x.

We write pref H exist to abbreviate the set of facts pref q exists, q ∈ H.

Claim 5.6. A fact pref y is simply deducible from a set X of facts if and only if there exist
a fact x and a set H so that

• x is an H-germ for y, and



DKAL 27

• {pref x, pref H exist} ⊂ X.

Proof. The right-to-left direction is immediate. For the left-to-right direction, let X ′ be the
set of facts pref y such that there exist x and H satisfying the two conditions. X ∪ X ′
contains all the facts in X and is closed under the rules (P-Del) and (P-Cansay0∞). �

We intend to show that if y is deducible from Z, then there is a deduction of y that can
be broken into two parts: a “conservative” part which avoids uses of (P-Del), followed by
a simple part. But first we define exactly what we mean by a conservative deduction. We
introduce the following superfluous rule, superfluous in the sense that it is a consequence
of the rules given above, and therefore does not produce new deducible facts. The point is
that the superfluous rule compensates, at least partly, for the loss of (P-Del) in conservative
deductions.
(P-Superfluous) consists of the following subrules.

(1) If x is an H-germ for p cansayd f , then pref f . &{pref p saidd f , pref x, pref H
exist}.

(2) If xi is an H-germ for fi, then pref fi . &{pref p cansayd f1& . . .&fn, pref p saidd
x1, . . . , pref p saidd xn, pref p saidd H exist}.

(3) If q cansay ḡ is a R-germ for q cansay x̄, then pref q cansay x̄ . &{pref p cansay x̄,
pref p saidd q cansay ḡ, pref p saidd R exist}.

It is easy to check that the first two subrules follow from the previous rules. For example
in the case of subrule (1), pref p cansayd f ensues (pref x) & (pref H exist) by Claim 5.6, and
pref f ensues (pref p cansayd f) & (pref p saidd f) by (P-CansaySaid). The case of subrule
(2) is similar. As for subrule (3):

(1) pref p saidd q cansay x̄ ensues (pref p saidd q cansay ḡ) & (pref p saidd R exist), by
Claim 5.6.

(2) pref p cansayd q cansay x̄ ensues (pref p cansay x̄) & (pref q exists) by (P-Cansay0∞)
and (P-Del). (Note that pref q exists ensues pref p saidd q cansay ḡ.)

(3) Finally, pref q cansay x̄ ensues the facts obtained in (1) and (2), by (P-CansaySaid).

Definition 5.7. A conservative deduction is one which uses any of the (P) rules, including
(P-Superfluous), except (P-Del). x is conservatively deducible from Z if it can be obtained
in a conservative deduction from Z.

Definition 5.8. A deduction of y from Z is normal if it has the following form: A conser-
vative deduction from Z of all facts in a set X, followed by a simple deduction of y from X.
y is normally deducible from Z if there is a normal deduction of y from Z.

Remark 5.9. By Claim 5.6, a fact pref y is normally deducible from Z if and only if there is
a fact x and a set H so that:

• pref x and pref H exist are conservatively deducible from Z, and
• x is an H-germ for y.

The lemmas below show that: (a) there is an algorithm that determines whether y is
simply deducible from X; (b) there are only finitely many facts that can be obtained from Z
by conservative deductions, with a computable from Z bound on the number of these facts,
and hence there is an algorithm that produces them all; (c) every fact which is deducible
from Z is normally deducible from Z. The combination of these results lets us compute



28 YURI GUREVICH AND ITAY NEEMAN

ensue, as we shall see below. It is in part (c) that we require the superfluous rule, as a
partial replacement for the loss of (P-Del) in conservative deductions. Notice that (P-Del)
must be given up in order for (b) to hold, since its iterations clearly produce infinitely many
facts.

Lemma 5.10. There is an algorithm that, given y and X, determines whether y is simply
deducible from X.

Proof. Immediate from Claim 5.6. �

Lemma 5.11. Suppose that y ensues &Z. Then y is normally deducible from Z.

The converse of Lemma 5.11 is clear, as a normal deduction of y is a deduction of y.

Proof of Lemma 5.11. Suppose y ensues &Z. Then there is a deduction x1, . . . , xr of y from
Z using the (P) rules other than (P-Superfluous). We work by induction on the length r of
this deduction.

If y is an element of Z then the lemma holds trivially. Suppose then that y 6∈ Z and in
particular r > 1.

We consider cases, depending on the rule used to deduce y = xr from the previous facts
in the list.

Suppose to begin with that y is obtained through a use of (P-Del), on facts x and pref q
exists say. By induction there are normal deductions of x and of pref q exists. The normal
deduction of pref q exists must be conservative, in other words its simple part must be trivial,
since a non-trivial simple part would result in a fact of the form pref q cansayd f , not pref
q exists. Combining this conservative deduction with the normal deduction of x it follows
that there is a normal deduction D of x whose conservative part deduces also pref q exists.
Appending a use of (P-Del) to the simple deduction ending D we obtain a normal deduction
of y.

A similar (but even simpler) argument handles the case that y is obtained through a use
of (P-Cansay0∞), as (P-Cansay0∞), like (P-Del) above, is allowed in simple deductions.

Suppose next that y is obtained through a use of (P-Said0∞). Then y has the form pref p
said f , and by induction there is a normal deduction of pref p said0 f . By Remark 5.9 there
is a conservative deduction of facts pref p said0 f̄ and pref p said0 H exist, where f̄ is an
H-germ of f . Appending uses of rule (P-Said0∞) to this conservative deduction we see that
there is a conservative deduction of the facts pref p said f̄ and pref p said H exist. (Note the
change from said0 to said.) By Remark 5.9 it follows that pref p said f is normally deducible.

An argument similar to the above handles the cases of the rules (P-SelfQuote) and (P-
Role). The argument is trivial in many instances. For example the argument for the attribute
case of (P-Role) is trivial unless the attribute begins with cansay.

Suppose that y is obtained through a use of (P-Del−). So y has the form pref p cansayd f ,
and by induction pref p cansayd p cansayd f is normally deducible, using a deduction D say.
If the simple part of D does not use (P-Del), then pref p cansayd p cansayd f is conservatively
deducible, and appending a use of (P-Del−) to the conservative deduction we see that y too
is conservatively deducible and therefore certainly normally deducible. If the simple part
does use (P-Del), then pref p cansay f must occur in the simple part of D, and so this simple
part can be modified to produce pref p cansayd f .

Suppose that y is obtained through a use of (P-Exists). Then y has the form pref q exists,
and there is f so that y regcomp f and pref f is normally deducible. By Remark 5.9 there is



DKAL 29

a set H and an H-germ g for f so that pref g and pref H exist are conservatively deducible.
Since q is a regular component of f , it must either be a regular component of g or belong to
H. Either way it follows that pref q exists is conservatively deducible.

We reach now the final, and main, case, the case that y is obtained through a use of
(P-CansaySaid). It is in this case that we use (P-Superfluous). The case consists of three
subcases.

First, suppose that (P-CansaySaid) is used with n ≥ 2. By induction, and noting that a
fact of the form pref p cansayd f1& . . .&fn for n ≥ 2 can only be simply deduced from itself,
we see that y has the form pref fi, and there is a conservative deduction of facts:

• pref p cansayd f1& . . .&fn,
• pref p saidd gi for i ≤ n,
• pref p saidd H exist

where for each j ≤ n, gj is an H-germ for fj. Appending a use of subrule (2) of (P-
superfluous) to this conservative deduction, we see that y = pref fi is conservatively de-
ducible from Z.

Suppose next that (P-CansaySaid) is used with n = 1. So y has the form pref f , and both
of pref p cansayd f and pref p saidd f appear among x1, . . . , xr−1. By induction, there is a
conservative deduction of facts:

(i) pref p saidd g,
(ii) pref p saidd R exist,

(iii) pref x, and
(iv) pref S exist,

where g is an R-germ for f , and x is an S-germ for p cansayd f .
If g is equal to f , then there is a conservative deduction of pref p saidd f , and from this,

conditions (iii) and (iv) above, and subrule (1) of (P-Superfluous), it follows that there is a
conservative deduction of y = pref f .

Similarly, if x is equal to p cansayd f , then there is a conservative deduction of pref p
cansayd f , and from this, conditions (i) and (ii) above, and subrule (2) of (P-Superfluous),
it follows that there is a conservative deduction of y = pref f .

