
Spectator: Detection and Containment of
JavaScript Worms

Benjamin Livshits Weidong Cui

Microsoft Research

Abstract

Recent popularity of interactive AJAX-based Web 2.0 applications has given rise to a new breed of
security threats: JavaScript worms. In this paper we propose Spectator, the first automatic detection and
containment solution for JavaScript worms. Spectator performs distributed data tainting by observing
and tagging the traffic between the browser and the Web application. When a piece of data propagates
too far, a worm is reported. To prevent worm propagation, subsequent upload attempts performed by the
same worm are blocked. Spectator is able to detect fast and slow moving, monomorphic and polymorphic
worms with a low rate of false positives. In addition to our detection and containment solution, we
propose a range of deployment models for Spectator, ranging from simple intranet-wide deployments to
a scalable load-balancing scheme appropriate for large Web sites.

In this paper we demonstrate the effectiveness and efficiency of Spectator through both large-scale
simulations as well as a case study that observes the behavior of a real-life JavaScript worm propagating
across a social networking site. Spectator is able to detect all JavaScript worms released to date while
maintaining a low detection overhead for a range of workloads.

1 Introduction

Web applications have been a prime target for application-level security attacks for several years. A number
of attack techniques, including SQL injections, cross-site scripting, path traversal, cross-site request forgery,
HTTP splitting, etc. have emerged, and recent surveys have shown that the majority of Web sites in common
use contain at least one Web application security vulnerability [39, 42]. In fact, in the last several years, Web
application vulnerabilities have become significantly more common than vulnerabilities enabled by unsafe
programming languages such as buffer overruns and format string violations [40].

While Web application vulnerabilities have been around for some time and a range of solutions have been
developed [15, 19, 22–24, 30, 44], the recent popularity of interactive AJAX-based Web 2.0 applications has
given rise to a new and considerably more destructive breed of security threats: JavaScript worms [11, 13].
JavaScript worms are enabled by cross-site scripting vulnerabilities in Web applications. While cross-site
scripting vulnerabilities have been a common problem in Web based-applications for some time, their threat
is now significantly amplified with the advent of AJAX technology. AJAX allows HTTP requests to be
issued by the browser on behalf of the user. It is no longer necessary to trick the user into clicking on a
link, as the appropriate HTTP request to the server can just be manufactured by the worm at runtime. This
functionality can and has been cleverly exploited by hackers to create self-propagating JavaScript malware.

1.1 The Samy Worm

The first and probably the most infamous JavaScript worm to date is the Samy worm that was released
on MySpace.com, a social networking site in October 2005 [36]. By exploiting a cross-site scripting vul-

1

nerability in the MySpace site, the worm added close to a million users to the worm author’s “friends”
list. According to MySpace site maintainers, the worm caused an explosion in the number of entries in the
friends list across the site, eventually leading to resource exhaustion. Two days after the attack the site was
still struggling to serve requests at a normal pace.

The Samy worm gets its name from the MySpace login of its creator. Initially, the malicious piece of
JavaScript (referred to as the payload) was manually placed in Samy’s own MySpace profile page, making
it infected. Each round of subsequent worm propagation consists of the following two steps:

1. Download: A visitor downloads an infected profile and automatically executes the JavaScript payload.
This adds Samy as the viewer’s “friend” and also adds the text but most of all, samy is my hero to the
viewer’s profile. Normally, this series of steps would be done through GET and POST HTTP requests
manually performed by the user by clicking on various links and buttons embedded in MySpace pages.
In this case, all of these steps are done in the background without the viewer’s knowledge.

2. Propagation: The payload is extracted from the contents of the profile being viewed and then added
to the viewer’s profile.

Note that the enabling characteristic of a JavaScript worm is the AJAX propagation step: unlike “old-
style” Web applications, AJAX allows requests to the server to be done in the background without user’s
knowledge. Without AJAX, a worm such as Samy would be nearly impossible. Also observe that worm
propagation happens among properly authenticated MySpace users because only authenticated users have
the ability to save the payload in their profiles.

1.2 Overview of the Problem

While Samy is a relatively benign proof-of-concept worm, the impact of JavaScript worms is likely to
grow in the future. There are some signs pointing to that already: another MySpace worm released in
December 2006 steals user passwords by replacing links on user’s profile site with spoofed HTML made to
appear like login forms [6]. The stolen credentials were subsequently hijacked for the purpose of sending
spam. Similarly, Yamanner, a recent Yahoo! Mail worm, propagated through the Webmail system affecting
close to 200,000 users by sending emails with embedded JavaScript to everyone in the current user’s address
book [4]. Harvested emails were then transmitted to a remote server, presumably to be used for spamming1.

The impact of JavaScript worms will likely increase if attackers shift their attention to sites such as
ebay.com, epinions.com, buy.com, or amazon.com, all of which provide community features such as
submitting product or retailer reviews. The financial impact of stolen credentials in such a case could
be much greater than it was for MySpace, especially if vulnerability identification is done with the aid
of cross-site scripting vulnerability cataloging sites such as xssed.com [31]. Today cross-site scripting
vulnerabilities are routinely exploited to allow the attacker to steal the credentials of a small group of users
for financial gain. Self-propagating code amplifies this problem far beyond its current scale. It is therefore
important to develop a detection scheme for JavaScript worms before they become commonplace.

A comprehensive detection solution for JavaScript worms presents a tough challenge. The server-side
Web application has no way of distinguishing a benign HTTP request performed by a user from one that
is performed by a worm using AJAX. An attractive alternative to server-side detection would be to have an
entirely client-side solution. Similarly, however, the browser has no way of distinguishing the origin of a
piece of JavaScript: benign JavaScript embedded in a page for reasons of functionality is treated the same
way as the payload of a worm. Filtering solutions proposed so far that rely on worm signatures to stop their
propagation [38] are ineffective when it comes to polymorphic or obfuscated payloads, which are easy to

1Additional information on eight JavaScript worms detected in the wild so far is summarized in Appendix A. Interested readers
are also referred to original vulnerability reports for further information [4–6, 27, 34–36].

2

create in JavaScript; in fact many worms detected so far are indeed obfuscated, as described in Appendix B.
Moreover, overly strict filters may cause false positives, leading to user frustration if they are unable to
access their own data on a popular Web site.

1.3 Paper Contributions

This paper describes Spectator, a system for detecting and containing JavaScript worms, and makes the
following contributions:

• Spectator is the first practical solution to the problem of detecting and containment of JavaScript
worms. Spectator is also insensitive to the worm propagation speed; it can deal with rapid zero-
day worm attacks as well as worms that disguise their presence with slow propagation. Spectator is
insensitive of what the JavaScript code looks like and does not rely on signatures of any sort; therefore
it is able to detect polymorphic worms or worms that use other browser-executable content such as
VBScript.

• We propose a scalable detection solution that adds a small constant-time overhead to the end-to-end
latency of an HTTP request no matter how many requests have been considered by Spectator. With
this detection approach, Spectator is able to detect all worms that have been found in the wild thus far.

• Our low-overhead approximate detection algorithm is mostly conservative, meaning that for the ma-
jority of practical workloads will not miss a worm if there is one, although false positives may be
possible. However, simulations we have performed show that false positives are unlikely with our
detection scheme.

• We propose multiple deployment models for Spectator: the Spectator proxy can be used as a server-
side proxy or as a browser proxy running in front of a large client base such as a large Intranet site.
For large services such as MySpace, we describe how Spectator can be deployed in a load-balanced
setting. Load balancing enables Spectator to store historical data going far back without running out
of space and also improves the Spectator throughput.

• We evaluate Spectator is several settings, including a large-scale simulation setup as well as a real-life
case study using a JavaScript worm that we developed for a popular open-source social networking
Web application deployed in a controlled environment.

1.4 Paper Organization

The rest of the paper is organized as follows. Section 2 describes the architecture of Spectator. Section 3
formally describes our worm detection algorithm. Section 4 describes Spectator implementation. Section 5
describes the experiments and case studies we performed. Section 6 discusses Spectator design choices,
tradeoffs, and threats to the validity of our approach. Sections 7 summarizes related work and Section 8
concludes. Appendix A summarizes information about worms found in the wild so far. Appendix B contains
the pseudo-code of our low-overhead approximate worm detection algorithm. Finally, Appendix C shows
our proof-of-concept JavaScript worm that we developed for experiments in Section 5.

2 Spectator Design Overview

This section provides an overview of Spectator architecture and design assumptions. Section 3 gives a
formal description of our worm detection algorithm.

