
Mining the Web for IP Address Geolocations

Chen Chen

Chuanxiong Guo

Yunxin Liu

Helen J. Wang

Qing Yu

Yongguang Zhang

{v-chech, chguo, yunliu, helenw, qingyu, ygz} @ microsoft.com

October, 2007

Technical Report
MSR-TR-2007-139

Microsoft Research-Asia
Beijing Sigma Center

Zhichun Road
Beijing 100080, P.R. China

1

Mining the Web for IP Address Geolocations

Chen Chen, Chuanxiong Guo, Yunxin Liu, Helen J. Wang+, Qing Yu, Yongguang Zhang
Microsoft Research-Asia, +Microsoft Research-Redmond

{v-chech, chguo, yunliu, helenw, qingyu, ygz}@microsoft.com

ABSTRACT
In this paper, we observe that many Web pages contain ge-
olocation information (address, zipcode, and telephone area
code) and many of these geolocation items are directly re-
lated to the locations of the IP addresses that host the Web
pages. We then design Structon, a system that mines Web
pages for IP address geolocations. In Structon, we first ex-
tract geolocation information from every crawled Web pages,
we then devise a serial of information clustering, false-inform-
ation filtering, error-correction, and location inferring algo-
rithms to map IP addresses to geolocations. We have run our
algorithms on top of a set of 74M Chinese Web pages, from
which we are able to identify the geolocations for 8.2M IP
addresses, which contain addresses for not only Web servers
but also client hosts. We have verified our result with an
IP address location table of a major Chinese ISP, the ver-
ification shows that the accuracy of Structon is 94.4% at
province level.

1. INTRODUCTION
The Internet depends on the Internet Protocol (IP) for in-

formation dissemination. IP address is one of the most im-
portant parts of the Internet Protocol, which is used not only
for Internet routing, but also for end hosts identification.
When the geolocaitons of IP addresses are known, many in-
teresting location-aware applications can be provided. We
give some examples as listed below:

• Automatic content providing. If a Web server knows
the location of a customer, it can automatically pro-
vide contents that meet the customer’s needs (e.g., lo-
cal weather forecasting and location-aware advertise-
ments).

• Resource ranking for Web search. The resources that
are physically near the client should be assigned a
higher score than those similar ones that are faraway
from the client.

• Location-aware P2P overlay construction. In P2P file
sharing and multimedia streaming, P2P nodes can take
advantage of location information to select logical neigh-
bors that are also their geographical neighbors. Lo-
cation awareness can greatly improve user experiences
(higher available bandwidth and reduced download time)
and reduce P2P traffic in the network core.

Many schemes have been proposed to map IP addresses
to geolocaitons, with their own pros and cons. See Section
5 for detailed discussion of these schemes.

In this paper, we propose a novel approach, which we call
Structon, that mines the Web for IP address to geolocation
mapping. We observe that many organizations put their
contact information, which include many geolocation items,
such as address, zipcode, and telephone area code, in their
Web pages. We conjecture that the location of the organi-
zation is (statistically) related to the location of the Web
server that hosts the Web pages. The reason is as follows.
When one setups a Web server, she can setup the server in-
side her organization or she needs to use certain Web hosting
service. Large organizations such as universities and govern-
ments may choose the first approach, in which the location
of the Web server is exactly the location of the organization.
When a user chooses the second approach, we argue that she
still tends to choose Web hosting providers that are near to
her, since 1) to place the Web server near the organization
makes management and maintenance much easier; 2) people
are more familiar with their local service providers than the
remote ones. The results of this paper have validated this
conjecture.

Motivated by the above observation and reasoning, in
Structon, we first mine a Web data archive (includes 74M
Chinese Web pages, which were crawled by the Web Search
and Mining group of Microsoft Research Asia in the end of
2006) to extract location items (address, zipcode, and tele-
phone area code) from each Web page; we then design a
serial of information clustering, false-information filtering,
error-correction, and location inferring algorithms to map
IP segments to geolocations.