We may therefore assume that x is a strict S-germ for p cansayd f , and g is a strict R-germ
for f . It follows from this that p cansayd f and f must have the forms

p cansayd f = p cansayd q1 cansayd1 . . . . . . ql cansaydl
x̄, and

f = q1 cansayd1 . . . . . . qk cansaydk
ḡ,

where,

(v) q1, . . . , ql ∈ S and x (a strict S-germ for p cansayd f) has the form p cansay x̄,
(vi) q2, . . . , qk ∈ R and g (a strict R-germ for f) has the form q1 cansay ḡ.

In these conditions l ≥ 0 and k ≥ 1. But we may assume that l too is at least 1, since
otherwise p cansayd f would be equal to p cansayd x̄, hence it would be conservatively
deducible from x, and an argument using subrule (2) of (P-Superfluous), similar to one
given above, would establish that y is conservatively deducible.

Note that the forms of p cansayd f and f are such that:

(vii) q1 cansayd1 . . . ql cansaydl
x̄ = q1 cansayd1 . . . qk cansaydk

ḡ. (Both are equal to f .)



30 YURI GUREVICH AND ITAY NEEMAN

Recall that we are handling the final case in the proof of Lemma 5.11, and our goal is to
establish that y = pref f is normally deducible. It is enough to establish that either one of

pref q1 cansay x̄,
pref q1 cansay ḡ

is conservatively deducible. In the case of the former it would follow that

pref f = pref q1 cansayd1 . . . . . . ql cansaydl
x̄

is normally deducible since q2, . . . , ql ∈ S and pref S exist is conservatively deducible by (iv).
In the case of the latter it would follow that

pref f = pref q1 cansayd1 . . . . . . qk cansaydk
ḡ

is normally deducible since q2, . . . , qk ∈ R and pref R exist is conservatively deducible by (ii),
rule (P-Exists), and the fact that q regcomp p saidd q exists.

We consider two cases, depending on whether l ≤ k or k < l. We will show that pref q1

cansay x̄ is conservatively deducible in the first case, and that pref q1 cansay ḡ is conservatively
deducible in the second.

Suppose l ≤ k. Condition (vii) can then be presented visually as stating that the following
two facts are equal:

q1 cansayd1 . . . . . . ql cansaydl
x̄

q1 cansayd1 . . . . . . ql cansaydl
ql+1 cansaydl+1

. . . . . . qk cansaydk
ḡ.

It is clear then that x̄ is equal to ql+1 cansaydl+1
. . . . . . qk cansaydk

ḡ, and it follows from
this that:

• g = q1 cansay ḡ is an R-germ for q1 cansay x̄.

Collecting from the conditions above we see in addition that:

• pref p saidd q1 cansay ḡ is conservatively deducible, by (i).
• pref p cansay x̄ is conservatively deducible, by (iii) and the fact that x = p cansay x̄.
• pref p saidd R exist is conservatively deducible, by (ii).

We are thus in a position to apply subrule (3) of (P-Superfluous) to conclude, as promised,
that pref q1 cansay x̄ is conservatively deducible.

Suppose k < l. Condition (vii) can in this case be presented visually as stating that the
following two facts are equal:

q1 cansayd1 . . . . . . qk cansaydk
qk+1 cansaydk+1

. . . . . . ql cansaydl
x̄

q1 cansayd1 . . . . . . qk cansaydk
ḡ.

It is clear then that ḡ is equal to qk+1 cansaydk+1
. . . . . . ql cansaydl

x̄. It follows from this
that p cansay x̄ is an S-germ for p cansay ḡ, and therefore also an S-germ for p cansayd q1

cansay ḡ. (Notice that q1, qk+1, . . . , ql all belong to S, by (v).) In other words:

• x is an S-germ for p cansayd g.

Collecting from the conditions above we see in addition that:

• pref p saidd g is conservatively deducible, by (i).
• pref x is conservatively deducible, by (iii).
• pref S exist is conservatively deducible, by (iv).



DKAL 31

We are thus in a position to apply subrule (1) of (P-Superfluous) to conclude that pref g
is conservatively deducible. In other words pref q1 cansay ḡ is conservatively deducible, as
promised. This completes the proof of Lemma 5.11. �

Let B be the set of all regular components of the facts in Z. A B-perturbation of a
canonical fact x = p1 saidd1 p2 saidd2 · · · pk saiddk

pk+1 attribute is a fact of the form y = p∗1
saidd∗1 p

∗
2 saidd∗2 · · · p

∗
k saidd∗k p

∗
k+1 attribute∗ where p∗i ∈ B, d∗i ∈ {0,∞}, and attribute∗ is

either equal to attribute, or, if attribute starts with cansay, it may be obtained from attribute
by changing the initial cansay to cansay0.

Remark 5.12. The number of B-perturbations of a fact x of quotation depth k is at most
(2|B|)k+1.

Definition 5.13. Let x be a canonical fact. The contractions of x are obtained through the
following rules:

(1) x itself is a contraction of x.
(2) If pref p saidd f is a contraction of x, then so is pref f .
(3) If pref p cansayd f is a contraction of x, and f has the form f1& . . .&fn, then for each

i such that fi has the form qi cansaydi
f̄i, pref fi is a contraction of x.

Thus the contractions of x are canonical facts obtained from x by (1) removing occurrences
of saidd in the prefix; (2) removing a strict initial segment of the initial occurrences of cansayd
in facts that result from x by distributing cansayd over conjunctions and separating the
conjuncts.

We define the delegation depth of a canonical fact as follows: If x has the form pref p
attribute where attribute is not of the form cansayd f , then the delegation depth of x is 0. If
x has the form pref p cansayd f1& . . .&fn (with f1, . . . , fn canonical facts) then the delegation
depth of x is 1 + max{di | i ≤ n} where di is the delegation depth of fi.

Remark 5.14. The number of contractions of a fact x is at most 2δl(c + 1), where δ is the
quotation depth of x, l is the delegation depth of x, and c is the number of occurrences of
the symbol & in x.

Let U be the closure of Z under B-perturbations and under contractions. Notice that
U can be obtained by first taking the closure of Z under contractions, and then taking the
closure of the resulting set under B-perturbations; there is no need to then close again under
contractions. From this and the last two remarks it follows that:

Claim 5.15. U is finite, and its size is bounded by |Z| · |B|δ+1 · 22δ+1 · l · (c + 1) where δ
bounds the quotation depths of facts in Z, l bounds the delegation depths of facts in Z, and
c bounds the number of occurrences of & in facts in Z.

Let U+ consist of the facts in U , plus all facts of the form pref p exists, where pref is a
prefix of a fact in U , and p ∈ B. In forming U+ it is enough to take the maximal prefix from
each fact in U , since U is closed under contractions. It follows that |U+| = (|B|+ 1)|U |, and
hence certainly:

Claim 5.16. The size of |U+| is bounded by |Z|(2|B|)2δ+2l(c+ 1).

Lemma 5.17. Every fact which can be obtained from Z by a conservative deduction belongs
to U+.



32 YURI GUREVICH AND ITAY NEEMAN

Proof. Going over the (P) rules other than (P-Del) we see that in each rule, the fact on the
left of . is either a b-perturbation of at least one of the facts on the right of ., where b
consists of the regular components of these facts, or else a contraction of one of these facts,
or else of the form pref p exists with pref coming from a fact on the right of . and p ∈ b.
(Note that this is true also in each of the subrules of (P-Superfluous). Subrule (2) is the only
place where we require condition (3) in the definition of contractions.) The lemma follows
from this, and from the definition of U+, by induction on the length of the deduction. �

Corollary 5.18. There is an algorithm that, given Z, produces the set X of all canonical
facts which can be obtained from Z by conservative deductions.

Proof. X is the smallest set which contains Z and is closed under the (P) rules other than
(P-Del). X is contained in U+ by the previous lemma, and so the number of iterations
required to reach the fixed point X is bounded: it is at most the size of U+ for which there
is a bound which depends algorithmically on Z. The corollary follows. �

We now have the results (a), (b), and (c) promised earlier, and by combining them we can
reach a decision procedure for ensue:

Remark 5.19. The following algorithm, with input consisting of facts y and z, determines
whether y . z.

First, write z as a conjunction &Z of canonical facts, and write y as a conjunction &Y
of canonical facts. Generate the finite set U of all contractions and B-perturbations of facts
in Z, where B is the set of regular components of the facts in Z.

Second, compute the set X of all canonical facts that are conservatively deducible from
Z. This can be done using a logic program based on the (P) rules other than (P-Del) (and
including all instances of (P-Superfluous) that use facts in U). X is the least fixed point of
the program. Notice that X is contained in the finite set U+ by Lemma 5.17. From this and
Theorem A.4 it follows that X can be computed.

Third, check if each fact in Y is simply deducible from facts in X. This can be done using
a simple program relying on Definition 5.5 and the characterization of simple deducibility in
Claim 5.6.

