

Relocation and Automatic Floor-planning of FPGA Partial
Configuration Bit-Streams

Jeff Carver, Neil Pittman, Alessandro Forin

Microsoft Research

August 2008

Technical Report

MSR-TR-2008-111

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

- 1 -

Relocation and Automatic Floor-planning of FPGA Partial
Configuration Bit-Streams

Jeff Carver
Microsoft Research
One Microsoft Way

Redmond, WA 98052

t-jeffc@microsoft.com

Neil Pittman
Microsoft Research
One Microsoft Way

Redmond, WA 98052

pittman@microsoft.com

Alessandro Forin
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sandrof@microsoft.com

ABSTRACT
An extensible processor provides a standard data-path and one or
more regions for use as application-specific reconfigurable logic.
In this paper we address two problems that arise in the practical
use of extensible processors. Using multiple extensible regions

can lead to avoidable time and space inefficiencies, and the
physical placement of the interconnection points strongly affects
the overall design timings.

Standard tool-flows from FPGA manufacturers require the
creation of separate configuration images for each region. The
space and time complexities that this entails are undesirable,
especially in an embedded system setting where storage is at
premium. In this paper we introduce a run-time algorithm that

allows the relocation of one configuration image to any number of
compatible regions, in linear time. The application loader running
on the data-path can perform the relocation along with the loading
of the application code. We have implemented the algorithm on
the eMIPS soft processor using two extensible regions, and on the
MicroBlaze soft processor using four regions, in both cases
targeting a Virtex-4 FPGA. There are two main advantages from
image relocation. We save time at compilation because only one

region needs to be synthesized. We save space at execution time
by storing only one configuration in FLASH memory.

The reconfigurable regions themselves are interfaced with the
standard data-path using “bus macros”, connection points that are
placed at fixed locations. The placement of the bus macros around
a region has a noticeable impact on the timing of the design inside
the region, and on the timings of the standard data-path outside
the region. We have found that manual placement of the bus

macros is not only tedious, but leads to sub-optimal timings even
when following best design practices. We present a tool that uses
design-space exploration to obtain automatic, near-optimal
placement of the bus macros for the relocatable regions. Results
show the worst solution found had a total timing score of 581,146
ps while the best solution was only 22,964 ps and the average
over the design space was 175,682 ps. The score for the manual
placement was 97,714 ps.

1. INTRODUCTION
Dynamic partial reconfiguration of FPGAs (or PR for short) has
been available for quite some time, yet the tools to support it are
still deficient in many ways. The flows are cumbersome to use
and not at all integrated in the regular flow supported by the
graphic user interfaces. This keeps many users away because the

technology is perceived as too difficult to use. But perhaps more
importantly, there are still functional deficiencies that lead to sub-
optimal solutions. In this paper we address two of the functional

shortcoming in the present tools. We have encountered these
shortcomings in our own work with extensible processors, and
therefore we have attacked them from a very practical perspective.
Nonetheless, the issues are more widely relevant and affect all
uses of the PR technology. The results are also more generally
applicable.

The preferred model for PR use is with one static region and one
PR region. The static region guarantees the basic functionality and

proper behavior during reconfiguration, especially with respect to
the I/O signals. The single PR region is used to realize different
temporal parts of the application, or alternate realization of certain
(signal) processing, or to receive dynamic updates on deployed
systems. Solutions that employ more than one PR region are
described in the literature, but are not at all well supported by the
tools. For example, the user is currently required to synthesize
each design repeatedly, once for each PR region. Each

compilation requires hours of computer time, sometimes many
hours if targeting the larger FPGA models. There are space
inefficiencies as well. Each of those long compilations produces a
separate configuration file (bit-stream) for use with the given PR
region and nowhere else. These files are large even for the
smallest FPGA models and easily grow in the hundreds of
kilobytes. All of the files must be present at run-time. These time
and space inefficiencies lead to the desire to, somehow, use a

single bit-stream file that can be relocated to any one of a many
PR regions. Relocations should be doable at run-time, without
excessive overhead. The file should be compiled only once, for
one PR region only, and should be no bigger than a current file. In
this paper, we describe the algorithm we have realized for
performing the dynamic relocation of bit-streams. We
demonstrate relocatable configuration files on two separate
examples. One demonstration is with two PR regions using the

eMIPS extensible processor presented in [8]. The other
demonstration is with four PR regions, using the MicroBlaze soft-
core for image transformations on different parts of a digital
image, and displayed on a VGA monitor. The two examples use
radically different memory subsystems, which leads to different
performance characteristics of the relocation process. The code
for relocation, however, is the same in both instances. We also
found that the composition of the bit-streams, as well as the
location differences in PR regions are factors that affect the

relocation times just as much as the sheer size of the streams
themselves.

A second shortcoming is in the interface between the static and
the PR regions. Clearly, if independently developed designs for
these regions are to interoperate correctly, at the very least they
must agree on the routing and directions of the signals that

- 2 -

interconnect them. These are commonly referred to as the “bus
macros”, using the terminology used for but one of the many ways
in which the problem has been solved. While the problem is
indeed solved, the current tools require the user to specify
manually both the size and location of the PR regions, and the

location of the interconnecting points (the “bus macros”) along
the perimeter of the PR regions. It turns out that the placement of
the bus macros around a region has a noticeable impact on the
timing of the design inside the region, as well as on the timings of
the design outside the region. We have found that manual
placement of the bus macros is not only tedious, but leads to sub-
optimal timings even when following best design practices. Our
solution is to create a tool that can automatically identify what is

the placement of the interconnection points that leads to the best
timings. Our tool uses design-space exploration via simulated
annealing to obtain automatic, near-optimal placement of the bus
macros for the relocatable regions. To the best of our knowledge,
this is the first tool to address the problem of identifying the best
placement of the bus macros, manually or otherwise. To
underscore the practical relevance of the problem, our results
show that the ratio between the best and worst placement can be a

factor of 27 on a real design. The average solution is a factor of 8
slower than the best. The score for the manual placement that
follows the best-practices advice from the manufacturer is a factor
of 4.5 worse than best.

The rest of the paper is organized as follows. Section 2 presents
background material and related work. Section 3 describes the bit-
stream relocation algorithm, the tool flow, and their
implementation. Section 4 presents the automated tool for floor-

planning of the bus macros. Section 5 presents our measurements
and results. Section 6 describes the limitations of our current tool
implementations. Section 7 presents our conclusions and Section
8 some ideas for future work.

2. BACKGROUND AND RELATED WORK
This section introduces the background concepts needed for the

rest of the paper. They include FPGA partial reconfiguration,
dynamic bit-stream relocation, the eMIPS processor, the
MicroBlaze processor, the Virtex-4 configuration frame layout,
and the floor-planning of partial reconfiguration regions.