3

C
lie

n
t-

si
d

e
tr

ac
ki

n
g

se
rv

er
-s

id
e

 a
p

p

p
ag

e

tag

Spectator

proxy p
ag

e

id

request

id

request
tag

2 3 1

4 5 6

Figure 1: Spectator architecture

2.1 Spectator Overview

A recent penetration testing study performed by the Imperva Application Defense Center that included more
than 250 Web applications from e-commerce, online banking, enterprise collaboration, and supply chain
management sites concluded that over 90% of Web applications are vulnerable to some form of security
attack, including 80% vulnerable to cross-site scripting [42]. Cross-site scripting, which is at the root of
JavaScript worms, is commonly identified as the most prevalent Web application vulnerability. While it is
widely recognized that secure programming is the best defense against application-level vulnerabilities, de-
veloping fully secure applications remains a difficult challenge in practice. For example, while MySpace was
doing a pretty good job filtering well-formed JavaScript, it failed to filter out instances of java\nscript,
which are interpreted as legal script in Internet Explorer and some versions of Safari. Despite best intentions,
insecure applications inevitably get deployed on widely used Web sites.

The goal of Spectator is to protect Web site users from the adverse effects of worm propagation after
the server has failed to discover or patch a vulnerability in a timely manner. The essence of the Spectator
approach is to tag or mark HTTP requests and responses so that copying of the content across a range
of pages in a worm-like manner can be detected. Note that JavaScript worms are radically different from
“regular” worms in that they are centralized: they typically affect a single Web site or a small group of sites2.
Spectator consists of an HTTP proxy inspecting the traffic between the user’s browser and a Web server in
order to detect malicious patterns of JavaScript code propagation. Our tagging scheme described in Section 4
is a form of distributed tainting: whenever content that contains HTML is uploaded to the server, Spectator
modifies it to attach a tag invisible to the end-user. The tag is preserved on the server and is contained in the
HTML downloaded by subsequent requests. Spectator injects client-side support so that tags are reliably
propagated on the client side and cannot be removed by worms aware of our tagging scheme. Client-side
support relies on HTTP-only cookies and does not require specialized plug-ins or browser modifications,
thus removing the barrier to client-side adoption.

Worm detection at the Spectator proxy works by looking for long propagation chains. Our detection
algorithm is designed to scale to propagation graphs consisting of thousands of nodes with minimal overhead
on every request. Whenever a long propagation chain is detected, Spectator disallows further uploads that
are caused by that chain, thereby containing further worm propagation. The Spectator detection algorithm is
designed to detect propagation activity that affects multiple users. With every HTML upload, we also record

2The same-origin policy of JavaScript makes it difficult to develop worms that propagate across multiple servers.

4

the IP address of the user issuing the request3. Worm detection relies on sufficiently many users adopting
Spectator. However, since Spectator relies on no additional client-side support, it can be deployed almost
instantaneously to a multitude of users.

2.2 Spectator Architecture

To make the discussion above more concrete, a diagram of Spectator’s architecture is shown in Figure 1.
Whenever a user attempts to download a page containing Spectator tags previously injected there by Spec-
tator, the following steps are taken, as shown in the figure:

1. The tagged page is retrieved from the server.

2. The Spectator proxy examines the page. If the page contains tags, a new session ID is created and
associated with the list of tags in the page. The tags are stripped from the page and are never seen by
the browser or any malicious content executing therein.

3. The modified page augmented with the session ID stored in a cookie (referred to below as “Spectator
cookie”) is passed to the browser.

Whenever an upload containing HTML is observed, the following steps are taken:

4. A user issues an HTTP request containing HTML and a new tag is created for that upload. If a
Spectator cookie is found on the client, it is automatically sent to Spectator by the browser.

5. If the request has a valid session ID contained in a Spectator cookie attached to the request, the list
of tags it corresponds to is looked up and, for every tag, causality links are added to the propagation
graph. The request is not propagated further if the Spectator detection algorithm decides that the
request is part of worm propagation.

6. Finally, the request augmented with the newly created tag is uploaded and stored at the server.

The Spectator worm detection algorithm relies on the following properties that guarantee that we can observe
and record the propagation of a piece of data during its entire “round trip”, captured by steps 1–6 above,
thereby enabling taint tracking. The properties described below give the information required to formally
reason about the Spectator algorithm. A detailed discussion of how Spectator ensures that these properties
hold is delayed until Section 4.

Property 1: Reliable HTML input detection and marking. We can determine which user input may con-
tain HTML and can mark it as tainted. Additionally, we can mark suspicious user input without
disturbing server-side application logic so that the mark propagates to the user.

Property 2: Reliable client-side tag propagation. Browser can propagate taint tags from an HTTP re-
sponse to a subsequent request issued by the browser.

3 Worm Detection Algorithm

This section describes our worm detection algorithm. We start by giving the intuition for our approach in
Section 3.1. Section 3.2 describes our data representation. Section 3.3 summarizes our worm detection
algorithm. Finally, Section 3.4 provides an analysis of the detection algorithm’s space and time complexity.

3The IP address is used as an approximation of user identity. If multiple users share an IP address, such as users within an
intranet, this may cause false negatives. If the same user connects from different IP addresses, false positives might result.

5

t4

t7 t3

t6 t9
t8

t5
t2 t1 t0

t0 t1 t2 t3 t4 t5

Figure 2: (a) a typical worm propagation scenario and (b) a long blog entry

3.1 Motivating Scenarios

This section describes two common propagation scenarios that motivate the rest of the discussion and pro-
vide justification for our algorithms. The first scenario is indicative of worm propagation. The second is a
common scenario that would cause a false positive in a more naı̈ve detection scheme.

Scenario 1: Typical worm propagation

Figure 2(a) shows a tag propagation graph corresponding to a typical worm outbreak. Every graph node
represents a different tag, edges represent tag causality. Finally, colors represent different IP addresses. In
the example shown, the longest path in this graph is t0 → t1 → t2 → t3 → t5 → t6 → t8 → t9. The
number of unique IP addresses on this path is 7, not 8. This is not a unique longest path: a path with t4
instead of t3 has the same length. Note that if all activity for tags t0, . . . t9 corresponded to the same IP
address, this would not indicate a worm because no other user would get infected. The other important
observation is that the path in question is in fact the shortest path connecting nodes t0 and t8. This graph
is a small example of rapid worm propagation; it is similar in structure to the propagation graph for the
Yamanner (Yahoo! Mail) JavaScript worm described in Chien [4].

Scenario 2: Blog with many replies

Contrast the worm propagation scenario above with the case of a blog entry with a long list of comments,
whose propagation structure is displayed in Figure 2(b). In this case, t0 corresponds to the initial HTML
blog post, t1 corresponds to the first reply, t2 to the second reply, etc. Some of the replies can come from the
same IP address, as exemplified by t2 and t5. Assuming the initial blog post is included in the HTML every
time the blog entry is downloaded, t0 will be connected to every subsequent tag generated for the uploads.
So, as a result, the shortest distance between nodes t0 and t5 will still be two. Naı̈vely flagging a long blog
thread scenario as a worm would constitute a false positive for our detection scheme. With blogging sites
ubiquitous nowadays, flagging this scenario as a worm would generate a flood of false worm reports.

3.2 Propagation Graph Representation

To formalize the intuition above, we introduce the notion of a propagation graph that is updated whenever
new tags are inserted. As in the examples above, each node of the graph corresponds to a tag and edges
represent causality links. Each node carries with it the IP address of the client the tag originates from.

Definition 1. Propagation graph G = 〈V, E〉, where vertices V is a set of tag-IP pairs
{(t1, ip1), (t2, ip2), . . . } and E is the set of causality edges between them.
Definition 2. The distance between two nodes N1 and N2 denoted as |N1, N2| in a propagation graph G is
the smallest number of unique IP addresses on any path connecting N1 and N2.
Definition 3. The diameter of a propagation graph G, denoted as D(G), is the maximum distance between
any two nodes in G.

6

Definition 4. We say that G contains a worm if D(G) exceeds a user-provided threshold d.

Note that the propagation graph is acyclic. While it is possible to have node sharing, caused by a page
with two tags generating a new one, as shown in Figure 2(a), having a cycle in the propagation graph is
impossible, as it would indicate a tag caused by another one that was created chronologically later. Ideally,
we want to perform worm detection on the fly, whenever a new upload request is observed by Spectator.
When a new edge is added to the propagation graph G, we would check to see if the diameter of updated
graph G now exceeds the user-defined threshold d.

The issue that complicates the design of an efficient algorithm is that we need to keep track of the set
of unique IP addresses encountered on the current path from a root of the DAG. Unfortunately, computing
this set every time an edge is added is exponential in the graph size in the worst case. Storing the smallest
set of unique IP addresses at every node requires O(n2) space in the worst case: consider the case of a
singly-linked list where every node has a different IP address. Even if we store these sets at every node, the
computation of the IP address list at a node that has more than one predecessor still requires an exponential
amount of work, as we need to consider all ways to traverse the graph to find the path with the smallest
number of unique IP addresses.