Using this 74M Web page pool, Structon is able to map
IP address segments to {country, province, city} for 8.2M
IP addresses in China. Structon covers 10% IP addresses in
China by using less than 5% Web pages. Due to our infor-
mation clustering and location inferring algorithms, Struc-
ton is able to identify locations for not only Web servers but
also client hosts. We have verified our result with an IP ad-
dress location table of a major Chinese ISP (which contains
province information of its IP segments). The accuracy of
Structon at province level is 94.4%. We also have compared
our result with that of www.ip.cn, a grassroot site that man-
ually collects IP address locations in China. The coherent
ratio of Structon and www.ip.cn at city level is 86.1%.

To the best of our knowledge, Structon is the first ap-
proach that takes advantage of Web mining for IP address
geolocation. Structon has the following properties: The data
sources it uses are in public domain and may cover the whole
world; the whole process is automatic without human inter-
vene; and the result is of high accuracy.

2

Number of Web pages 74,300,723
Web pages with location info 20,590,612
DNS names 1,398,585
DNS names with location info 549,437
Mined IP addr with location info 96820
Deduced IP addr with location info 8,182,016
Accuracy ratio (province level) 94.4%

Table 1: The results we get after mined the Web
data archive.

The rest of the paper is organized as follows. We introduce
the Web data extracting platform and the location extrac-
tion procedure in Section 2. We then devise algorithms for
location information processing and inferring in Section 3.
We validate the accuracy of Structon and briefly discuss its
properties in Section 4. We discuss related work in Section
5 and conclude the paper in Section 6.

2. GEOLOCATION INFORMATION EXTRAC-
TION

The Web data set we use has 74 millions Web pages
(mainly from China) with a total size over 2.2 Tera-byes. We
employ a two rounds approach to implement Structon. In
the first round (Section 2), we extract location information
(if any) for every archived Web pages on top of a specially
designed cluster platform. In the second round (Section 3),
we perform further information clustering, false information
filtering, error-correction and location inferring, and finally
map IP address segments to their geolocations.

A brief summary of Structon’s results is given in Table 1.

2.1 The Platform
Geolocation extraction is performed on a cluster of 29

computers. Each of the 29 computers has a dual-core Intel
2.3 GHz Core2 processor, 4 GB DRAM, 1 TB hard disk,
and a Broadcom 1 Gb/s Ethernet NIC. All the computers
run Windows Server 2003 Enterprise x64 edition SP1 and
are connected by a switch.

The structure of the platform is shown in Fig. 1. A dis-
tributed storage system is used to store and manage the
crawled Web pages. The distributed storage system has
similar properties with the Google File system [3]. It breaks
large files into small pieces that are replicated and distributed
across the local disks of the cluster.

On top of the distributed storage system, the Dryad [8]
distributed execution engine is used to build the Structon
routines. Dryad is a general-purpose, high performance dis-
tributed execution engine for coarse-grain data-parallel ap-
plications. With Dryad, developers are able to focus on their
data processing logic while the Dryad execution engine han-
dles many of the difficult issues of a large distributed, con-
current application: resources scheduling, concurrency op-
timization, communication and computer failures recovery ,
and data output. In Dryad, a task is scheduled to run at
the computer which is the nearest to the stored data. This
locality-awareness optimizes the network bandwidth usage
and significantly increases the performance of the system.

2.2 Location Extraction
The geolocation extraction procedure is designed to ex-

tract location information from every crawled Web pages.

Figure 1: The distributed system for location infor-
mation extraction

It is built on top of Dryad to take advantage of its parallel
processing ability. The procedure is illustrated in Fig. 2. It
uses MSNParser to parse each Web page and GRETA [4],
an regular expression C++ library, for location extraction.

