
Iterative Context Bounding for Systematic Testing of
Multithreaded Programs

Madan Musuvathi Shaz Qadeer
Microsoft Research

{madanm,qadeer}@microsoft.com

Abstract
Multithreaded programs are difficult to get right because ofun-
expected interaction between concurrently executing threads. Tra-
ditional testing methods are inadequate for catching subtle con-
currency errors which manifest themselves late in the develop-
ment cycle and post-deployment. Model checking or systematic
exploration of program behavior is a promising alternativeto tra-
ditional testing methods. However, it is difficult to perform sys-
tematic search on large programs as the number of possible pro-
gram behaviors grows explosively with the program size. Con-
fronted with this state-explosion problem, traditional model check-
ers perform iterative depth-bounded search. Although effective for
message-passing software, iterative depth-bounding is inadequate
for multithreaded software.

This paper proposes iterative context-bounding, a new search
algorithm that systematically explores the executions of amulti-
threaded program in an order that prioritizes executions with fewer
context switches. We distinguish between two kinds of context
switches, preempting and nonpreempting, and show that bounding
the number of preempting context switches to a small number sig-
nificantly alleviates the state space explosion, without limiting the
depth of the execution. We show both theoretically and empirically
that context-bounded search is an effective method for exploring
the behaviors of multithreaded programs. We have implemented
our algorithm in two model checkers and applied it to a numberof
real-world multithreaded programs. The iterative context-bounding
algorithm uncovered7 previously unknown bugs in our bench-
marks. Each of these bugs was exposed by an execution with at
most two context switches. Our initial experience with the tech-
nique is very encouraging and demonstrates that iterative context-
bounding is a significant improvement on existing techniques for
testing multithreaded programs.

1. Introduction
Multithreaded programs are difficult to get right. Specific thread
interleavings, unexpected even to an expert programmer, lead to
crashes that occur late in the software development cycle oreven
after the software is released. The traditional method for testing
concurrent software in the industry isstress-testing, in which the
software is executed under heavy loads with the hope of producing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

an erroneous interleaving. Empirical evidence clearly demonstrates
that this form of testing is inadequate. Stress-testing does not pro-
vide any notion of coverage with respect to concurrency; even after
executing the tests for days the fraction of explored schedules re-
mains unknown and likely very low.

A promising method to address the limitations of traditional
testing methods ismodel checking[2, 22] or systematic exploration
of program behavior. A model checker systematically executes
each thread schedule, while verifying that each execution main-
tains desired properties of the program. The fundamental problem
in applying model checking to large programs is the well-known
state-explosion problem, i.e., the number of possible program be-
haviors grows explosively (at least exponentially) with the size of
the program.

To combat the state-explosion problem, researchers have inves-
tigated reduction techniques such as partial-order reduction [9] and
symmetry reduction [13, 12]. Although these reduction techniques
help in controlling the state explosion, it remains practically im-
possible for model checkers to fully explore the behaviors of large
programs within reasonable resources of memory and time. For
such large programs, model checkers typically resort to heuristics
to maximize the number of errors found before running out of re-
sources. One such heuristic isdepth-bounding[23], in which the
search is limited to executions with a bounded number of steps. If
the search with a particular bound terminates, then it is repeated
with an increased bound. Unlike other heuristics for partial state-
space search, depth-bounded search provides a valuable coverage
metric—if search with depth-boundd terminates then there are no
errors in executions with at mostd steps.

Since the number of possible behaviors of a program usu-
ally grows exponentially with the depth-bound, iterative depth-
bounding runs out of resources quickly as the depth is increased.
Hence, depth-bounding is most useful when interesting behaviors
of the program, and therefore bugs, manifest in small numberof
steps from the initial state. The state space of message-passing
software has this property which accounts for the success ofmodel
checking on such systems [10, 17]. In contrast, depth-bounding
does not work well for multithreaded programs, where the threads
in the program have fine-grained interaction through sharedmem-
ory. While a step in a message-passing system is the send or receive
of a message, a step in a multithreaded system is a read or write of a
shared variable. Typically, several orders of magnitude more steps
are required to get interesting behavior in a multithreadedprogram
than in a message-passing program.

This paper proposes a novel algorithm callediterative context-
bounding for effectively searching the state space of a multi-
threaded program. In the execution of a multithreaded program,
a context switchoccurs when a thread temporarily stops execution
and a different thread starts. Some context switches occur when the
currently running thread either terminates or blocks temporarily on

a resource. We call thesenonpreemptingcontext switches. On the
other hand,preemptingcontext switches occur when the scheduler
suspends the running thread at an arbitrary point. Intuitively, the
iterative context-bounding algorithm prioritizes executions with
fewer preempting context switches during state space search. For
a given context-boundc, the algorithm executes only those exe-
cutions in which the number of preempting context switches is at
mostc. Unlike depth-bounding, a thread in the program can execute
an arbitrary number of steps between context switches. Thisallows
the model checker to go deeper in the state space with a small num-
ber of context switches. Moreover, even with a context-bound of
0, a model checker can execute a terminating and deadlock-free
program to completion. In the rest of the paper, unless otherwise
qualified, we will refer to prempting context switches simply with-
out the qualifier.

