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ABSTRACT 
An extensible processor provides a standard data-path and one or 
more regions for use as application-specific reconfigurable logic. 
In this paper we address two problems that arise in the practical 
use of extensible processors. Using multiple extensible regions 

can lead to avoidable time and space inefficiencies, and the 
physical placement of the interconnection points strongly affects 
the overall design timings. 

Standard tool-flows from FPGA manufacturers require the 
creation of separate configuration images for each region. The 
space and time complexities that this entails are undesirable, 
especially in an embedded system setting where storage is at 
premium. In this paper we introduce a run-time algorithm that 

allows the relocation of one configuration image to any number of 
compatible regions, in linear time. The application loader running 
on the data-path can perform the relocation along with the loading 
of the application code. We have implemented the algorithm on 
the eMIPS soft processor using two extensible regions, and on the 
MicroBlaze soft processor using four regions, in both cases 
targeting a Virtex-4 FPGA. There are two main advantages from 
image relocation. We save time at compilation because only one 

region needs to be synthesized. We save space at execution time 
by storing only one configuration in FLASH memory.  

The reconfigurable regions themselves are interfaced with the 
standard data-path using “bus macros”, connection points that are 
placed at fixed locations. The placement of the bus macros around 
a region has a noticeable impact on the timing of the design inside 
the region, and on the timings of the standard data-path outside 
the region. We have found that manual placement of the bus 

macros is not only tedious, but leads to sub-optimal timings even 
when following best design practices. We present a tool that uses 
design-space exploration to obtain automatic, near-optimal 
placement of the bus macros for the relocatable regions. Results 
show the worst solution found had a total timing score of 581,146 
ps while the best solution was only 22,964 ps and the average 
over the design space was 175,682 ps. The score for the manual 
placement was 97,714 ps. 

1. INTRODUCTION 
Dynamic partial reconfiguration of FPGAs (or PR for short) has 
been available for quite some time, yet the tools to support it are 
still deficient in many ways. The flows are cumbersome to use 
and not at all integrated in the regular flow supported by the 
graphic user interfaces. This keeps many users away because the 

technology is perceived as too difficult to use. But perhaps more 
importantly, there are still functional deficiencies that lead to sub-
optimal solutions. In this paper we address two of the functional 

shortcoming in the present tools. We have encountered these 
shortcomings in our own work with extensible processors, and 
therefore we have attacked them from a very practical perspective. 
Nonetheless, the issues are more widely relevant and affect all 
uses of the PR technology. The results are also more generally 
applicable.  

The preferred model for PR use is with one static region and one 
PR region. The static region guarantees the basic functionality and 

proper behavior during reconfiguration, especially with respect to 
the I/O signals. The single PR region is used to realize different 
temporal parts of the application, or alternate realization of certain 
(signal) processing, or to receive dynamic updates on deployed 
systems. Solutions that employ more than one PR region are 
described in the literature, but are not at all well supported by the 
tools. For example, the user is currently required to synthesize 
each design repeatedly, once for each PR region. Each 

compilation requires hours of computer time, sometimes many 
hours if targeting the larger FPGA models. There are space 
inefficiencies as well. Each of those long compilations produces a 
separate configuration file (bit-stream) for use with the given PR 
region and nowhere else. These files are large even for the 
smallest FPGA models and easily grow in the hundreds of 
kilobytes. All of the files must be present at run-time. These time 
and space inefficiencies lead to the desire to, somehow, use a 

single bit-stream file that can be relocated to any one of a many 
PR regions. Relocations should be doable at run-time, without 
excessive overhead. The file should be compiled only once, for 
one PR region only, and should be no bigger than a current file. In 
this paper, we describe the algorithm we have realized for 
performing the dynamic relocation of bit-streams. We 
demonstrate relocatable configuration files on two separate 
examples. One demonstration is with two PR regions using the 

eMIPS extensible processor presented in [8]. The other 
demonstration is with four PR regions, using the MicroBlaze soft-
core for image transformations on different parts of a digital 
image, and displayed on a VGA monitor. The two examples use 
radically different memory subsystems, which leads to different 
performance characteristics of the relocation process. The code 
for relocation, however, is the same in both instances. We also 
found that the composition of the bit-streams, as well as the 
location differences in PR regions are factors that affect the 

relocation times just as much as the sheer size of the streams 
themselves. 