LocationExtraction:
1 for (each url) { /* each url represents a Web page */
2 if (filterPage(url) == TRUE)
3 continue;
4 splitPage();
5 for (int i = n; i > 0; i−−) {
6 addr = extractAddr(chunk[i]);
7 if (addr) listAddr.append(addr, i, n);
8 areacode = extractAreaCode(chunk[i]);
9 if (areacode) listArea.append(areacode, i, n);
10 zipcode = extractZipCode(chunk[i]);
11 if (zipcode) listZip.append(zipcode, i, n);
12 }
13 if (filterLocation(listAddr, listArea, listZip)==TRUE)
14 continue;
15 locations = (listAddr, listArea, listZip);
16 output(url, locations)
17 }

Figure 2: The procedure to extract location infor-
mation from all the archived pages.

In Fig. 2, we first call filterPage to filter pages that con-
tain ‘blog’, ‘bbs’, ‘forum’ in their urls. This is because the
location information contained in these pages are very likely
not the location of hosting Web server.

We then use splitPage, which in turn calls the MSNParser
library, to divide the page into a serial of “chunks”. A chunk
here is approximately the content that contains in one html
tag (we may combine several chunks to one to make sure
that we do not loss location information). We then extract
addresses, zipcodes, and telephone area codes from chunks
by using extractAddr, extractAreaCode, and extractZipCode.

We observe that most of the location information start
with “Addr:”, “Tel:”, “Fax:”, and “Zipcode” and their sim-
ilar variations. We therefore use these prefixes to simplify
the location extraction algorithm.

In extractAddr, we first check if the content starts with
“Addr:” or its variants (such as “Address:” and “Contact
Addr:”, etc.). If it does start with the desired prefixes,

3

we then try to extract locations by using regular expres-
sions. We have established a small database that contains
the province and city names, zipcodes and telephone area
codes of China. We have 31 provinces (not including Tai-
wan, Hongkong, and Macao), 508 cities, 486 zipcodes, and
340 telephone area codes. In Chinese tradition, an address is
start from province, then city, then street and building num-
ber. We take advantage of this to filter false-information.
For example, in “Addr: Jiangsu province, Nanjing, Tibet
road, No. 15”, there are three locations: “Jiangsu” which is
a province of China, “Nanjing” which is a city of Jiangsu,
and “Tibet” which is a road name (but it is also a province of
China). Since the location of “Tibet” appears behind “Nan-
jing” and ”Jiangsu”, we can safely filter “Tibet” in this case.
(Similar rule can be applied to Western style Web pages,
though the meaning of position needs to be re-interpreted.)

In extractAreaCode, if the content starts with “Tel:” or
“Fax:” or their variations, we then try to match the tele-
phone number using regular expressions that match the for-
mats of a telephone number (we have designed 10 regular
expressions to describe most of the telephone number for-
mats).

Similar with extractAreaCode, extractZipCode extracts zip-
code from the content.

After extracting all the locations from a page, we call
filterLocation. We filter the page when the number of items
in listAddr, or listArea, or listZip is larger than a threshold
(10 in this paper). The reason is that when a page contains
many address (zipcode, area code) items, it is very likely
to be a Yellow page. The location information contained in
Yellow pages are for dissemination or for advertising, and
generally cannot be trusted for our purpose.

This location extraction algorithm is run on the cluster
on top of Dryad. Dryad outputs the (url, locations) pairs
into our local disks. All the rest computations described in
Section 3 are performed on our local computer. The major
challenge in designing the location extraction algorithm is
the tradeoff between efficiency and accuracy: the algorithm
should run fast enough (since we have Tera-Bytes of data to
analyze) and the extracted location information should be
accurate enough. We have tuned the extraction procedure
so that it can be finished in 4 hours and 17 minutes in the
cluster. The rest computations are not time-critical and are
performed on a local PC.

3. GEOLOCATION INFORMATION PRO-
CESSING

In this paper, We use the CIDR notation A.B.C.D/n to
denote IP segments, where /n denotes the number of bits of
the network prefix. Class C segments are therefore denoted
as /24.