Limiting the number of context switches has many powerful
and desirable consequences for systematic state-space exploration
of multithreaded programs. First, we show (Section 2) that for a
fixed number of context switches, the total number of executions
in a program ispolynomial in the number of steps taken by each
thread. This theoretical upper bound makes it practically feasible to
scale systematic exploration to large programs without sacrificing
the ability to go deep in the state space.

Second, we provide (Section 4) empirical evidence that a small
number of context switches are sufficient to expose intricate non-
trivial concurrency bugs. Also, for a set of programs for which
complete search is possible, we show that few context switches
are sufficient to cover most of the state space. This empirical ev-
idence strongly suggests that when faced with limited resources,
which is invariably the case with model checkers, focusing on
the polynomially-bounded and potentially bug-yielding executions
with a small context-switch bound is a productive search strategy.

Third, iterative context-bounding has the important property
that it finds a trace with the smallest number of context-switches
exposing the error. As most of the complexity of analyzing a con-
current error-trace arises from the interactions between the threads,
the algorithm naturally seeks to provide the simplest explanation
for the error. Moreover, when the search runs out of resources af-
ter exploring all executions withc context-switches, the algorithm
guarantees that any error in the program requires at leastc+1 con-
text switches. In addition to providing a valuable coveragemetric,
it also provides the programmer with an estimate of the complexity
of bugs remaining in the system and the probability of their occur-
rence in practice.

We present our iterative context-bounding algorithm in Sec-
tion 3. To evaluate our algorithm, we implemented it in two
model checkers, ZING and CHESS. ZING is an explicit-state model
checker for concurrent programs specified in the ZING modeling
language. CHESSis a stateless model checker that executes the pro-
gram executables directly, much along the lines of Verisoft[10], but
designed for shared-memory multithreaded programs. Our evalua-
tion, based on these two implementations, is described in Section 4.
Our implementation uncovered7 previously unknown bugs in sev-
eral real-world multithreaded programs. Each of these bugswas
exposed by an execution with at most2 context switches.

In summary, the technical contributions of the paper are as
follows:

• The notion of iterative context-bounding and the concomitant
argument that bounding the number of contexts is superior to
bounding the depth as a strategy for systmatic exploration of
multithreaded executions.

• A combinatorial arugment that for a fixed number of contexts,
the number of executions is polynomial in the total number of
steps excuted by the program.

• An iterative context-bounding algorithm that systematically
enumerates program executions in increasing order of context
switches.

• Empirical evidence that context-bounded executions expose in-
teresting behavior of the program, even when the number of
contexts is bounded by a small number.

2. Iterative context-bounding
In the view of this paper, model checking a multithreaded program
is analogous to running the system on a nondeterministic scheduler
and then systematically exploring each choice made by the sched-
uler. Since the scheduler is allowed to choose the next thread at
each step, the number of possibilities explodes exponentially with
the number of steps. To make this point concretely, supposeP is
a terminatingmultithreaded program, i.e., there is a numberi such
that the length of every execution ofP is bounded byi. LetP have
n threads where each thread executes at mostk steps of which at
mostb are potentially-blocking. Then the total number of execu-
tions of P may be as large as(nk)!

(k!)n
≥ (n!)k, a dependence that

is exponential in bothn andk. For most programs, although the
number of threads may be small, the number of steps performedby
a thread is very large. Therefore, the exponential dependence onk
is especially problematic. All previous heuristics for partial state-
space search, including depth-bounding, suffer from this problem.

The fundamental and novel contribution of context-bounding is
that it limits the number of scheduler choices without limiting the
depth of the execution. In program executions, there are two kinds
of context switches—preempting and nonprempting. Apreempting
context switchoccurs when the scheduler preempts the execution
of the currently running thread, say at the expiration of a time slice,
and schedules another thread. On the other hand, anonpreempting
context switchoccurs when a thread voluntarily yields execution,
either when the thread terminates or blocks on an unavialable re-
source. In context-bounding, we bound the number of preempting
context switches but leave the number of nonpreempting context
switches unconstrained. We show below that the number of exe-
cutions ofP with at mostc preempting context switches is poly-
nomial in k but exponential inc. An exponential dependence on
c is significantly better than an exponential dependence onk be-
causek is much greater thanc and also because in our experience
many bugs are manifested when threads are preempted at unex-
pected places. With this polynomial bound, it becomes feasible to
apply context-bounded search to large programs, at least for small
values ofc.

There are two important facts to note about context-bounding
First, the number of steps within each context remains unbounded.
Therefore, unlike depth-bounding there is no bound on the exe-
cution depth. Second, since the number of nonprempting context
switches remains unbounded it is possible to get a complete termi-
nating execution even with a bound of zero! For instance, such a
terminating execution can be obtained from any state by schedul-
ing each thread in a round-robin fashion without preemption. These
two observations clearly indicate that context bounding does not af-
fect the ability of the search to go deep into the state space.

We now present a theoretical bound on the number of context-
bounded executions of a multithreaded program. LetxCy denote the
number of ways of choosingy objects out ofx.

THEOREM1. Consider a terminating programP with n threads,
where each thread executes at mostk steps of which at mostb
are potentially-blocking. Then there are at mostnkCc(nb + c)!
executions ofP with c preempting context switches.