2.1 Partial Reconfiguration and Relocation
The ability to change portions of the FPGA configuration at run-
time is called dynamic partial reconfiguration. This entails
modifying portions of the logic planes without affecting the
remaining parts of the circuit, which continues to function
unperturbed. Special support is needed in the FPGA chip for this
process to execute flawlessly, without “glitches”. Manufacturers
that support this feature include Xilinx and Altera. Currently the
tool provided by Xilinx for doing dynamic partial reconfiguration

is part of the Early Access Partial Reconfiguration, or EAPR, a
flow that is found at [1]. The flow requires first implementing the
part of the logic, called the static logic, which will not change
during run-time. The logic that will change during run-time is
implemented in a Partial Reconfiguration (PR) region. Each of the
configurations of a PR region is implemented after the static part
is implemented. Each implementation produces a configuration
file, called a bit-stream. The final step is to generate the bit-stream

for the initial configuration of the entire chip, and for each
alternate configuration that was implemented for each PR region.
The communication between the PR region and the static logic
happens via bus macros, fixed interconnection points at the

perimeter of the PR region. The bus macros must be instantiated
in the HDL code and manually placed. The PR regions are
reconfigured either off-chip by an external agent, or on-chip by
the design itself, probably a processor. Off-chip interfaces use
either JTAG, or some other specialized interface. To perform on-

chip reconfiguration on Xilinx devices, a designer instantiates a
special macro for the Internal Configuration Access Port (ICAP),
then sends the configuration data to it. For the Virtex-4 the ICAP
can be implemented with either an 8-bit or 32-bit wide interface.

The bit-stream for configuring one PR region is tightly bound to
the physical location of that region and cannot be used directly to
reconfigure any other portion of the chip. In many cases though, it
is possible to modify an existing bit-stream and adapt it to a

different physical location. This process is termed bit-stream
relocation and can be performed statically by tools operating on
the designer’s workstation, or dynamically by the agent that loads
the bit-stream on chip. The key element is that a portion of the
chip is reconfigured at run-time, without interfering with the
operation of the rest of the chip. There are various works
describing static or dynamic relocation of configurations for a PR
region to a different PR region. The motivation is to reduce the

number of partial bit-streams required if two or more PR regions
would use the same implementation. For example, if we had four
target PR regions for the bit-stream we could save the storage of
three bit-streams copies on, say, a FLASH chip and reduce the
compilation time by a factor of four. The savings are noticeable
because bit-streams tend to be large and the compilation times are
often measured in hours per design. The trade-off is the size of the
software/hardware and some placement restrictions on the PR

regions to enable relocation.

Becker et al [2] describe the building of bit-streams for a Virtex-4
FPGA that are relocatable by-design. The approach does not
require any static logic in the PR regions. Manipulation of the bit-
stream is performed to relocate a column (ex. CLB) to a non-
identical column (ex. DSP) with respect to routing. When
relocating from the top-half to the bottom-half of the chip, it is
necessary to bit-reverse the frame except for the middle word in
the frame. The provided example of a software defined radio with

two reconfigurable regions showed a reduction in the number of
partial bit-streams by 50% and compilation time by 43%. The
relocation is performed using a MicroBlaze interfaced with the
HWICAP. The HWICAP is an IP core provided by Xilinx which
interfaces software with the ICAP. There are implementations of
the HWICAP for the OPB or PLB busses, standard components
for the Xilinx EDK. The relocation code presented in the paper
does not allow heterogeneous PR regions to relocate to each other,

although that could be added.

Montminy et al.[3] show how to layout the redundant modules of
a Triple Modular Fault Tolerant design in such a way that one
module’s configuration is relocated to correct the errors in another
redundant module. A circuit automatically calculates the CRC
value as the bit-stream is being relocated. The relocation code
presented in the paper does not calculate the CRC value, although
a discussion about future support is presented. Horta et al.[7]

demonstrate relocatable bit-streams for a Virtex-E chip. They
used Gaskets, similar to bus macros, to define the routing between
the similar regions.

Sedcole et al. [11] discuss relocation for a Virtex-4. The
distinguishing features in this work are the ability to route
statically through a relocatable region by reserving routing lines

- 3 -

for the static logic, and the ability to merge relocatable and static
parts at run-time. A certain percentage of long lines are reserved
for the static logic to cross over the PR region. The static design is
then re-routed to use the reserved long lines. To merge parts at
runtime the current configuration is read out, stripped of the

previous configuration except the static logic, and merged with
the new configuration. This process proved to be very time-
consuming, with an increase of reconfiguration time from 6.2x to
11.4x. The example used the HWICAP provided by Xilinx. The
relocation setup presented in this paper does not allow static logic
inside the PR region.

Kalte et al. present REPLICA [12], a system with a zero-overhead
cost in relocation of the partial bit-stream. This is accomplished

with a hardware module capable of relocating CLB columns for a
Virtex-E FPGA. The hardware module also computes the new
CRC automatically. Additional hardware would be needed in a
Virtex-4 setup to allow for bit-reversal of the frames. Ferrandi et
al. present the Bit-stream Relocation Filter (BiRF) [13], a device
similar to REPLICA, but for a Virtex-2 and with minimal area
cost. Krasteva et al. describe the pBITPOS tool [14], to allow
relocation for Virtex II (Pro) solutions. The additional feature in

this work is the ability to relocate configurations that make use of
BRAM/MULs. We targeted the relocation for the Virtex-4 chip,
but discuss future work in making a hardware version of the
relocation code like was seen in the works described in [12]-[14].

2.2 The Extensible MIPS Processor

The eMIPS microprocessor system [8] provides a MIPS [10]
RISC data path tightly integrated with a configurable logic fabric.

The system is available for download at [9]. Figure 1 shows a
block diagram of the system, which is implemented for a Xilinx
FPGA and makes use of the partial reconfiguration feature to
change the state of the Soft Fabric at runtime. The MIPS data path
is implemented in the Hard Fabric portion, along with the controls
for the Soft Fabric, the memory interfaces and other fixed I/O
peripherals. The Soft Fabric is further subdivided in a number of
regions called Extensions, each Extension maps to a PR region.
Extensions have been used for accelerating application execution

time, for implementing plug and play on-chip peripherals and bus
interfaces, for monitoring and model-checking applications, and

for debugging of application software during development. The
original release of eMIPS provides just one Extension slot. As
part of this work we have ported eMIPS to a larger chip and
realized it with two Extension slots. In Figure 1, the Memory
Controller implements the interfaces to the ICAP, timer, General

Purpose Input and Output (GPIO), and other peripherals used in
the system.

As more and more Extensions become available for use, it
becomes advantageous to use relocatable bit-streams instead of
having a bit-stream for each slot on the chip. The Extensions are
configured at run-time with new functionality by software.
Because it is unknown which region an extension will go in, it is
valuable to allow flexibility on where the extension will be

configured at. This allows maximum flexibility to the scheduler,
who can then place the Extension in an available slot without
requiring a separate reconfiguration file for each extension. An
example of a list of processes to schedule can be seen in Figure 2.