By Lemma 5.11, y . z if and only if the conclusion reached in the final step above is that
each fact in Y is indeed simply deducible from facts in X.

We do not write the algorithm in any greater detail, since our goal is not to compute
ensue, but to compute knowledge. An algorithm for computing knowledge is obtained in the
next subsection. The (P)-rules and results in this subsection are just an intermediary.

5.2. Basic queries. Fix a substrate X. We describe in this subsection an algorithm which
computes the answer to a basic query Q = (a knowsi t(v1, . . . , vk)) under an authorization
policy A, from input consisting of the policy and the query.

Our plan is to isolate a finite substructure X̊ of the substrate X that is rich enough so
that the computation of the answer can be done using a logic program Π̄ over X̊. We then
use Theorem A.4 to compute the fixed point for Π̄.
X̊ must be rich enough to determine the ensue relation over it. We shall achieve this by

closing X̊ under contractions, B-perturbations for a large enough set B of regular elements,
and “exists” facts. The results of the previous subsection will then allow us to compute the
ensue relation over X̊.



DKAL 33

Let us begin with the precise definition of X̊. Without loss of generality we may assume
that all fact terms in the assertions of A are canonical. Recall that by Claim 5.1, every fact
term f is equivalent to a conjunction f1 & · · ·& fn of canonical fact terms. An assertion
α with the left side q knowsd f or q saysd f to p can be replaced with n assertions obtained
from α by replacing f with f1, . . . , fn respectively. An assertion α with q knowsd f on
the right can be replaced with the assertion obtained from α by replacing q knowsd f with
q knowsd f1 ∧ · · · ∧ q knowsd fn.

Without loss of generality, we may assume that the query term t is the conjunction
t1 & · · ·& tm of canonical terms, the canonical components of t.

Let L consist of all fact terms x which appear on the left of assertions q :d x ←
x1, . . . , xn, con in A, and all fact terms q saidd x for which there is an assertion q :d x to p ←
x1, . . . , xn, con in A. Let R consist of all fact terms which appear on the right in assertions
in A, plus the canonical components of the fact term t of the query we are answering. Let B
consist of the values in X of the following ground terms of regular sorts: the term a (for the
principal whose knowledge we intend to query), all terms for principals who placed assertions
in A, and all ground regular components of the head facts of the assertions in A. Let R∗ and
L∗ consist of the facts obtained from terms in R and L respectively by substituting elements
of B for variables. Let U be the closure of L∗ under contractions and B-perturbations. Let
F be the set of all prefixes used in U . Let U+ consist of U plus all facts of the form pref p
exists for pref ∈ F and p ∈ B.

Let T be the set of all terms in A or Q (so that T is closed under subterms). Let T ∗

be the set of the values of terms in T using variables assignments with values in B. Now
we are ready to define the finite structure mentioned in the preamble of Section 5. X̊ is
the restriction of the substrate X to the domain B ∪ U+ ∪ R∗ ∪ T ∗. Note that X̊ is indeed
finite; a bound on its size can be computed from A and Q using the results of the previous
subsection:

Definition 5.20. The width of an assertion A :d x ← x1, . . . , xn, con is the number of
variables in the assertion. The width of an assertion A :d x to p ← x1, . . . , xn, con is the
number of variables in the assertion excluding the variable p. The width of a fact term t is
the number of variables in t.

Claim 5.21. The size of X̊ is bounded by n+ f · nw · (2n)2δ+2 · l · (c+ 1), where

• n is the number of regular ground terms in the policy A or the query Q,
• f is the number of terms in A or Q,
• w bounds the widths of assertions in A and width of the query Q.
• δ bounds the quotation depths of these terms,
• l bounds their delegation depths,
• c bounds the number of occurrences of & in the terms, and

Proof. Note that the size of L∗ ∪R∗ ∪ T ∗ is bounded by f · nw. Now apply Claim 5.16. �

We now pass to the matter of writing a program Π̄ on X̊, which for purposes of answering
our query is equivalent to the program Π on X.

The program Π̄ consists of all the assertions in the policy A, and modified house rules
(S-1)–(S-8) as follows. Each item below is a rule schema, that is a list of rules, parameterized
by facts. The only variables in the rules are of type Regular. The first two schemas, (S-1)



34 YURI GUREVICH AND ITAY NEEMAN

and (S-2), deal with the house rules K0∞ and Say2know. The remaining schemas deal with
consequences on knowledge of the (P) rules for ensue deductions.

(S-1) r knows f ← r knows0 f , for each fact f ∈ U+.
(S-2) r knows q saidd f ← q saysd f to r, for each fact q saidd f ∈ U .
(S-3) r knowsd pref q exists ← q regcomp f ∧ r knowsd pref f , for every fact pref f ∈ U .
(S-4) r knowsd pref p said f ← r knowsd pref p said0 f , for each fact pref p said0 f ∈ U .
(S-5) Adaptations of each of the rules (P-SelfQuote), (P-Cansay0∞), (P-CansaySaid),

(P-Del−), and (P-Role), but not (P-Del), similar to the adaptation of the rule (P-
Said0∞) in the previous item.

(S-6) r knowsd pref f ← r knowsd pref p saidd∗ f ∧ r knowsd pref x ∧ r knowsd pref H exist,
whenever x is an H-germ for p cansayd∗ f , the facts pref p saidd∗ f and pref x belong
to U , and the members of H are essential to obtaining p cansayd∗ f from x.

(S-7) Adaptations of subrules (2) and (3) of (P-Superfluous), similar to the adaptation of
subrule (1) in the previous item.

(S-8) r knowsd y ← r knowsd x ∧ r knowsd H exist, whenever x ∈ U , y ∈ R∗, x is an
H-germ for y, and the members of H are essential for obtaining y from x.

Claim 5.22. • If Π̄(X̊) |= r knowsd z and b regcomp z, then b ∈ B.

• If Π̄(X̊) |= q saysd z to r, then q ∈ B, and if b regcomp z then b ∈ B.

Proof. The two conditions of the claim would follow by simultaneous induction on the stage
in the iteration used to compute the least fixed point for Π̄, provided we can prove that:

(1) If R is an instance of a rule in Π̄ with conclusion r knowsd z, and b regcomp z, then:
(a) b ∈ B, or
(b) there is a clause r knowsd′ z

′ in the premise of R so that b regcomp z′, or
(c) there is a clause q saysd′ z

′ to r in the premise of R so that b = q or b regcomp
z′.

(2) If R is an instance of a rule in Π̄ with conclusion q saysd z to r, then q ∈ B, and for
every regular component b of z we have:
(a) either b ∈ B,
(b) or else there is a clause r knowsd′ z

′ in the premise of R so that b regcomp z′.

Inspection of the rules (S-1)–(S-8) immediately establishes conditions (1) and (2) for their
instances. (The third possibility in condition (1) appears because of rule (S-2).) It remains
to check the conditions for instances of assertions in A.

We deal first with instances of assertions of the form (As1). Suppose that

A :d x ← x1, . . . , xn, con

is an assertion of this form in A. Recall from Subsection 3.1 that the full assertion is
A knowsd x ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧

A knowsd τ1 exists ∧ · · · ∧ A knowsd τk exists

where τ1, . . . , τk include (among other things) all non-ground regular components of x. The
values of the ground comonents of x are by definition elements of B. Thus, if an instance of
the assertion leads to a conclusion A knowsd z, and b regcomp z, then either b ∈ B or else
there is a clause A knowsd b exists in the premise of the instance, as required for (1).

Suppose next that
A :d x to p ← x1, . . . , xn, con



DKAL 35

is an assertion of the form (As2) in A. Recall from Subsection 3.1 that the full assertion is

A saysd x to p ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧
A knowsd τ1 exists ∧ · · · ∧ A knowsd τk exists

where again τ1, . . . , τk include all non-ground regular components of x. The value of A
belongs to B by definition, and so do the values of the ground regular components of x.
Condition (2) follows. �

The program Π̄ is quite large, as each of the items (S-1)–(S-8) above is a schema. Inspecting
the definition of Π̄ we obtain the following immediate bound on the number of rules in the
program:

Claim 5.23. The number of rules in Π̄ is O(r + (|U+|+ |R∗|) · l · c) where r is the number
of rules in A, l bounds the delegation depths of facts in U , and c bounds the number of
conjunctions in facts in U .

Notice also that the rules of the program Π̄ are easily computed from A and the query.
From this and the fact that X̊ is finite, it follows that:

Proposition 5.24. Π̄(X̊) is computable from A and the query.