A second shortcoming is in the interface between the static and 
the PR regions. Clearly, if independently developed designs for 
these regions are to interoperate correctly, at the very least they 
must agree on the routing and directions of the signals that 
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interconnect them. These are commonly referred to as the “bus 
macros”, using the terminology used for but one of the many ways 
in which the problem has been solved. While the problem is 
indeed solved, the current tools require the user to specify 
manually both the size and location of the PR regions, and the 

location of the interconnecting points (the “bus macros”) along 
the perimeter of the PR regions. It turns out that the placement of 
the bus macros around a region has a noticeable impact on the 
timing of the design inside the region, as well as on the timings of 
the design outside the region. We have found that manual 
placement of the bus macros is not only tedious, but leads to sub-
optimal timings even when following best design practices. Our 
solution is to create a tool that can automatically identify what is 

the placement of the interconnection points that leads to the best 
timings. Our tool uses design-space exploration via simulated 
annealing to obtain automatic, near-optimal placement of the bus 
macros for the relocatable regions. To the best of our knowledge, 
this is the first tool to address the problem of identifying the best 
placement of the bus macros, manually or otherwise. To 
underscore the practical relevance of the problem, our results 
show that the ratio between the best and worst placement can be a 

factor of 27 on a real design. The average solution is a factor of 8 
slower than the best. The score for the manual placement that 
follows the best-practices advice from the manufacturer is a factor 
of 4.5 worse than best.  

The rest of the paper is organized as follows. Section 2 presents 
background material and related work. Section 3 describes the bit-
stream relocation algorithm, the tool flow, and their 
implementation. Section 4 presents the automated tool for floor-

planning of the bus macros. Section 5 presents our measurements 
and results. Section 6 describes the limitations of our current tool 
implementations. Section 7 presents our conclusions and Section 
8 some ideas for future work. 

2. BACKGROUND AND RELATED WORK 
This section introduces the background concepts needed for the 

rest of the paper. They include FPGA partial reconfiguration, 
dynamic bit-stream relocation, the eMIPS processor, the 
MicroBlaze processor, the Virtex-4 configuration frame layout, 
and the floor-planning of partial reconfiguration regions. 

2.1 Partial Reconfiguration and Relocation 
The ability to change portions of the FPGA configuration at run-
time is called dynamic partial reconfiguration. This entails 
modifying portions of the logic planes without affecting the 
remaining parts of the circuit, which continues to function 
unperturbed. Special support is needed in the FPGA chip for this 
process to execute flawlessly, without “glitches”. Manufacturers 
that support this feature include Xilinx and Altera. Currently the 
tool provided by Xilinx for doing dynamic partial reconfiguration 

is part of the Early Access Partial Reconfiguration, or EAPR, a 
flow that is found at [1]. The flow requires first implementing the 
part of the logic, called the static logic, which will not change 
during run-time. The logic that will change during run-time is 
implemented in a Partial Reconfiguration (PR) region. Each of the 
configurations of a PR region is implemented after the static part 
is implemented. Each implementation produces a configuration 
file, called a bit-stream. The final step is to generate the bit-stream 

for the initial configuration of the entire chip, and for each 
alternate configuration that was implemented for each PR region. 
The communication between the PR region and the static logic 
happens via bus macros, fixed interconnection points at the 

perimeter of the PR region. The bus macros must be instantiated 
in the HDL code and manually placed. The PR regions are 
reconfigured either off-chip by an external agent, or on-chip by 
the design itself, probably a processor. Off-chip interfaces use 
either JTAG, or some other specialized interface. To perform on-

chip reconfiguration on Xilinx devices, a designer instantiates a 
special macro for the Internal Configuration Access Port (ICAP), 
then sends the configuration data to it. For the Virtex-4 the ICAP 
can be implemented with either an 8-bit or 32-bit wide interface. 

The bit-stream for configuring one PR region is tightly bound to 
the physical location of that region and cannot be used directly to 
reconfigure any other portion of the chip. In many cases though, it 
is possible to modify an existing bit-stream and adapt it to a 

different physical location. This process is termed bit-stream 
relocation and can be performed statically by tools operating on 
the designer’s workstation, or dynamically by the agent that loads 
the bit-stream on chip. The key element is that a portion of the 
chip is reconfigured at run-time, without interfering with the 
operation of the rest of the chip.  There are various works 
describing static or dynamic relocation of configurations for a PR 
region to a different PR region. The motivation is to reduce the 

number of partial bit-streams required if two or more PR regions 
would use the same implementation. For example, if we had four 
target PR regions for the bit-stream we could save the storage of 
three bit-streams copies on, say, a FLASH chip and reduce the 
compilation time by a factor of four. The savings are noticeable 
because bit-streams tend to be large and the compilation times are 
often measured in hours per design. The trade-off is the size of the 
software/hardware and some placement restrictions on the PR 

regions to enable relocation. 