PROOF.The length of each execution ofP is bounded bynk.
Therefore, there are are at mostnk points where a preempting

�������
��������
��	����

� � � � � � � � � 	 �� ��

�����������

������� ������ �� �!
Figure 1. Coverage graph

context switch can occur and at mostnkCc ways of selectingc
context switches from thesenk points. Once thec context switches
have been chosen, we have a maximum ofnb+c execution contexts
which can be arranged in at most(nb + c)! ways. Thus, we get the
upper bound ofnkCc(nb+c)! executions withc preempting context
switches.2

Assuming thatc is much smaller than bothk andnb, the bound
given in the theorem above is simplified to(nk)c(nb)c(nb)! =
(n2kb)c(nb)!. This bound remains exponential inc, n, andb, but
each of these values is significantly smaller thank, with respect to
which this bound is polynomial. It is also interesting to simplify
this bound further for non-blocking multithreaded programs. In
such programs, the only blocking action performed by a thread
is the fictitious action representing the termination of thethread.
Thereforeb = 1 and the bound becomes(n2k)cn!.

2.1 Empirical argument

To evaluate the efficacy of iterative context-bounding in exposing
concurrency errors, we have implemented the algorithm and used it
to test several real-world programs. We describe our evaluation in
detail in Section 4. Here we give a brief preview of the performance
of our algorithm on an implementation [15] of a work-stealing
queue algorithm [8]. This implementation represents the queue
using a bounded circular buffer which is accessed concurrently by
two threads in a non-blocking manner. The implementor gave us the
test harness along with three variations of his implementation, each
containing what he considered to be a subtle bug. The test harness
has two threads that concurrently call functions in the work-stealing
queue API. Our model checker based on iterative context-bounding
found each of those bugs within a context-switch bound of two.

We plotted the coverage graph for this implementation of the
work-stealing queue. Unlike syntactic notions of coveragesuch as
line, branch or path coverage, we have chosen the number of dis-
tinct visited states as our notion of coverage. We believe that state
coverage is the most appropriate notion of coverage for semantics-
based safety checkers such as our model checker. Figure 1 plots
the fraction of reachable states covered on the y-axis against the
context-switch bound on the x-axis. There are several interesting
facts about this coverage graph. First, full state coverageis achieved
with eleven context switches although the program has executions
with at least35 preempting context switches (see Table 1). Second,
90% state coverage is achieved within a context-switch bound of
eight. These observations indicate that iterative context-bounding
is good at achieving high coverage within bounds that are sig-

"#####"######

"##"###"####
" $ % & ' () * + "# "" "$ "% "& "' "(") "* "+ $# $" $$ $% $& $' $(

, -./.01
, 23045.6781 93"###:

;<=>?@ABC>DE>=FGH>=FIH
Figure 2. Coverage growth

nificantly smaller than the maximum number of possible context
switches.

Finally, we also compared the variation of coverage with time
for various methods of state-space search. Figure 2 plots the num-
ber of distinct visited states on the y-axis against the number of ex-
ecutions explored by different methods. Note that the y-axis is on a
logarithmic scale. There are five curves in the graph corresponding
to iterative context-bounding (icb), unbounded depth-first search
(dfs), random search (random), depth-first search with depth-
bound 40 (db:40), and depth-first search with depth-bound 20
(db:20). As is evident from the graph, iterative context-bounding
achives significantly better coverage at a faster rate compared to the
other methods. In Section 4, we present a more detailed discussion
of the various graphs presented here.

3. Algorithm
In this section, we describe an algorithm that systematically
searches the state space of a program by iteratively increasing the
number of preempting context switches. The algorithm takesas in-
put s0, the initial state of the program andcsb, the context-switch
bound. The algorithm works in phases. In phase0, the algorithm
explores using a depth-first search all states that are reachable from
s0 via executions with at mostcsb preempting context switches.
All states that are reachable with exactlycsb preempting context
switches are added to a work list calledworkQueue . In phase1,
these states are removed fromworkQueue one by one. For each
state, another depth-first search with a context-switch bound ofcsb
is initiated. Just as before, new states generated from these states
via executions with exactlycsb context switches are pushed to the
back ofworkQueue . The algorithm continues in this fashion un-
til workQueue is empty. Our algorithm ensures that at the end of
phasei, it has explored all executions with(i + 1) ∗ csb + i pre-
empting context switches. Ifcsb = 0, the algorithm performs strict
iterative context-bounding—for anyi ≥ 0, every execution withi
preempting context switches is explored before any execution with
i + 1 context switches.