3.1 IP Segment to Location Mapping
The principle we adhere in this subsection is a majority

voting principle: A segment is said to be in a location when
most of the IP addresses in a segment say so. We take the
following four sequential steps to finally map IP segments
to geolocations:

1. For each page that is output from the previous location
extraction procedure, we assign weights to locations
based on their appeared position in the page.

url \ location BJ FJ LN SH
dns a/sub url1 0.64 - 0.96 0.89
dns a/sub url2 0.64 - 0.95 0.89
dns a/sub url3 - 0.57 0.95 0.86
LWV of dns a 0.43 0.19 0.95 0.88

Table 2: Calculating the location weight vector
(LWV) of a DNS name. The urls in the table share
the same DNS name.

2. For a DNS name that hosts many pages, we calculate
a location weight vector from weights of the hosted
pages.

3. We then resolve a DNS name to IP addresses (one DNS
name may resolve to many IP addresses). All the IP
addresses that are in the same class C IP segment are
considered as only one independent IP address. All
the independent IP addresses are then assigned the
location weight vector of that DNS name.

4. We then cluster all the IP addresses that are in the
same class C IP segment together and calculate a loca-
tion probability distribution. The location of the class
C IP segment is chosen as the one with the highest
probability from the distribution.

In the first step, We use Fig. 3 to assign weights to loca-
tions for each page.

WeightAssignment:
1 for (each (url, locations) pair) {
2 addr = locations.listAddr.head;
3 area = locations.listArea.head;
4 zip = locations.listZip.head;
5 addr.weight = addr.chunk id/n;
6 /*where n is the number of chunks of the page.*/
7 area.weight = area.chunk id/n;
8 zip.weight = zip.chunk id/n;
9 output (url, addr, area, zip);
10 }

Figure 3: The procedure to assign weights to up to
three locations in one page.

In Fig. 3, we take the first items from listAddr, listArea,
and listZip, respectively. These items are the last address,
area code, and zipcode that appear in one Web page. The
reason we choose the items appear in the end of a page
is that users tend to put their contact information at the
bottom of their Web pages. We then assign weights to these
three geolocation items based on their positions in the page.
The larger their chunk id, the higher the weight. Note that
addr, area, and zip may describe a same location. In this
case, the weight of that location is the sum of the three
weights. If the three locations are not the same, then the
weight of the page is distributed to different locations. After
the first step, for each url, we get at most 3 locations and
their corresponding weights.

In the second step, we list all the pages that have the same
DNS name into a same table to calculate a Location Weight
Vector (LWV). We use the example as illustrated in Table
2 to illustrate how this step works. In this example, all the
three urls share the same DNS name dns a.

4

IP \ location Chengdu NJ Sanya SH SY
61.155.111.42 0.003 0.004 0.003 0.24 -
61.155.111.44 - 0.02 - - -
61.155.111.70 - 0.77 - - 0.13
Location PDF 0.26% 68% 0.26% 20.5% 11%

Table 3: Location weight vectors of IP addresses in
the same 61.155.111.0/24 segment and the location
probability distribution function (PDF) of the seg-
ment.

As to the example in Table 2, the mean weights of dns a
that assigned to BeiJing (BJ), FuJian (FJ), LiaoNing (LN),
and ShangHai (SH) are (0.64 + 0.64)/3, (0.57)/3, (0.96 +
0.95+0.95)/3, and (0.89+0.89+0.86)/3, respectively. The
location weight vector is therefore {0.43, 0.19, 0.95, 0.88}
for these four geolocations. After that, we then get a list of
{dns name, location weight vector} for all the DNS names
that appear in the Web archive.

In the third step, we first resolve DNS names into IP ad-
dresses. One DNS name may be resolved to multiple IP ad-
dresses. We treat all the IP addresses that are in the same
Class C IP segment as one independent IP address (this is
because a Web site may use multiple servers for reliability
and load-balancing purposes, IP addresses in the same seg-
ment of a DNS name should not increase the weights of the
site). For each independent IP address, an IP address to
location weight vector mapping is then created.