Our goal is to have a worm detection algorithm that is as efficient as possible. Since we want to be
able to detect slow-propagating worms, we cannot afford to remove old tags from the propagation graph.
Therefore, the algorithm has to scale to hundreds of thousands of nodes, representing tags inserted over
a period of days or weeks. We propose two practical alternatives to the exponential detection algorithm
outlined above.

1. Approximate Incremental Worm Detection. Because a precise incremental detection algorithm is
difficult to scale, in Section 3.3 we present an approximation approach. For most practical scenarios,
the approximation we provide is conservative, meaning that any worm detectable with the precise
approach will be detected with the approximate one sooner. Our approach has a constant-time edge
insertion time bound. Note that if the propagation graph is a forest, which is the case when the worm
is triggered by a single “infecting” tag, there is no imprecision introduced by our approximation
scheme. While it is possible for the approximation approach to result in false negatives, it did not
occur in our extensive experiments summarized in Section 5. In our practical implementation of
Spectator we use the approximate detection approach. Section 5.3 offers a performance comparison
of the approximation technique and the precise approach outlined above.

2. Precise Delayed Worm Detection. Instead of trying to discover a worm outbreak on the fly as soon
as it happens, an alternative is to examine the propagation graph every once in a while to detect worm
traces. In this case, the performance penalty is amortized over a large number of HTTP requests and
worm detection is done in a background process, at a time when the proxy request load is low. In par-
ticular, we have implemented a forward depth-first search that maintains a list of unique IP addresses
along the current propagation path. The search starts at all nodes that do not have a predecessor and
at every reachable node, if the current set of unique IP addresses is smaller than the one already at
the node, the stored set is replaced. The downside of running this computation occasionally is that we
may not be able to detect a worm outbreak as quickly.

Finally, the two strategies outlined above may be combined: the approximation technique may be used as
the proverbial canary in the mine shaft to trigger a whole-graph traversal that computes precise values.

3.3 Incremental Approximate Worm Detection Algorithm

In this section we describe an iterative algorithm for detecting when a newly added propagation graph edge
indicates the propagation of a worm. As we will demonstrate later, the approximation algorithm is mostly

7

conservative, meaning that if there is a worm, in most cases, the approximation approach will detect it no
later than the precise one.

3.3.1 Data Representation

The graph GA maintained by our algorithm is a forest approximating the propagation graph G. Whenever
node sharing is introduced, one of the predecessors is removed to maintain the single-parent property. Fur-
thermore, to make the insertion algorithm more efficient, some of the nodes of the graph are designated as
storage stations; storage stations accelerate the insertion operation in practice by allowing to “hop” towards
a root of the forest without visiting every node on the path.

We use the following representation for our approximate algorithm. PREV (N) points to the nearest
storage station on its path to the root or null if N is the root. Every node N in GA has a set of IP
addresses IPS (N) associated with it. The number of IP addresses stored at a node is at most c, where c is a
user-configured parameter.

IPS (N) =

IP addresses on the path from N to PREV (N) not contained in
any other IPS sets of nodes between N and the root

if PREV (N) 6= null

IP addresses on the path from N to the root if PREV (N) = null

At every node N we maintain a depth value denoted as DEPTH (N), which is an approximation of the
number of unique IP addresses on the path from N to the root. Whenever the DEPTH value exceeds the
user-defined threshold d, we raise an alarm.

3.3.2 Worm Detection

Detailed pseudo-code for the insertion algorithm that describes the details of data structure manipulation is
shown in Appendix B. Here we summarize the essence of the insertion algorithm. Whenever a new causality
edge from node parent to node child is added to GA:

1. If parent is the only predecessor of child in GA, we walk up the tree branch and find all storage
stations on the current tree branch. DEPTH (child) is set to the sum of sizes of IPS (N) for all
storage stations on the path. We copy IPS (parent) into IPS (child) and then add child ’s IP if it
is not found by the search. In the latter case, DEPTH (child) value is incremented. If the size of
IPS (child) reaches threshold c, we designate child as a storage station.

2. If child has two predecessors in GA, we compare DEPTH values stored at the two predecessors,
select the larger one, and remove the other edge from the graph, restoring non-sharing. After that we
follow step 1 above. Note that the predecessors do not have to belong to the same tree. However, after
the insertion is complete, child will be a member of a single tree.

Observe that the the maximum DEPTH value computed by this algorithm is exactly D(GA) because the
maximum distance in GA is that between a node and a root.

Notice that the approach described in this section is essentially a greedy algorithm: in the presence
of multiple parents, it chooses the parent that it believes will result in higher overall diameter of the final
approximation graph GA. Of course, the advantage of the approximate algorithm is that it avoids the worst
case exponential blow-up. However, without the benefit of knowing future insertion operations, the greedy
algorithm may yield a lower diameter, potentially leading to false negatives. While this has never happened
in our experiments, one such example is described below.

Example 1. Consider the propagation graph displayed in Figure 3. Suppose we first insert the two nodes

8

iip2 ip1 ip3 ip4

ip2 ip1

Figure 3: Propagation graph for which the approximate algorithm under-approximates the diameter value

on the bottom left with IPs ip1 and ip2 and then the node with ip4. When we add ip3 to the graph, the
approximation algorithm will decide to remove the newly created edge (showed as dashed) because doing so
will result in a greater diameter. However, in retrospect, the greedy algorithm makes a suboptimal decision:
when nodes on the right with IPs ip2 and ip1 are added, the resulting diameter will be 3, not 4 as it would
be with the precise approach. �

3.3.3 Worm Containment

Whenever the count at the newly added node child exceeds threshold d, we mark the entire tree that parent
and child are contained in as infected. To do so, we maintain an additional status at every leaf. Whenever a
tree is deemed infected by our algorithm, we propagate the infected status to every tree node. Subsequently,
all uploads that are caused by nodes within that tree are disallowed until there is a message from the server
saying that it is safe to do so.

When the server fixes the vulnerability that makes the worm possible, it needs to notify the Spectator
proxy, at which point the proxy will remove the entire tree containing the parent to child edge from the
proxy. If the server deems the vulnerability reported by Spectator to be a false positive, we never subse-
quently report activity caused by nodes in this tree as a worm. To do so, we set the node status for each tree
node as a false positive and check the node status before reporting a worm.

3.3.4 Complexity of the Incremental Algorithm

Maintaining an approximation allows us to obtain a very modest time and space bounds on new edge in-
sertion, as shown below. Discussion of how our approximate detection algorithm performs in practice is
postponed until Section 5.2.

Insertion Time Complexity. The complexity of the algorithm at every insertion is as follows: for a
graph GA with n nodes, we consider d/c storage stations at the most. Since storage stations having non-
overlapping lists of IP addresses, having more storage stations on a path from a root of GA would mean that
we have over d IPs in total on that particular path, which should have been detected as a worm. At every
storage station, we perform an O(1) average time containment check. Therefore, our approximate insertion
algorithm takes O(1) time on average.

Space Complexity. We store O(n) IP addresses at the storage stations distributed throughout the propaga-
tion graph GA. This is easy to see in the worst case of every IP address in the graph being unique. The
union of all IP lists stored at all storage stations will be the set of all graph nodes. Additionally, we store
IP addresses at the nodes between subsequent storage stations. In the worst case, every storage station con-
tains c nodes and we store 1 + 2 + · · ·+ c− 1 = c · (c− 1)/2 IP addresses, which preserves the total space
requirement of O(n). More precisely, with at most n/c storage stations, we store approximately

c2

2
× n

c
=

1
2
· c · n

9

IP addresses. Note that in practice storage stations allow insertion operations to run faster because instead
of visiting every node on the path from the root, we can instead “hop” to the next storage station, as demon-
strated by the d/c bound. However, using storage stations also results in more storage space being taken
up as shown by the 1/2 · c · n bound. Adjusting parameter c allows us to explore this space-time trade-off:
bigger c results in faster insertion times, but also requires more storage.

Worm Containment Complexity. When a worm is detected, we walk the tree that the worm has infected
and mark all of its nodes as such. This takes O(n) time because in the worst case we have to visit and mark
all nodes in the tree. The same bound holds for when we mark nodes in a tree as false positives.

4 Spectator Implementation

Distributed tainting in Spectator is accomplished by augmenting both upload requests to insert tracking tags
and download requests to inject tracking cookies and JavaScript, as detailed in Sections 4.1 and 4.2.