We now present a more detailed description of the algorithm.
The algorithm assumes that the set of thread identifiers is given
by Tid. The variableworkQueue is a queue of work items whose
type is given in line 1. Each work itemw contains a statew .state ,
a thread identifierw .tid , and a phase identifierw .phase . The work
represented by this work item is a depth-first search with context-
switch boundcsb to be performed from statew .state with the

Input: initial states0 ∈ State and context switch boundcsb

struct WorkItem { State state ; Tid tid ; int phase ; }1

Queue〈WorkItem〉 workQueue ;2

WorkItem w ;3

int currPhase ;4

for t ∈ T id do5
w .state := s0;6

w .tid := t;7

w .phase := 0;8

workQueue .Add(w);9

end10

currPhase := 0;11

while ¬workQueue .Empty() do12
w := workQueue .Front();13

workQueue .Pop();14

if currPhase < w .phase then15
/* explored (currPhase +1) ∗ csb+ currPhase

preempting context switches */

currPhase := w .phase ;16

end17

Search(w , 0);18

end19

Search(WorkItem w , int ncs) begin20
if ¬w .state .Enabled(w .tid) then21

return;22

end23

WorkItem x ;24

x .state := w .state .Execute(w .tid);25

x .tid := w .tid ;26

x .phase := w .phase ;27

Search(x , ncs);28

for t ∈ T id \ {w .tid} do29
x .tid := t;30

if ¬x .state .Enabled(w .tid) then31
x .phase := w .phase ;32

Search(x , ncs);33

else if ncs = csb then34
x .phase := w .phase + 1;35

workQueue .Push(x);36

else37
x .phase := w .phase ;38

Search(x , ncs+1);39

end40

end41

end42

Algorithm 1: Iterative context bounding

proviso that only threadw .tid is executed fromw .state . The field
w .phase represents the phase of the algorithm in which the work
item will be processed.

In lines 5–10,workQueue is initialized with work items cor-
responding to the initial state. One work item is created foreach
thread inTid. Line 11 initializes the current phase of the algo-
rithm stored in the variablecurrPhase to 0. The phase is updated
in line 16 whenever the phase of the work item extracted from
the work queue is greater than the current value of the phase.The
loop in lines 12–19 removes a work item from the queue, updates
currPhase if required, and invokes the procedureSearch on it.
Whenever control reaches line 16, the algorithm guaranteesthat all
executions with(currPhase + 1) ∗ csb + currPhase preempting
context switches have been executed.

The recursive procedureSearch takes two arguments—a work
itemw and an integerncs. The integerncs represents the number
of preempting context switches that have occurred in the current
depth-first search. The search is pruned whenncs = csb and an
preempting context switch is about to occur. The invocationof
Search on line 18 has the value0 for this parameter because a fresh
search is being initiated.

The implementation of the procedureSearch is as follows. If the
threadw .tid is enabled inw .state we execute that thread (line 25)
one step to create a new state. In lines 25–28, we create a new
work item containing the new state and the same threadw .tid
that was executed to reach it. ThenSearch is called recursively
with the new work item but with the same value ofncs that was
passed in since no additional context switch has occurred. In this
way, our algorithm always gives preferences to schedules with
fewer context switches. After this search terminates, the pseudo-
code in lines 29–42 schedules all threads other thanw .tid from
the new state obtained in line 25. Scheduling a different thread
results in a context switch; the test on line 31 determines ifthe
context switch is nonpreempting. Ifw .tid is not enabled in the
new state, then the context switch is nonpreempting. Therefore,
Search is invoked with the same value ofncs that was passed
in. Otherwise, the context switch is preempting. The test online
34 determines whether this preempting context switch is allowed
given the bound ofcsb. If the test succeeds, then the context switch
is not allowed, the search is pruned, and a work item is added
to the back of the queue. Otherwise,Search is called recursively.
The algorithm is guaranteed to terminate if for all possiblethread
schedules, the input program reaches a state in which every thread
is either blocked or terminated.

State caching is orthogonal to the idea of context-bounding; our
algorithm may be used with or without it. In fact, we have im-
plemented our algorithm in two different model checkers—ZING,
which caches states and CHESS, which does not cache states. The
description in this section has ignored the issue of state caching. It
is easy enough to add that feature by introducing a global variable:

Set〈State〉 table ;

The variabletable is initialized to the empty set. We also add the
following code at the very beginning ofSearch to prune the search
if a state is revisited.

if table.Contains(w .state) then
return;

end
table .Add(w .state);

4. Empirical Evaluation
We have created two implementations of iterative context-bounding
in the ZING and CHESS model checkers. We now give brief de-
scriptions of these two model checkers.

ZING has been designed for verifying models of concurrent
software expressed in the ZING modeling language. The models
may be created manually or automatically using other tools.Cur-
rently, there exist translators from subsets of C# and X86 assembly
code into the ZING modeling language. ZING is an explicit-state
model checker; it performs depth-first search with state caching. It
maintains the stack compactly using state-delta compression and
performs state-space reduction by exploiting heap-symmetry.

CHESSis meant for verifying concurrent programs directly and
does not require a model to be created. Similar to the Verisoft [10]
model checker, CHESS is stateless and runs program executables
directly. However, Verisoft was designed for message-passing soft-
ware whereas CHESS is designed to verify shared-memory multi-
threaded software. Since CHESSdoes not cache states, it expects
the input program to have an acylic state space and terminateun-
der all possible thread schedules. The ZING model checker de-
scribed earlier has no such restriction and can handle both cyclic
and acyclic state spaces.