The mapping from process resource requirements and available
resources is already a difficult one for the scheduler, who must do
it in an efficient and time-predictable manner. Adding the
requirement of a specific placement will reduce the schedulable
sets and potentially cause confusion to the users. Consider the
case of a system with four Extension slots. The process set in
Figure 2 should be schedulable on this system, with all processes

receiving an Extension slot. Suppose the eBug extension is only
provided for two slots, which are both occupied by the first and
second process in the set. The scheduler can only provide the third
process with one slot for the P2V monitor. The user (a developer,
say) will be rather confused to see that an exception in this
process does not get reflected in the debugger but simply
terminates the program.

Figure 2 – Example List of Processes to be scheduled.

Figure 1 – Overview of eMIPS.

- 4 -

2.3 The MicroBlaze Processor

MicroBlaze is a soft core RISC processor provided by Xilinx [18].

It can be implemented as a 3-stage or 5-stage pipeline. Figure 3
provides an overview of how the MicroBlaze interacts with the
other components in the system used for our experiments. The
HWICAP interfaces with the ICAP to send the configuration for
the PR region. The Timer is free-running to measure the cycles it
takes to configure a region. Because of the reduced number of bit-
streams, it was possible to fit all software and partial bit-streams
required in the 64 kilobytes of space in the BRAM. Larger sized

bit-streams would require storage into other memory like flash
which would impact the time required for relocation.

2.4 Virtex-4 Configuration Layout

The smallest unit of configuration on a Xilinx FPGA is the frame.
A frame includes a fixed number of Configurable Logic Blocks
(CLBs), physically laid out in fixed geometries. On the Virtex-4

FPGAs, frames span the height of 16 CLBs, which is one HCLK
row. In previous Virtex FPGAs [15] a frame spans the entire
height of the chip. Each frame in the Virtex-4 is composed of
1,312 bits. Frames are addressed in a 2-D fashion. A frame
address command sets the starting destination of the configuration
frames. A frame address on the Virtex-4 is composed of five
parts: top/bottom of chip, block type, HCLK row, major column
address, and minor column address. The top/bottom part specifies

whether the target is at the top or at the bottom of the chip. The
block type is one of three types: CLB/IOB/DSP/GCLK (0),
BRAM interconnect (1), and BRAM content (2). The HCLK row
indicates which row of the chip is targeted. Numbering of the
HCLK row starts from the middle of the chip outward. The major
column address specifies which resource column to change. The
number begins at zero at the far left of the chip and increments
going to the right. How many minor addresses there are for a

given column depends on the type of resource targeted. There are
22 minor frames for CLBs, 21 for DSPs, 20 for BRAM
interconnect, 64 for BRAM content, 30 for IOBs, and 2 for
GCLK. The correlation between the frame address and target
frame is shown for an SX25 chip in Figure 4.

For example to reach the first CLB column in the upper-left of the
chip, the frame address would be as follows: top/bottom=0, block

type=0, HCLK row=1, major column address=1 and minor
column address=0-21. This correlation is critical to understand
how to manipulate the bit-stream to target the desired PR region.

2.5 Floor-planning

Floor-planning is the process of defining the size and physical
location of the PR regions on the target FPGA chip. The existing
manufacturer's flows currently require that the user performs this

selection process manually, using tools such as Xilinx PlanAhead
or by editing the User Constraint File (UCF). In addition to
selecting the location and size of the PR region, it is also
necessary to define the placement of the bus macros along the
perimeter of the chosen region. This is also a manual process
currently. These choices have a clear effect on the placement of
the design and on its ability to meet timing, but there are currently
no tools to help the user make the optimal or even an informed
choice.

Some research exists on automatically defining the ideal location
for the PR region. To the best of our knowledge there are no

results on finding the optimal placement of the bus macros around
a PR region, ours is the first tool to address this issue.

Singhal and Bozorgzadeh [16] use automated floor-planning to

find the best area to allocate for the designs that are going to
change at run-time. The process takes into consideration the
alternate designs that will replace the current setup in the PR
region. This is done by representing sequence pairs to represent
placement of modules in relation to each other. Difference
placements of modules are used to determine which modules are
reused and which ones are reconfigurable. It uses simulated
annealing to find the best placement of modules, and determine

which ones will be reconfigured when changes to the modules is
required. Koester et al. [17] develop a general mathematical

Figure 4 – Frame Address Mapping Example on SX25 chip.

Figure 3 – Overview of the MicroBlaze Setup.

- 5 -

model for reconfigurable hardware. This is to develop better
placement algorithms for dynamically changing systems. Neither
work considers the further problem of placing the bus macros in
the chosen area.

3. RELOCATING BIT-STREAMS
Relocation of the configuration file (bit-stream) is simple and
efficient as long as the source and target PR regions meet a few

constraints. In our work the regions must: (1) have the same
pattern of resources, (2) span the entire height of the HCLK row
(one entire frame), (3) encompass the same amount of area on the
chip, and (4) use bus-macros in the same (relative) placement.
When these constraints are valid, relocation consists mostly in
adjusting the frame addresses in the source configuration file to
match the target PR region.

3.1 Relocation Tool-Flow

The complete tool-flow for performing relocation is shown in
Figure 5 and includes both compile-time and run-time elements.
The inputs required are a description of (some properties of) the
Target FPGA and a description of the PR regions that are
potential targets. Currently only the Virtex-4 LX and SX chips are
supported because we do not have a complete understanding of
exactly how the embedded PowerPC on the FX chip series affects
the layout of the configuration frames. The FPGA Configuration

Generator computes the pattern of resources and the number of
HCLK rows on the target chip. The Adjustment Generator uses
this information to compute the run-time parameters required for
the actual Relocation of the Bit-streams. These parameters con be
compiled-in in the relocation code, or provided as a data file. The
relocation algorithm itself is therefore oblivious to the original
inputs. Note that the parameters are specific to the FPGA and its
PR configuration, which are also static elements in the overall

design. The Adjustment Generator performs some additional
checks to verify that the PR regions are relocatable to each other,
e.g. that they obey the constraints previously defined. The tool as
currently implemented does not check for the bus macro
placement constraint, but this can be added later on using the
floor-planner tool discussed in Section 4.

3.2 Implementation Constraints

Before we discuss the run-time relocation algorithm, we need to
consider a few practical problems that will affect our results.

A set of configuration frames for a column of CLBs can be used
as-is in another column of CLBs because it requires the exact

same routing bits and configuration logic bits. This is the good
case that we want to obtain at run-time, if at all possible, because
the relocation can then proceed at full bus-speed. A more difficult
case is when a set of configuration frames is targeted for one side
of the chip (ex. top) and the target is at the other side of the chip
(ex. bottom). This case requires a bit-reversal of the configuration
frames, each frame being over a thousand bits long. The
architectural layout of frames on the Virtex-4 chips is such that

frames on the top of the chip are mirror images of the frames on
the bottom of the chip. Only the middle word in the frame is not
mirrored. This word contains the global routing bits and other
configuration data. Bit-reversal means, for example that the bit in
position 0 is at position 1311 on the other side of the chip. This
requires that the frame is read from end to beginning, because the
end of the word in the frame is now the first word that needs to be
written to the ICAP port. This can be cumbersome and costly to

do in software. For instance, if the configuration bit-stream is read
sequentially from beginning to end, we need to allocate an
intermediate storage to buffer one full frame to ensure it is written
out in the correct order.