4.1 Tag Propagation in the Browser

To track content propagation on the client side, the Spectator proxy maintains a local session for every page
that passes through it. Ideally, this functionality would be supported by the browser natively; in fact, if
browsers supported per-page cookies, that is, cookies that expire once the current page is unloaded, this
would be enough to precisely track causality on the client side. Since such cookies are not supported, we
use a combination of standard per-session browser cookies and injected JavaScript that runs whenever the
current page is unloaded to accomplish the same goal.

4.1.1 Client-Side Causality Tracking

Whenever a new page is sent by the Spectator proxy to the browser, a new session tuple 〈id1, id2〉 is gener-
ated, consisting of two long integer values, which are randomized 128-bit integers, whose values cannot be
easily guessed by the attacker. Our client-side support consists of two parts:

• HTTP-only Spectator cookie in the browser. We augment every server response passing through
Spectator with an HTTP-only4 cookie [26] containing id1. The fact that the session ID is contained in
an HTTP-only cookie means that it cannot be snooped on by malicious JavaScript running within the
browser, assuming the browser correctly implements the HTTP-only attribute. For a page originating
from server D, the domain of the session ID cookie is set to D, so it is passed back to Spectator on
every request to D, allowing us to perform causality tracking as described above.

Ideally, we would like to have a per-page cookie that expires as soon as the page is unloaded. Unfortu-
nately, there is no support for such cookies. So, we use session cookies that expire after the browser is
closed, which may not happen for a while. So, if the user visits site D served by Spectator, then visits
site E, and then returns to D, the Spectator cookie would still be sent to Specator by the browser.

• Injected client-side JavaScript to signal page unloads. In order to terminate a propagation link
that would be created between the two unrelated requests to server D, we inject client-side JavaScript
into every file that Spectator sends to the browser. Furthermore, before passing the page to the client,
within Spectator we add an unload event handler, which sends an XmlHttpRequest to Spectator to
“close” or invalidate the current session, as shown in Figure 4 (a), so that subsequent requests with

4At the time of this writing, Internet Explorer 6 and Mozilla FireFox 2.0.0.5 both support HTTP-only cookies, even though
FireFox support was added quite recently.

10

<script id="remove-me">

if (window.attachEvent) {

var handler = function(id) {

var id2 = id;

this.unload = function() {

var xhr = new ActiveXObject("MSXML2.XMLHTTP.3.0");

xhr.open("POST", "http://www.D.com/__spectator__&" + id2, true);

xhr.send(null); // send message to D just before unloading

}

};

// embed id_2 verbatim and create an unload handler

window.attachEvent("unload", (new handler(<id_2>)).unload);

}

</script>

<script>

// remove the previous script block from the DOM

var script_block = document.getElementById("remove-me");

script_block.getParentNode().removeChild(script_block);

</script>

(a) Intercepting page unload events in JavaScript

<script>

if (window.detachEvent) {

window.detachEvent =

function(sEvent, fpNotify) {

if (sEvent == "unload") {

// disallow removing unload event

return;

} else {

// use old detachEvent

detachEvent(sEvent, fpNotify);

}

}

}

</script>

(b) Disallowing the removal of unload event handlers

Figure 4: JavaScript code injected at the top of the page for client-side support

the same id1 are ignored. The spectator URL does not exist on server D: it is just a way to
communicate with Spectator while including id1 created for server D (notice that it is not necessary
to pass the session ID as a parameter to Spectator, as the session ID cookie will be included in the
request as well).

Notice that the id2 is submitted as well: it is kept as a secret so that malicious code itself cannot
initiate an upload request. To make it so that malicious JavaScript code cannot remove the unload
handler, we mediate access to function window.detachEvent as suggested in the BEEP system [16]
by injecting the JavaScript shown in Figure 4 (b) at the very top of each page served by Spectator.
Furthermore, we also store id2 is a private member of class handler [8]; this way it is not part

11

Malicious relay
server E

Spectator proxy ClientServer D

Figure 5: Relaying user requests through a malicious server

of the handler.unload function source code and cannot be accessed with a call to toString. To
prevent id2 from being accessed through DOM traversal, the original script blocks defining the
unload handler and containing the numerical value of id2 embedded verbatim is subsequently re-
moved through a call to removeChild in the next script block, similar to what is suggested by
Meschkat [25].

4.1.2 Attacks Against Client-Side Tracking

While the basic client-side support is relatively simple to implement, there are two types of potential attacks
against our client-side scheme to address, as described below.

• Worm Relaying. First, the attacker might attempt to break a propagation chain by losing the session
ID contained in the browser, a technique we refer to as worm relaying. Suppose we have a page in the
browser loaded from server D. The attacker may programmatically direct the browser to a different
server E, which would in turn connect to D. Server E in this attack might be set-up solely for the
sole purpose of relaying requests to server D, as shown in Figure 5.

Notice that since the session ID cookie will not be sent to E and its value cannot be examined. We
introduce a simple restriction to make the Spectator proxy redirect all accesses to D that do not contain
a session ID cookie to the top-level D URL such as www.D.com. In fact, it is quite common to disallow
access, especially programmatic access through AJAX RPC calls, to an inside URL of large site such
as www.yahoo.com by clients that do not already have an established cookie. With this restriction, E
will be unable to relay requests on behalf of the user.

• Tampering with unload events. To make it so that malicious JavaScript code cannot remove the
unload handler, we mediate access to function window.detachEvent by injecting the JavaScript
shown in Figure 4 (b) at the very top of each page served by Spectator. It is still possible for an
attacker to try to cause false positives by making sure that the unload event will never be sent. This
can be accomplished by crashing the browser by exploring a browser bug or trying to exhaust browser
resources by opening new windows. However, this behavior is sufficiently conspicuous to the end-user
to prompt a security investigation and is thus not a good candidate for inclusion within a worm.

12

4.2 Tagging Upload Traffic in the Proxy and Server-Side Support

The primary goal of server-side support is to embed Spectator tags into suspicious data uploaded to a pro-
tected Web server in a transparent and persistent manner so that (1) the tags will not interfere with the Web
server’s application logic; and (2) the embedded tags will be propagated together with the data when the
latter is requested from the Web server. To achieve these goals of transparency and persistence, we need to
be able to reliably detect suspicious data to embed Spectator tags into uploaded input. Next, we discuss our
solutions to the challenges of transparency and persistence that do not require any support on the part of the
Web server.

4.2.1 Detecting HTML Uploads

Data uploads are suspicious if they may contain embedded JavaScript. However, for a cross-site scripting
attack to be successful, this JavaScript is usually surrounded with some HTML tags. The basic idea of
detecting suspicious data is to detect the presence of HTML-style content in the uploaded data. Of course,
such uploads represent a minority in most applications, which means that Spectator only needs to tag and
track a small portion of all requests. Spectator detects suspicious data by searching for opening matching
pairs of HTML tags <tag attribute1 = ... attribute2 = ...> and </tag>. Since many servers may
require the uploaded data to be URL- or HTML-encoded, Spectator also attempts to decode the uploaded
data using these encodings before attempting the pattern-matching.

4.2.2 Tagging Suspicious Data

Once a piece of uploaded data is marked as suspicious, there are two possible schemes for Spectator to
embed its tags. (Note that if the original data is URL encoded, Spectator will re-encode the tagged output
as well.) In the first scheme, Spectator embeds a tag immediately preceding the first opening > for each
matching pair of HTML tags. To illustrate how tag insertion works, consider an HTTP request containing
parameter

<div><b onclick="javascript:alert(’...’)">...</div>

This parameter will be transformed by Spectator into a request containing

<div spectator_tag=56><b onclick="javascript:alert(’...’)" spectator_tag=56>...</div>

We tested this scheme with several real-world web servers chosen from a cross-site scripting vulnerability
listing site xssed.com. For vulnerable servers that reflect user input verbatim, this scheme works well as
expected. Our further investigations into three popular Webmail sites, Hotmail, Yahoo Mail, and Gmail,
have shown this scheme did not work because the Spectator tags were stripped by the Web servers. While
this is difficult to ascertain, our hypothesis is that these sites use a whitelist of allowed HTML attributes5.

5To handle Web sites that may attempt to strip Spectator tags, we propose an alternative approach. In this new scheme, Spectator
embeds tags directly into the actual content surrounded by HTML tags. For example < b > hello world... < /b > will be
transformed by Spectator into a request containing < b > spectatortag = 56hello world... < /b > We tested this scheme
with the three Webmail sites above and found that it works for all of them. However, there is a possibility that such tags may
interfere with Web server’s application logic. For example, if the length of the actual content is explicitly specified in the data,
this tagging scheme will affect data consistency. Unfortunately, while our approach to decode and augment the uploaded traffic
works for the sites we have experimented with, in the worst case, the server may choose an entirely new way to encode uploded
parameters. In this case, properly identifying and tagging HTML uploads will require server-side cooperation.