For each program execution, each model checker verifies
language-specific and programmer-supplied assertions. Inaddi-
tion, the absence of data-races along each execution is alsoveri-
fied using an implementation of the Goldilocks algorithm [4]. Our
verification methodology partitions the set of program variables
into data and synchronization variables. Synchronizationvariables,
such as locks, events, and semaphores, are used to ensure that there
are no data-races on the data variables. CHESS introduces con-
text switches only at accesses to synchronization variables. This is
sound as long as there are no data-races on the data variables[1], a
specification that is verified by the model checker.

4.1 Benchmarks Used

We evaluated the iterative context-bounding algorithm on aset of
benchmark programs. Each program is an open library, requiring
a test driver to close the system. The test driver allocates threads
that concurrently call interesting sequences of library functions
with appropriate inputs. The input program together with the test
driver forms a closed system that is given to the model checker
for systematically exploring the behaviors. For the purpose of our
experiments, we assume that the only nondeterminism in the input
program and the test driver is that induced by the scheduler,which
the model checker controls.

Obviously, a model checker can only explore behaviors of the
program triggered by the test driver. The quality of the state space
search, and thus the bugs found depends heavily upon good test
drivers. When available, we used existing concurrent test cases for
our experiments. For programs with no existing test cases, we wrote
our own drivers that, to our best knowledge, explored interesting
behavior in the system. Comprehensively closing an open system
to expose most of the bugs in the system is a challenging problem,
beyond the scope of this paper.

We provide a brief description of the programs used for our
evaluation below.

Bluetooth: This program is a sample Bluetooth Plug and Play
(PnP) driver modified to run as a library in user space. The sample
driver does not contain hardware-specific code but capturesthe
synchronization and logic required for basic PnP functionality. We
wrote a test driver with three threads that emulated the scenario
of the driver being stopped when worker threads are performing
operations on the driver.

File System Model: This is a simplified model of a file system
derived used in prior work (see Figure 7 in [7]). The program

Num Max Max Max
Programs LOC Threads K B c
Bluetooth 400 3 15 2 8
File System Model 84 4 20 8 13
Work Stealing Q. 1266 3 99 2 35
APE 18947 4 247 2 75
Dryad Channels 16036 5 273 4 167

Table 1. Characteristics of the benchmarks. For each benchmark,
this table reports the number of lines, the number of threadsallo-
cated by the test driver. For an execution, K is the total number of
steps, B is the number of blocking instructions, and c is the num-
ber of preempting context switches. The table reports the maximum
values of K,B, and c seen during our experiments.

emulates processes creating files and thereby allocating inodes and
blocks. Each inode and block is protected by a lock.

Work-Stealing queue: This program is an implementation [15]
of the work-stealing queue algorithm originally designed for the
Cilk multithreaded programming system [8]. The program hasa
queue of work items implemented using a bounded circular buffer.
Our test driver consists of two threads, a victim and a thief,that
concurrently access the queue. The victim thread pushes work
items to and pops them from the tail of the queue. The thief thread
steals work items from the head of the queue. Potential interference
between the two threads is controlled by means of sophisticated
non-blocking synchronization.

APE: APE is an acronym for Asynchronous Processing En-
vironment. It contains a set of data structures and functions that
provide logical structure and debugging support to asynchronous
multithreaded code. APE is currently used in the Windows operat-
ing system. For our experiments, we compiled APE in user-mode
and used a test driver provided by the implementor of APE. In the
test, the main thread initializes APE’s data structures, creates two
worker threads, and finally waits for them to finish. The worker
threads concurrently exercise certain parts of the interface provided
by APE.

Dryad channels: Dryad is a distributed execution engine for
coarse-grained data-parallel applications [14]. A Dryad application
combines computational ”vertices” with communication ”chan-
nels” to form a data-flow graph. Dryad runs the application by
executing the vertices of this graph on a set of available proces-
sors communicating as appropriate through files, TCP pipes,and
shared-memory FIFOs. The test harness for Dryad for our exper-
iments was provided by its lead developer. The test has5 threads
and exercises the shared-memory channel library used for commu-
nication between the nodes in the data-flow graph.

Transaction manager: This program provides transactions in a
system for authoring web services on the Microsoft .NET platform.
Internally, the in-flight transactions are stored in a hashtable, access
to which is synchronized using fine-grained locking. We usedex-
isting test harnesses written by our colleagues for our experiments.
Each test contains two threads. One thread performing an operation
—create, commit, or delete— on a transaction. The second thread
is a timer thread that periodically flushes from the hashtable all
pending transactions that have timed out.

4.2 Benchmark Characteristics

Except for the transaction manager, all the benchmarks usedabove
are written in a combination C and C++. Table 1 enumerates the
characteristics of these benchmarks. The transaction manager is a
ZING model constructed semi-autmatically from the C# implemen-
tation, and has roughly7000 lines of code.

In the rest of the section, we will show that bounding the number
of preempting context switches is an effective method of exploring

Bugs with
Total Context Bound

Programs Bugs 0 1 2 3
Bluetooth 1 0 1 0 0
Work Stealing Queue 3 0 1 2 0
Transaction Manager 3 0 0 2 1
APE 4 2 1 1 0
Dryad Channels 3 1 2 0 0

Table 2. For a total of 14 bugs that our model checker found. this
table shows the number of bugs exposed in executions with exactly
c preempting context switches, forc ranging from0 to 3. The 7
bugs in the first three programs was previously known. Iterative
context-bounding algorithm found the7 previouslyunknownbugs
in Dryad and APE.

interesting behaviors of the system, while alleviating thestate space
explosion problem. Note, as described in Section 2, bounding the
number of preempting context switches results in a state space
polynomial in the number of steps in an execution. This allows us
to scale systematic exploration techniques to larger programs.

