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Abstract

Modern Web 2.0 applications, such as GMail, Live Maps, Facebook and many
others, use a combination of Dynamic HTML, JavaScript and other Web browser
technologies commonly referred as AJAX to push page generation and content ma-
nipulation to the client web browser. This approach improves the responsiveness
of these network-bound applications, but the shift of application execution from a
back-end server to the client also often dramatically increases the amount of code
that must first be downloaded to the browser. This creates an unfortunate Catch-
22: to create responsive distributed Web 2.0 applications developers move code to
the client, but for an application to be responsive, the code must first be transferred
there, which takes time.

In this paper, we present DOLOTO, a system that analyzes application work-
loads and automatically performs code splitting of existing large Web 2.0 appli-
cations. After being processed by DOLOTO, an application will initially transfer
only the portion of code necessary for application initialization. The rest of the ap-
plication’s code is replaced by short stubs—their actual function code is transfered
lazily in the background or, at the latest, on-demand on first execution. Since code
download is interleaved with application execution, users can start interacting with
the Web application much sooner, without waiting for the code that implements
extra, unused features.

To demonstrate the effectiveness of DOLOTO in practice, we have performed
experiments on five large widely-used Web 2.0 applications. DOLOTO reduces
the size of initial application code download by hundreds of kilobytes or as much
as 50% of the original download size. The time to download and begin interacting
with large applications is reduced by 20-40% depending on the application and
wide-area network conditions.

1 Introduction
Over the last several years, we have seen the creation of a new generation of so-
phisticated distributed Web 2.0 applications as diverse as GMail, Live Maps, RedFin,
MySpace, and NetFlix. A key enabler for these applications is their use of client-side
code—usually JavaScript executed within the Web browser—to provide a smooth and
performant experience for users while the rendered Web page is dynamically updated
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in response to user actions and client-server interactions. As the sophistication and fea-
ture sets of these Web applications grow, however, downloading their client-side code
is increasingly becoming a bottleneck in both their initial startup time and subsequent
application interactions. Given the importance of performance and “instant gratifica-
tion” in the adoption of today’s applications, a key challenge thus lies in maintaining
and improving application responsiveness despite increasing code size.

While much work has been done on improving server-side Web application per-
formance and reducing the processing latency [13, 19, 20], recent studies of modern
Web 2.0 applications indicate that front-end execution contributes 95% of execution
time with an empty browser cache and 88% with a full browser cache [17]. More-
over, browser-side caching of Web content is less effective than previously believed
because about 40% of users come with an empty cache [16]. This, along with a trend
towards network delivery of increasingly sophisticated distributed Web applications, as
exemplified by technologies such as Silvelight, highlights the importance of client-side
optimizations for archieving good end-to-end application performance.

Indeed, for many of today’s popular Web 2.0 applications, client-side components
are already approaching or exceeding 1 MB of code (uncompressed). Clearly, however,
having the user wait until the entire code base is transferred to the client before the exe-
cution can commence does not result in the most responsive user experience, especially
on slower connections. For example, over a typical 802.11b wireless connection, the
simple act of opening an email in a Hotmail inbox can take 24 seconds on a first visit.
Even on a second visit takes 11 seconds—even after much of the static resources and
code have been cached. Users on dial-up, cellphone, or slow international networks
see much worse latencies, of course, and large applications become virtually unusable.
Live Maps, for example, takes over 3 minutes to download on a second (cached) visit
over a 56k modem. (According to a recent Pew research poll, 23% of people who use
Internet at home rely on dial-up connections [14].) In addition to increased applica-
tion responsiveness, reducing the amount of code needed for the application to run has
the benefit of reducing the overall download size which is important in the mobile and
some international contexts, where the cost of network connectivity is often measured
per byte instead of a flat rate approach common in North America.

One solution is to structure Web application code such that only the minimal amount
of code necessary for initialization is transferred in the critical path of Web application
loading; the rest of the application’s code would be dynamically loaded as bandwidth
becomes available or on-demand. While modern browsers do support explicit loading
of JavaScript code on-demand, after a Web page’s initial download, few applications
make extensive use of this capability. The issue is that manually architecting a Web
application to correctly support dynamic loading of application code is a challeng-
ing and error-prone process. Web developers have to track the dependencies between
user actions, application functionality, and code components. They have to schedule
background downloads of code at the appropriate times to avoid stalling a user’s inter-
actions. Finally, developers have to maintain and update the resultant code base as the
application code and typical user workloads evolve.
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1.1 Overview of Doloto
In this paper, we propose DOLOTO1, a tool that performs automated analysis of Web
application workloads and automatic code splitting as a means to improve the respon-
siveness of Web 2.0 applications and reduce their download size.

Code splitting in DOLOTO is performed at the level of individual functions, which
are clustered together to form an access profile computed based on function access
times computed during a training phase collected with the help of runtime instrumenta-
tion. In the execution phase, access profiles guide the process of on-demand code load-
ing so that functions with similar access times are clustered to be downloaded together.
Additionally, whenever network bandwidth becomes available, code is transferred to
the client via a background prefetching queue. As part of DOLOTO rewriting, func-
tion definitions are replaced with short stubs that block to fetch actual function bodies
whenever necessary. Doing so in a sound manner is quite tricky in a language such as
JavaScript that supports high-order functions and eval. In particular, to preserve the
scoping of function definitions in the original program, we still eagerly transfer func-
tion declarations, however, function bodies are transferred lazily. DOLOTO effectively
introduces dynamic code loading to applications that have been developed without it in
mind.