13

5 Experimental Evaluation

An experimental evaluation of Spectator poses a formidable challenge. Since we do not have access to Web
sites on which real-life worms have been released, worm outbreaks are virtually impossible to replicate.
Even if we were able to capture a set of server access logs, we still need to be able to replay the user activity
that caused them. Real-life access patterns leading to worm propagation are, however, hard to capture and
replay. Therefore, our approach is to do a large-scale simulation as well as a small-scale real-world study.

• Large-scale simulations. We created OurSpace, a simple Web application that conceptually mimics
the functionality of MySpace and similar social networking sites on which worms have been detected,
but without the complexity of real sites. OurSpace is able to load and store data associated with
a particular user given that user’s ID. For faster access, data associated with the user is stored in
an in-memory database with which OurSpace communicates. With the help of OurSpace, we have
experimented with various access patterns that we feel reflect access patterns of a real-life site under
attack.

• A real-life case study. It is difficult to experiment with real-life released worms as we discussed
earlier. Ideally, we want to have the following features for our experimental setup: (1) a real-life
popular widely-deployed Web application or a popular Web site; (2) a running JavaScript worm;
(3) users running widely used browsers; and (4) multiple users observed over a period of time.

To make sure that our ideas work well in a practical setting, we performed a series of experiments
against Siteframe, an open-source content management system that supports blogging features [3].
On a high level, Siteframe is similar to MySpace: a user can post to his own blog, respond to other
people’s posts, add other users as friends, etc. We used Siteframe “Beaumont”, version 5.0.0B2,
build 538, because it allows HTML tags in blog posts and does not adequately filter uploaded content
for JavaScript.

For our experiments, both OurSpace and Siteface were deployed on a Pentium 4 3.6 Ghz machine with 3 GB
of memory machine running Windows XP with Apache 2.2 Web server installed. We ran the Spectator
proxy as an application listening to HTTP traffic on a local host. The Spectator proxy is implemented
on top of AjaxScope, a flexible HTML and JavaScript rewriting framework [20, 21]. The Spectator proxy
implementation consists of 3,200 lines of C# code. For ease of deployment, we have configured our HTTP
client to forward requests to the port the Spectator proxy listens on; the proxy subsequently forwards requests
to the appropriate server.

The rest of the section is organized as follows. In Section 5.1 we describe our experimental setup. In
Section 5.2 we summarize our runtime overhead results. Section 5.3 evaluates the speed of detection of the
approximation approach. Section 5.4 discusses the precision of our approximate detection scheme. Finally,
Section 5.5 presents a case study involving five users of a social networking site and a real JavaScript worm.

5.1 Simulations of User Behavior using OurSpace

In this section we describe access patterns that we believe to be representative of normal use.

Scenario 1: Worm outbreak (random topology).

We have a pool of N users, each with a separate home page served by the Web application. Initially, user 1
wakes up and introduces malicious JavaScript into his profile page. At every step, a random user wakes up
and visits a random page. If the visited page is infected, the user infects himself by embedding the content
of the visited page into his home page. This simplified propagation model assumes worm traffic is the only
HTML traffic that gets tagged. Regular non-HTML uploads do not lead to propagation edges being created.

14

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1

5
5

1
0

9

1
6

3

2
1

7

2
7

1

3
2

5

3
7

9

4
3

3

4
8

7

5
4

1

5
9

5

6
4

9

7
0

3

7
5

7

8
1

1

8
6

5

9
1

9

9
7

3

1
,0

2
7

1
,0

8
1

1
,1

3
5

1
,1

8
9

1
,2

4
3

1
,2

9
7

1
,3

5
1

1
,4

0
5

1
,4

5
9

1
,5

1
3

1
,5

6
7

Scenario 1 Scenario 2

2.536
(worm marking)

Figure 6: Propagation graph maintenance overhead, in ms, for Scenarios 1 (top) and 2 (bottom)

This scenario is similar to the worm propagation scenario shown in Figure 2(a). Note that this scenario can
be easily augmented so that a user may view pages of multiple other users, thereby introducing sharing in
the resulting propagation graph.

Scenario 2: A single long blog entry.

We have a pool of N users that access the same blog page one after another. After user k accesses the page,
he reads the previous k − 1 posts and then proceeds to create and uploads an HTML post that contains the
previous posts and a new HTML post. As in Figure 2(b), the total diameter of the resulting graph is 2.

5.2 Overhead Measurements and Scalability

To estimate the overhead, we experimented with Scenario 1 to determine how the approximate algorithm
insertion time fluctuates as more nodes are added to the graph. Figure 6 shows insertion times for Scenario 1
with the detection threshold d set to 20. The x-axis corresponds to the tag being inserted; the y-axis shows
the insertion time in milliseconds. The entire run took about 15 minutes with a total of 1,543 nodes inserted.

The most important observation about this graph is that the tag insertion latency is pretty much constant,
hovering around .01 to .02 ms for Scenario 1 and close to .002 ms for Scenario 2. The insertion time for
the second scenario is considerably lower, since the resulting approximation graph GA is much simpler:
it contains a root directly connected to every other node and the maximum depth is 2. Since our proxy is
implemented in C#, a language that uses garbage collection, there are few spikes in the graph due to garbage
collection cycles. Also, the initial insertions take longer since the data structures are being established.
Moreover, once the worm is detected at d = 20 for tag 1,543, there is another peak when all the nodes of
the tree are traversed and marked.

5.3 Effectiveness of The Detection Approach in a Real-life Setting

One observation that does not bode well for our detection approach with a random topology is that it takes
a long time to reach a non-trivial depth. This is because the forest constructed with our approximation
algorithm usually consists of set of shallow trees. It is highly unlikely to have a long narrow trace that
would be detected as a worm before all the previous layers of the tree are filled up. However, we feel
that the topology of worm propagation is hardly random. While researchers have tried to model worm
propagation in the past, we are not aware of any work that models the propagation of JavaScript worms. We

15

20

43

0

10

20

30

40

50

50 10,050 20,050 30,050 40,050 50,050 60,050 70,050 80,050 90,050

Random propagation (scenario 1) Biased distribution (scenario 3)

Figure 7: D(GA) values for random propagation (Scenario 1) vs biased distribution (Scenario 3)

believe that JavaScript worms are similar to email worms in the way they spread. Propagation of JavaScript
worms also tends to parallel social connections, which follow a set of well-studied patterns. Connectivity
distribution is typically highly non-uniform, with a small set of popular users with a long tail of infrequent
or defunct users. Similar observations have been made with respect to World Wide Web [1] and social
network connectivity [2]. To properly assess the effectiveness of our approximation approach, we introduce
Scenario 3, which we believe to be more representative of real-life topology.

Scenario 3: A model of worm propagation (topology with a small number of highly connected nodes).

To reflect the fact that some users are much more connected and active than others, in Scenario 3 we bias user
selection towards users with a smaller ID using the power law. Most of the time, the user selection process
heavily biases the selection towards users with a small ID. This bias reduces the set of users most actively
participating in worm propagation, leading to “taller” trees being created. The simulation works as follows:
initially, user 1’s page is tainted with a piece of malicious JavaScript. At each step of the simulation, a user
wakes up and chooses a page to view. The ID of the user to wake up and to view is chosen using the power
law distribution. Viewing this page will create an edge in the propagation graph from the tag corresponding
to the page selected for viewing to the newly created tag of the user that was awoken.

In propagation graphs generated using Scenario 3, once worm propagation reaches a well-connected
node, it will tend to create much longer propagation chains involving that node and its friends. Figure 7
shows the diameter of GA on the y-axis as more nodes are added up to 100,000 nodes for Scenarios 1 and 3,

0

2

4

6

8

10

12

14

16

18

20

50 2,550 5,050 7,550 10,050 12,550 15,050 17,550 20,050 22,550

Approximate Precise

Figure 8: Approximate vs precise D(GA) values

16

User responsible for
the change

Infected blog messages
injected by the worm

Figure 9: The main Siteframe site page after worm propagation

as shown on the x-axis. Observe that the diameter grows more rapidly in the case of selecting users from a
biased distribution, as fewer nodes will be actively involved in propagation and shallow trees are less likely.
This result indicates that in a real-life large-scale setting, which is likely to be similar to Scenario 3, our
worm detection scheme is effective.

5.4 Precision of the Approximate Detection Algorithm

Note that as discussed in Section 3.3, the approximate algorithm detects the worm before the precise one in
most cases. In fact, we have not encountered instances of when the approximate algorithm produces false
negatives. However, a legitimate question is how much earlier is the worm detected with the approximate
algorithm. If the approximate strategy is too eager to flag a worm, it will result in too many false positives
to be practical. Whether that happens depends on the structure of the graph and the amount of sharing it has.