The wires used for routing signals in/out of the PR region must
match between the source and the target PR regions. The
configuration data routes only to/from adjacent columns, and

assumes that there actually is an external connection in the
adjacent column at the periphery of the region. This requirement
is currently handled by the left-to-right bus macros on the Virtex-
4. Figure 6 shows an example of a left to right bus macro.

The gray boxes are Slices on the FPGA. Each Slice on the Virtex-

4 contains two Look-Up Tables (LUTs), two Flip-Flops (FFs),
and other components. For asynchronous bus-macros, the LUTs in
the static region have a fixed and defined routing to the LUTs in
the PR region. This routing is shown by the gray lines in Figure 6,
where we assume the static region is on the left side of the picture.
The light blue lines in Figure 6 are what the router program can
use to route signals from the static region to the PR region. These
signals first go to the LUTs on the left, then they are routed

(fixed) to the slices on the right, and from there to the logic

Figure 6 – Left to right (l2r) bus macro.

Figure 5 – Flow for Relocation.

- 6 -

implemented in the PR region. As long as the bus-macros have the
same relative positioning between the two PR regions, this
scheme correctly handles the relocatability constraints between
PR regions and our algorithm does not have to modify the routing
information at all.

For ease and speed of reconfiguration, we decided not to support
static routing, e.g. the logic in the static region is not allowed to

route through the PR regions. This can have an adverse effect on
the design, for instance when that signal must route to an I/O pin.
To handle this requirement, the static routing must either match
across all of the PR designs, or we could use the scheme described
in [11] and reserve some long lines for the static region inside the
PR regions. We prohibited static routing from the PR region by
setting the “ROUTING=CLOSED” constraint in the Xilinx ISE.
Even though we used this constraint the router would still
sometimes inexplicably route through the PR region when trying

to get to the bus macros. To help the router route around the PR
region, we created target LUTs to route to before routing to the
troublesome bus macros. We used the same approach to handle
the case of static logic that mapped to input/output pins near the
PR regions. We added a LUT near the I/O pin and designated it as
the target for the troublesome I/O signal.

3.3 Relocation Algorithm

Figure 7 shows the algorithm for relocating bit-streams at run-
time. There are three possible destinations for a configuration:

1) Destination is where the bit-stream was generated for.
No relocation is necessary.

2) Destination is not where it was generated for, but on the
same side of the chip. Relocation consists only of the
translation of frame addresses.

3) Destination is on the opposite side of the chip.
Relocation involves both the translation of the frame
addresses and bit-reversal of the frames.

It is actually possible to encounter a combination of cases two and
three. The Multiple Frame Write (MFWR) command can write a

single frame of data to multiple frame addresses [15] and this can
create a problem. Suppose a bit-stream that is on the top of the
chip covering two HCLK rows must relocate to a PR region that
straddles the middle of the chip. In the target region, one HCLK is
used for both the top and bottom of the chip. A MFWR command
could correctly write the same configuration frame to both HCLK
rows in the original configuration, but in the new configuration
we now need two separate MFWR commands, one for the top and

one for the bottom of the chip. The frame data is valid as-is for the
HCLK on the top of the chip, but it must be flipped for the HCLK
row on the bottom of the chip. The separation can be done at run-
time. The cost is just some additional code because we need to
buffer the frame data regardless. It is clearly easier to use a tool
that expands the MFWR commands into multiple ones before
deploying the bit-stream. Therefore the examples presented in
Section 5 do not cover this case.

Based on this algorithm, the three key contributing factors in the
time to relocate a bit-stream are (1) the bit-stream size, (2) the bit-
stream composition, and (3) the location of the destination PR

region on the chip. By composition we mean the relative count of
commands that set the frame address and commands that write
configuration frames.

If the stream must be relocated, it would be best if we have very
few frame addresses and do not need bit-reversal.

Figure 7 – Relocation Algorithm.

- 7 -

4. POSITIONING THE BUS MACROS
The bus macros are the connection points between static and PR

regions, located on the perimeter of the PR regions. The
placement process is currently manual; the user selects the
location in the instantiated instance of the macro in the HDL
source code. There is no guarantee that the placement is optimal,
nor any practical way to verify how close to optimal it might be.
The best-practices advice is to place inputs to the left, outputs to
the right, and use common sense. Letting the macros float only
provides limited advice insofar as discovering where the placer

will (want to) locate the static/PR logic that connects to those
macros.

We used the following test to measure the quality of the
placement of a set of bus macros. Using a design that does not
meet timing, we define the “timing score” as the cumulative sum

of the timing errors across all signals that do not meet their timing
constraints. This is an indication that is easily obtained from the
synthesis reports, and therefore easy to use in an automated setup.
Ideally, a design would have a zero score. A negative score is
possible (using the slack timing) but harder to compute
automatically. Since the timing score is not a precise measure, it is
often the case that a design with a positive timing score will
actually function correctly. We can always generate a positive
score by artificially tightening the timing constraints.

We used a design of the eMIPS processor with a poorly located
PR region to test the importance of the placement of the bus
macros. This design uses a large number of macros, and therefore
provides a fine-grained tool for the evaluation. As shown in
Section 5, we observed timing scores in the range of 22,964 to

796,915 picoseconds for various placements. This large spread
clearly illustrates the importance of a good placement. At the end
of the study we found a second motivation for an automated tool.
We inspected the best/worst/manual placements to see if there
was any correlation, and to see if we could deduce any guiding
principles. We did not find any. The manual placement following
best-practices did score better than the average, but still far from
the optimal. The optimal design utterly violates all best-practice

rules.

Since the placement is done at the HDL source level, it would
appear that it is necessary to re-synthesize each placement from
start to finish to be able to evaluate the timing score. For instance,
moving a bus macro from the left side to the right side of the PR
region requires either a synthesis of the design or a direct

modification of the netlist. We can eliminate this expensive step
by using two LUTs instead of a bus macro in the design, and then
change the LOC constraint of the two LUTs inside the UCF file.
This approach costs the equivalent delay of going through two
LUTs, but eliminates the defined routing between them. As an
additional benefit, the automated floor-planner can generate
placements of the LUTs for whatever side it is currently targeting
around the PR region: top, bottom, left, or right. Care was

exercised so that the implementation of the LUTs does not change
the logical value of the signal they route.