In this stage, we also carry out IP address filtering by
leveraging information from BGP routing table. From the
BGP table [15], we get the origin Autonomous Systems (AS)
number of an IP address. And from the Whois [2] database,
we get from which country the AS number is registered.
Then if the mined location of an IP address says that it is
located in a country X, whereas the BGP table tells that this
IP address is actually located in country Y, we can safely
discard this mined location information for this IP address.

IP addresses are allocated in segments (to reduce the size
of the routing table). The IP addresses of an allocated seg-
ment are in the same location. In the fourth step, we ar-
range the IP addresses that are in a same IP segment into
a table as illustrated in Table 3, and then calculate a loca-
tion probability distribution function for the segment. The
problem here is how to decide the segment size. In this pa-
per, we found /24 (i.e., class C) is a good (and conservative)
choice at least for our dataset. We note that we actually can
dynamically adjust the segment granularity. For example,
when the majority IP addresses in the bottom half of a /24
segment say they are located in X, whereas the IP addresses
in the top half say they are in Y, we can divide this segment
into two /25 segments.

We calculate the location probability distribution func-
tion (PDF) of the IP segment by normalizing the location
weight vectors of all the IP addresses in the segment. As to
the example in Table 3, the probabilities that the segment
61.155.111.0/24 is located in CD (Chengdu), NJ (Nanjing),
Sanya, SH (Shanghai), and SY (Shenyang) are 0.003/1.17,
0.794/1.17=0.68, 0.003/1.17, 0.24/1.17, and 0.13/1.17, re-
spectively.

After that, we take the location that has the highest prob-
ability as the location of the IP segment. In this example,
we decide that 61.155.111.0/24 is in NJ (which is exactly the
case). We therefore map all the IP segments (that appeared
in our Web data archive and have location information in

Web servers) into their locations.

3.2 Self-Error-Correction and Location Infer-
ring

The algorithms presented below show Structon’s self-error-
correction and location inferring abilities. More sophisti-
cated algorithms can be developed based on this majority
voting idea.

For self-error-correction, we cluster the class C IP seg-
ments we get into larger segments (in this paper, we choose
the size of a larger segment to be /18 each with 64 class C
segments). If most of the class C segments are located in a
same location Lm and only a very small fraction of segments
are in other locations. We then conclude that these small
fraction of segments are also located in Lm. The procedure
is illustrated in Fig. 4. IPSegList is the ascendant sorted
list of the mined class C segments that are in the same /18
segment. IPSegb and IPSege are the first and last Seg-
ments in IPSegList, Na is the number of class C segments
that appear in IPSegList. Nm is the number of Class C
segments that are located in Lm.

ErrorCorrection:
1 for (each /18 IP segment) {
2 if (IPSegb not in Lm or IPSege not in Lm)
3 continue;
4 flag = 0;
5 if (Na ≥ 30 and Nm/Na ≥ 0.8)
6 flag =1;
7 else if (Na ≥ 20 and Nm/Na ≥ 0.85)
8 flag =1;
9 else if (Na ≥ 10 and Nm/Na ≥ 0.9)
10 flag =1;
11 if (flag ==1)
12 map all segments in IPSegList to Lm;
13 }

Figure 4: The self-error-correction procedure.

We use different thresholds (Nm/Na) for different Na.
The larger the Na, the smaller the threshold. This is be-
cause we need to be more cautious when the data set is small.
We are conservative in that we require both the beginning
(IPSegb) and the end (IPSege) segments to be located in
Lm.

Table 4 shows 11 class C IP segments in 59.64.128/18.
Since 10 segments except 59.64.136.0/24 say they are located
in BJ, based on Fig. 4, we determine that 59.64.136.0/24 is
in BJ instead of HEB (the capital of HLJ province).