In order to gauge the detection speed obtained with the approximate scheme as opposed to the precise
one we used simulations of Scenario 3 to generate a variety of random propagation graphs. We measured
the diameter of the resulting propagation graph, as obtained from the precise and approximate methods.
Figure 8 shows how D(G) and D(GA) values, shown on the y-axis differ as more nodes are inserted, as
shown on the x-axis for one such simulation. The differences between the two strategies are small, which
means that we are not likely to suffer from false alarms caused by premature detection in practice, assuming
a sufficiently high detection threshold. Furthermore, the approximation algorithm is always conservative in
this simulation, over-approximating the diameter value.

5.5 Case Study: Siteframe Worm

For our experiments we have developed a proof-of-concept worm that propagates across a locally installed
Siteframe site6. Conceptually our worm is very similar to how the Adultspace worm works: the JavaScript
payload is stored on an external server. At each propagation step, a new blog page is created, with a link to
the worm payload embedded in it. This allows the worm to load the payload from the server repeatedly on
every access. Whenever somebody visits the page, the worm executes and proceeds to create a new entry on
the viewer’s own blog that contains a link to the payload. To make our experiment a little easier to control,

6The entire code of the Siteframe worm is presented in Appendix C.

17

infection is triggered by the user clicking on an HTML <DIV> element. In a real-life setting infection would
probably occur on every page load. The worm does not check if a particular user has already been infected.

For our case study we created a total of five users on a fresh Siteframe site. Each user performed
various activity on the site, leading to one or more worm propagation steps. The diameter of the resulting
propagation graph was 5. To give a sense of the effects of worm propagation in this case, a screen shot of
the resulting top-level page of the Siteframe site is shown in Figure 9.

While small in scale, the Siteframe worm experiment has significantly enhanced our trust in the effec-
tiveness of Spectator. Because the Siteframe worm was modeled after worms previously released in the
wild, we believe that Spectator would have detected those worms as well.

6 Discussion

This section is organized as follows. Section 6.1 presents different deployment models for Spectator. Sec-
tion 6.2 discusses design alternatives. Finally, Section 6.3 addresses threats to the validity of our approach.

6.1 Deployment Models for Spectator

Spectator works in both small-scale environments with servers that do not have a lot of activity and also
with servers that have thousands of active users. We envision the following deployment models.

Server-side Deployment. Server-side deployment is the easiest way to protect an existing Web site from
JavaScript worms using Spectator. Deploying the Spectator proxy in front of the server or servers that the
site resides on allows the proxy to monitor all client-server interaction for that site and detect worms faster
than it would in the case of being deployed elsewhere on the network and seeing only a portion of the total
browser-server traffic. This model has the advantage of simplifying worm reporting, since the server is
responsible for Spectator proxy maintenance.

Intranet-wide Deployment. Intranet deployment can be used to protect users within an organization, such
as a university or a small enterprise against worm outbreaks. In many cases, these environments are already
protected by firewalls and the Spectator proxy can be easily integrated within that infrastructure. Of course,
worm detection in this kind of deployment is only possible if sufficiently many intranet users get infected.
However, in the case of intranet deployment, the same proxy can be used to prevent worms propagating on
a wide variety of sites without changes to our detection or tagging approaches.

A technical issue with client-side deployment is the use of SSL connections, which are not handled
by the Spectator proxy. However, SSL sessions are frequently only used for initial authentication in Web
applications and it is easy to set up one’s browser to redirect requests to the Spectator proxy for non-SSL
connections only. For server-side deployment though, the proxy can be placed before the SSL connection.

Large-scale Deployment. For large-scale server-side deployment, we may implement Spectator as part of
the site’s load balancer. Load balancing is a strategy used by most large-scale services such as MySpace
or Live Spaces. When dealing with multiple proxies, our approach is to distribute different trees in the
forest GA across the different proxy servers. The load balancer considers the source node of the edge being
added to decide which proxy to redirect the request to. To avoid maintaining explicit state at the load-
balancer, such as a lookup map that maps the parent tag to the proxy server containing that tree, our strategy
is to assign the tag number after node insertion, based on which proxy it goes into. For instance, the last
5 bits of the tag may encode the number of the proxy to pass the request to. In the case of a node having
more than one parent, we choose between two parents, based on the parent’s depth as described in Section 3.
When a proxy server is full and a new edge, whose parent resides on that proxy server is inserted, we migrate

18

the newly inserted node to a different proxy server as a new tree. However, instead of the initial depth of 1,
the depth of the root node for that tree is computed through our standard computation strategy.

While this deployment strategy closely matches the setup of large sites, an added advantage is the fact
that we no longer have to store the entire forest in memory of a single proxy. A similar distributed strategy
may be adopted for intranet-wide client-side deployment. Distributed deployment has the following impor-
tant benefit: an attacker might try to avoid detection by flooding Spectator with HTML uploads, leading to
memory exhaustion, and then unleashing a worm. Distributed deployment prevents this possibility.

6.2 Threats to Validity

The first and foremost concern for us when designing Spectator was limiting the number of false positives,
while not introducing any false negatives. Violations of Property 1 in Section 3, will foil our attempt to tag
uploaded HTML and track its propagation, resulting in false negatives. However, Property 1 holds for all
worms listed in Appendix A and we believe that Spectator would have successfully detected them all. Still,
potential for false positives remains, although without long-term studies involving large-scale data collection
it is hard to say whether false positives will actually be reported in practice.

Furthermore, it is possible for a group of benign users to perform the same activity a worm would run
automatically. Assuming the detection threshold is sufficiently low, the following manual worm-like activity
is likely to be regarded as worm outbreaks by Spectator:

• A piece of chain email in HTML format being manually forwarded. As long as forwarding preserves
HTML formatting, including Spectator tags, this activity will be flagged as a worm. Spectator has
difficulty distinguishing this manual process from an automatic one such as the Yamanner worm
propagating through a Webmail system [4].

• Blog showing only several items at a time. While a long blog entry that is shown all at once will not be
flagged by our detection algorithm as a worm (see Figure 2(b)), a sequence of blog pages, containing,
say, 10 posts at a time eventually will be. Assuming that at the time of posting the last 10 entries are
shown to the user, each tag will be caused by the previous 10. While the diameter of this graph will be
growing slowly, by the time there are 10 · d post in the same blog thread, it will be flagged as a worm.

To address these issues and avoid false positives, site administrators can set the detection thresholds higher.
For instance, 500 is a reasonable detection threshold for Webmail systems and 1,000 is very conservative for
blogging sites. As always, there is a trade-off between the possibility of false positives and the promptness
of real worm detection .

7 Related Work

While to the best of our knowledge there has not been a solution proposed to JavaScript worms, there are
several related areas of security research as described below.

7.1 Worm Detection

Since 2001, Internet worm outbreaks have caused severe damage that affected tens of millions of individuals
and hundreds of thousands of organizations. This prompted much research on detecting and containing
worms. However, most of the effort thus far has focused on worms that exploit vulnerabilities caused by
unsafe programming languages, such as buffer overruns. Many techniques have been developed, including
honeypots [9, 14, 41], dynamic analysis [7, 29], network traffic analysis [28, 37, 43], and worm propagation
behavior [10, 45]. Our work is primarily related to research in the latter category.

19

Xiong [45] proposes an attachment chain tracing scheme that detects email worm propagation by iden-
tifying the existence of transmission chains in the network. The requirement for monitoring multiple email
servers limits the practicality of this scheme. Spectator, on the other hand, can observe all relevant traffic if
deployed on the serve side. Ellis et al. [10] propose to detect unknown worms by recognizing uncommon
worm-like behavior, including (1) sending similar data from one machine to the next, (2) tree-like propaga-
tion and reconnaissance, and (3) changing a server into a client. However, it is unclear how the behavioral
approach can be deployed in practice because it is difficult to collect necessary information. We use a very
basic worm-like behavior — long propagation chains — to detect JavaScript worms. Unlike Internet worms,
JavaScript worms usually propagate inside the same Web domain. Spectator proposes an effective approach
to achieve centralized monitoring, enabling worm detection. Our approach that only counts unique IP ad-
dresses on a propagation path is similar to looking at the propagation tree breadth in addition to its depth.

7.2 Server-side Protection Against Cross-site Scripting Attacks

There has been much interest in static and runtime protection techniques to improve the security posture of
Web applications. Static analysis allows the developer to avoid issues such as cross-site scripting before the
application goes into production. Runtime analysis allows exploit prevention and recovery.