To show the effectiveness of DOLOTO in practice, we have performed an evaluation
on a set of five large widely-used Web 2.0 applications for a range of of bandwidth and
latency values. The benefits of code splitting become especially pronounced for slow
connections, where the initial page loading penalty is especially high if transferring the
entire code base. DOLOTO reduces the size of initial application code download by
hundreds of kilobytes or as much as 50% of the original download size. The time to
download and begin interacting with large applications is reduced by 20-40% depend-
ing on the application and wide-area network conditions. Moreover, with background
code loading enabled, the rest of the application can be downloaded while the user is in-
teracting with the application. In our experiments it took 30-63% extra time compared
to the original application initialization time for background prefetch to download the
entire application code base.

1.2 Contributions
This paper makes the following contributions:

• We propose code splitting as a means of improving the perceived responsive-
ness of large and complex distributed Web 2.0 applications within the end-user’s
browser.

• We describe a code rewriting strategy that breaks the code of JavaScript func-
tions into small stubs that are transferred to the client eagerly and fetches remain-
ing function bodies at runtime on-demand, without requiring application-specific
knowledge or changes to existing code. We develop a runtime instrumentation
approach that, together with a clustering scheme to analyze the data gathered at

1Doloto is Russian for chisel.
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Figure 1: Size breakdown of different Web 2.0 application components. Provided sizes are after gzip com-
pression.

training time, helps us cluster portions of client-side JavaScript code that exhibit
temporal locality.

• We perform a detailed evaluation of DOLOTO for a set of five popular Web 2.0
applications and demonstrate the effectiveness of our techniques for a range of
network conditions.

1.3 Paper Organization
The rest of the paper is organized as follows. Section 2 provides background on
Web 2.0 applications and also gives an overview of common application construction
patterns, motivating why code splitting is a good strategy for improving application
responsiveness. Section 3 gives a description of our training and code rewriting tech-
niques. Section 4 discusses our experimental results. Finally, Sections 5, 6, and 7
describe related and future work and provide conclusions.

2 Code Loading in Web Applications
In this section, we provide background on the mechanics of code loading in Web ap-
plications, and illustrate how applications today may take advantage of dynamic code
loading to improve their user-perceived performance.

2.1 Background: Mechanics of Code Loading
In its most basic form, the client-side component of a typical distributed Web 2.0 ap-
plication consists of a number of HTML pages that refer to resources such as images,
cascading style sheets (CSS), and JavaScript code. The most natural way to transfer
JavaScript files or, indeed, any type of resource is by specifying their names directly in
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var xhr = new XmlHttpRequest();

// synchronous AJAX call to fetch function foo

xhr.open("http://code.server.com/code=foo", false);

xhr.send(null);

// code is returned from the server as text

var code = xhr.responseText;

// eval is used to get a function closure for foo

var foo = eval(code);

// proceed to use newly loaded function foo

var x = foo(3);

Figure 2: Dynamic code loading in an AJAX application

HTML, as shown in Figure 3. When it comes to downloading JavaScript code, this ap-
proach causes the Web browser to block until the entire code base is transferred to the
client, leading to long pauses in application loading and execution. Before the advent
of dynamic HTML, this was the only technique for client-side code loading.

Modern browsers, however, allow for dynamic code loading, where resources can
be fetched on-demand from a server, using a remote procedure call over HTTP [23].
Just like with data, the code in question may be fetched as a string and then executed
using a call to eval using the XmlHttpRequest object, as shown in Figure 2.

Dynamic code loading enables application architectures in which only a small por-
tion of the code — the basic application framework — is transferred to the client ini-
tially. The rest of the code is loaded dynamically at a later point. Some JavaScript
programming toolkits have begun to include basic support for dynamic code loading
in order to support these scenarios. For example, the Dojo Toolkit [2], modeled after
the Java class loader, provides a small bootstrap script dojo.js and enables dynamic
loading through the library function dojo.require("...");.

2.2 Case Studies
Despite this support for dynamic code loading in the underlying JavaScript language
and toolkits, building an application that successfully exploits dynamic code loading to
improve user-perceived performance is a difficult task. In the next several subsections,
we show how today’s Web 2.0 applications are structured to load their code and point
out opportunities for improvement.

A summary of information about the application below as well as other widely-
used Web 2.0 sites is given in Figure 1. It shows the breakdown of (compressed) sizes
for different application components (gzip compression is a popular way to reduce
resource sizes). As can be seen from the figure, the largest two categories of resources
by far are JavaScript code and images. The reader is referred to Section 4 for more
detailed information on our benchmarks.

5



<html>

<head>

<script src="scripts/schedule.js">

<script src="scripts/string_library.js">

<script src="scripts/clouds.js">

<script src="scripts/bunnies.js">

<script src="scripts/preload.js">

</head>

...

</html>

Figure 3: A static script loading strategy from the Bunny Hunt JavaScript game.

2.2.1 All-at-once Loading: Bunny Hunt

Bunny Hunt, the application with the smallest JavaScript codebase in our suite of
benchmarks of only 17 KB, takes the extreme approach to resource loading: in ad-
dition to transferring all the application code as part of the application splash screen,
images are preloaded as well.

The Bunny Hunt approach to resource usage is fully conservative: the entire net-
work transfer cost is paid upfront. By downloading every single resource, including
both JavaScript code and image files while the splash page is loading, page render-
ing can never block waiting for either of these types of resources. While the opposite
extreme would be to download every resource on demand, as it is needed, most appli-
cations fall somewhere inbetween.

The Bunny Hunt code base is broken down into five files, each of which is trans-
ferred separately, as shown in Figure 3. Notice that this type of declaration precludes
JavaScript files from being downloaded in parallel: the browser has to start execut-
ing each of JavaScript file in the order they appear on the page. While this may be a
reasonable approach when the entire application, containing HTML and images is un-
der 400 KB, for larger benchmarks applications this is probably not the best strategy.