The bus macro placement is an instance of the more general
place-and-route problem, albeit on a much smaller scale. This led
to the choice of using simulated annealing to automatically find

the best placement. Our simulated annealing algorithm works by
looping over five steps: copy the current solution, alter the copy,
evaluate the alternate solution, determine whether to accept the
alternate solution as the current solution, and adjust the current
temperature. The loop terminates when the cut-off temperature is

reached. Before the loop begins, the algorithm selects an initial
temperature and cut-off temperature. The first step copies the
current placement of the bus macros from the currently accepted
solution. The second step modifies the solution by randomly
swapping the positions of the bus macros around the PR region.

The algorithm performs 10 random swaps, which we found was a
good balance between elapsed time and spread over the solution
space. The third step measures whether the new alternate solution
is better than the current accepted solution, using the timing score
for the comparison. This timing score is evaluated by running a
set of designs that will be used in the PR region through ngdbuild,
map, and place and route. This is the most expensive step by far
and running every combination of PR configurations would be

prohibitive, so only a few designs were used for our evaluations.
The number and type of designs is user-selectable, which leads to
a trade-off of time against accuracy of the search. Each design is
run in a separate thread to reduce the elapsed of this step. The
algorithm can therefore take advantage of multiple processors
when they are available in multi-core CPUs. The timing scores
from the different designs are combined into one overall score. If
the timing score is better than the current solution the new

placement will unconditionally replace the current one. If it is not
better, it is accepted with a probability based on the current
temperature. The formula used is shown in Equation 1. The fifth
and final step decrements the current temperature and breaks out
of the loop when it reaches the cutoff temperature.

(1) 𝐴𝑐𝑐𝑒𝑝𝑡 = 𝑒
(
𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 −𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)
< 𝑟𝑎𝑛𝑑𝑜𝑚()

The floor-planner generates an UCF file with the full constraints
needed for placing the bus macros. The constraints define on what
slice to place the bus macro and the direction: left to right, right to
left, top to bottom, or bottom to top. Note that the final solution
found by the tool does not need to be synthesized again.

5. RESULTS
We present the relocation time required for different target

destinations with an eMIPS and MicroBlaze setup. The results
from the floor-planner for the bus macros follow.

To evaluate the relocation algorithm as it applies to the eMIPS
processor, we ported the eMIPS design to the ML402 Xilinx
board using the larger SX35 chip, and we were then able to
instantiate two Extensions. The port required adding some

MUXes into each of the pipeline stages for the second Extension,
and in the bus arbiter. As shown in Figure 1, the following
modules also required additional signals: pipeline interface,
monitoring interface, register interface, and memory bus. The

Table I – Overhead for a second Extension

Resource 1 Extension 2 Extensions %increase

Slices 7862 9180 14.4

Flip-Flops 7977 8025 0.6

LUTs 13836 15997 13.5

BRAMs 8 8 0

DSPs 40 40 0

- 8 -

Table II – Relocation Timing Results using eMIPS

Configuration
Name

Size of
Bit-stream

(bytes)
#Frames
Written

FAR
Commands

Relocation
Required

Bit Reversal
of Frames
Required

Time To
Reconfigure

(msec) Bytes/Sec

Blank 26488

52

862

N N 83.1045 318731

Y N 212.528 124633

Y Y 1488.2942 79971

MMLDIV64 99528

559

367

N N 312.0913 318907

Y N 466.6724 213272

Y Y 1709.111 58234

LDRET 87888

477

457

N N 275.5942 318904

Y N 427.4353 205617

Y Y 1488.2942 59053

Table III – Relocation Timing Results using MicroBlaze

Size of
Bit-stream

(Bytes)
#Frames
Written

FAR
Commands

Relocation
Required

Bit Reversal
of Frames
Required

Time To
Reconfigure

(msec) BytesPerSecond

11076 62 22 1.11 9966257

11076 62 22 X 1.20 9196968

11076 62 22 X X 3.15 3517765

11184 64 10 1.12 9971647

11184 64 10 X 1.19 9392636

11184 64 10 X X 3.17 3523019

11616 67 7 1.17 9971647

11616 67 7 X 1.23 9445131

11616 67 7 X X 3.31 3509768

11652 67 9 1.17 9972868

11652 67 9 X 1.24 9419792

11652 67 9 X X 3.31 3512527

total area increase for one additional Extension on eMIPS is
shown in Table I. If the trend shown in the tale continues as we
scale to more Extensions there will be about a 14% increase in
slice area requirement for every extension that is added.

5.1 Bit-stream Relocation
As an example of the compilation time saved on map and place
and route, a bit-stream of size 99528 took 28 minutes and 50
seconds to complete. A bit-stream of size 87888 took 27 minutes
and 5 seconds to complete. Those savings are multiplied by the
number of PR regions that we do not need to compile for. The
times are for a Xilinx ISE 9.2.4.PR7 on a 2.4 GHz Intel Dual core

processor with 2 gigabytes of RAM. Additional time is saved by
not generating the bit-stream configuration for the FPGA from the
place and route netlist.

To evaluate the bit-stream relocation algorithm we used a number
of designs and in two different setups for the same ML402 board.
The first setup uses the eMIPS processor with two Extension
slots. The second uses a MicroBlaze processor with four
Extension slots. The first setup emphasizes the case of larger
designs that must be located off-chip, either in SRAM or in
FLASH memory. The second setup emphasizes smaller designs
that can fit in the chip’s block RAMs. Both designs were running
at a clock speed of 100 MHz.

The results from relocating different bit-streams on eMIPS are
shown in Table II. In these measurements, the bit-streams are
located in the SRAM section of the board, along with the code

and data buffers for the relocation program itself. As can be
readily seen comparing Tables II and III, the memory type and
parameters chosen for a design will impact the latency required to
relocate the bit-stream. For the eMIPS setup the latency for
accessing SRAM is five cycles. Using DDRAM would create
more latency and FLASH would be even worse. At present,
eMIPS does not use any caches or on-chip memory. This
penalizes the results in Table II because they include not only the

time to fetch the bit-stream from SRAM but also the instruction
fetches and data load/stores. The temporary swap buffer is also
located in SRAM.

If the bit-stream does not require any modification the throughput
achieved is about 318 kilobytes per second. If the bit-stream is
relocated but does not require a bit reversal of the frames, the
throughput is generally around 220 kilobytes per second. If the
bit-stream requires a reversal in the bits in the configuration
frames, the throughput is about 80 kilobytes per second.

The reason that the point at 26,488 bytes does not follow the trend
of the other points is because of the composition of that particular
bit-stream. This is the blanking bit-stream and it removes almost

- 9 -

Figure 8 – History of current solutions at end of iteration.

Figure 9 – History of alternate scores.

all the routing that was done in the PR region, which results in a
large number of matching configuration frames. The bit-stream
issues a large amount of MFWR commands to write the same
configuration frame to multiple frame addresses. This bit-stream
therefore contains an unusually large concentration of frame

addresses relative to its size. For comparison, the bit-stream of
size 87,888 has only 457 frame address commands compared to
862 for the blanking bit-stream. This decreases the throughput for
the relocation with no bit reversal because of the increased calls to
translate the frame addresses. Similarly, this bit-stream performs
better than average for the relocation with bit reversal of frames
because it contains a low concentration of configuration frames
compared to a bit-stream of size 11,652. This results in reducing

the penalty of calling the bit-reversal function. The no
modification throughput for all the different bit-streams is
approximately the same. This is expected since the algorithm is
just copying the bit-stream to the ICAP without any modification.