The WebSSARI project pioneered this line of research. WebSSARI uses combined unsound static and
dynamic analysis in the context of analyzing PHP programs [15]. WebSSARI has successfully been applied
to find many SQL injection and cross-site scripting vulnerabilities in PHP code. Several projects that came
after WebSSARI improve on the quality of static analysis for PHP [19, 44]. The Griffin project proposes
a scalable and precise sound static and runtime analysis techniques for finding security vulnerabilies in
large Java applications [23, 24]. Based on a vulnerability description, both a static checker and a runtime
instrumentation is generated. Static analysis is also used to drastically reduce the runtime overhead in most
cases. The runtime system allows vulnerability recovery by applying user-provided sanitizers on execution
paths that lack them. Several other runtime systems for taint tracking have been proposed as well, including
Haldar et al. for Java [12] and Pietraszek et al. [32] and Nguyen-Tuong et al. for PHP [30].

Unfortunately, properly configuring a runtime or a static analysis to specify all ways taint propagates
through the application requires considerable involvement by either application developers or system ad-
ministrators. Moreover, none of the techniques mentioned above address subtleties of data sanitization,
usually relying on either a system-specific or a user-provided notion of sanitizers. However, it is incorrectly
implemented sanitizers that often make JavaScript worms possible in the first place, as described in Sec-
tion 2.1. The tag insertion technique implemented by Spectator can be thought of as a poor man’s version
of proper runtime tainting that requires no server-side cooperation.

7.3 Client-side Web Application Vulnerability Prevention

Noxes, a browser-based security extension, is designed to protect against information leakage from the user’s
environment while requiring minimal user interaction and customization effort [22]. Information leakage is
a frequent side-effect of cross-site scripting attacks; e.g., the act of sending a cookie to an unknown URL will
be detected and the user will be prompted. While effective at blocking regular cross-site scripting attacks,
Noxes is generally helpless when it comes to data that is transmitted to a presumably trusted side without
user’s knowledge, such as it would be in the case of a JavaScript worm.

The BEEP project proposes server-generated whitelisting policies as well as client-side support to pre-
vent cross-site scripting attacks [16]. For all known pieces of JavaScript, their hash values are computed and
passed to the browser. For every piece of JavaScript code it is about to execute, the browser first makes sure
that its hash value is in the whitelist. While capable of stopping JavaScript worms, the adoption of BEEP
poses some challenges. The server-side application must be suitably examined or modified to identify all

20

places where script is generated. This is especially challenging if there are either many small pieces of script
embedded into HTML or if script is generated at runtime and not known in advance. A single missed piece
of JavaScript will lead to false positives resulting in undesirable end-user behavior. The principal difference
with our approach is that BEEP requires significant server-side cooperation to work. However, if the browser
is modified to support trusted post-parsing security hooks as BEEP proposes, Spectator would be able to do
client-side tag tracking without a special plugin, which would significantly lower the adoption barrier.

7.4 Use of Proxies for Web Application Security

Several projects take the approach of examining the traffic between the browser and the server to enhance
security. RequestRodeo provides a client-side proxy that protects users against cross site request forgery
or session riding attacks [17]. The essence of the approach involves stripping away implicit authentication
information such as the session ID for unauthorized requests. Authorized requests are only those that passed
through the proxy before and were augmented with a token.

NoForge is another cross-site request forgery solution, which bears many similarities with Spectator.
NoForge embeds and checks a secret token associated with each user session into the traffic between the
server and the browser [18]. NoForge relies on modifying the HTML that is returned to the user. A weakness
of this technique is that some HTML content is generated at least partially on the client side, without ever
seeing the proxy. Spectator is not limited by these concerns because we can view worm propagation as a
process that affects server content. Furthermore, unlike NoForge our HTML recognizer for uploaded HTML
parameters performs only rudimentary parsing, thus avoiding all the inherent complexity of parsing HTML.

8 Conclusions

This paper proposes Spectator, the first practical detection and containment solution for JavaScript worms.
The essence of the Spectator approach is to observe and examine the traffic between a Web application and
its users, looking for worm-like long propagation chains. We have implemented and evaluated the Spectator
solution on a number of large-scale simulations and also performed a case study involving a real JavaScript
worm propagating across a social networking site. Our experiments confirm that Spectator is an effective
and scalable, low-overhead worm detection solution.

Acknowledgments

We would like to express our profound gratitude to Karl Chen, Emre Kıcıman, David Molnar, BerendJan
“SkyLined” Wever, and others for their help in refining the ideas contained here and last-minute proof-
reading help. Special thanks go to Úlfar Erlingsson and Martin Johns for their suggestions on how to
implement client-side support.

References

[1] L. A. Adamic, B. A. Huberman;, A. Barab’asi, R. Albert, H. Jeong, and G. Bianconi;. Power-law
distribution of the world wide web. Science, 287(5461):2115a+, March 2000.

[2] R. L. Breiger. Dynamic Social Network Modeling and Analysis. National Academies Press, 2004.

[3] G. Campbell. Siteframe: a lightweight content-management system. http://siteframe.org/.

21

[4] E. Chien. Malicious Yahooligans. http://www.symantec.com/avcenter/reference/
malicious.yahooligans.pdf, Aug. 2006.

[5] S. Corporation. Acts.spaceflash. http://www.symantec.com/security response/writeup.
jsp?docid=2006-071811-3819-99&tabid=2, July 2006.

[6] S. Corporation. JS.Qspace worm. http://www.symantec.com/enterprise/security
response/writeup.jsp?docid=2006-120313-2523-99&tabid=2, Dec. 2006.

[7] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and P. Barham. Vigilante: End-to-
end containment of Internet worms. In Proceedings of Symposium on Operating Systems Principles,
Brighton, UK, October 2005.

[8] D. Crockford. Private members in JavaScript. http://www.crockford.com/javascript/
private.html, 2001.

[9] W. Cui, V. Paxson, and N. Weaver. GQ: realizing a system to catch worms in a quarter million places.
Technical Report TR-06-004, ICSI, Sept. 2006.

[10] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D. Tenaglia. A behavioral approach to worm detection.
In Proceedings of the Second ACM Workshop on Rapid Malcode (WORM), October 2004.

[11] J. Grossman. Cross-site scripting worms and viruses: the impending threat and the best defense.
http://www.whitehatsec.com/downloads/WHXSSThreats.pdf, Apr. 2006.

[12] V. Haldar, D. Chandra, and M. Franz. Dynamic taint propagation for Java. In Proceedings of the 21st
Annual Computer Security Applications Conference, pages 303–311, Dec. 2005.

[13] B. Hoffman. Analysis of Web application worms and viruses. http://www.blackhat.com/
presentations/bh-federal-06/BH-Fed-06-Hoffman/BH-Fed-06-Hoffman-up.pdf, 2006.

[14] Honeynet. The honeynet project. http://www.honeynet.org/.

[15] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. Securing Web application code
by static analysis and runtime protection. In Proceedings of the Conference on World Wide Web, pages
40–52, May 2004.

[16] T. Jim, N. Swamy, and M. Hicks. BEEP: Browser-enforced embedded policies. Technical report,
Department of Computer Science, University of Maryland, 2006.

[17] M. Johns and J. Winter. RequestRodeo: client side protection against session riding. In Proceedings
of the OWASP AppSec Europe Conference, May 2006.

[18] N. Jovanovic, E. Kirda, and C. Kruegel. Preventing cross site request forgery attacks. In IEEE Inter-
national Conference on Security and Privacy in Communication Networks, Aug. 2006.

22

[19] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting Web application
vulnerabilities (short paper). In Proceddings of the Symposium on Security and Privacy, May 2006.

[20] E. Kiciman and B. Livshits. AjaxScope: a platform for remotely monitoring the client-side behavior
of Web 2.0 applications. In Proceedings of Symposium on Operating Systems Principles, Oct. 2007.

[21] E. Kiciman and H. J. Wang. Live monitoring: using adaptive instrumentation and analysis to debug
and maintain Web applications. In Proceedings of the Workshop on Hot Topics in Operating Systems,
May 2007.

[22] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a client-side solution for mitigating cross-
site scripting attacks. In Proceedings of the Symposium on Applied Computing, Apr. 2006.

[23] B. Livshits and M. S. Lam. Finding security errors in Java programs with static analysis. In Proceed-
ings of the Usenix Security Symposium, pages 271–286, Aug. 2005.

[24] M. Martin, B. Livshits, and M. S. Lam. SecuriFly: Runtime vulnerability protection for Web applica-
tions. Technical report, Stanford University, Oct. 2006.

[25] S. Meschkat. JSON RPC: Cross site scripting and client side Web services. In 23rd Chaos Communi-
cation Congress, 12 2006.