0 100 200 300 400 500 600 700 800 900

Figure 4: Each line corresponds to an individual function in mapcontrol.asjx, a JavaScript file in Live
Maps. The length of each line indicates the difference between the available and first-use times. Gaps are
inserted to show the natural block structure.
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Figure 5: Architectural diagram of DOLOTO.

2.2.2 Dynamic Loading: Pageflakes

A contrast to Bunny Hunt is the Pageflakes application, an industrial-strength mashup
page providing portal-like functionality. While the download size for Pageflakes is
over 1 MB, its initial execution time appears to be quite fast. Examining network
activity reveals that Pageflakes downloads only a small stub of code with the initial
page, and loads the rest of its code dynamically in the background.

It is instructive to compare Pageflakes to a functionally similar but architecturally
different mashup page called Dropthings. Dropthings is an application created on top
of AJAX.NET, a popular AJAX toolkit and is a typical example of a framework-based
application. As Figure 1 makes clear, JavaScript code constitutes over 100 KB or
about 50% of the entire Dropthings transfer. Even though it is over four times smaller
than Pageflakes, its initial execution is noticeably slower. Upon examination, it is ap-
parent that not only does Dropthings download all its code at start-up, but it downloads
each of its 12 JavaScript files serially, instead of in parallel.

As illustrated in this comparison of Pageflakes to Dropthings, developers today can
use dynamic code loading to improve their web application’s performance. However,
designing an application architecture that is amenable to dynamic code loading requires
careful consideration of JavaScript language issues such as function closures, proper
lexical scoping, etc. Moreover, an optimal decomposition of code into dynamically
loaded components often requires developers to set aside the semantic groupings of
code and instead primarily consider the execution order of functions. Of course, evolv-
ing code and changing user workloads make both of these issues a software mainte-
nance nightmare.

The goal of DOLOTO is to automate the process of optimal code decomposition.
DOLOTO’s processing of application code automatically handles language issues such
as closures and scoping; DOLOTO’s analysis discovers an appropriate code decompo-
sition for the likely execution order of functions. As a consequence of this sort of
automation, developers no longer have to manually maintain the decomposed version
of the application as the application or typical usage scenarios change, but simply re-
apply the analysis and decomposition as necessary.
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{c1, . . . , cn,⊥} = read_clusters(); // read access profile

foreach ( js ∈ application ){ // for each file js

transfer DOLOTO helper functions

foreach ( f ∈ in js ){ // for each function f

if ( isLarge(f) && (f /∈ c1) ) {
replace f with stub for f

} else {
transfer f verbatim

}
}

}

Figure 6: Pseudocode for server-side processing in DOLOTO.

2.2.3 Typical Monolithic Application: Live Maps

Live Maps is an example of a large, feature-rich application, providing multiple-views
of maps and satellite photos, driving directions, business search, vector drawing capa-
bilities, advertising, and more. It loads over 200 KB of code compressed on the initial
page load. While the entire codebase is downloaded upfront, only a fraction of it is
executed on the initial page load. Furthermore, code execution takes place in “bursts”,
as illustrated in Figure 4: while the entire JavaScript file is available on the client, some
functions are executed right away, as indicated by the initial block, some are executed
within 100 ms or so. However, many functions are not executed until triggered by user
interaction (such as a request for driving directions a map search) and in many com-
mon usage scenarios, these functions will not be needed at all. The “ladder pattern”
in Figure 4 provides intuition for our function clustering approach used in the training
phase of DOLOTO.

DOLOTO primarily targets feature-rich Web applications such as Live Maps. The
code base of these applications is growing as they expand to provide functionality once
reserved for traditional desktop software. Unfortunately, the latency cost of download-
ing this additional code is paid whether or not the additional features are used. This
suggests that splitting the code of these features out, and dynamically loading them
outside the critical-performance-path of initialization is likely to improve initial page
loading times.

3 Doloto Architecture
DOLOTO processing consists of two phases, the training and the execution phase de-
scribed in the rest of this section. The training phase of DOLOTO’s processing consists
of running the application with its client-side JavaScript component instrumented to
collect function-level profile information.The result of this training is an access pro-
file, a clustering of original functions by time of their first use. In our implementation,
training is performed by observing a user performing a fixed workload, although it is
possible to train in a distributed manner, by combining workloads from multiple users
with varying workloads, resulting in better code coverage and higher quality access
profiles.
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In the second phase, DOLOTO proceeds to rewrite existing application JavaScript
code based on a given access profile to split the existing code base into small stubs that
are transferred eagerly and the rest of the code that is transferred either on-demand on
in the background using a prefetch queue. An architectural diagram showing the details
of the execution phase of DOLOTO is shown in Figure 5. The basis for our approach is
to rewrite every JavaScript function f with a stub that in its simplified version looks as
follows:

function f(){

var real_f_text = blocking_download("f"); // download function text for "f"

var real_f_func = this.eval(real_f_text); // create a function closure

return real_f_func.apply(this, arguments); // evaluate closure on arguments

}

Helper function blocking download is a blocking function that retrieves the body of
function f from the server. A network call is made only once per cluster: if the body
of f has already been transferred to the client either on-demand or background code
loading, blocking download returns it immediately. We proceed to eval the body at
runtime and apply the resulting function to the arguments that are being passed into f.
We refine and optimize this simplified pseudo-code in Section 3.3.