Specifically, we will use our experiments to demonstrate the
following two hypotheses

1. Manysubtlebugs manifest themselves in executions with very
small preempting context switches.

2. Most states can be covered with few preempting context
switches

4.3 Small context bounds expose subtle bugs

Context bounding relies on the intuition that many errors occur
due to few context switches happening at theright places. To
substantiate this intuition, we ran the iterative context-bounding
program for the five programs shown in Table 2. For the first
three programs, namely Bluetooth, work-stealing queue, and the
transaction manager, we introduced7 known concurrency bugs that
the respective developers considered subtle concurrency errors. The
iterative context bounding algorithm was able to find all such errors
within a bound of3.

We also ran the iterative context-bounding algorithm on the
APE and Dryad programs. These programs are the largest examples
our model checkers is able to currently handle. We found a total of
7 previouslyunkonwnconcurrency errors. To provide the reader
with an idea of the complexity of these errors, we describe one of
the errors we found in Dryad below in detail. This error couldnot
be found by a depth-first search, even after running for a couple of
hours.

Dryad use-after-free bug: When deallocating a shared heap
object, a concurrent program has to ensure that no existing thread in
the system has a live reference to that object. This is a common con-
currency problem that is very hard to get right. Figure 4 describes
an error that requires only one preempting context switch, but 6
nonpreempting context switches. The iterative context-bounding
algorithm finds the error when the bound is set to one. Note, the
algorithm does not bound the number of nonpreempting context
switches.

The error involves a message channel, which contains a few
worker threads that process messages in the channel. When the
function TestChannel calls theclose function on the channel,
each worker thread gets a STOP message, in response to which a
worker thread calls theAlertApplication function, as part of
its cleanup process. However, when there is an preempting context
switch right before the thread enters them baseCS critical section,
the main thread is able to return from theclose function and

JKLKMKNKK
KNKOKPKQK
RKSKJK
K N O P Q R S J L M NK NN NO NPTUVWVXUYWZX[\]X̂X_

`abcdec fagbh
ijkl mnoplq rstlkukvlpsspwxyz{oz|pjs{ rz{z}ly~sy� mplzkj{} �vlvl

Figure 3. Figures shows the percentage of the entire state space
(y axis) covered by executions with bounded number of preempt-
ing context switches (x axis). For state spaces of programs small
enough for our model checkers to completely search, the graph
shows that more than90% of the state space is covered with exeuc-
tions with at most8 context switches.

subsequently delete the channel, which in this case is the current
this pointer for the worker thread. The use-after-free bug occurs
when the worker thread is subsequently scheduled. Interestingly,
this bug scenario is prevented if the context switch happensright
before the call toAlertApplication or after the worker thread
enters the critical section.

When run with a context bound one, the iterative context-switch
algorithm systematically tried its budgeted preempting context
switch at every step, and eventually found the small window in
AlertApplication that found the error. In contrast, a depth-first
search is flooded with an unbounded number of preempting context
switches, and is thus unable to expose the error within reasonable
time limits.

4.4 Few context bounds cover most states

In the previous section, we empirically showed that a small number
of context switches are sufficient to expose interesting andsubtle
concurrency errors. In this section, we show that a fair percentage
of state space is reached through executions with few preempting
context switches. Obviously, we are only able to demonstrate this
on programs for which our model checkers are able tocompletethe
state space search.

Figure 3 shows the cumulative percentage of the entire states
space covered by executions with increasing context bounds. The
results for transaction manager benchmark is from the ZING model
checker, which is an explicit-state model checker. Thus, count-
ing states is straightforward for this program. The remaining three
programs are actual executables run directly by the CHESSmodel
checker. CHESS is a stateless model checker, and it is fairly com-
plicated to capture the state of these executables, which make
extensive call to the synchrnoization primitives providedby the
kernel. Thus, capturing states would require accounting for this
kernel state, apart from the executable state in the global vari-
ables, heap, and the stack.1 Instead of capturing the states, we
use the Mazurkiewicz trace [16] as a representation for the state. A
Mazurkiewicz trace captures the happens-before relation between
accesses to the synchronization variables in an execution trace. Two
executions that produce the same Mazurkiewicz trace are guaran-
teed to result in the same state.