The results from relocating on the MicroBlaze setup (Figure 3) are
shown in Table III. In this case, all of the bit-streams, code and

data buffers are located in BRAM on the chip, which is 32-bit
wide and accessible in a single cycle. If the bit-stream does not

require modification the throughput achieved is about 10
megabytes per second. If the bit-stream is relocated but does not
require a bit reversal of the frames, the throughput is between 9.2
to 9.5 megabytes per second. If the bit-stream requires a bit-
reversal of the configuration frames, the throughput is about 1.4
megabytes per second.

The ICAP port accepts one write per cycle, and in both
experiments it was configured in a 32-bit width. Since the designs
are run at 100 MHz, the maximum achievable throughput is 400
megabytes per second. The BRAMs provide the same throughput.
A detailed analysis of exactly how the memory, architecture, and

especially the software contribute to the reduction from the
maximum throughput is beyond the limits of this study.

5.2 Floor-planning of the Bus Macros
We ran the floor-planner using the eMIPS design, with two
Extension slots targeted for an SX35 chip. Each PR region
requires 71 bus macros to communicate with the static region.
This number of bus macros is large enough for the design space
exploration, but we make no claim of it being a good

representative of the average PR design. Other projects using PR
regions will use more or less bus macros, depending on the

required amount of communication between the static logic and
the PR region. For example, the MicroBlaze example with 4 PR
regions uses 3 bus macros for each PR region. In the experiments,
the location of the PR regions was fixed and the timing constraints
were constants. The initial placement of the bus macros was

randomly generated. The algorithm ran a total of 280 iterations.
We used two different PR designs for the timing analysis. The
first design was the load/return Extension which would be
impacted by the placement of the memory interface bus macros.
The other design was the mmldiv Extension because it covered all
the bus macros that the load/return Extensions did not use. The
time required for ngdbuild, map, place and route of the two
designs was about 6-8 minutes with normal effort for place and

route. The algorithm therefore takes about 10 minutes per
iteration. When using high effort for place and route this time
doubles. We choose not to use high effort in order to perform
more iterations, and to only select high effort starting from the

best placement to better meet timings. All times are for Xilinx ISE
10.1.02 on a 2.4 GHz Intel Dual core processor with 2 gigabytes
of RAM.

The history of the currently accepted solutions is shown in Figure
8. The full history, including the alternate scores is shown in
Figure 9. The results show that there is wide variance between
the scores depending on how the bus macros are placed. The
average score in the design space was 175,682 ps. Different bus

macro placements have noticeable effects on the timings. The
worst solution had a total score of 796,915 ps while the best
solution had a score of 22,964 ps. The original (manual)
placement for the design had a score of 97,714 ps. The timing
constraints used can be changed based on the desired optimization
the user wants the floor-planner to head towards. The original
placement had a max period for ld/return of 9.902ns and for
mmldiv of 10.120ns. The best solution found had a max period for

ld/return of 9.919ns and for mmldiv of 9.611ns. Turning back on
high effort would yield better results for the timing score. This
layout has a positive effect on the max frequency that can be used
in the system. For timing critical designs this tool will help meet
timing constraints and enable higher frequencies of the design due
to better placement.

Figure 10 shows the original placement given for the bus macros
around the PR region. Figure 11 shows the best placement found
by the tool. There are no bus macros around the top of the PR
region because in this design the region is located at the top of the
chip, leaving no room for placement of any static logic. The bus

- 10 -

Figure 11 – Best bus macro placement.

Figure 10 – Manual bus macro placement.

macro naming convention used in Figure 10 and Figure 11 is I/O,
macro number, and then 0-n for the number of macros needed for
the bus width, each macros carrying a maximum of 8 signals. For
example a 32-bit input bus signal used macros I0-0, I0-1, I0-2,
and I0-3. A 32-bit output bus signal used macros O3-0, O3-1, O3-

2, and O3-3. In Figure 11, the best solution placement does not
group the bus signals near each other. This makes it hard to figure
out the best placement by hand as there is no observable pattern to
the best layout. For example, in Figure 11 the bus signals for O2
are on the left, bottom, and upper-right of the chip. This
demonstrates the challenge the designer would have to face to find
the best placement and consequently the best timings. Note that
when using actual bus macros it is necessary to express at the

HDL level on which side of the PR region the bus macro must be
located. Each combination then requires manual changes to the
UCF file. On the other hand, trying to follow the pattern observed
in Figure 11 for other designs seems impractical.

6. LIMITATIONS
The bit-stream relocation program currently does not generate the

CRC values at the end of the stream. The CRC checker can be
disabled post-bit-stream generation, or by adding in some options
with the “POST_CRC*” constraints in the UCF file. Not
generating a new CRC value for the partial bit-streams had no
effect on the configuration taking place for the ML401 and
ML402 boards used for testing.

The floor-planner currently only handles asynchronous bus
macros. Adding support for synchronous bus macros requires
handling flip-flops as well. The tool requires some additional user
input to identify the bus macros from the UCF file. Currently the
user must manually update the HDL code with the new directions

for the bus macros found by the tool. Future work seeks to reduce
and eliminate these requirements from the user.

The 280 iterations we ran took 41 hours on a 2.4 GHz Intel Dual
core processor with 2 gigabytes of RAM. This means that even
simple changes in the interfaces would require a day or so before
the new placement of the bus macros is found. This effectively
limits the use of the placement algorithm to designs that are stable
enough to be ready for optimization.

7. CONCLUSIONS
We have shown that relocatable bit-streams are beneficial in two
dimensions: they reduce the number of bit-streams stored on a

deployed system and they save compilation time during
development. Both savings scale linearly with the number of PR
regions used in a system.

We have presented an on-chip algorithm and the corresponding
tool-flow for performing bit-stream relocation. The algorithm was
implemented and evaluated in two different architectures, leading
to different performance numbers. In both cases, the content and
destination of the bit-stream have the same and very noticeable
effect on the maximum achieved throughput. The span between

- 11 -

maximum and minimum throughput is between a factor of four
and a factor of seven, depending on the memory system. In all
cases, the throughput is quite far from the maximum bandwidth of
the configuration port.

We have presented a new tool, a floor-planner that finds the best
placement of the bus-macros along the perimeter of the PR
regions. To the best of our knowledge, this problem has not been

addressed before in the literature. We have shown that the
placement of the bus-macros affects the placement of the static
logic and thus the best timing achievable by the system. In the
example shown, the best solution found had a timing score of
22,964 ps while the worst solution found had a timing score of
796,915 ps. The floor-planner finds the best placement without
manual intervention. The best placement has no discernible
relationship with the placement indicated in the best-practice.