3.1 Collecting Access Profiles
At its core, our instrumentation approach is based on the ability to parse and instrument
JavaScript code and to insert timestamps that allow us to group functions into clusters
by the time of their first access. Our instrumentation machinery is based on a proxy-
based JavaScript rewriting platform. This approach allows us to use a local proxy to
obtain timing information for external Web sites that we do not have access to.

The beginning of every JavaScript function transferred to the browser is instru-
mented to insert a timestamp as well as the size of the function. Timestamps are sub-
sequently collected by the proxy and post-processed to extract the first-access time tsi

for every function fi that is observed at runtime. To avoid excessive network traffic that
would perturb normal application execution, timestamp data is buffered on the client
before being sent over the to training proxy.

The list of timestamps is subsequently sorted and traversed to group functions into
clusters c1, . . . , cn. As we are traversing the sorted list we are looking to terminate the
current cluster cj at function fi according to the following criterion:

tsi+1 − tsi > Tgap ∧ size(cj) > Tsize ,

i.e. we should terminate the current list of functions and turn it into a cluster if the
time gap between the two subsequent functions exceeds the predefined gap threshold
Tgap and the size of the current cluster exceeds the predefined size threshold Tsize .
Note that we completely disregard the original decomposition of functions into files:
functions from different JavaScript files may and do end up belonging to the same
clusters because of temporal proximity to each other.

Note that as with any runtime analysis, a potential weakness of this approach is
that some code may not be used for the workload we apply: for instance, if the “help”
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functionality of a mapping site is not utilized during the initial page load, functions
implementing this functionality will be group into an special cluster ⊥. As part of the
process, map

P : {f1, . . . , fk} → {c1, . . . , cn,⊥}

from functions to clusters is saved as the access profile.

3.2 Server-side Code Rewriting
As mentioned above, the basis of our approach is to replace original JavaScript func-
tions with short stubs and then fetch (potentially large) function bodies either on de-
mand or whenever extra bandwidth becomes available. The client-side component of
a Web 2.0 application consists of a set of JavaScript files; JavaScript code may also
be included directly in HTML, but each inline script block is conceptually treated as
a separate file. Each JavaScript file consists of top-level code that is executed uncon-
ditionally and a set of function declarations. Each function declaration it its turn may
contain top-level code as well as local function declarations.

The pseudocode for our server-side processing is shown in Figure 6. For each file
we rewrite with DOLOTO, we start by transferring the necessary helper functions such
as blocking download, etc. that are required for dynamic code loading, background
code prefetch, and generating stub code on the client. Next, for every function in the
file, we decide whether to transfer it verbatim or to replace it with a stub. This decision
is based on the length of the function (in practice we only transfer files longer than 50
characters) and whether the function is in the first cluster c1, which we transfer eagerly,
i.e. without resorting to stubbing.

While we implemented DOLOTO as a proxy, in the future we envision server-side
deployment or tight integration with the Web server. One option is to perform periodic
rewriting of the application code based on the current access profile offline and save the
result in order to avoid the latency of the rewriting process being added to the critical
path of the application execution.

var g = 10;

function f1(){

var x = g + 1;

...

return ...;

}

function f2(){

...

return ...;

}

Figure 7: Example before DOLOTO rewriting.
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1 var real_f1 = null;

2 function f1(){

3 if(real_f1 == null){

4 guard_cluster_c1();

5 real_f1 = this.eval(func["f1"]);

6 f1 = real_f1;

7 }

8
9 return real_f1.apply(this, arguments);

10 }

11
12 var real_f2 = null;

13 function f2(){

14 if(real_f2 == null){

15 guard_cluster_c1();

16 real_f2 = this.eval(func["f2"]);

17 f2 = real_f2;

18 }

19
20 return real_f2.apply(this, arguments);

21 }

22
23 function guard_cluster_c1(){

24 var xhr = new XmlHttpRequest();

25 xhr.open("http://code.server.com/cluster=c1",

26 /* synchronous AJAX call */ false);

27 xhr.send(null);

28 var code = xhr.responseText;

29 // split code into function bodies

30 foreach(<func_name, func_code> in code) {

31 func[func_name] = func_code;

32 }

33 // empty closure

34 guard_cluster_c1 = function() {};

35 }

Figure 8: Rewriting by introducing stubs and a download guard.

3.3 Client-Side Execution
To summarize, the client-side execution of the application is affected by DOLOTO in
the following ways:

• When a new JavaScript file is received from the server on the client, we let the
browser execute it normally. This involves running the top-level code that is
contained in the file and creating stubs for top-level functions contained therein.

• When a function stub is hit at runtime,

– if there is no locally cached function closure, download the function code
using helper function blocking download, apply eval to it, and cache
the resulting function closure locally;

– apply the locally cached closure and return the result
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• When the application has finished its initialization and a timer is hit, fetch the
next cluster from the server and save functions contained in it on the client.

3.3.1 Illustrative Example

We first illustrate DOLOTO rewriting with examples and then describe implementation
details and important corner cases of local functions and function closures as well as
optimizations to reduce both the runtime overhead as well as the size of the code that
needs to be transferred to the client.

Figure 8 illustrates how function rewriting works by showing the result of rewriting
global functions f1 and f2 shown in Figure 7 that both belong to cluster c1. Below we
focus on function f1; function f2 is treated similarly:

1. For each function, DOLOTO turns its body into a short stub shown on lines 1–10
(our example uses longer variable names for clarity). The stub first invokes the
guard for the cluster the function belongs to (c1 in this case). This is a blocking
action that only returns after the body of the function has been saved in the global
associative array func.