Becker et al [2] describe the building of bit-streams for a Virtex-4 
FPGA that are relocatable by-design. The approach does not 
require any static logic in the PR regions. Manipulation of the bit-
stream is performed to relocate a column (ex. CLB) to a non-
identical column (ex. DSP) with respect to routing. When 
relocating from the top-half to the bottom-half of the chip, it is 
necessary to bit-reverse the frame except for the middle word in 
the frame. The provided example of a software defined radio with 

two reconfigurable regions showed a reduction in the number of 
partial bit-streams by 50% and compilation time by 43%. The 
relocation is performed using a MicroBlaze interfaced with the 
HWICAP. The HWICAP is an IP core provided by Xilinx which 
interfaces software with the ICAP. There are implementations of 
the HWICAP for the OPB or PLB busses, standard components 
for the Xilinx EDK.  The relocation code presented in the paper 
does not allow heterogeneous PR regions to relocate to each other, 

although that could be added. 

Montminy et al.[3] show how to layout the redundant modules of 
a Triple Modular Fault Tolerant design in such a way that one 
module’s configuration is relocated to correct the errors in another 
redundant module. A circuit automatically calculates the CRC 
value as the bit-stream is being relocated. The relocation code 
presented in the paper does not calculate the CRC value, although 
a discussion about future support is presented.  Horta et al.[7] 

demonstrate relocatable bit-streams for a Virtex-E chip. They 
used Gaskets, similar to bus macros, to define the routing between 
the similar regions. 

Sedcole et al. [11] discuss relocation for a Virtex-4. The 
distinguishing features in this work are the ability to route 
statically through a relocatable region by reserving routing lines 
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for the static logic, and the ability to merge relocatable and static 
parts at run-time. A certain percentage of long lines are reserved 
for the static logic to cross over the PR region. The static design is 
then re-routed to use the reserved long lines. To merge parts at 
runtime the current configuration is read out, stripped of the 

previous configuration except the static logic, and merged with 
the new configuration. This process proved to be very time-
consuming, with an increase of reconfiguration time from 6.2x to 
11.4x. The example used the HWICAP provided by Xilinx.  The 
relocation setup presented in this paper does not allow static logic 
inside the PR region. 

Kalte et al. present REPLICA [12], a system with a zero-overhead 
cost in relocation of the partial bit-stream. This is accomplished 

with a hardware module capable of relocating CLB columns for a 
Virtex-E FPGA. The hardware module also computes the new 
CRC automatically. Additional hardware would be needed in a 
Virtex-4 setup to allow for bit-reversal of the frames. Ferrandi et 
al. present the Bit-stream Relocation Filter (BiRF) [13], a device 
similar to REPLICA, but for a Virtex-2 and with minimal area 
cost. Krasteva et al. describe the pBITPOS tool [14], to allow 
relocation for Virtex II (Pro) solutions. The additional feature in 

this work is the ability to relocate configurations that make use of 
BRAM/MULs.  We targeted the relocation for the Virtex-4 chip, 
but discuss future work in making a hardware version of the 
relocation code like was seen in the works described in [12]-[14]. 

 

2.2 The Extensible MIPS Processor 

The eMIPS microprocessor system [8] provides a MIPS [10] 
RISC data path tightly integrated with a configurable logic fabric. 

The system is available for download at [9]. Figure 1 shows a 
block diagram of the system, which is implemented for a Xilinx 
FPGA and makes use of the partial reconfiguration feature to 
change the state of the Soft Fabric at runtime. The MIPS data path 
is implemented in the Hard Fabric portion, along with the controls 
for the Soft Fabric, the memory interfaces and other fixed I/O 
peripherals. The Soft Fabric is further subdivided in a number of 
regions called Extensions, each Extension maps to a PR region. 
Extensions have been used for accelerating application execution 

time, for implementing plug and play on-chip peripherals and bus 
interfaces, for monitoring and model-checking applications, and 

for debugging of application software during development. The 
original release of eMIPS provides just one Extension slot. As 
part of this work we have ported eMIPS to a larger chip and 
realized it with two Extension slots. In Figure 1, the Memory 
Controller implements the interfaces to the ICAP, timer, General 

Purpose Input and Output (GPIO), and other peripherals used in 
the system.  

As more and more Extensions become available for use, it 
becomes advantageous to use relocatable bit-streams instead of 
having a bit-stream for each slot on the chip. The Extensions are 
configured at run-time with new functionality by software. 
Because it is unknown which region an extension will go in, it is 
valuable to allow flexibility on where the extension will be 

configured at. This allows maximum flexibility to the scheduler, 
who can then place the Extension in an available slot without 
requiring a separate reconfiguration file for each extension. An 
example of a list of processes to schedule can be seen in Figure 2. 

 

The mapping from process resource requirements and available 
resources is already a difficult one for the scheduler, who must do 
it in an efficient and time-predictable manner. Adding the 
requirement of a specific placement will reduce the schedulable 
sets and potentially cause confusion to the users. Consider the 
case of a system with four Extension slots. The process set in 
Figure 2 should be schedulable on this system, with all processes 

receiving an Extension slot. Suppose the eBug extension is only 
provided for two slots, which are both occupied by the first and 
second process in the set. The scheduler can only provide the third 
process with one slot for the P2V monitor. The user (a developer, 
say) will be rather confused to see that an exception in this 
process does not get reflected in the debugger but simply 
terminates the program. 