[26] MSDN Online. Mitigating cross-site scripting with http-only cookies. http://msdn2.microsoft.
com/en-us/library/ms533046.aspx, 2007.

[27] M. Murphy. Xanga hit by script worm. http://blogs.securiteam.com/index.php/archives/
166, Dec. 2005.

[28] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating signatures for polymorphic
worms. In Proceedings of the 2005 IEEE Symposium on Security and Privacy, May 2005.

[29] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis, and signature
generation of exploits on commodity software. In Proceedings of Network and Distributed System
Security Symposium, February 2005.

[30] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically hardening Web
applications using precise tainting. In Proceedings of the IFIP International Information Security
Conference, June 2005.

[31] P. Petkov. The generic XSS worm. http://www.gnucitizen.org/blog/
the-generic-xss-worm, June 2007.

[32] T. Pietraszek and C. V. Berghe. Defending against injection attacks through context-sensitive string
evaluation. In Proceedings of the Recent Advances in Intrusion Detection, Sept. 2005.

[33] RSnake. Adultspace XSS worm. http://ha.ckers.org/blog/20061214/

23

adultspace-xss-worm/, Jan. 2007.

[34] RSnake. Semi reflective XSS worm hits Gaiaonline.com. http://ha.ckers.org/blog/
20070104/semi-reflective-xss-worm-hits-gaiaonlinecom/, Jan. 2007.

[35] RSnake. U-dominion.com XSS worm. http://ha.ckers.org/blog/20061214/
adultspace-xss-worm/, Jan. 2007.

[36] Samy. The Samy worm. http://namb.la/popular/, Oct. 2005.

[37] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In Proceedings of
the Sixth Symposium on Operating Systems Design and Implementation (OSDI), December 2004.

[38] SonicWALL. SonicWALL deploys protection against MySpace worm. http://sonic-wall.
blogspot.com/2006/12/sonicwall-deploys-protection-against.html, Dec. 2006.

[39] M. Surf and A. Shulman. How safe is it out there? http://www.imperva.com/download.asp?id=
23, 2004.

[40] Symantec Corporation. Symantec Internet security threat report, volume X, Sept. 2006.

[41] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker, and S. Savage.
Scalability, fidelity, and containment in the Potemkin virtual honeyfarm. In Proceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP), October 2005.

[42] WebCohort, Inc. Only 10% of Web applications are secured against common hacking techniques.
http://www.imperva.com/company/news/2004-feb-02.html, 2004.

[43] M. M. Williamson. Throttling viruses: Restricting propagation to defeat malicious mobile code. Tech-
nical Report HPL-2002-172, HP Labs Bristol, 2002.

[44] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting languages. In Proceedings
of the Usenix Security Symposium, pages 271–286, Aug. 2006.

[45] J. Xiong. ACT: Attachment chain tracing scheme for email virus detection and control. In Proceedings
of the Second ACM Workshop on Rapid Malcode (WORM), October 2004.

A JavaScript Worms in the Wild

Figure 10 summarizes information about eight JavaScript worms that have been detected in the wild to date.
Most worms have been released on social networking sites. There is a noticeable increase in worm activity in
the last months of 2006 and early 2007. The majority of worms copy or re-create their own payload at every
propagation step. With rare exceptions (see [4]), the majority of vulnerable servers echo back or reflect
the malicious content sent to them verbatim. Simple code obfuscation is commonly used to circumvent
filters; i.e. ’<NO’+’SCR’+’IPT>’ would be used within JavaScript instead of ’<NOSCRIPT>’. Finally, the extent
of damage shown in the last column of the table ranges from worms that harvest user credentials (high

24

Worm name/ Ref Type of site Release Embeds Reflected Obfuscated Damage
site affected date payload verbatim payload potential

Samy/MySpace [36] Social networking Oct 2005 X 7 X L
xanga.com [27] Social networking Dec 2005 X X 7 L
SpaceFlash/MySpace [5] Social networking Jul 2006 X X 7 L
Yamanner/Yahoo! Mail [4] Email service Jun 2006 X 7 X H
QSpace/MySpace [6] Social networking Nov 2006 X X X H
adultspace.com [33] Social networking Dec 2006 7 7 7 L
gaiaonline.com [34] Online gaming Jan 2007 7 X 7 L
u-dominion.com [35] Online gaming Jan 2007 X X 7 M

Figure 10: JavaScript worms detected in the wild before June 2007

category) to relatively harmless proof-of-concept pranks that may only lead to denial-of-service situations
(low category). The U-dominion worm actually performs trades of game items on behalf of the user, which
would be a highly dangerous activity in a domain that is different from online role playing [35].

B Incremental Approximate Worm Detection Algorithm

See Figure 11 for the pseudo-code of the edge insertion algorithm described in Section 3.3.

C Siteframe Worm

Figure 12 shows the worm we developed for Siteframe. This worm borrows a lot of features with the
Xanga and Adultspace worms, whose code is publicly available [27, 33]. An important characteristic of
this worm is that it does not explicitly embed the payload in the propagation step. Instead, it creates a
< SCRIPT SRC =′′ . . .′′ > HTML element that refers to the worm code stored in a file on an external server.

25

procedure InsertCausalityEdge(Node parent, Node child){

if (parent.status == INFECTED) {

return; // worm already detected

}

if (child.parent != null){ // case of sharing

if (DEPTH(parent) > DEPTH(child.parent)) {

parent = child.parent; // choose the deeper parent

}

}

Node current = parent, first = null;

boolean found = false; int count = 0;

do { // walk up the tree visiting storage stations

if (current.isStorage && first == null) {

first = current; // first storage station on the path

}

if (!found && current.ipList.contains(child.IP)) {

found = true; // found this IP address

}

count += IPS(current).size; // increase unique IP address count

current = PREV(current); // hop to the previous storage station

} while (current != null);

if (first != null) {

if (parent.isStorage) { // over capacity

IPS(child) = newIPList(); // new IPS list

} else {

IPS(child) = parent.ipList; // copy from parent

}

if (found) {

DEPTH(child) = count; // already on the path

} else {

IPS(child) = IPS(child) U child.IP; // add to IPS set

DEPTH(child) = count + 1; // increase the depth

if (IPS(parent).size == c) {

child.isStorage = true; // designate as storage station

}

}

PREV(child) = first; // set PREV value for child

if (DEPTH(child) > d && parent.status != FALSE_POSITIVE) {

print("Potential worm detected"); // detected a worm

markTreeContaining(child, INFECTED);

}

} else { // parent is root of a new tree, child is only child

IPS(parent) = newIPList(); IPS(child) = newIPList();

parent.isStorage = true; PREV(child) = parent;

DEPTH(parent) = 1; DEPTH(child) = 2;

}

child.parent = parent; // set the parent of the newly inserted node

}

Figure 11: Incremental approximate edge insertion algorithm described in Section 3.3

26

// obtain an XmlHttpRequest object

function getXMLObj(){

var xml = false;

try {

if (window.XMLHttpRequest) xml = new XMLHttpRequest();

else { if (window.ActiveXObject) xml = new ActiveXObject(’Msxml2.XMLHTTP’); }

} catch (e) { xml = false; }

return xml;

}

// encode params into a single string for submission

function paramsToString(params){

var N = new String();

var O = 0;

for (var P in params){

if (O>0) N+=’&’;

var Q=escape(params[P]);

while (Q.indexOf(’+’)!=-1) Q=Q.replace(’+’,’%2B’);

while (Q.indexOf(’&’)!=-1) Q=Q.replace(’&’,’%26’);

N+=P+’=’+Q;

O++;

}

return N;

}

// submit a form at url with params using post

function httpSend(url,params){

if (!XML) return false;

XML.onreadystatechange = function() {return;}; // do noting

XML.open(’POST’,url,true);

XML.setRequestHeader(’Content-Type’,’application/x-www-form-urlencoded’);

XML.setRequestHeader(’Content-Length’, params.length)

XML.send(params);

return true;

}

// main entry point into the worm that is called at every propagation step

function main(){

XML=getXMLObj();

var params=new Array();

params [’page_id’]=’’;

params [’page_folder_id’]=’1’;

params [’page_title’]=’worm page # ’ + Math.floor(Math.random()*100001);

params [’page_text’]= // <<<<--- payload

’<i><script src="http://localhost/siteframe/worm.js"></script>’ + // <<<<--- payload

’<div onclick=\’javascript:main();\’>Just click to propagate...</div></i>’;

params [’page_tags’] = ’’;

params [’_submitted’] = ’1’;

httpSend(’http://localhost/siteframe//edit.php?c=Page&’ +

’page_folder_id=1’, ’POST’, paramsToString(params));

}

Figure 12: Proof-of-concept worm for Siteframe described in Section 5.5

27