Figure 3 shows that for both Bluetooth and the filesystem
model,4 preempting context switches are sufficient to completely

1 This difficulty in capturing the states is the key reason for designing
CHESSas a stateless model checker.

// Function called by worker thread
void RChannelReaderImpl::AlertApplication(

RChannelItem* item)
{

RChannelInterruptHandler* interruptHandler = NULL;
{

// need a context switch here for the bug
EnterCriticalSection(&m_baseCS);

if (m_interruptHandler != NULL)
{

// code removed here
// process interrrupts

}
}

}

// Function called by the main thread
void TestChannel(WorkQueue* workQueue, ...)
{

// RChannelSerializedReader is a subclass
// of RChannelReaderImpl
RChannelReader* channel =

new RChannelSerializedReader(..., workQueue);

// ... do work here

channel->Close();
// wrong assumption that channel->Close() calls
// workQueue->Stop(), which waits for all
// worker threads to be done

delete channel;
// BUG: deleting the channel when
// worker threads still have a valid reference

}

Figure 4. Use after free bug in Dryad. The bug requires a context
switch to happen right before the call to EnterCriticalSection in
AlertApplication. This is the only preempting context switch. The
bug trace CHESSfound involves 6 nonpreempting context switches.

explore the entire state space. For the relatively larger transaction
manager and the work-stealing queue benchmark, a context-bound
of 6 and8 respectively are sufficient to cover more than90% of the
state space. This strongly suggests the advantage of iterative con-
text bounding — when systematically exploring the behaviorof
multithreaded programs, model checkers can maximize statespace
coverage by focusing on the polynomial number of executionswith
few preempting context switches.

For programs on which the model checker is unable to complete
the state space search, we report the increase in the states visited
by different search strategies. Figure 5 shows the number ofstates
covered in the y axis with the number of complete executions of
the program in the x axis for the APE benchmark. Figure 6 shows
corresponding graph for the Dryad benchmark. These two graphs
compare the iterative context bounding algorithm with the depth-
first (dfs) search strategy and the iterative depth-bounding (idfs)
strategy. For the idfs search, we selected different depth bounds and
selected the the depth bound with maximum, minimum, and me-
dian coverage. For comparison, we also performed a random state
space search, and we report the coverage only for APE. Random
search on Dryad did very poorly. From the graph, it is very evident

������������������
�

���������
�����

� � � � � � � � � ��
��������������

� ��������� �����¡
¢£ ¤¥¦§¢¥¦§¨©ªª¢¥¦§¨«ªª¢¥¦§¨©¬ª®¯¥°±

Figure 5. Coverage growth for APE²³³³³³²³³³³³³

St

at
es

 C
ov

er
ed

²³³²³³³
²³³³³

² ´ µ ¶ · ²² ²´ ²µ ²¶ ²· ¸² ¸´ ¸µ ¸¶ ¸·#
St

at
es

 C
ov

er
ed

Executions (x1000)

icb
idfs-125
dfs
idfs-100
idfs-75

Figure 6. Coverage growth for Dryad

that context bounding is able to systematically achieve better state
space coverage, even in the first1000 executions.

5. Related work
Context-bounding: The notion of context-bounding was intro-
duced by Qadeer and Wu [21] as a method for static analysis of
concurrent programs by using static analysis techniques developed
for sequential programs. That work was followed by the theoret-
ical result of Qadeer and Rehof [20] which showed that context-
bounded reachability analysis for concurrent boolean programs is
decidable. Our work exploits the notion of context-bounding for
systematic testing in contrast to these earlier results which were fo-
cused on static analysis. The combinatorial argument of Section 2
and the distinction between preempting and nonpreempting context
switches is a direct result of our focus on dynamic rather than static
analysis.

State-space reduction techniques: Researchers have explored
the use of partial-order reduction [9, 19, 18, 3] and symmetry
reduction [13, 5, 12] to combat the state-space explosion prob-
lem. These optimizations are orthogonal and complementaryto
the idea of context-bounding. In fact, our preliminary experiments
indicate that state-space coverage increases at an even faster rate
when partial-order reduction is performed during iterative context-
bounding.

Analysis tools: Researchers have developed many dynamic
analyses, such as data-race detection [24] and atomicity-violation
detection [6], for finding errors in multithreaded software. Such
analyses are again orthogonal and complementary to context-
bounding. They are essentially program monitors which can be
applied to each execution explored by iterative context-bounding.

Heuristic search: Confronted with limited computational re-
sources and large state spaces, researchers have developedheuris-
tics for partial state-space search. Groce and Visser [11] pro-
posed the heuristic of prioritizing states with more enabled threads.
Sivaraj and Gopalakrishnan [25] proposed the use of a randomwalk
through the search space. Unlike these heuristics, iterative context-
bounding provides an intuitive notion of coverage and a polynomial
guarantee on the number of context-bounded executions.

6. Conclusions
Model checking or systematic exploration of program behavior is
a promising alternative to traditional testing methods formulti-
threaded software. However, it is difficult to perform systematic
search on large programs because the number of possible pro-
gram executions grows exponentially with the length of the exe-
cution. Confronted with this state-explosion problem, traditional
model checkers perform partial state-space search using techniques
such as iterative depth-bounding. Although effective for message-
passing software, iterative depth-bounding is inadequatefor multi-
threaded software because several orders of magnitude moresteps
are required to get interesting behavior in a multithreadedprogram
than in a message-passing program.

This paper proposes a novel algorithm callediterative context-
bounding for effectively searching the state space of a multi-
threaded program. Unlike iterative depth-bounding which gives pri-
ority to executions with shorter length, iterative context-bounding
gives priority to executions with fewer context switches. We show
that that by bounding the number of context switches, the num-
ber of executions becomes a polynomial function of the execution
depth. Therefore, context-bounding allows systematic exploration
to scale to large programs without sacrificing the ability togo deep
in the state space.