We shall thus be done with computing the answer to the query a knowsi t(v1, . . . , vk) under
the policy A if we can show that,

Π(X) |=
[
a knowsi s(b1, . . . , bk) ∧ a knowsi b1 exists ∧ . . . ∧ a knowsi bk exists

]
⇐⇒

Π̄(X̊) |=
[
a knowsi s(b1, . . . , bk) ∧ a knowsi b1 exists ∧ . . . ∧ a knowsi bk exists

](5)

for each canonical component s of the query term t.
The right-to-left implication is clear, and indeed the same direction is clear for all facts

and principals, and for both the predicates knowsd and saysd, namely:

Claim 5.25. (1) If Π̄(X̊) |= p saysd f to q, then Π(X) |= p saysd f to q.

(2) If Π̄(X̊) |= p knowsd f , then Π(X) |= p knowsd f .

Proof. Each of the rules in the program Π̄ is true in the superstrate Π(X). Hence everything

said (respectively known) in Π̄(X̊) is also said (respectively known) in Π(X). �

We shall prove the left-to-right implication in (5) by expanding the interpretations of

knowsd and saysd in Π̄(X̊) to relations knows∗d and says∗d over X (without adding any new in-

stances within X̊), and proving that these expanded relations are equal to the interpretations
of knowsd and saysd in Π(X).

The definition of the star-relations below is done in a very naive manner, starting from
the knowledge in Π̄(X̊), and then sequentially adding consequences resulting from assertions
in A, and from the rules Say2know, K0∞, K&, and KMon. The point here is that, although
knowsd and saysd are generally produced by a simultaneous recursion using the assertions and
rules, all the mutual dependence is already handled in Π̄(X̊). Thus, when extending knowsd
and saysd from X̊ to X, direct, non-recursive definitions suffice. Those direct definitions are
the definitions of the star-relations below.

Set c says∗d f to b just in case that this follows from an assertion in A based on the

knowledge in Π̄(X̊). Precisely, c says∗d f to b just in case that:



36 YURI GUREVICH AND ITAY NEEMAN

• there is an instance c :d f to b ← f1, . . . , fn, con of an assertion in A, and
• the body of this instance holds in Π̄(X̊).

Set b knows1
d f just in case this follows from an assertion in A based on the knowledge in

Π̄(X̊). Precisely this means that:

• there is an instance b :d f ← f1, . . . , fn, con of an assertion in A, and
• the body of this instance holds in Π̄(X̊).

Set b knows2
∞ f just in case this follows from the rule p knows2

∞ q saidd x ← q says∗d x to
p, which paraphrases Say2know. Precisely, b knows2

∞ f just in case that:

• f has the form c saidd x, and
• c says∗d x to b.

Set b knows3
d f to hold just in case that this follows by K0∞ from the knowledge in knows1

d

and knows2
d. Precisely:

• b knows3
0 f just in case that b knows1

0 f .
• b knows3

∞ f just in case that b knows1
0 f , b knows1

∞ f , or b knows2
∞ f .

Finally, set b knows∗d f just in case that this follows by K& and KMon from the knowledge
in knows3

d. Precisely, b knows∗d f just in case that there is a set Z of canonical facts so that:

• f ensues &Z, and
• b knows3

d z for each z ∈ Z.

Claim 5.26. (1) If b says∗d f to c, then Π(X) |= b saysd f to c.
(2) If b knows∗d f , then Π(X) |= b knowsd f .

Proof. says∗d is defined using rules which hold of saysd in Π(X), on the basis of knowledge
which holds in Π(X) (by Claim 5.25). Hence all true instances of says∗d are true in Π(X) of
saysd. A similar argument applies to knows∗d. �

We say that a fact pref y is a simple consequence of pref x and pref H exist, if x is an
H-germ for y. (Note in this case that knowledge of pref x and pref H exist entails knowledge
of pref y.)

Claim 5.27. Let b ∈ B (hence b ∈ X̊).

(1) If c says∗d f to b then Π̄(X̊) |= c saysd f to b. Moreover, c saidd f belongs to U .

(2) If b knows1
d f then Π̄(X̊) |= b knowsd f . Moreover, f belongs to U .

(3) If b knows2
∞ f then Π̄(X̊) |= b knows∞ f . Moreover, f belongs to U .

(4) Suppose f is canonical. If b knows∗d f then there is a fact pref g and a set H so

that Π̄(X̊) |= b knowsd pref g, Π̄(X̊) |= b knowsd pref H exist, and f is a simple
consequence of pref g and pref H exist. Moreover, the facts pref g and pref H exist
belong to U+.

Proof. We begin with (1). Suppose c says∗d f to b. By definition of says∗d, there must be an
assertion

(a) A :d x to p ← x1, . . . , xn, con

in A, and an assignment ξ of values to the variables of the assertion, so that the instance of
the assertion generated by making the assignment ξ has the form

(b) c :d f to b ← f1, . . . , fn, con



DKAL 37

with the body of the instance true in Π̄(X̊).
Note that c must belong to B by the definition of B, since A has an assertion placed by

A, and c is the value of A. Thus certainly c belongs to X̊.
Recall from Subsection 3.1 that the full form of (a) is

A saysd x to p ← A knowsd x1 ∧ · · · ∧ A knowsd xn ∧ con ∧
A knowsd τ1 exists ∧ · · · ∧ A knowsd τk exists

(c)

where p, τ1, . . . , τk include all the variables of the assertion. The variable p must be assigned
value b by ξ, to reach the instance (b). This value belongs to B by assumption of the claim.

All other variables must be assigned values bi with Π̄(X̊) |= A knowsd bi exists, to make the

body of the instance (b) true in Π̄(X̊). Using Claim 5.22, these values too must belong to
B.

Thus, the instance (b) is obtained by assigning values in B to the variables of the assertion
(a). Since the assertion (a) is part of the program Π̄, and since B is included in the universe

of X̊, it follows that Π̄(X̊) satisfies the instance (b). Since the body of this instance is true

in Π̄(X̊), the head must be true too. Thus Π̄(X̊) |= c saysd f to b. Further, the term A saidd
x belongs to L by definition, and since c saidd f is an instance of this term using variable
values from B, it belongs to U . This proves condition (1) of the claim.

The proof of condition (2) is similar, again using the fact that only assertion instances

using variable values from B can have bodies true in Π̄(X̊). (And again, the proof of this
fact uses the full assertion form in Subsection 3.1, and Claim 5.22.)

Condition (3) is an immediate consequence of condition (1), the definition of knows2
∞, and

the inclusion of (S-2) in Π̄.

It remains to address condition (4). Note that if b knows3
d f then Π̄(X̊) |= b knowsd f ,

and f ∈ U . This follows from conditions (2) and (3) because knows3
d is defined from knows1

d

and knows2
∞ using the rule K0∞, and because this rule is part of Π̄ (it is included as the

schema (S-1)). To establish condition (4) of the claim we must pass from knows3
d to knows∗d.

We will use the fact that all the rules for conservative ensue deductions were incorporated
into Π̄ through the schemas (S-3)–(S-7).

Suppose then that b knows∗d f , f is canonical, and b ∈ B. Using the definition of knows∗d,
it follows that there is a set Z of canonical facts so that:

(i) f ensues &Z, and
(ii) b knows3

d z for each z ∈ Z,

which, as we noted above, implies:

(iii) Π̄(X̊) |= b knowsd z, and z ∈ U , for each z ∈ Z.

Since f ensues &Z, there is, by the results of the previous subsection, a normal ensue
deduction of f from Z, namely a conservative deduction followed by a simple deduction.
Hence there is a fact pref g and a set H so that:

(iv) pref g and pref H exist are conservatively deducible from Z, and
(v) f is a simple consequence of pref g and pref H exist.

Every regular component of a fact in Z must belong to B by (iii) and Claim 5.22. U is
by definition closed under contractions and B-perturbations, and by (iii) it contains Z. By
Lemma 5.17 it follows from this and from (iv) that pref g, pref H exist, and all the facts in

the conservative deduction leading to them, belong to U+ and therefore belong to X̊.



38 YURI GUREVICH AND ITAY NEEMAN

The KMon consequences of each of the conservative deduction rules were incorporated
into Π̄, through the schemas (S-3)–(S-7). It follows from this, from condition (iv), from

condition (iii), and from the conclusion of the last paragraph, that Π̄(X̊) |= b knowsd pref g

and Π̄(X̊) |= b knowsd pref H exist. This completes the proof of (4). �

Remark 5.28. Note how the “A-bound” restrictions in the assertion forms in Subsection 3.1
are used in the decidability proof. The restriction that all non-ground regular components
of x must be A-bound is used in the proof of Claim 5.22. The restriction that all variables
(other than p, in the case of form (As2)) must be A-bound is used in the proof of conditions
(1) and (2) of Claim 5.27.