2. Next, the function body is retrieved as text and evaluated using the eval con-
struct of JavaScript. Note that the call to eval is performed in the same scope
as the original function definition for f1 on line 5. This way, since the body of
f1 refers to global variable g, at the time of applying eval, variable g will be
resolved properly. This is why we cannot, for example, perform the eval of the
original function body within the guard function and return the closure corre-
sponding to the actual code of f1. The result of the eval call is saved in global
variable real f1 so that the if body is only entered once per function.

3. Lastly, on line 9 we return the result of applying the real function body stored in
real f1 to the original set of arguments on object this.

3.3.2 Runtime Optimizations

Additionally, for the example above, we can perform the following optimizations at
the time of rewriting to reduce the runtime overhead experienced by the rewritten code
compared to the original.

Reassigning function value. As an optimization tactic, we assign the closure returned
from eval to f1 on line 6. This way, the second invocation of f1 will go directly
to the original code completely circumventing our rewriting. However, things are
more complicated in the presence of function aliasing: if a references to f1 was
taken prior to f1 being executed, then the guarded version of f1 may still be
called through that reference, so it is unsafe to eliminate it completely.

Guard elimination. Note that before existing, guard cluster c1 “eliminates itself”
by assigning the empty closure to global variable guard cluster c1 on line 34.
This way, the guard body will only be executed once per cluster. For instance, if
function f2 is invoked after f1, the guard will be a no-op.
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1 var xhr = new XmlHttpRequest();

2 function next_cluster(){

3 xhr.open("http://code.server.com/next",

4 /* asynchronous AJAX call */ true);

5
6 xhr.onreadstatechange = handle_cluster;

7 xhr.send(null);

8 }

9
10 function handle_cluster(){

11 if (xhr.readyState != 4) { return; }

12 var code = xhr.responseText;

13 if (code == "") return; // last cluster

14
15 // split code into function bodies

16 foreach(<func_name, func_code> in code) {

17 func[func_name] = func_code;

18 }

19
20 // go fetch the next cluster

21 next_cluster();

22 }

23
24 // initial invocation of next_cluster

25 // after the document is done loading

26 document.attachEvent("onload", next_cluster);

Figure 9: Background code prefetching.

3.3.3 Code Rewriting in JavaScript

In many ways, the example above illustrates the “best case scenario” for our rewriting
technique. There are several concerns we have to address when performing function
rewriting. Unlike many other mainstream languages, JavaScript allows nested function
definitions. Local functions complicate our rewriting strategy, making it necessary to
cache real function bodies (real f1 and real f2 in examples above) in a local context
just before the function definition. Also notice that since local declarations may close
over variables in the lexical scope, we are careful to perform evaluation of real function
bodies in the same context as the original function declaration. Clearly, performing as
eval in the top-most lexical scope, for example, may create references to undefined
variables.

JavaScript allows the developer to define function closures and which can assigned
to variables, passed around, and invoked arbitrarily. Unlike regular function defini-
tions, closures are allowed to be anonymous. When rewriting anonymous closures, we
have to traverse up the AST to find an appropriate place for introducing cache vari-
ables. Furthermore, the optimization of reassigning the function value does not apply
to function closures, which often have multiple aliases within the program.
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3.3.4 Additional Code Size Optimizations

Note that the stubs shown in the example above tend to still be fairly long. To save
extra space, we apply the technique described below that typically reduces the size of
a stub from several hundred characters to under 50. A key insight is that JavaScript
is a dynamic language that allows function introduction at runtime; we do not have
to transfer complete stubs over the network as long as we can generate them on the
client. Therefore, we parameterize the text of each stub with its name and argument
names and then introduce a helper function exp(function name, argument names)
to generate the stub body at runtime.

Therefore, in the example in Figure 8, we replace stubs for function f1 and f2 as
well as the guard for cluster c1 with

eval(exp("f1",""));eval(exp("f2",""));

This runtime code generation reduces the download size at the expense of introducing
extra runtime overhead for running function exp and applying eval to the resulting
string. Also note that for nested functions, their stubs are introduced at runtime lazily,
after the body of containing functions have been expanded. In practice, techniques
described in this section save hundreds of kilobytes of JavaScript for large applications
such as Live Maps.

3.4 Background Code Prefetch
Background code prefetching allows us to push code to the client instead of having the
client pull code from the server. When translating JavaScript files, we inject prefetch
code shown in Figure 9 into each HTML file passed to the client. Our approach relies
on the server maintaining per-client status with respect to the code that has already been
transferred over. A viable alternative to would be to transfer cluster information to the
client so that it would be able to specify to the server which function to fetch. Note
that when fetching a cluster it is not necessary to specify the entire cluster: a single
function from it will suffice to bring the entire cluster over.

Function next cluster requests the next cluster in the access profile that has not
yet been transferred over from the server. Function handle cluster is registered as an
AJAX callback on line 6 to process the server response to update the global array func
with the function bodies it retrieved. As the last step, on line 21 handle cluster
calls next cluster again. This way, there is a continuous queue of downloads from
the server that driven by the client. The initial code request is performed by registering
an onload handler for the page as shown on line 26.

Cluster ⊥ which contains functions that are never seen as part of runtime training
is never returned by the server eagerly and functions in it may only be downloaded
individually on-demand.

4 Experimental Results
In this section, we evaluate the performance of the DOLOTO code splitting approach
against the five benchmark applications shown in Figure 10. These applications were
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Web application server DOLOTO proxy

WAN

Browser

Figure 11: DOLOTO training setup.

chosen to represent a range of small to large applications, and to test a range of JavaScript
code vs. resource ratios. As suggested in Figure 1, JavaScript code and images are the
two largest components for many modern Web 2.0 applications. At one extreme, the
relatively small application Bunny Hunt uses very little JavaScript code and many large
images. At the other extreme, Google Spreadsheets is composed of very few images
and a large JavaScript code base.