 

Figure 2 – Example List of Processes to be scheduled. 

 

Figure 1 – Overview of eMIPS. 
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2.3 The MicroBlaze Processor 

MicroBlaze is a soft core RISC processor provided by Xilinx [18]. 

It can be implemented as a 3-stage or 5-stage pipeline. Figure 3 
provides an overview of how the MicroBlaze interacts with the 
other components in the system used for our experiments. The 
HWICAP interfaces with the ICAP to send the configuration for 
the PR region. The Timer is free-running to measure the cycles it 
takes to configure a region. Because of the reduced number of bit-
streams, it was possible to fit all software and partial bit-streams 
required in the 64 kilobytes of space in the BRAM.  Larger sized 

bit-streams would require storage into other memory like flash 
which would impact the time required for relocation. 

 

2.4 Virtex-4 Configuration Layout 

The smallest unit of configuration on a Xilinx FPGA is the frame. 
A frame includes a fixed number of Configurable Logic Blocks 
(CLBs), physically laid out in fixed geometries. On the Virtex-4 

FPGAs, frames span the height of 16 CLBs, which is one HCLK 
row. In previous Virtex FPGAs [15] a frame spans the entire 
height of the chip. Each frame in the Virtex-4 is composed of 
1,312 bits. Frames are addressed in a 2-D fashion. A frame 
address command sets the starting destination of the configuration 
frames. A frame address on the Virtex-4 is composed of five 
parts: top/bottom of chip, block type, HCLK row, major column 
address, and minor column address. The top/bottom part specifies 

whether the target is at the top or at the bottom of the chip. The 
block type is one of three types: CLB/IOB/DSP/GCLK (0), 
BRAM interconnect (1), and BRAM content (2). The HCLK row 
indicates which row of the chip is targeted. Numbering of the 
HCLK row starts from the middle of the chip outward. The major 
column address specifies which resource column to change. The 
number begins at zero at the far left of the chip and increments 
going to the right. How many minor addresses there are for a 

given column depends on the type of resource targeted. There are 
22 minor frames for CLBs, 21 for DSPs, 20 for BRAM 
interconnect, 64 for BRAM content, 30 for IOBs, and 2 for 
GCLK. The correlation between the frame address and target 
frame is shown for an SX25 chip in Figure 4. 

For example to reach the first CLB column in the upper-left of the 
chip, the frame address would be as follows: top/bottom=0, block 

type=0, HCLK row=1, major column address=1 and minor 
column address=0-21. This correlation is critical to understand 
how to manipulate the bit-stream to target the desired PR region. 

 

2.5 Floor-planning 

Floor-planning is the process of defining the size and physical 
location of the PR regions on the target FPGA chip. The existing 
manufacturer's flows currently require that the user performs this 

selection process manually, using tools such as Xilinx PlanAhead 
or by editing the User Constraint File (UCF). In addition to 
selecting the location and size of the PR region, it is also 
necessary to define the placement of the bus macros along the 
perimeter of the chosen region. This is also a manual process 
currently. These choices have a clear effect on the placement of 
the design and on its ability to meet timing, but there are currently 
no tools to help the user make the optimal or even an informed 
choice.  

Some research exists on automatically defining the ideal location 
for the PR region. To the best of our knowledge there are no 

results on finding the optimal placement of the bus macros around 
a PR region, ours is the first tool to address this issue. 

Singhal and Bozorgzadeh [16] use automated floor-planning to 

find the best area to allocate for the designs that are going to 
change at run-time.  The process takes into consideration the 
alternate designs that will replace the current setup in the PR 
region.  This is done by representing sequence pairs to represent 
placement of modules in relation to each other.  Difference 
placements of modules are used to determine which modules are 
reused and which ones are reconfigurable.  It uses simulated 
annealing to find the best placement of modules, and determine 

which ones will be reconfigured when changes to the modules is 
required.  Koester et al. [17] develop a general mathematical 

 

Figure 4 – Frame Address Mapping Example on SX25 chip. 
 

Figure 3 – Overview of the MicroBlaze Setup. 
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model for reconfigurable hardware. This is to develop better 
placement algorithms for dynamically changing systems. Neither 
work considers the further problem of placing the bus macros in 
the chosen area.  

3. RELOCATING BIT-STREAMS 
Relocation of the configuration file (bit-stream) is simple and 
efficient as long as the source and target PR regions meet a few 

constraints. In our work the regions must: (1) have the same 
pattern of resources, (2) span the entire height of the HCLK row 
(one entire frame), (3) encompass the same amount of area on the 
chip, and (4) use bus-macros in the same (relative) placement. 
When these constraints are valid, relocation consists mostly in 
adjusting the frame addresses in the source configuration file to 
match the target PR region. 