Corollary 5.29. Let b ∈ B and suppose that b knows∗d f where f is an instance of a fact term
in R (namely a fact term appearing on the right side of an assertion in A, or a canonical

component of the query term t). Then Π̄(X̊) |= b knowsd f .

Proof. Note that f , being an instance of a term in R, is canonical. By condition (4) of the
previous claim, there must exist a fact pref g and a set H so that:

(i) Π̄(X̊) |= b knowsd pref g,

(ii) Π̄(X̊) |= b knowsd pref H exist, and
(iii) f is a simple consequence of pref g and pref H exist.

If f is equal to pref g then we are done. Otherwise, g must have the form pref b1 cansay ḡ,
and f must have the form pref b1 cansayd1 . . . bn cansaydn ḡ, with b2, . . . , bn ∈ H. It follows
that all regular components of f must be regular components of pref g or of pref H exist, and
either way they belong to B by Claim 5.22. From this and the fact that f is an instance of
a term in R, it follows that f belongs to R∗. Now using conditions (i)–(iii) and the schema

(S-8) it follows that Π̄(X̊) |= b knowsd f . �

Claim 5.30. (1) If Π(X) |= b saysd f to c, then b says∗d f to c.
(2) If Π(X) |= b knowsd f , then b knows∗d f .

Proof. It is enough to show that says∗d and knows∗d satisfy the rules K0∞, Say2know, K&,
and KMon, and satisfy all the assertions in A. The implications in the claim then follow
since the interpretations of saysd and knowsd in Π(X) form the least fixed point for these
rules.

By their very definition, says∗d and knows∗d satisfy the rules K0∞, Say2know, K&, and
KMon. We must verify that they satisfy the assertions in A.

Consider first an instance of an assertion in A of the form b :d f to c ← f1, . . . , fn, con.
Note that b ∈ B, since B by definition has all principals who place assertions in A. Suppose
that the body of the assertion is true with the interpretation of knowledge given by knows∗d.

By Corollary 5.29, the body of the assertion is true in Π̄(X̊). From this and the definition
of says∗d it follows that b says∗d f to c, as required.

A similar argument, again using Corollary 5.29, handles the case of an assertion of the
form b :d f ← f1, . . . , fn, con. �

We now have established the equivalence (5). The right-to-left direction follows from
Claim 5.25, and the left-to-right direction follows from Claim 5.30 and Corollary 5.29.



DKAL 39

The answer to the query Q is therefore equal to the set of all 〈b1, . . . , bk〉 so that

Π̄(X̊) |=a knowsi b1 exists ∧ · · · ∧ a knowsi bk exists , and

Π̄(X̊) |=a knowsi s(b1, . . . , bk)

for each canonical component s of the query term t. Since X̊ is finite, the entire superstrate
Π̄(X̊) is computable. (The proof of Theorem A.4 contains an algorithm for computing

the superstrate of a logic program over a finite substrate X̊, of course with calls to an
algorithm for computing the substrate relations and functions.) It follows that the answer
is computable. We proved

Theorem 5.31. Let X be a substrate. There is an algorithm which computes the answer to
a query a knowsi t under an authorization policy A, from input consisting of the policy and
the query.

This is Theorem 3.6 in the notation of Section 3. We end by noting the time complexity
of our algorithm for answering queries. Recall that for the purpose of finding the time
complexity we assume (see §A.2) that there is an algorithm Eval that evaluates the basic
functions and relations of X in constant time. We also assume that constants and variables
are strings in a fixed finite alphabet, so that all expressions in the language of our model
are strings in a finite alphabet. The length of a term, an assertion, or a query, is simply its
length when written as a string, and the length of an authorization policy is the sum of the
lengths of its assertions. For reader’s convenience, we restate Theorem 3.7.

Theorem 5.32. The time complexity of our algorithm for computing the answer to a query
Q = (a knowsi t) under an authorization policy A is bounded by a polynomial in (length(A)+
length(Q))δ+w, where δ bounds the quotation depths of canonical facts in t and in A, and w
bounds the widths of t and of assertions in A.

In particular, assuming a fixed bound on widths and quotation depths, the time complexity
is polynomial in the length of A and Q.

Proof. Our algorithm begins by determining the universe of X̊ (that is, determining the set of

strings in the universe of X that constitutes the universe of X̊), and determining the program

Π̄. Inspecting the definitions of X̊ and Π̄, and using Claims 5.21 and 5.23, it is clear that this
can be done in time complexity bounded by a polynomial in (length(A) + length(Q))δ+w.
Let us just note on this matter that the arguments n, f , l, c, and r in Claims 5.21 and 5.23
are all smaller than length(A) + length(Q).

Our algorithm proceeds by computing the superstrate Π̄(X̊).

By Claim 5.21, the size N of X̊ is bounded by a polynomial in (length(A)+length(Q))δ+w.

The number n of regular elements of X̊ is bounded by length(A) + length(Q). From Claim
5.23 and inspection of the individual rules (S-1)–(S-8) it follows that the length ` of the
program Π̄ is bounded by a polynomial in (length(A) + length(Q))δ+w.

By Theorem A.4, the time complexity of computing Π̄(X̊) is bounded by ` · nw times a
polynomial in N . Combining this with the observations of the previous paragraph we infer
that the time complexity of computing Π̄(X̊) is bounded by a polynomial in (length(A) +
length(Q))δ+w.

Finally, our algorithm produces all tuples 〈b1, . . . , bk〉 of elements of B, so that Π̄(X̊) |= a

knowsi s(b1, . . . , bk) for each canonical component s of the query term t, and Π̄(X̊) |= a



40 YURI GUREVICH AND ITAY NEEMAN

knowsi {b1, . . . , bk} exist. (Note that it is enough to go over b1, . . . , bk ∈ B, since by Claim
5.22 only the existence of elements of B can be known to a.) There are at most nk ≤ nw

tuples to go over, and the number of components s is smaller than the length of t which is
smaller than the length of Q, so this step too has time complexity bounded by a polynomial
in (length(A) + length(Q))δ+w. �

6. SecPAL-to-DKAL Translation

We describe a natural translation τ of SecPAL into DKAL. To this end, we assume that
the reader is familiar with SecPAL though we recall some of the SecPAL definitions. We
presume, without loss of generality that the sort, constant, function and relation names
introduced explicitly in Section 2 do not occur in SecPAL.

Let p says x abbreviate p says x to all, where all is a fresh variable, distinct from p and not
occurring in x. Let Open DKAL be the special version of DKAL obtained by augmenting
DKAL with double rules

(1) p saysd x← p knowsd x
(2) p knowsd x← p saysd x

We will translate SecPAL into Open DKAL. The double rule 1 reflects the all-knowledge-is-
common nature of SecPAL. The double rule 2 adds a mere convenience. Without it the says
of SecPAL assertions would be translated into the knows of DKAL assertions; the double
rule 2 allows us to translate says to says. In the rest of this section, by default, DKAL means
Open DKAL.

Remark 6.1. It is possible to translate SecPAL to the original DKAL rather than Open
DKAL. We mentioned already that double rule 2 is not essential for translation. The neces-
sary instances of double rule 1 can be incorporated into the translation of SecPAL assertions;
see Remark 6.4 in this connection. By translating SecPAL to the original DKAL we gain
access to the complexity results in Section 5, specifically Theorem 5.32.

6.0.1. Substrate. The SecPAL document [2] speaks about constraint domains. What is a
constraint domain? In our understanding a constraint domain can be faithfully viewed as
a many-sorted first-order structure over which their constraints are evaluated. We consider
a fixed constraint domain and we call the corresponding structure CD which is an allusion
to “constraint domain”. In accordance to the SecPAL restriction of constraint domains,
there is a polynomial time algorithm for evaluating ground quantifier-free formulas over CD.
Without loss of generality, we assume that the domain of any SecPAL variable is a sort of
CD.

Remark 6.2. As far as the basic constraint domain of [2] is concerned, it is straightforward
to view it as a many-sorted first-order structure, except for the relation e matches pattern.
Suppose that e is a constant. What exactly matches the pattern? The name of the constant
or its values? According to first-order logic, it should be the value of e, but, in [2], it is the
name of e. One way to deal with this problem is to declare that the values of constants are
their names. A more flexible approach is to introduce an additional function s that assigns
strings to constants and to change e matches pattern to s(e) matches pattern.