We implemented iterative context-bounding in two model
checkers and used our implementation to uncover7 previously un-
known bugs in realistic multithreaded benchmarks. Each of these
bugs required at most2 context switches. Our experience with these
benchmarks and other benchmarks with previously known bugsin-
dicates that many bugs in multithreaded code are manifestedin exe-
cutions with a few context switches. Our experiments also indicate
that state coverage increases faster with iterative context-bounding
than with other search methods. Therefore, we believe that itera-
tive context-bounding significantly improves upon existing search
strategies.

In future work, we would like to make our model checker even
more scalable. We find that on very large benchmarks, search does
not terminate even for a context-switch bound of2. We believe that
incorporating complementary state-reduction techniques, such as
partial-order reduction, could improve scalability. Yet another inter-
esting direction for our work is to extend CHESS, which currently
handles user-mode programs written against the WIN32 API, to
kernel-mode programs.

References
[1] Derek Bruening and John Chapin. Systematic testing of multithreaded

Java programs. Technical Report LCS-TM-607, MIT/LCS, 2000.

[2] E. M. Clarke and E. A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. InLogic of Programs,
LNCS 131, pages 52–71. Springer-Verlag, 1981.

[3] Matthew B. Dwyer, John Hatcliff, Robby, and Venkatesh Prasad
Ranganath. Exploiting object excape and locking information in
partial-order reductions for concurrent object-orientedprograms.
Formal Methods in System Design, 25:199–240, 2004.

[4] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. Goldilocks:
Efficiently computing the happens-before relation using locksets.

In FATES/RV 06: Formal Approaches to Testing and Runtime
Verification, 2006.

[5] F. Allen Emerson and A. Prasad Sistla. Symmetry and model
checking.Formal Methods in System Design, 9(1/2):105–131, August
1996.

[6] C. Flanagan and S. N. Freund. Atomizer: A dynamic atomicity
checker for multithreaded programs. InPOPL 04: Principles of
Programming Languages. ACM, 2004.

[7] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. InPOPL 05: Principles of Programming
Languages, pages 110–121. ACM Press, 2005.

[8] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the Cilk-5 multithreaded language. InPLDI 98:
Programming Language Design and Implementation, pages 212–223,
1998.

[9] Patrice Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion Problem.
LNCS 1032. Springer-Verlag, 1996.

[10] Patrice Godefroid. Model checking for programming languages using
Verisoft. InPOPL 97: Principles of Programming Languages, pages
174–186, 1997.

[11] Alex Groce and Willem Visser. Model checking Java programs using
structural heuristics. InISSTA 02: Software Testing and Analysis,
pages 12–21, 2002.

[12] Radu Iosif. Exploiting heap symmetries in explicit-state model
checking of software. InASE 01: Automated Software Engineering,
pages 254–261, 2001.

[13] C. Norris Ip and David L. Dill. Better verification through symmetry.
Formal Methods in System Design, 9(1/2):41–75, 1996.

[14] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed data-parallel programs fromsequential
building blocks. Technical Report MSR-TR-2006-140, Microsoft
Research, 2006.

[15] Daan Leijen. Futures: a concurrency library for C#. Technical Report
MSR-TR-2006-162, Microsoft Research, 2006.

[16] A. Mazurkiewicz. Trace theory. LNCS 255, pages 279–324. Springer-
Verlag, 1987.

[17] Madanlal Musuvathi, David Park, Andy Chou, Dawson R. Engler,
and David L. Dill. CMC: A Pragmatic Approach to Model Checking
Real Code. InOperating Systems Design and Implementation, dec
2002.

[18] Ratan Nalumasu and Ganesh Gopalakrishnan. An efficientpartial
order reduction algorithm with an alternative proviso implementation.
Formal Methods in System Design, 20(3):231–247, May 2002.

[19] Doron Peled. Partial order reduction: Model-checkingusing
representatives. InMFCS 96: Mathematical Foundations of Computer
Science, pages 93–112. Springer-Verlag, 1996.

[20] S. Qadeer and J. Rehof. Context-bounded model checkingof
concurrent software. InTACAS 05: Tools and Algorithms for the
Construction and Analysis of Systems, volume 3440 ofLecture Notes
in Computer Science, pages 93–107. Springer, 2005.

[21] S. Qadeer and D. Wu. KISS: Keep it simple and sequential.In PLDI
04: Programming Language Design and Implementation, pages 14–
24. ACM, 2004.

[22] J. Queille and J. Sifakis. Specification and verification of concurrent
systems in CESAR. In M. Dezani-Ciancaglini and U. Montanari,
editors,Fifth International Symposium on Programming, Lecture
Notes in Computer Science 137, pages 337–351. Springer-Verlag,
1981.

[23] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern
Approach (Second Edition). Prentice Hall, 2002.

[24] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: a dynamic data race detector for

multithreaded programs.ACM Transactions on Computer Systems,
15(4):391–411, 1997.

[25] Hemanthkumar Sivaraj and Ganesh Gopalakrishnan. Random walk
based heuristic algorithms for distributed memory model checking.
Electronic Notes in Theoretical Computer Science, 89(1), 2003.