3.1 Relocation Tool-Flow 

The complete tool-flow for performing relocation is shown in 
Figure 5 and includes both compile-time and run-time elements. 
The inputs required are a description of (some properties of) the 
Target FPGA and a description of the PR regions that are 
potential targets. Currently only the Virtex-4 LX and SX chips are 
supported because we do not have a complete understanding of 
exactly how the embedded PowerPC on the FX chip series affects 
the layout of the configuration frames. The FPGA Configuration 

Generator computes the pattern of resources and the number of 
HCLK rows on the target chip. The Adjustment Generator uses 
this information to compute the run-time parameters required for 
the actual Relocation of the Bit-streams. These parameters con be 
compiled-in in the relocation code, or provided as a data file. The 
relocation algorithm itself is therefore oblivious to the original 
inputs. Note that the parameters are specific to the FPGA and its 
PR configuration, which are also static elements in the overall 

design. The Adjustment Generator performs some additional 
checks to verify that the PR regions are relocatable to each other, 
e.g. that they obey the constraints previously defined. The tool as 
currently implemented does not check for the bus macro 
placement constraint, but this can be added later on using the 
floor-planner tool discussed in Section 4. 

3.2 Implementation Constraints 

Before we discuss the run-time relocation algorithm, we need to 
consider a few practical problems that will affect our results. 

A set of configuration frames for a column of CLBs can be used 
as-is in another column of CLBs because it requires the exact 

same routing bits and configuration logic bits. This is the good 
case that we want to obtain at run-time, if at all possible, because 
the relocation can then proceed at full bus-speed. A more difficult 
case is when a set of configuration frames is targeted for one side 
of the chip (ex. top) and the target is at the other side of the chip 
(ex. bottom). This case requires a bit-reversal of the configuration 
frames, each frame being over a thousand bits long. The 
architectural layout of frames on the Virtex-4 chips is such that 

frames on the top of the chip are mirror images of the frames on 
the bottom of the chip. Only the middle word in the frame is not 
mirrored. This word contains the global routing bits and other 
configuration data. Bit-reversal means, for example that the bit in 
position 0 is at position 1311 on the other side of the chip. This 
requires that the frame is read from end to beginning, because the 
end of the word in the frame is now the first word that needs to be 
written to the ICAP port. This can be cumbersome and costly to 

do in software. For instance, if the configuration bit-stream is read 
sequentially from beginning to end, we need to allocate an 
intermediate storage to buffer one full frame to ensure it is written 
out in the correct order. 

 

 

The wires used for routing signals in/out of the PR region must 
match between the source and the target PR regions. The 
configuration data routes only to/from adjacent columns, and 

assumes that there actually is an external connection in the 
adjacent column at the periphery of the region. This requirement 
is currently handled by the left-to-right bus macros on the Virtex-
4. Figure 6 shows an example of a left to right bus macro.  

The gray boxes are Slices on the FPGA. Each Slice on the Virtex-

4 contains two Look-Up Tables (LUTs), two Flip-Flops (FFs), 
and other components. For asynchronous bus-macros, the LUTs in 
the static region have a fixed and defined routing to the LUTs in 
the PR region. This routing is shown by the gray lines in Figure 6, 
where we assume the static region is on the left side of the picture. 
The light blue lines in Figure 6 are what the router program can 
use to route signals from the static region to the PR region. These 
signals first go to the LUTs on the left, then they are routed 

(fixed) to the slices on the right, and from there to the logic 

 

Figure 6 – Left to right (l2r) bus macro. 

 

Figure 5 – Flow for Relocation. 



- 6 - 

 

implemented in the PR region. As long as the bus-macros have the 
same relative positioning between the two PR regions, this 
scheme correctly handles the relocatability constraints between 
PR regions and our algorithm does not have to modify the routing 
information at all. 

For ease and speed of reconfiguration, we decided not to support 
static routing, e.g. the logic in the static region is not allowed to 

route through the PR regions.  This can have an adverse effect on 
the design, for instance when that signal must route to an I/O pin. 
To handle this requirement, the static routing must either match 
across all of the PR designs, or we could use the scheme described 
in [11] and reserve some long lines for the static region inside the 
PR regions. We prohibited static routing from the PR region by 
setting the “ROUTING=CLOSED” constraint in the Xilinx ISE. 
Even though we used this constraint the router would still 
sometimes inexplicably route through the PR region when trying 

to get to the bus macros. To help the router route around the PR 
region, we created target LUTs to route to before routing to the 
troublesome bus macros. We used the same approach to handle 
the case of static logic that mapped to input/output pins near the 
PR regions. We added a LUT near the I/O pin and designated it as 
the target for the troublesome I/O signal.  

3.3 Relocation Algorithm 

Figure 7 shows the algorithm for relocating bit-streams at run-
time. There are three possible destinations for a configuration: 

1) Destination is where the bit-stream was generated for. 
No relocation is necessary. 