We define a DKAL substrate, called Sub for brevity, appropriate for the given domain
structure CD. Sub is an extension of CD in the following sense.



DKAL 41

• The vocabulary of CD is a part of the vocabulary of Sub, so that τF = F for every
member of the CD vocabulary. In particular, all CD sorts are Sub, and all CD
function and relation symbols (including constants) preserve their types.
• The regular elements of Sub are precisely the elements of CD.
• All CD relations and functions (including nullary) have the same interpretation in

both structures.

6.0.2. Variables and Principal Constants. If e is a SecPAL variable of a CD sort then
τe, syntactically equal to e, is a variable of the same sort. The same applies to function and
relation symbols of CD (including constants).

6.0.3. Constraints. If con is a SecPAL constraint then τ(con) = con.

6.0.4. Predicates. If P is a SecPAL predicate of arity j, then τP , syntactically equal to P ,
is a j-ary synthetic function with Attribute values in Sub. The domain type of τP in Sub is
the domain value of P in SecPAL. If c1, . . . , cj are SecPAL constants such that (c1, . . . , cj) ∈
Dom(P ) then τP (τc1, . . . , τcj), syntactically equal to P (c1, . . . , cj), is an attribute in Sub.
In particular, if j = 0 then τP is an Attribute constant. For example, a nullary predicate is
a friend becomes an Attribute constant.

6.0.5. Verbphrases and facts. SecPAL verbphrases and facts are defined by simultaneous
recursion. We recall the definition and give the translation. Ground SecPAL verbphrases
become attributes in our model, and ground SecPAL facts become facts in our model.

• In SecPAL, if P is a predicate and e1, . . . , ek are expressions (variables or constants)
of appropriate sorts then P e1, . . . , ek is a verbphrase. Accordingly τ(P e1, . . . , ek) =
(τP )(τe1, . . . , τek).
• In SecPAL, if e is a principal expression and V is a verbphrase then e V is a fact.

Accordingly

τ(e V ) = fact(τe, τV ) = (τe) (τV ).

• In SecPAL, if f is a fact then can say0 f and can say∞ f are verbphrases. Accordingly
τ(can say0 f) = cansay0 τ(f), and τ(can say∞ f) = cansay τ(f).
• In SecPAL, if e is a principal expression then can act as e is a verbphrase. Accordingly
τ(can act as e) = canActAs τe.

It is easy to check by induction that, if we ignore the difference between can say and cansay,
and between can act as and canActAs, we have the following. For every SecPAL verbphrase V
and every SecPAL fact f , the translation τV is syntactically equal to V and the translation
τf is syntactically equal to f .

Lemma 6.3. For every SecPAL fact f and substitution θ, we have τ(θ(f)) = θ(τ(f)).

The proof is obvious.

6.0.6. Assertions. A SecPAL assertion has the form A says f if f1, . . . , fn, con, where A
is a constant, n ≥ 0, f is a fact, every fi is a fact, and con is a constraint. We define
τ(A says f if f1, . . . , fn, con) to be the following DKAL double assertion:

Ad : f to all ← f1, . . . , fn, con.



42 YURI GUREVICH AND ITAY NEEMAN

Remark 6.4. This simple translation takes advantage of the new house rules introduced in
the beginning of this section. If one prefers to translate SecPAL into DKAL without any
additional house rules, one has to work a bit harder. In SecPAL, “a fact is flat when it does
not contain can say,” and every fact f has the form e1 can sayd1 . . . en can saydn g where
n ≥ 0 and g is flat. We refer to g as the flat seed of f . We refer to each of the facts ek+1 can
saydk+1

. . . en can saydn g, 0 ≤ k ≤ n, as a subfact of f . Define τ(A says f if f1, . . . , fn, con)
to be the set of the following DKAL assertions:

Ad : f ← f1, . . . , fn, con

Ad : f ′ to all ← f ′

where f ′ ranges over the subfacts of f . Notice that A broadcasts not only knowledge of f ,
but also knowledge of the proper subfacts f ′ of f . The following example shows that this is
necessary: In SecPAL , assertions

A says B can say foo←
B says foo←

imply A says foo. The translation of these assertions to DKAL leads to assertions
which imply A knows foo. But if f ′ were to range only over {f} in our translation of
SecPAL assertions, that knowledge would not be shared with other principals. �

6.0.7. Assertion context. In SecPAL, an assertion context AC is a set {α1, . . . , αn} of
assertions. Accordingly τ AC is the union of the sets ταi.

SecPAL semantics is given by three deduction rules [2, §2]. It is common in logic, to use
symbol ` for derivability and symbol |= for satisfaction in a structure. In [2], symbol |= is
used for both purposes. Here we stick to the standard usage. Accordingly some occurrences
of |= in [2] will be replaced by ` in our exposition.

Theorem 6.5 (Embedding Theorem). Let AC be a safe SecPAL assertion context, and let
Π be the open DKAL program consisting of the house rules and the assertions

⋃
α∈AC τα.

Further, let A be a SecPAL principal constant, f be a SecPAL ground flat fact term, and d
range over {0,∞}. If

AC, d ` A says f

in SecPAL then
Π(Sub) |= A saysd f

in open DKAL

Proof. Induction on the length ` of the given SecPAL deduction, proving the implication
not only for flat facts f , but also for nested facts provided they include only constants
which appear in AC. The inductive steps are obvious, and we make only the following two
comments.

First, the proof takes advantage of the additional house rules that essentially equate knows
and says.

Second, the SecPAL safety condition guarantees that the only variable assignments rel-
evant to computing flat consequences of AC are those with values explicitly mentioned as
constants in the flat atomic assertions of AC (namely assertions of the form A says g where
g is flat). Using the open DKAL rules, every principal knows of the existence of each of
these elements. Note also that, according to SecPAL syntax, all regular components of



DKAL 43

the term τf (aka f) are variables. Thus, the parts A knows ti exists in the full forms of
assertions A :d f to all ← f1, . . . , fn, con in τ(AC) hold automatically under all relevant
assignments. �

Remark 6.6. The following analog of the embedding theorem is true if one uses the translation
of Remark 6.4, avoiding the extra rules of open DKAL: Let AC be a safe SecPAL assertion
context, and let Π be the DKAL program consisting of the house rules and the assertions⋃
α∈AC τα with the translation τ of Remark 6.4. Further, let A be a SecPAL principal

constant, f be a SecPAL ground fact term, and d range over {0,∞}. Suppose f is either
flat, or nested with all its constants appearing in AC. If

(A) AC, d ` A says f

in SecPAL then

(B1) Π(Sub) |= A knowsd f,

(B2) Π(Sub) |= e knows A saidd f

in DKAL, and the assertions

(B3) Ad′ : f ′ to all ← f ′

belong to Π, where e ranges over all principals, d′ ∈ {0,∞}, and f ′ ranges over subfacts of f
other than f itself. The proof is again an obvious induction on the length of the given SecPAL
deduction. The implication if (A) then (B1) is the analog of the embedding theorem; the
addition of the implications if (A) then (B2) and if (A) then (B3) is a strengthening needed
in the inductive proof, as replacement for the first extra double rule of open DKAL.

Theorem 6.7. The converse of the embedding theorem is not true. There is an assertion con-
text AC and a SecPAL query A says f such that Π(Sub) |= A says f but AC,∞ 6` A says f .

Proof. Consider the following SecPAL assertion context AC:

(1) A says B cansay D cansay foo.
(2) B says C cansay foo. (It’s foo, not D cansay foo.)
(3) C says D cansay foo.
(4) D says foo.

In SecPAL, you get only these consequences:

5. C says foo (from 3 and 4).
6. B says foo (from 2 and 5).

But you do not get A says foo. On the other hand, making the translation to DKAL, and
then translating the consequences back to SecPAL, you also get:

7. B says C cansay D cansay foo (from 2).
8. B says D cansay foo (from 7 and 3).
9. A says D cansay foo (from 1 and 8).

10. A says foo (from 9 and 4).

The difference between SecPAL and DKAL appears in line 7. In line 2, B gives C the
right to promulgate foo, and to delegate with no depth restrictions. In DKAL, but not in
SecPAL, this results in line 7, which formulates an instance of delegatability of this right on
the part of C. �

We see Theorem 6.7 as an advantage of DKAL: more justified requests get positive answers.



44 YURI GUREVICH AND ITAY NEEMAN

Appendix A. Logic

We recall existential fixed-point logic, introduced in [3], in the form appropriate for our
purposes in the main part of this paper. We presume that the reader is familiar with the
basics of first-order logic; one popular logic textbook is [5]. Nevertheless, we recall some
basic definitions and facts. By default our logics are many-sorted logics with equality.