8. FUTURE WORK
The following is a list of the remaining avenues for continued
work in this area. We also present some areas that we explored
but did not yield the desired results.

8.1 Relocatable Bus-macro Placement
If we do not require signals into the PR region to go through
LUTs, then the timing increase incurred when doing relocation
could be further reduced. This is because more signals can be
closer to the static logic instead of being placed farther away
around the perimeter of the PR region. With relocatable regions
the bus-macros must be in the same relative placement, which can
be less than ideal for timing. Quantifying the exact penalties, say
by comparing with the best floor-planned solution, is an area for
further study. More analysis can be done on the impact of forcing

the relative placement between the two relocatable regions. If the
penalties are significant they would motivate the development of a
tool for performing partial reconfiguration without the need to use
LUTs.

8.2 Analysis of Bit-streams
The ability to correlate a bit-stream to its function is important to
ensure that no problems occur when configuring the PR regions.
Yet the manufacturers are reluctant to disclose the format of the

bit-stream files. The tools presented in [4] can reverse engineer
the netlist from the bit-stream. This potentially allows run-time
modifications and more extensive verification. Future work can
deal with run-time checking the bit-stream for any potential
damage before downloading it to the extension. Some previous
work allowed off-line bit-stream modifications [5].

Our results show that a tool that splits the MFWR commands in a
bit-stream would be beneficial to performance. This is a real
problem when relocating to an area that spans top-low regions,
therefore requiring bit-reversal but only for part of the frames.
There are other opportunities for post-analysis on a bit-stream,

before installing it on chip. For instance, a bit-stream could be
compressed to further reduce the space requirement in memory.
This would add the overhead of decompression software in the
system but could save space. If the savings are enough that the
bit-stream can now live in BRAM the net effect on performance
could actually be positive. Other features in post bit-stream
analysis could be extracting the size, number of frames, and
configuration frames contained in the file in an up-front header.

This would indicate the time required for activating the stream
considering the different target PR regions. The system software

scheduler might decide to select a different PR region, depending
on the time required to activate the bit-stream in the various cases.

Post-analysis can simplify relocation of a bit-stream to hetero-
geneous regions, by breaking up frames opportunistically. The
frame address is auto-incremented to the next available frame and
this can lead to saving in FAR commands. For instance, in the
case of relocating from a BRAM interconnect (requiring 20

routing frames) to a CLB (requiring 20 routing frames and 2
content frames), we need to break up the group of frames
encompassing the BRAM interconnect to the next resource.

8.3 Performance of Relocation
We implemented our relocation algorithm in C, for two different
processors and different hardware configurations. The results are
strikingly different and warrant more study on exactly what is the
memory impact, instruction impact, and architecture impact for

the relocation times. This would be helpful in evaluating when to
use relocation and when not to. Precise, full-system simulation
and detailed part-information can lead to precise modeling of the
process and the collection of data that is verified against the
working systems.

The common case that requires only frame address modifications
can be handled in hardware. This is the idea in BiRF, REPLICA,
and pBITPOS. The hardware module would result in much faster
reconfiguration times and lower overhead, at a small price in area.
When used in connection with the ideas previously described for
post-analysis, the module could be extended to support
heterogeneous PR regions as well.

The main advantage of a hardware relocation module is in
decreasing the time to bit-reverse a frame. Bit-reversal is a simple

wiring matter in hardware and the algorithm could proceed at full
wire-speed. The hardware implementation would also reduce the
over-head in computing the adjustment to the frame addresses.

8.4 Relocating to Mirror PR regions
We abandoned the idea of creating relocatable PR regions that are
mirror images of each other. The idea was to place the bus-macros
of one PR region on the right side, and the bus-macros of the other
region on the left side. The signals from the static region would be

routed in the center area between the two regions, saving in
routing resources and leading to better timings. Relocation would
require changing the bit-stream in just a few basic places, say to
make it route “left” instead of routing “right”. Possibly this would
affect only the short, long, hex wires outside the Switch Box,
Slices, etc. Since the manufacturer does not provide that
information, this process would involve figuring out the bit
position of those routed lines through some automated testing

process, for instance via xdl2ncd and then ncd2bit. Then the bit-
stream would be parsed to find out the difference. An issue
brought up beyond the mere routing is the possible change in the
RC characteristics of the resulting circuit, which would result in
different timings and possibly incorrect behaviors.

8.5 Manipulation of LUT data
The extendible bit-streams used in eMIPS are Extensions to the
base data path; they recognize specific instructions and take over

execution when the instructions appear in the I-stream. It would
be beneficial to be able to change the opcode at run-time, so that
one Extension could recognize an arbitrary opcode rather than just
the one selected at design time. In principle, this requires a simple
change to the content of selected LUT(s) to replace one six-bit
value with a different one. It turns out that identifying the relevant

- 12 -

LUTs that compare the opcode is troublesome. We need a lot of
chip-specific information at run-time just to know what frame we
are currently at. Then we need to get the offsets of the LUTs in
the frame. The .ll file can do this, but only for the LUTs in Slice
M (i.e. must set it up in RAM/ROM mode). It would therefore

seem that only the ncd file can tell us where those specific LUTs
are located. If we cannot deduce that information from the bit-
stream it means that we have to trust the bit-stream blindly, which
is not ideal.

We tried to identify exactly what INIT values to send to a LUT to
change its function. The problem that we encountered was that the
inputs to the LUTs are rearranged into a different order, even for
small differences. This allows the fastest throughput through the
circuit as not all inputs are equal in delay. This makes it harder to
correlate a LUT’s value with the value found in the bit-stream.

8.6 Floor-planning of Bus-Macros
The tool we built has a relatively high cost in execution time.
Lowering this cost would make it more widely usable and/or
allow us to use a larger number of designs to find the best
placement. One idea for creating a faster method in the common
case of homogeneous regions is as follows. Rather than working
at the UCF level, start at the Verilog level. One immediate
advantage over our approach is that there is more freedom in
selecting which signals are grouped into a bus macro, because we

no longer operate at the granularity of a LUT. We can create an
area group constraint around the boundary of the PR region. The
Xilinx tools run post place and route. The routed file is converted
back to XDL. The automated tool uses the XDL file to create the
bus macros and slice locations. This requires a single iteration and
should immediately get a good placement for the bus macros.
When used on different designs that target the same PR region the
issue is then to match the bus-macro locations across all regions.

If we allow complete freedom in grouping signals into bus
macros, the optimal placement will likely create bus macros that
carry both input and output signals. This is not currently

supported and requires the creation of new bus-macros, for
instance using the tools described in[6]. Further work is also
needed to add support for synchronous bus macros.

It was suggested that we try to group even more signals together
in the floor-planner tool. For instance, when placing the bus-
macros for a 32-bit bus it might be advantageous to group signals
at more than the LUT granularity. As shown in Figure 11, the best
placement does not actually group bus signals together. This
discourages the idea that better results would be obtained by
keeping them together as they did not tend to cluster near each

other in the best placement found by the tool. Work is needed to
prove or disprove this point.