2) Destination is not where it was generated for, but on the 
same side of the chip. Relocation consists only of the 
translation of frame addresses. 

3) Destination is on the opposite side of the chip. 
Relocation involves both the translation of the frame 
addresses and bit-reversal of the frames. 

It is actually possible to encounter a combination of cases two and 
three. The Multiple Frame Write (MFWR) command can write a 

single frame of data to multiple frame addresses [15] and this can 
create a problem. Suppose a bit-stream that is on the top of the 
chip covering two HCLK rows must relocate to a PR region that 
straddles the middle of the chip. In the target region, one HCLK is 
used for both the top and bottom of the chip. A MFWR command 
could correctly write the same configuration frame to both HCLK 
rows in the original configuration, but in the new configuration 
we now need two separate MFWR commands, one for the top and 

one for the bottom of the chip. The frame data is valid as-is for the 
HCLK on the top of the chip, but it must be flipped for the HCLK 
row on the bottom of the chip. The separation can be done at run-
time. The cost is just some additional code because we need to 
buffer the frame data regardless. It is clearly easier to use a tool 
that expands the MFWR commands into multiple ones before 
deploying the bit-stream. Therefore the examples presented in 
Section 5 do not cover this case.  

Based on this algorithm, the three key contributing factors in the 
time to relocate a bit-stream are (1) the bit-stream size, (2) the bit-
stream composition, and (3) the location of the destination PR 

region on the chip. By composition we mean the relative count of 
commands that set the frame address and commands that write 
configuration frames. 

 

If the stream must be relocated, it would be best if we have very 
few frame addresses and do not need bit-reversal. 

 

Figure 7 – Relocation Algorithm. 
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4. POSITIONING THE BUS MACROS 
The bus macros are the connection points between static and PR 

regions, located on the perimeter of the PR regions. The 
placement process is currently manual; the user selects the 
location in the instantiated instance of the macro in the HDL 
source code. There is no guarantee that the placement is optimal, 
nor any practical way to verify how close to optimal it might be. 
The best-practices advice is to place inputs to the left, outputs to 
the right, and use common sense. Letting the macros float only 
provides limited advice insofar as discovering where the placer 

will (want to) locate the static/PR logic that connects to those 
macros. 

We used the following test to measure the quality of the 
placement of a set of bus macros. Using a design that does not 
meet timing, we define the “timing score” as the cumulative sum 

of the timing errors across all signals that do not meet their timing 
constraints. This is an indication that is easily obtained from the 
synthesis reports, and therefore easy to use in an automated setup. 
Ideally, a design would have a zero score. A negative score is 
possible (using the slack timing) but harder to compute 
automatically. Since the timing score is not a precise measure, it is 
often the case that a design with a positive timing score will 
actually function correctly. We can always generate a positive 
score by artificially tightening the timing constraints. 

We used a design of the eMIPS processor with a poorly located 
PR region to test the importance of the placement of the bus 
macros. This design uses a large number of macros, and therefore 
provides a fine-grained tool for the evaluation. As shown in 
Section 5, we observed timing scores in the range of 22,964 to 

796,915 picoseconds for various placements. This large spread 
clearly illustrates the importance of a good placement. At the end 
of the study we found a second motivation for an automated tool. 
We inspected the best/worst/manual placements to see if there 
was any correlation, and to see if we could deduce any guiding 
principles. We did not find any. The manual placement following 
best-practices did score better than the average, but still far from 
the optimal. The optimal design utterly violates all best-practice 

rules. 

Since the placement is done at the HDL source level, it would 
appear that it is necessary to re-synthesize each placement from 
start to finish to be able to evaluate the timing score. For instance, 
moving a bus macro from the left side to the right side of the PR 
region requires either a synthesis of the design or a direct 

modification of the netlist. We can eliminate this expensive step 
by using two LUTs instead of a bus macro in the design, and then 
change the LOC constraint of the two LUTs inside the UCF file. 
This approach costs the equivalent delay of going through two 
LUTs, but eliminates the defined routing between them. As an 
additional benefit, the automated floor-planner can generate 
placements of the LUTs for whatever side it is currently targeting 
around the PR region: top, bottom, left, or right. Care was 

exercised so that the implementation of the LUTs does not change 
the logical value of the signal they route. 

The bus macro placement is an instance of the more general 
place-and-route problem, albeit on a much smaller scale.  This led 
to the choice of using simulated annealing to automatically find 

the best placement. Our simulated annealing algorithm works by 
looping over five steps: copy the current solution, alter the copy, 
evaluate the alternate solution, determine whether to accept the 
alternate solution as the current solution, and adjust the current 
temperature. The loop terminates when the cut-off temperature is 

reached. Before the loop begins, the algorithm selects an initial 
temperature and cut-off temperature. The first step copies the 
current placement of the bus macros from the currently accepted 
solution. The second step modifies the solution by randomly 
swapping the positions of the bus macros around the PR region. 