Based on the self-error-correction procedure, we further
devise a location inferring heuristic. We observe that when
all segments in IPSegList are in the same location, it is
very likely that all the segments in [IPSegb - IPSege] are
in that location. The inferring algorithm is the same as Fig.
4 except that we replace line 12 to: “map all segments in
[IPSegb - IPSege] to Lm;”.

Using this inferring heuristic, as to the example in Table
4, we deduce that all the 55 class C segments are in BJ.
We therefore are able to deduce locations for 44 segments
that we originally do not know their locations! Note that
in location inferring, we again are conservative: When seg-
ments in IPSegList agree on their location, we treat only
the segments that are in IPSegb − IPSege instead of the
whole 59.64.128.0/18 segments to be located in Lm.

5

IP segment location [→corrected location]
59.64.128.0/24 BJ
59.64.133.0/24 BJ
59.64.136.0/24 HEB-HLJ →BJ
59.64.137.0/24 BJ
59.64.140.0/24 BJ
59.64.144.0/24 BJ
59.64.149.0/24 BJ
59.64.154.0/24 BJ
59.64.156.0/24 BJ
59.64.160.0/24 BJ
59.64.182.0/24 BJ

Table 4: An example to show how self-error-
correction and location inferring work.

3.3 The Result
By mining the 74M Web pages, Structon identifies the

locations for a set of 19264 class C IP segments (we call
this set the ‘original set’) which spans from 58.16.32.0 to
222.248.238.0. Using the self-error-correction procedure, we
are able to ‘correct’ the locations for 374 IP segments (a.k.a.,
the ‘corrected set’). After the location inferring procedure,
we get locations for 31961 IP segments with 12697 new ones
that originally do not appear in the Web archives (a.k.a., the
‘inferred set’). We therefore are able to identify the locations
for 31961 segments (or 8.2M IP addresses). As to the end
of 2006, the total IP addresses allocated to China is about
82M, and the number of Web pages in China is expected
to be much larger than 1.6 billion (internal reference). We
therefore are able to cover 10% of the IP addresses with less
than 5% Web pages. We still do not know how the coverage
ratio will increase as the numbers of Web pages and DNS
names increase. At the time when this paper is written, we
are preparing much larger Web data archives.

4. VALIDATION AND DISCUSSION

4.1 Validation
We first verify the accuracy of Structon by comparing our

result with a set of IP segments which we know their exact
province information (a.k.a., the ‘test set’). This set of IP
segments is from a major Chinese ISP and contains 50976
class C IP segments. The number of the overlapped seg-
ments of our original set and the test set is 3919. The over-
lapped segments are distributed across all the 31 provinces
of China Mainland (which demonstrates the geolocation di-
versity of our validation). For these overlapped segments,
Structon correctly identifies the locations for 3429 of them.
The accuracy ratio is therefore 87.5%. After running the
self-error-correction procedure, Structon is able to correctly
identify the locations for 3525 of them, and the accuracy
ratio raises to 90%. After location inferring, since more
segments are added, the number of overlapped segments be-
come to 7033. Structon correctly identify the locations of
all the inferred segments (which means that our location in-
ferring algorithm may be overly conservative and may have
large room for further improvements) and the accuracy ratio
raises to 94.4%.

We also have compared our result with www.ip.cn, a grass-
root site that manually collects IP location information con-
tributed by end users at city and province levels. At city
level, the ‘original set’ has 17936 segments overlapped with

www.ip.cn, with coherent ration 80.7% (i.e., 14473 segments
are mapped to the same cities in both sources). The co-
herent ratios (overlapped segments) are 82.8% (17748) and
86.1% (22322) for the ‘corrected’ and ‘inferred’ sets, respec-
tively. At province level, the coherent ratios (overlapped
segments) are 87% (19206), 89% (19206), and 93.2% (31815)
for the ‘original’, ‘corrected’, and ‘inferred’ sets, respectively.
Though a coherent ratio cannot tell us the exact accuracy
ratio, a high coherent ratio nonetheless indicates a high ac-
curacy ratio.