A.1. Existential first-order logic.

A.1.1. Vocabulary. A vocabulary consists of sort symbols, function symbols and relation
symbols. Each function symbol has an integer arity r ≥ 0. Nullary function symbols are
known as constants. The type of a constant is a sort symbol. A function of positive arity r
has a type of the form D → S where S is a sort symbol and D is a union of components of
the form T1 × · · · × Tr where each Ti is a union of sorts. For example, in the main part of
the paper we have a binary function of the type

(Principal× Speech) ∪ (Regular× Attribute)→ Fact.

where Regular is the union of so called regular sorts. (Without loss of generality, we could
require that each Ti is a single sort. But the more liberal condition is more convenient.)
Each relation symbol has an integer arity r ≥ 1 and a type of the form D where D is as
above. Every vocabulary contains the equality sign.

It is presumed that there are only finitely many sort symbols, relation symbols and function
symbols of positive arity. It is not excluded that the number of constants may be infinite.
Each constant is a string in a fixed finite alphabet. Similarly, we will require that each
variable is a string in a fixed finite alphabet.

A.1.2. Total structures. A total structure X of some vocabulary Υ consists of a nonempty
set, the universe of X, together with interpretations of the vocabulary symbols over the
universe: sorts, basic functions and basic relations. The sorts are subsets of the universe and
their union is the entire universe; a sort may be empty. Elements of a sort S are also elements
of type S. Thus sorts are types, but types are not necessarily sorts. (We do not insist that
sorts partition the universe, but do not explicitly use the possibility that an element may
have several sorts.)

All basic functions are total. The interpretations of basic functions and relations conform
to their types. For example, a basic function of type

Principal × (Attribute ∪ Speech)→ Fact.

has one Principal argument and another argument whose type is either Attribute or Speech;
its values are of type Fact. The interpretation of a function or relation name N is denoted
NX . The equality sign is interpreted in obvious way. If ϕ is a first-order Υ formula and ξ is
an assignment of elements of X to the free variables of ϕ then ϕ is either true or false in X
under ξ. In the first case we write X, ξ |= ϕ. If ϕ is a sentence, that is a formula with no
free variables, we write X |= ϕ.

A nonempty subset of X, closed under all basic function, gives rise to a total substructure
of X.

Remark A.1. The name of a basic function or relation is its identifier. For example, two
constants with the same value are different constants. However, we won’t be too pedantic
about the distinction between a function or relation and its name.



DKAL 45

A.1.3. Partial structures. A partial structure is like a total structure except that basic
functions may be partial. Total structures are special partial structures.

Let X be a partial structure of some vocabulary Υ. An assignment ξ of elements of X
to the variables of a Υ term t is safe over X, if the value of t is defined in X under ξ. An
assignment ξ of elements of X to the variables of a quantifier-free formula ϕ of vocabulary
Υ is safe over X if ξ is safe for every term of ϕ.

A non-empty subset of X gives rise to a partial substructure of X. Suppose that Y is a
partial substructure of X, and ϕ is a quantifier-free formula of vocabulary Υ. For every safe
assignment ξ of elements of Y to the variables of ϕ, we have that X, ξ |= ϕ if and only if
Y, ξ |= ϕ.

Contrary to logic tradition, in this appendix our structures and substructures are by
default partial.

A.1.4. Substrate and superstrate. Fix a vocabulary Υ. In the rest of this appendix, by
default, terms and formulas are of vocabulary Υ.

We presume that vocabulary Υ is split into two disjoint part, the substrate part Υ− and
superstrate part Υ−Υ−, and that the superstrate part consists of relation symbols only. If Y is
an Υ structure then the substrate of Y is the reduct of Y to Υ−. In other words, the substrate
is obtained from Y by forgetting the interpretations of the superstrate relation symbols.
Those interpretations form the superstrate of Y . An atomic formula with a substrate (resp.
superstrate) relation symbol is substrate (resp. superstrate) atomic formula.

A.1.5. Existential first-order logic. Existential first-order logic, in short EFO logic, of
vocabulary Υ is the fragment of first-order logic of vocabulary Υ given by the following
restrictions.

• The only propositional connectives are conjunction, disjunction and negation.
• Negation can be applied only to substrate atomic formulas.
• The universal quantifier is forbidden. Only the existential quantifier is used.

Lemma A.2 (EFO monotonicity). Every EFO formula ϕ is monotone in every superstrate
relation P . In other words, suppose that ϕ holds in a structure X under some safe assignment
ξ of elements of X to its free variables. If you enlarge the interpretation PX of P without
changing the rest of the structure or the variable assignment then ϕ holds in the modified
structure under the assignment ξ.

The lemma is well known and is easily proved by induction on ϕ.

A.2. Logic Programs.

A.2.1. Syntax. A substrate constraint is a quantifier-free formula in the substrate vocabu-
lary.

An (EFO) logic rule R of vocabulary Υ has the form H ← B where H is a superstrate
atomic formula and B is a conjunction of superstrate atomic formulas and at most one
substrate constraint. (We could allow a rule to have several substrate constraints, but
the conjunction of substrate constraints is a substrate constraint. Thus the “at most one
substrate constraint” requirement does not restrict generality.) H is the head of the rule,
and B is the body. B can be empty in which case R is bodiless. We typically write H alone
for a bodiless rule H ← B.



46 YURI GUREVICH AND ITAY NEEMAN

Since our constants are strings in a fixed finite alphabet, and the same applies to our
variables, the rule R is a string in a fixed finite alphabet. The length of R is the length of
that string. The width of R is the number of variables in R.

If σ is a substitution, that is a function from variables to terms, then σ(R) is the rule
obtained from R by simultaneously replacing every variable v with term σ(v); the rule σ(R)
is a substitution instance of R. Given an Υ structure X, we say that an assignment ξ of
elements of X to the variables of R is safe for R over X if the value of every term in R is
defined.

An (EFO) logic program Π of vocabulary Υ is a finite set of EFO rules of vocabulary Υ.
The head relation of any Π rule is a head relation of Π. The length of Π is the sum of the
lengths of its rules. The width of Π is the maximum of the widths of its rules.

A.2.2. Syntactic sugar. Notation

H1, . . . , Hm ← B

stands for m rules Hi ← B. Notation

H ← B1 ∨ · · · ∨Bn

stands for n rules H ← Bj. The two abbreviations can be used together. Notation

H1, . . . , Hm ← B1 ∨ · · · ∨Bn

stands for mn rules Hi ← Bj.

A.2.3. Semantics. Given a structure X of substrate vocabulary Υ−, a logic program Π
computes the superstrate relations over X and thus computes a Υ structure Π(X) with
substrate X. We will describe the computation. In general, the computation is infinite but
the case of interest to us is when X is finite. In that case, the computation is finite.

Partially order partial Υ structures with substrate X as follows: Y ≤ Z if PY ⊆ PZ
for every superstrate relation symbol P . The program Π gives rise to an immediate-action
operator ΓΠ on Υ structures with substrate X. If Y is an Υ structure then ΓΠ(Y ) ≥ Y . If
P is a superstrate relation symbol of arity r then the interpretation PΓΠ(Y ) of P in ΓΠ(Y )
is the union of PY and the set of tuples (a1, . . . , ar) satisfying the following condition: there
exists a rule P (t1, . . . , tr)← B in Π and there exists a safe assignment ξ of elements of Y to
the variables of the rule such that, in structure Y under assignment ξ, B holds and every ti
evaluates to ai.

An Υ structure Y such that ΓΠ(Y ) = Y is a fixed point of ΓΠ. Since ΓΠ is monotone,
by Knaster-Tarski theorem [11], there is the least fixed point of ΓΠ. That fixed point is the
desired structure Π(X) uniquely determined by Π over X. The original structure X is the
substrate of Π(X).

Here is one way to construct Π(X). Let X0 be the Υ structure obtained from X by
initializing all superstrate relations to the empty relations of appropriate types. For each
n, let Xn+1 = ΓΠ(Xn). Finally let Xω be the limit of structures Xn which means that
PΠ(X) =

⋃
n PXn for every superstrate relation symbol P . The limit structure Xω is a fixed

point of ΓΠ [3, Theorem 9]. It is easy to check by induction on n that Xn ≤ Y for every fixed
point Y of ΓΠ. It follows that Xω ≤ Y for every such Y so that Xω is the least fixed point of
ΓΠ and therefore Π(X) = Xω. The Υ structures Xn will be called standard approximations
to Xω.



DKAL 47

Remark A.3. In set theory, ω is the least infinite ordinal; that explains the use of ω here.
Notice that the limitXω can be reached at some finite stageXm in which caseXn = Xm = Xω

for all n > m.