The algorithm performs 10 random swaps, which we found was a 
good balance between elapsed time and spread over the solution 
space. The third step measures whether the new alternate solution 
is better than the current accepted solution, using the timing score 
for the comparison. This timing score is evaluated by running a 
set of designs that will be used in the PR region through ngdbuild, 
map, and place and route. This is the most expensive step by far 
and running every combination of PR configurations would be 

prohibitive, so only a few designs were used for our evaluations. 
The number and type of designs is user-selectable, which leads to 
a trade-off of time against accuracy of the search. Each design is 
run in a separate thread to reduce the elapsed of this step. The 
algorithm can therefore take advantage of multiple processors 
when they are available in multi-core CPUs. The timing scores 
from the different designs are combined into one overall score. If 
the timing score is better than the current solution the new 

placement will unconditionally replace the current one. If it is not 
better, it is accepted with a probability based on the current 
temperature.  The formula used is shown in Equation 1.  The fifth 
and final step decrements the current temperature and breaks out 
of the loop when it reaches the cutoff temperature. 

 

(1) 𝐴𝑐𝑐𝑒𝑝𝑡 = 𝑒
(
𝑛𝑒𝑤𝑆𝑐𝑜𝑟𝑒 −𝑐𝑢𝑟𝑆𝑐𝑜𝑟𝑒

𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
)
< 𝑟𝑎𝑛𝑑𝑜𝑚() 

 

The floor-planner generates an UCF file with the full constraints 
needed for placing the bus macros. The constraints define on what 
slice to place the bus macro and the direction: left to right, right to 
left, top to bottom, or bottom to top. Note that the final solution 
found by the tool does not need to be synthesized again. 

 

5. RESULTS 
We present the relocation time required for different target 

destinations with an eMIPS and MicroBlaze setup. The results 
from the floor-planner for the bus macros follow. 

 

To evaluate the relocation algorithm as it applies to the eMIPS 
processor, we ported the eMIPS design to the ML402 Xilinx 
board using the larger SX35 chip, and we were then able to 
instantiate two Extensions. The port required adding some 

MUXes into each of the pipeline stages for the second Extension, 
and in the bus arbiter. As shown in Figure 1, the following 
modules also required additional signals: pipeline interface, 
monitoring interface, register interface, and memory bus. The 

Table I – Overhead for a second Extension 

Resource 1 Extension 2 Extensions %increase 

Slices 7862 9180 14.4 

Flip-Flops 7977 8025 0.6 

LUTs 13836 15997 13.5 

BRAMs 8 8 0 

DSPs 40 40 0 
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Table II – Relocation Timing Results using eMIPS 

Configuration 
Name 

Size of 
Bit-stream 

(bytes) 
#Frames 
Written 

# FAR 
Commands 

Relocation 
Required 

Bit Reversal 
of Frames 
Required 

Time To 
Reconfigure 

(msec) Bytes/Sec 

Blank 26488 
 

52 
 
 

862 
 
 

N N 83.1045 318731 

Y N 212.528 124633 

Y Y 1488.2942 79971 

MMLDIV64 99528 
 
 

559 
 
 

367 
 
 

N N 312.0913 318907 

Y N 466.6724 213272 

Y Y 1709.111 58234 

LDRET 87888 

 
 

477 

 
 

457 

 
 

N N 275.5942 318904 

Y N 427.4353 205617 

Y Y 1488.2942 59053 

 

Table III – Relocation Timing Results using MicroBlaze 

Size of 
Bit-stream 

(Bytes) 
#Frames 
Written 

# FAR 
Commands 

Relocation 
Required 

Bit Reversal 
of Frames 
Required 

Time To 
Reconfigure 

(msec) BytesPerSecond 

11076 62 22   1.11 9966257 

11076 62 22 X  1.20 9196968 

11076 62 22 X X 3.15 3517765 

11184 64 10   1.12 9971647 

11184 64 10 X  1.19 9392636 

11184 64 10 X X 3.17 3523019 

11616 67 7   1.17 9971647 

11616 67 7 X  1.23 9445131 

11616 67 7 X X 3.31 3509768 

11652 67 9   1.17 9972868 

11652 67 9 X  1.24 9419792 

11652 67 9 X X 3.31 3512527 

 

total area increase for one additional Extension on eMIPS is 
shown in Table I. If the trend shown in the tale continues as we 
scale to more Extensions there will be about a 14% increase in 
slice area requirement for every extension that is added. 