4.1 Experimental Setup
The goal of our experimental setup was to evaluate the impact of code splitting on the
download size and initial responsiveness of real-world, third-party Web applications,
for a variety of realistic network conditions. The setup of our experimental testbed
faced several challenges:

Modifying 3rd-party applications: While we propose that DOLOTO be part of server-
side Web application deployment strategy, we obviously do not have control over
the server-side environments of the applications with which we are experiment-
ing. In order to apply DOLOTO to these applications, we implemented DOLOTO
as a rewriting proxy that intercepts the responses from 3rd-party Web servers and
dynamically rewrites their JavaScript content using our code splitting policies. In
all our experiments, our client-side Web browsers are chained to the proxy im-
plementation of DOLOTO. To accurately simulate a server-side deployment of
DOLOTO with off-line rewriting of application code, we need to ensure that our
dynamic rewriting is not in the critical path of serving Web pages. Thus, our
DOLOTO proxy caches the results of its rewritings such that a second visit to the
page is immediately fulfilled without additional processing.

Sites serving multiple versions of Web application code: Web sites frequently serve
different versions of their Web applications over time, either as part of a rolling
upgrade or as part of a concurrent A/B test of new functionality. To get compara-
ble and consistent results across multiple runs, our experiments rely on training
and executing on the same Web application code. To be sure that our experi-
ments are always run against the same version, we deployed the Squid caching
proxy [18] that held a single copy of our benchmark Web application code. To
ensure that all components of the Web applications were cached, we used an ad-
ditional HTTP rewriting proxy, Fiddler [8], that forces all components of a Web
application to be cache-able by modifying the HTTP cache-control headers set
by the original Web site.

16



C
od

e
co

ve
ra

ge
in

tr
ai

ni
ng

Fu
nc

tio
n

ch
ar

ac
te

ri
za

tio
n

C
lu

st
er

st
at

is
tic

s
D

ow
nl

oa
d

N
um

be
r

%
To

ta
l

%
Si

ze
di

st
ri

bu
tio

n
N

um
be

r
of

Fu
nc

tio
ns

Av
er

ag
e

W
eb

ap
pl

ic
at

io
n

si
ze

,i
n

K
B

fu
nc

tio
ns

si
ze

,i
n

K
B

<
10

0
10

0-
20

0
20

0-
50

0
>

50
0

cl
us

te
rs

pe
r

cl
us

te
r

si
ze

C
hi

ga
m

e
10

4
10

3
29

%
43

41
%

22
26

28
27

7
3/

14
/4

3
6.

2
B

un
ny

H
un

t
16

22
44

%
10

60
%

5
0

9
8

3
2/

7/
19

3.
3

L
iv

e.
co

m
1,

43
6

68
9

21
%

57
2

39
%

20
3

14
9

16
5

17
2

14
5/

49
/4

61
40

.9
L

iv
e

M
ap

s
1,

90
9

80
3

16
%

83
5

43
%

28
4

18
8

17
7

15
4

12
6/

66
/6

89
69

.7
G

oo
gl

e
Sp

re
ad

sh
ee

ts
49

9
79

4
24

%
17

9
35

%
44

2
15

6
12

1
75

15
3/

52
/6

48
12

.0

Fi
gu

re
12

:T
ra

in
in

g
st

at
is

tic
s

fo
ro

ur
be

nc
hm

ar
k

ap
pl

ic
at

io
ns

.

17



Squid caching proxy DOLOTO proxy BrowserWAN simulator

Figure 13: DOLOTO testing setup.

Simulating realistic network conditions: In order to collect evaluate download times
in a realistic range of network conditions, we used a wide-area network simulator
that provides control over the effective bandwidth, latency, and packet loss rates
of a machine’s network connection. We use this network simulator to simulate
3 different environments: a Cable/DSL connection with a low-latency network
path to a Web site (300 kbps downstream bandwidth and 50 ms round-trip la-
tency); a Cable/DSL connection with a high-latency network path (300 kbps
downstream bandwidth and 300 ms round-trip latency); and a 56k dial-up con-
nection (50 kbps downstream bandwidth and 300 ms round-trip latency).

Our resulting setup for training, using Fiddler, Squid, and DOLOTO is shown in Fig-
ure 11. The DOLOTO proxy was running on a machine with a dual Intel Xeon, 3.4GHz
CPU, with 2.5GB of RAM. Our experimental setup for evaluating network download
times adds a wide-area network simulator, and is shown in Figure 13. The client-side
browser used is Firefox 2.0 and was running on a Pentium 4 3.6 GHz machine equipped
with 3 GB of memory running Windows Vista. The physical network connection be-
tween all our test machines is a 100 Mb local area network over a single hub.

4.2 Training Phase Statistics
To train the clusters and create the access profiles for a Web application, we collected
a profile of several minutes of each Web application’s execution under a manual work-
load that exercised a variety of each application’s functionality. For example, the man-
ual workload for Bunny Hunt and the Chi game consists of playing the game and the
workload for http://maps.live.com consists of browsing and searching through
the map.

A summary of results for the training phase is shown in Figure 12. Column 2
shows the total (uncompressed) download size for each application in our benchmark
suite. Columns 3–6 show information about the code coverage observed during our
training run, detailing the number of functions called during the run (absolute number
and percentage in columns 3–4) and the size of these functions (absolute number and
percentage in columns 5–6). Columns 6–9 show a distribution of function sizes that we
have observed at runtime. While small functions are quite common, especially in sites
such as GMail and Google Maps that introduce them for obfuscation purposes, there
are quite a number of large functions as well, indicating the potential to benefit from
removing functions from the initial download.