The high accuracy of Structon is therefore validated by
both of the two validation studies.

4.2 Discussion
Since Structon mines Web pages for IP address locations,

one might doubt that Structon can only identify locations for
Web servers. Since for many location-aware applications, lo-
cations of client hosts may be more useful, one may therefore
doubt the usefulness of Structon. This observation, however,
is not true due to:

• When the location of one IP address is identified, the
location of the whole segment is also determined. And
it is very unlikely that the whole segment contains only
Web servers.

• Most importantly, Structon has the ability to infer lo-
cations for segments that do not host any Web servers.
Our result shows that even very conservative inferring
algorithm can discover significantly more IP segments
(12697 segments). For example, Structon can identify
218.69.110.255/24 is in TianJin (TJ) via location in-
ferring. An offline check shows that this IP segment is
assigned to ADSL users.

At current stage, though we do not know whether Struc-
ton is able to cover the whole IP address space when all the
Web pages of the world are available, Structon surely is able
to cover many client IP addresses and to provide a huge pool
of highly available passive landmarks with accurate location
information for the whole networking community.

5. RELATED WORK
There are two categories of related work for geolocation

mapping, one is delay-based, and the other is information-
retrieval-based.

5.1 Delay-based
There are many schemes that first measure delays to land-

marks, then calculate the geolocation (or virtual coordi-
nates) of an IP address based on the measured delays from
the end-host to the landmarks [5, 9, 10, 11, 14, 16, 17, 18].
GeoPing [14] maps a host to one of its landmarks based on
the measured delays between the landmarks and the host.
CBG [5] improves GeoPing by using the measured delays as
constrains. The location derived from CBG need not to be
the locations of the landmarks. TBG [9] further improves
the delay-based approach by taking advantage of the topol-
ogy information. In Octant [17], not only positive, but also
negative measurement constrains are considered. Since the
geographical distance and network delay is only moderately
correlated (due to detour routing and queueing and trans-
mission delays), delay-based approaches generally result in
hundreds or even thousands of kilometers error distance.

6

There are also approaches that calculate Internet distance
between end-hosts based on certain end-hosts coordinates
[1, 13]. The basic operation used by these approaches is
also to measure delays between end-hosts.

Structon can be complimentary to the delay-based ap-
proaches. The locations of the Web servers determined by
Structon can be used by the delay-based approaches as pas-
sive landmarks. Since Structon can easily discover the loca-
tions of millions of Web servers, the number of landmarks
used in delay measurement can be increased in many magni-
tudes. This will increase the accuracy of the delay-based ap-
proaches significantly, since “the error of the class of delay-
based algorithms to be strongly determined by the distance
to the nearest landmark” [9].

5.2 Information-retrieval-based
Structon is an information retrieval-based approach. In-

formation retrieval-based approaches get geolocation infor-
mation from certain sources that contain location informa-
tion. In [12], the authors mined the Whois [2] database for
geolocation. The major issue of using the Whois database
is that the location information may be outdated or even
incorrect.

In GeoCluster [14], the authors used the IP location in-
formation collected by a large Web portal. The location
information were input by end users when they were asked
to provide their location information by certain location-
aware services (such as weather forecasting). The accuracy
of GeoCluster therefore depends on the correctness of user
input. Another difference between GeoCluster and Structon
is that Structon uses publicly available Web pages instead
of proprietary data sources.

As compared with previous information-retrieval-based ap-
proaches, Structon is more active in that by actively crawl-
ing the Web, it can detect location changes for existing IP
segments and discover locations for new IP segments.