A.2.4. Complexity. We analyze the fixed-point computation, that is the computation of
Π(X) described above, under some assumptions about the logic program Π and substrate
X.

First, reflecting the peculiarity of our applications, we assume that the substrate elements
split into two disjoint layers, regular and synthetic, so that we have regular elements and
synthetic elements. Every substrate sort is a part of one of the two layers, so that we have
regular sorts and synthetic sorts. All variables of Π are regular, that is of regular sorts. (The
reader not interested in the splitting of X into two layers may want to concentrate on the
special case where the synthetic layer is empty.)

Second, we assume that there is an algorithm Eval that evaluates the basic functions and
relations of X. In the function case, given a function name F and an element tuple ā of the
appropriate length, Eval determines whether F (ā) is defined and, if yes, computes the value.
In the relation case, given a relation name R and an element tuple ā of the appropriate
length, Eval determines whether R(ā) is true or false. Furthermore, we assume that Eval
works in constant time. This allows us to abstract from the presentation form of the elements
of X. In addition, the constant-time assumption simplifies the complexity analysis of the
fixed-point computation. Essentially we will count only the number of Eval calls and will
ignore Eval’s computation time. Alternatively we could make a natural assumption that
elements of X are given as strings and that Eval works in time bounded by a polynomial
of the maximal string length. That polynomial would have to be taken into account in the
following theorem but would not affect our exposition in any essential way. The analysis of
Eval is orthogonal to the main issue of this paper.

Theorem A.4. The time of the fixed-point computation is bounded by

k ·N r · nw ·O(`) · o(N)

where k is the number of superstrate relations, ` is the length of Π, N is the total number
of elements of X, r is the maximal arity of superstrate relations, n is the number of regular
elements of X, and w is the width of Π.

Proof. The number of true (as well as all) instances of superstrate relations in Π(X) is k ·N r.
An application of the immediate-action operator ΓΠ produces at least one new true instance
of a superstrate relation unless the fixed point has been reached. It follows that the fixed
point is reached in k ·N r steps, and so it remains to prove that the computation time of one
application of ΓΠ is bounded by nw ·O(`) · o(N).

Without loss of generality the whole program Π uses only w distinct variables. To compute
the new true instances of the superstrate relations, it suffices to evaluate Π under each of
the nw assignments of regular elements of X to the variables of Π. It remains to prove that
the evaluation time of Π under an assignment ξ is bounded by O(`) · o(N).

To evaluate Π under ξ, we traverse the parse tree for Π in the depth-first fashion. At some
nodes, we call Eval to evaluate an instance of a substrate function or relation. At some other
nodes, that belong to the bodies of logic rules, we check whether an instance of a superstrate
relation is in the current table of the relation. Finally, at some of the remaining nodes, that
belong to the heads of logic rules, we check whether an instance of a superstrate relation is



48 YURI GUREVICH AND ITAY NEEMAN

in the current table of the relation and, if not, then we insert it there. It suffices to show that
the time needed to handle any single node is o(N). This is trivial in the case of Eval due to
our assumption that it works in constant time. This is also obvious for the table operations.
The entries in the tables are in the lexicographical order, and binary search is used. �

Recall that the vocabulary is fixed. It follows that k is fixed.

Corollary A.5. (1) Restrict attention to logic programs of bounded width. Then the
computation time is bounded by ` times a polynomial in N . For a fixed program, the
computation time is bounded by a polynomial in N .

(2) Restrict attention to logic programs of bounded width and assume that the total num-
ber N of substrate elements is bounded by a polynomial of the number n of regular
elements. Then the computation time is bounded by ` times a polynomial in n. For
a fixed program, the computation time is bounded by a polynomial in n.

A.2.5. Equivalence. Logic programs Π1 and Π2 are equivalent if Π1(X) = Π2(X) for every
substrate structure X. Rules R1 and R2 are equivalent if Π∪{R1} is equivalent to Π∪{R2}
for every program Π. The following lemma is obvious

Lemma A.6. A rule P (t1, . . . , tr)← B is equivalent to

P (v1, . . . , vr)← B ∧ v1 = t1 · · · ∧ vr = tr.

where v1, . . . , vr are fresh variables.

Proposition A.7 (Successive recursion). Consider logic programs Π1 and Π2 such that
their head relation symbols are disjoint sets of head relation symbols and such that the head
relation symbols of Π2 do not occur in Π1. Then Π2(Π1(X)) = (Π1∪Π2)(X) for any substrate
structure X.

The conditions of the proposition assure that the program composition Π2 ◦ Π1 is well
defined. The claim is that the composition is equivalent to Π1 ∪ Π2, so that, in this case,
successive recursions have the same effect as the appropriate simultaneous recursion.

Proof. To simplify notation, assume that Π1 has only one head relation P , and Π2 has only
one head relation Q. Let Γ1, Γ2, Γ3 be the operators ΓΠ1 , ΓΠ2 and ΓΠ1∪Π2 respectively. Γ1

operates on structures of vocabulary Υ− ∪ {P} with Υ− reduct X; let Y1 be the least fixed
point of Γ1. Γ2 operates on structures of vocabulary Υ with Υ− ∪ {P} reduct Y1; let Y2 be
the least fixed point of Γ2. And Γ3 operates on structures of vocabulary Υ with Υ− reduct
X; let Z be the least fixed point of Γ3. We need to show that Y2 = Z. We prove that Y2 ≤ Z
and Z ≤ Y2.

As far as relation P is concerned, there is no difference between Π1 and Π1 ∪ Π2, and so
PY1 = PZ . It follows that Y1 is the Υ− reduct of Z and thus Γ2 is applicable to Z. Since
Γ3(Z) = Z, no rule in Π1 ∪ Π2 produces any new tuples at Z. It follows that Γ2(Z) = Z
and so Y2 ≤ Z by the definition of Y2. Further, Γ3 is applicable to Y2. Since Γ2(Y2) = Y2, no
Π2 rule produces any new tuples at Y2. Since Π1 does not use any head relation symbols of
Π2, the program Π1 operates on the Υ− ∪ {P} reduct of Y2 which is Y1 and which is equal
to Γ1(Y1); so no Π1 rule produces any new tuples at Y2. It follows that Γ3(Y2) = Y2 and so
Z ≤ Y2 by the definition of Z. �



DKAL 49

References

[1] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin, “A calculus for access control
in distributed systems,” ACM Transactions on Programming Languages and Systems, 15:4, 706–734,
1993.

[2] Moritz Y. Becker, Cédric Fournet and Andrew D. Gordon, “SecPAL: Design and Semantics of a Dece-
tralized Authorizatoin Language”, Technical Report MSR-TR-2006-120, Microsoft Research, September
2006.

[3] Andreas Blass and Yuri Gurevich, “Existential fixed-point logic”, Springer Lecture Notes in Computer
Science 270 (1987), 20–36.

[4] Sabrina De Capitani di Vimercati, Pierangela Samarati and Sushil Jajodia, “Policies, Models, and
Languages for Access Control”, Springer Lecture Notes in Computer Science 3433 (2005), 225–237.

[5] Herbert Enderton, “Mathematical Introduction to Logic”, Elsevier, 2000.
[6] Wilfrid Hodges, “Model Theory”, Cambridge University Press, 1993.
[7] Ninghui Li, Benjamin N. Grosof and Joan Feigenbaum, “Delegation logic: A logic-based approach

to distributed authorization”, ACM Transactions on Information and System Security (TISSEC) 6:1
(February 2003), 128–171.

[8] Yuri Matiyasevich, Hilbert’s Tenth Problem, MIT Press, 1993.
[9] OASIS. Security Assertion Markup Language (SAMcfL).

www.oasis-open.org/committees/security.
[10] Oxford English Dictionary, 2nd edition, Oxford University Press, 1989.
[11] Alfred Tarski, ”A lattice-theoretical fixpoint theorem and its applications”, Pacific Journal of Mathe-

matics 5:2 (1955), 285–309.

www.oasis-open.org/committees/security

	1. Introduction
	2. State of Knowledge
	2.1. Substrate
	2.2. Superstrate relations

	3. House Rules and Authorization Policy
	3.1. Assertions
	3.2. House rules
	3.3. Some consequences and discussion 
	3.4. Queries and computability

	4. Examples
	5. Answering basic queries
	5.1. Downward closure under ensue
	5.2. Basic queries

	6. SecPAL-to-DKAL Translation
	Appendix A. Logic
	A.1. Existential first-order logic
	A.2. Logic Programs

	References