8.7 Simulated Annealing
We can improve on the simulated annealing algorithm used in the
floor-planner. One idea is to make alterations at the single signal
granularity rather than at the bus-macro granularity. This would
allow greater flexibility in finding the adjustment closest to the
optimal solution.

We can try different number of swaps per iteration as well as
different initial and cutoff temperatures. The goal is to reach a
closer approximation of the optimal solution in a shorter time. We

can also scale down the number of swaps performed in a step,
based on the current temperature. For instance, a smaller number
of swaps at lower temperatures might improve the final score.

It might turn out that the best choice for how many swaps and the
initial and cutoff temperatures are dependent on some general
properties of the designs used by the user. If that is the case the
tool should become more flexible for greater applicability.

8.8 PR Region Placement
We have assumed that the location of the PR region was an input
to the bus-macro placer. This is often not the case and designers
select that placement in an arbitrary way too. An important
addition to the tool flow is therefore a tool to find the best location
for the relocatable regions. The tool would be run first to
determine the best on-chip placement for the PR region, then the
bus macro floor-planner. The ideas presented in [16] could select
the optimal area, but making sure we only find areas that are
easily relocatable to each other.

8.9 Virtex-5 Relocation and Bus Macros
Our work so far has been restricted to the Virtex-4 FPGAs. We
have used two LUTs and LOC constraints in the UCF file to
automatically place the bus-macros. Reference [6] shows an
alternative approach, namely using XDL to create the Xilinx bus-
macros. Future work could be creating new bus-macros for the

Virtex-5 FPGA in order to extend our tool to that chip. Additional
work using this approach could assure that routing in/out of the
PR region is coherent among all the different PR regions.

8.10 Arcs.Exclude Format
The process described in [11] allows static routing in the PR
region. We have explored the idea of combining the static routing
restrictions from different PR regions into a single target PR
region. We would use the arcs.exclude file that is part of the

Xilinx flow to enforce the restrictions. Unfortunately, the format
of that file is also not documented and it does not follow an easily
recognizable logic. This makes it impossible to relocate the
excluded routed lines from one PR region to another PR region.

9. REFERENCES
[1] Available at

http://www.xilinx.com/support/prealounge/protected/index.ht
m

[2] Becker, T.; Luk, W.; Cheung, P.Y.K., "Enhancing
Relocatability of Partial Bit-streams for Run-Time
Reconfiguration," Field-Programmable Custom Computing
Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium
on, vol., no., pp.35-44, 23-25 April 2007.

[3] Montminy, D.P.; Baldwin, R.O.; Williams, P.D.; Mullins,
B.E., "Using Relocatable Bit-streams for Fault Tolerance,"
Adaptive Hardware and Systems, 2007. AHS 2007. Second
NASA/ESA Conference on, vol., no., pp.701-708, 5-8 Aug.
2007.

[4] Note, J. and Rannaud, É. 2008. From the bit-stream to the
netlist. In Proceedings of the 16th international ACM/SIGDA
Symposium on Field Programmable Gate Arrays (Monterey,
California, USA, February 24 - 26, 2008). FPGA '08. ACM,
New York, NY, 264-264.

[5] Guccione, S., Levi, D. and Sundararajan, P. “JBits: Java
based interface for reconfigurable computing”, Xilinx Inc,
San Jose, CA

[6] C. Claus, B. Zhang, M. Huebner, C. Schmutzler, J. Becker,

W. Stechele, "An XDL-based busmacro generator for
customizable communication interfaces for dynamically and

http://www.xilinx.com/support/prealounge/protected/index.htm
http://www.xilinx.com/support/prealounge/protected/index.htm

- 13 -

partially reconfigurable systems", Workshop on
Reconfigurable Computing Education at ISVLSI 2007, Porto
Alegre, Brazil, May 12, 2007.

[7] Horta, E.L.; Lockwood, J.W.; Taylor, D.E.; Parlour, D.,
"Dynamic hardware plugins in an FPGA with partial run-
time reconfiguration," Design Automation Conference, 2002.
Proceedings. 39th , vol., no., pp. 343-348, 2002.

[8] Pittman, R. N., Lynch, N. L., Forin, A. eMIPS, A
Dynamically Extensible Processor, MSR-TR-2006-143,
Microsoft Research, WA, October 2006.

[9] Download at
http://research.microsoft.com/research/EmbeddedSystems/e
MIPS/eMIPS.aspx

[10] Kane, G., Heinrich, J. 1992. MIPS RISC Architecture.
Prentice Hall, Upper Saddle River, NJ.

[11] Sedcole, P.; Blodget, B.; Becker, T.; Anderson, J.; Lysaght,
P., "Modular dynamic reconfiguration in Virtex FPGAs,"
Computers and Digital Techniques, IEE Proceedings - ,
vol.153, no.3, pp. 157-164, 2 May 2006.

[12] Kalte, H.; Lee, G.; Porrmann, M.; Ruckert, U., "REPLICA:
A Bit-stream Manipulation Filter for Module Relocation in

Partial Reconfigurable Systems," Parallel and Distributed
Processing Symposium, 2005. Proceedings. 19th IEEE
International , vol., no., pp. 151b-151b, 04-08 April 2005.

[13] Ferrandi, F., Novati, M., Morandi, M., Santambrogio, M. D.,
Sciuto, D. "Dynamic Reconfiguration: Core Relocation via
Partial Bit-streams Filtering with Minimal Overhead,"
System-on-Chip, 2006. International Symposium on , vol.,
no., pp.1-4, Nov. 2006.

[14] Krasteva, Y.E.; de la Torre, E.; Riesgo, T.; Joly, D., "Virtex
II FPGA Bit-stream Manipulation: Application to

Reconfiguration Control Systems," Field Programmable
Logic and Applications, 2006. FPL '06. International
Conference on , vol., no., pp.1-4, 28-30 Aug. 2006.

[15] Xilinx Inc. Virtex-4 Configuration Guide v1.10, April 2008.

[16] Singhal, L.; Bozorgzadeh, E., "Multi-layer Floor-planning on
a Sequence of Reconfigurable Designs," Field

Programmable Logic and Applications, 2006. FPL '06.
International Conference on , vol., no., pp.1-8, 28-30 Aug.
2006.

[17] Koester, M.; Porrmann, M.; Ruckert, U., "Placement-
Oriented Modeling of Partially Reconfigurable
Architectures," Parallel and Distributed Processing
Symposium, 2005. Proceedings. 19th IEEE International ,
vol., no., pp. 164b-164b, 04-08 April 2005.

[18] Xilinx Inc. MicroBlaze Processor Reference Guide. URL:
http://www.xilinx.com/support/documentation/sw_manuals/
mb_ref_guide.pdf.

http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/eMIPSreport1.pdf
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx
http://research.microsoft.com/research/EmbeddedSystems/eMIPS/emips.aspx