There are also many Web sites that provide IP location
query service, such as [6, 7]. The technologies they use are
commercial secrets, hence it is difficult to compare them
with Structon. Their data sources may be, 1) from Whois
database; 2) collected from ISPs; 3) collected using grassroot
methods (e.g., establish a Web 2.0 site and let users input
their IP addresses and locations). Collecting data from ISP
does not scale since it is difficult if not totally impossible to
work with all the ISPs in the world. The grassroot methods
have 2 issues: 1) to attract people in the world to participate
is quite difficult; 2) it is difficult to filter malicious input
data.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented Structon for IP address to

geolocation mapping by mining the Web. Structon is able to
cover 8.2M IP addresses with 74M Web pages in China. The
data sources used by Structon are all crawled from the public
domain and the whole process is automatic without human
intervene. By introducing a serial of information clustering,
false information filtering, self-error-correction, and location
inferring algorithms, Structon achieves high IP-to-location
mapping accuracy at both province and city levels.

Structon is our first data-centric approach to show that
the information contained in the Web can help us better
understand the network infrastructure itself. In our future
work, we plan to: 1) run Structon on larger Web dataset; 2)

research on methods to cover more IP addresses for client
hosts; 3) extend Structon to provide a network distance ser-
vice: given two IP addresses, tell the network latency be-
tween them.

7. REFERENCES
[1] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert

Morris. Vivaldi: A Decentralized Network Coordinate
System. In Proceedings of SIGCOMM’04, 2004.

[2] L. Daigle. Whois protocol specification, September
2004. RFC 3912.

[3] S. Ghemawat, H. Gobioff, and S. Leung. The Google
file system. In Proc. ACM SOSP’03, 2003.

[4] The GRETA Regular Expression Template Archive.
http://research.microsoft.com/projects/greta/.

[5] Bamba Gueye, Artur Ziviani, Mark Crovella, and
Serge Fdida. Constraint-Based Geolocation of Internet
Hosts. IEEE/ACM trans. Networking, 14(6), Dec
2006.

[6] IP2Location. http://www.ip2location.com/.

[7] IP Inquery. http://www.ip.cn.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks. In Proc. ACM
EuroSys’07, Lisboa, Portugal, March 2007.

[9] Ethan Katz-Bassett, John P. John, Arvind
Krishnamurthy, David Wetherall, Thomas Anderson,
and Yatin Chawathe. Towards IP Geolocation using
Delay and Topology Measurements. In Proceedings of
IMC’06, 2006.

[10] Jonathan Ledlie, Paul Gardner, and Margo Seltzer.
Network Coordinates in the Wild. In Proceedings of
NSDI 2007, Cambridge, MA, April 2007.

[11] Harsha V. Madhyastha, Thomas Anderson, Arvind
Krishnamurthy, Neil Spring, and Arun
Venkataramani. A Structural Approach to Latency
Prediction. In Proceedings of IMC’06, 2006.

[12] David Moore, Ram Periakaruppan, Jim Donohoe, and
k claffy. Where in the World is netgeo.caida.org? In
Proceedings of INET’00, 2000.

[13] T. S. Eugene Ng and Hui Zhang. Predicting Internet
Network Distance with Coordinates-Based
Approaches. In Proceedings of infocom’02, 2002.

[14] Venkata N. Padmanabhan and Lakshminarayanan
Subramanian. An Investigation of Geographic
Mapping Techniques for Internet Hosts. In Proceedings
of SIGCOMM’01, 2001.

[15] University of Oregon Route Views Project.
http://www.routeviews.org/.

[16] Liying Tang and Mark Crovella. Virtual Landmarks
for the Internet. In Proceedings of IMC’03, 2003.

[17] Bernard Wong, Ivan Stoyanov, and Emin Gün Sirer.
Octant: A Comprehensive Framework for the
Geolocalization of Internet Hosts. In Proceedings of
NSDI 2007, Cambridge, MA, April 2007.

[18] Artur Ziviani, Serge Fdida, José Ferreira de Rezende,
and Otto Carlos Muniz Bandeira Duarte. Improving
the accuracy of measurement-based geographic
location of Internet hosts. Computer Networks,
Elsevier Science, 47(4):503–523, March 2005.

7