Finally, columns 10–12 show information about the clusters we constructed. Col-
umn 10 shows the minimum-average-maximum number of functions per cluster. As
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50 kbs/300 ms 300 kbs/300 ms 300 kbs/50 ms

Web application Orig. DOLOTO % Orig. DOLOTO % Orig. DOLOTO %

Chi game 37 37 0% 13 15 13% 8 8 0

Bunny Hunt 100 92 8% 43 41 5% 22 22 0%

Live.com 99 82 17% 31 28 10% 18 13 28%

Live Maps 155 112 28% 31 23 26% 26 19 27%

Google Sp’sheet 58 45 22% 20 20 0% 18 11 39%

Figure 15: Reduction in execution times achieved with DOLOTO. Orig. is the original download time,
DOLOTO is the time to download the whole app in the background, and % is the percentage difference.

can be seen from the table, it is fairly typical to have several dozen clusters for the
larger applications, with some clusters being quite sizable, containing several hundred
functions tends of kilobytes of code in the case of Google Maps and Live Maps, re-
spectively. Note that the number of clusters is quite sensitive to the threshold selection.
For these results, we used a threshold of 25 ms for the gap between first-run times
for functions and a minimum cluster size threshold of 1.5 KB. We created at least one
cluster for application frame for applications that contained multiple FRAME or IFRAME
tags, which explains a cluster of size 1 KB in Pageflakes. Furthermore, for the purposes
of measuring download size and time improvements, we ensured that all the functions
used during page initialization were included in the initial cluster together.

4.3 Execution Phase Statistics
Figure 14 shows the reduction of size achieved with DOLOTO rewriting for our applica-
tion benchmarks. Columns 2 and 3 show information about the number of percentage
of the functions that are rewritten to insert stubs. Since the first cluster is not rewritten
and pushed to the application verbatim, less than 100% of all functions end up being
stubbed. Columns 4–6 show the size of the regular (uncompressed) code in its orig-
inal version, the size of the initial DOLOTO download that includes all the stubs that

50 kbs/300 ms 300 kbs/300 ms 300 kbs/50 ms
Web application Orig. DOLOTO % Orig. DOLOTO % Orig. DOLOTO %

Chi game 37 40 8% 15 15 0% 8 17 113%

Bunny Hunt 100 100 0% 42 43 2% 22 22 0%

Live.com 99 216 118% 31 44 42% 18 36 100%

Live Maps 155 210 35% 31 57 84% 26 52 100%

Google Sp’sheet 58 70 21% 20 24 20% 18 18 0%

Figure 16: Background code loading overhead. Orig. is the original download time, DOLOTO is the time to
download the whole app in the background, and % is the percentage difference.
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are sent to the client initially, and the resulting space savings. Columns 7–10 show
the same numbers with the code having been run through a JavaScript crunching util-
ity that removes superfluous whitespace — a common strategy for optimizing released
JavaScript code. The tool configuration we used did not perform any additional opti-
mizations such as shortening local variable identifiers. Finally, columns 11-14 show
the same set of numbers after the code has been crunched and run through a gzip com-
pression utility. Gzip compression is a common and perhaps the easiest strategy for
reducing the amount of data transferred over the network and, as such, is used quite
widely by the sites we chose as our benchmarks.

In addition to size reduction measurements, we also performed detailed experi-
ments with several representative benchmarks to determine the effect of code size re-
duction on the overall application execution time for a range of network parameters,
as shown in Figure 15. For each group of columns in Figure 15, we show the original
execution time, the time with DOLOTO, and the percentage of time savings. Clearly,
whether the size reduction is accomplished by DOLOTO will translated into execution
time reduction depends heavily on application decomposition (more information about
sizes of individual components of our benchmarks is shown in Figure 1). It is common
to have images and JavaScript code as the biggest application components; below we
consider applications with different ratios of the two.

It is not too surprising that, as an application whose download is dominated by
images, Bunny Hunt does not show any significant improvements with DOLOTO. On
the other hand, mash-up site Live.com, which has JavaScript as its most significant
download component, shows pretty significant speed-ups, especially in the case of a
low-latency high-bandwidth connection. For high-latency connections, the time sav-
ings are tangible, but not as significant because the execution time is dominated by the
need to connect to many servers to fetch data to be shown on the mash-up page.

Live Maps shows 26-28% improvements for a range of network conditions, with
dozens of seconds being saved on the slowest connection. This is quite impressive
given that a significant portion of the application execution is spent on retrieving map
images. However, as Figure 14 shows, these time savings can be explained by the
fact that about 45% of the application code is not being transferred in the DOLOTO
version. Time savings are most significant for Google Spreadsheet, in which code
is the most significant download component. Because the entire application is under
200 KB in size and the image component is quite small, savings accomplished with
DOLOTO result in noticable speedups. However, on a 300 ms latency connection, third-
party server requests that are used for analytics collection dominate the download time,
masking the savings achieved with DOLOTO.

Figure 16 shows the additional time it takes to download the entire codebase of
an application with background downloading. In general, we see that the additional
time to download an application is roughly proportional to the benefit received from
code splitting. The intuition behind this is that the total download size, and hence the
download time, is increased by the number of stubs and code added to remove functions
from the critical download path. Because users can interact with and use an application
while background downloading is occurring, we believe this trade-off of longer total
download time for shorter latency until a page responds to user interactions is more
than worthwhile.
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5 Related Work
While much work has been done on improving server-side Web application perfor-
mance and reducing the processing latency [13, 19, 20], recent studies of modern Web 2.0
applications indicate that front-end execution contributes 95% of execution time with
an empty browser cache and 88% with a full browser cache [17]. Moreover, browser-
side caching of Web content is less effective than previously believed because about
40% of users come with an empty cache [16]. This, along with a trend towards network
delivery of increasingly sophisticated distributed Web applications, as exemplified by
technologies such as Silvelight, highlights the importance of client-side optimizations
for archieving good end-to-end application performance.

Other than the MapJAX project’s work on data prefetching in Web 2.0 applica-
tions [11], we are not aware of research directly pertaining to responsiveness of Web 2.0
applications, though several projects have focused on software that is delivered over the
network. In particular, Krintz et al. propose a technique for splitting and prefetching
Java classes to reduce the application transfer delay [7]. Class splitting is a code trans-
formation that involves breaking a given class into part: hot and cold, depending on
usage patterns observed a profile time. The cold part is shipped to the client later in a
demand-driven fashion. Our profile construction approach may be seen as an extension
of their technique, in particular, the code clusters we identify represent “degrees of ur-
gency”: the first cluster must be transferred right away, while others can be transferred
later so their transfer is overlapped with client-side execution. Finally, code whose ex-
ecution was not observed in our profile runs often constitutes a significant portion of
the application as explained in Section 2.

Other researchers have focused on reducing the amount of code that is shipped over
the wire, most notably in the case of extracting Java applications [21, 22]. There are
several distinguishing characteristics between that work and ours. First, with some
notable exceptions, JavaScript applications have not yet taken advantage of library-
based application decomposition. Exceptions include reliance on Ajax libraries such
as AJAX.NET, the Dojo Toolkit, and others, which suggests that going forward, the
issue of application extraction may become important once again. Second, the reason
for performing extraction was the need to minimize space requirements for applications
that are designed to be deployed in embedded settings such as J2ME.

Networking tools such as the RabbIT proxy [12] focus on reducing the total down-
load size by performing image and HTML compression on the wire. It is worth point-
ing out that many of these techniques are already integrated into commercial-grade
sites. However, even with these measures in place, performed either by the server or
by a proxy on the network, there is still room for restructuring the code in a manner
proposed by DOLOTO.

Recently developed Web 2.0 frameworks such as the Dojo toolkit [2] support ex-
plicit code loading of JavaScript in a manner similar to languages with dynamic code
loading such as Java and C# [3, 5, 9]. This approach relies on the developer breaking
the application into meaningful pieces, as opposed to our work that focuses on existing
large applications and can work with them without any modifications. In fact, Web 2.0
application performance guides suggest decomposing the application into meaningful
pieces manually [17]. Our work can be seen as an attempt to automatically introduce
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dynamic code loading for legacy applications.
The BrowserShield, CoreScript and AjaxScope projects use automatic JavaScript

rewriting to enforce security policies and monitor the runtime behavior of JavaScript
applications [6, 15, 24]. In contrast, DOLOTO uses JavaScript code rewriting for pro-
gram optimization purposes.

6 Future Work
In this paper we have described a basic code splitting approach. While it results in
significant download size and time savings in practice, there are ways in which it can
be further enhanced. We list some of the possible future research directions below.

Static analysis to remove guards: currently, our approach described in Section 3.2
conservatively assumes that every single function needs to be guarded, requiring
a lot of guards to be introduced. With some static analysis, however, these guards
can be optimized away. Indeed, if we construct a call graph of the application
and build dominators for it [1], clusters may be arranged so that a guard for every
f1 dominating f2, guard f1 fetches the body of f2. The fact that f1 dominates
f2 implies that there is no way to invoke f2 without calling f1 first, making our
approach sound. With this technique, stubs for many functions would not be
transferred at all, unless they become required by a higher-level guard; currently,
we conservatively assume that any function in the program may be called.

Static analysis instead of runtime training: In fact, given an application call graph,
we may even be able to do away with the training stage of our approach entirely:
we can use trees in the dominator forest as clusters that we pass to the second
stage of DOLOTO. Of course, the main obstacle to call graph construction or,
indeed, most forms of static analysis in JavaScript is the presence of eval state-
ments. There are applications, especially those that are generated from tools such
as the GWT [4] or Volta [10] that either do not use eval or use in is a controlled
manner that is amendable to static analysis.

Continuous feedback loop. Currently, the DOLOTO approach is static, with the train-
ing and execution phases being entirely separate. It is possible, however, have
a feedback loop, in which additional instrumentation is added to a deployed ap-
plication to update access profiles in real time. To reduce the effect of the in-
strumentation overhead, we can only send instrumented application version to a
fraction of users or we can instrument a single JavaScript file per user, etc.

Context-sensitive access profiles: the current training approach creates a global set
of clusters. However, for large applications, it might make sense to have a finer
grained techniques, where, depending on where the user is in the application,
different portion of the application would be loaded. For instance, there would
be different access profiles for the 2D and 3D functionality of an online mapping
application. Depending on execution context, different code would be fetched
with both on-demand loading and background prefetching.
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7 Conclusions
This paper proposes DOLOTO, a system for splitting client-side code of large mod-
ern Web 2.0 applications that often contain hundreds of kilobytes of JavaScript code.
DOLOTO consists of a training phase that groups code according to the temporal access
patterns and a rewriting phase, where the original code is rewritten to contain stubs that
fetch the actual code on demand.

When integrated with the server, DOLOTO results in a significant reduction of the
amount of code that is necessary for the application to execute, leading to smaller code
downloads and more responsive applications.

Our experiments show that DOLOTO reduces the size of the JavaScript code com-
ponent by as much as 50% and execution times by as much as 39%, with time savings
over 20% being common. We expect code splitting to be a key enabler Web 2.0 ap-
plications to continue growing in size and sophistication without placing undue code
download burden on the application developer.
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