5.1 Bit-stream Relocation 
As an example of the compilation time saved on map and place 
and route, a bit-stream of size 99528 took 28 minutes and 50 
seconds to complete. A bit-stream of size 87888 took 27 minutes 
and 5 seconds to complete. Those savings are multiplied by the 
number of PR regions that we do not need to compile for. The 
times are for a Xilinx ISE 9.2.4.PR7 on a 2.4 GHz Intel Dual core 

processor with 2 gigabytes of RAM. Additional time is saved by 
not generating the bit-stream configuration for the FPGA from the 
place and route netlist. 

To evaluate the bit-stream relocation algorithm we used a number 
of designs and in two different setups for the same ML402 board. 
The first setup uses the eMIPS processor with two Extension 
slots. The second uses a MicroBlaze processor with four 
Extension slots. The first setup emphasizes the case of larger 
designs that must be located off-chip, either in SRAM or in 
FLASH memory. The second setup emphasizes smaller designs 
that can fit in the chip’s block RAMs. Both designs were running 
at a clock speed of 100 MHz. 

The results from relocating different bit-streams on eMIPS are 
shown in Table II. In these measurements, the bit-streams are 
located in the SRAM section of the board, along with the code 

and data buffers for the relocation program itself. As can be 
readily seen comparing Tables II and III, the memory type and 
parameters chosen for a design will impact the latency required to 
relocate the bit-stream. For the eMIPS setup the latency for 
accessing SRAM is five cycles. Using DDRAM would create 
more latency and FLASH would be even worse. At present, 
eMIPS does not use any caches or on-chip memory. This 
penalizes the results in Table II because they include not only the 

time to fetch the bit-stream from SRAM but also the instruction 
fetches and data load/stores. The temporary swap buffer is also 
located in SRAM. 

If the bit-stream does not require any modification the throughput 
achieved is about 318 kilobytes per second. If the bit-stream is 
relocated but does not require a bit reversal of the frames, the 
throughput is generally around 220 kilobytes per second. If the 
bit-stream requires a reversal in the bits in the configuration 
frames, the throughput is about 80 kilobytes per second. 

The reason that the point at 26,488 bytes does not follow the trend 
of the other points is because of the composition of that particular 
bit-stream. This is the blanking bit-stream and it removes almost 
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Figure 8 – History of current solutions at end of iteration. 

 

Figure 9 – History of alternate scores. 

all the routing that was done in the PR region, which results in a 
large number of matching configuration frames. The bit-stream 
issues a large amount of MFWR commands to write the same 
configuration frame to multiple frame addresses. This bit-stream 
therefore contains an unusually large concentration of frame 

addresses relative to its size. For comparison, the bit-stream of 
size 87,888 has only 457 frame address commands compared to 
862 for the blanking bit-stream. This decreases the throughput for 
the relocation with no bit reversal because of the increased calls to 
translate the frame addresses. Similarly, this bit-stream performs 
better than average for the relocation with bit reversal of frames 
because it contains a low concentration of configuration frames 
compared to a bit-stream of size 11,652. This results in reducing 

the penalty of calling the bit-reversal function. The no 
modification throughput for all the different bit-streams is 
approximately the same. This is expected since the algorithm is 
just copying the bit-stream to the ICAP without any modification. 

The results from relocating on the MicroBlaze setup (Figure 3) are 
shown in Table III. In this case, all of the bit-streams, code and 

data buffers are located in BRAM on the chip, which is 32-bit 
wide and accessible in a single cycle. If the bit-stream does not 

require modification the throughput achieved is about 10 
megabytes per second. If the bit-stream is relocated but does not 
require a bit reversal of the frames, the throughput is between 9.2 
to 9.5 megabytes per second. If the bit-stream requires a bit-
reversal of the configuration frames, the throughput is about 1.4 
megabytes per second. 

The ICAP port accepts one write per cycle, and in both 
experiments it was configured in a 32-bit width. Since the designs 
are run at 100 MHz, the maximum achievable throughput is 400 
megabytes per second. The BRAMs provide the same throughput. 
A detailed analysis of exactly how the memory, architecture, and 

especially the software contribute to the reduction from the 
maximum throughput is beyond the limits of this study. 

5.2 Floor-planning of the Bus Macros 
We ran the floor-planner using the eMIPS design, with two 
Extension slots targeted for an SX35 chip. Each PR region 
requires 71 bus macros to communicate with the static region. 
This number of bus macros is large enough for the design space 
exploration, but we make no claim of it being a good 

representative of the average PR design. Other projects using PR 
regions will use more or less bus macros, depending on the 

required amount of communication between the static logic and 
the PR region. For example, the MicroBlaze example with 4 PR 
regions uses 3 bus macros for each PR region.  In the experiments, 
the location of the PR regions was fixed and the timing constraints 
were constants. The initial placement of the bus macros was 

randomly generated. The algorithm ran a total of 280 iterations. 
We used two different PR designs for the timing analysis. The 
first design was the load/return Extension which would be 
impacted by the placement of the memory interface bus macros. 
The other design was the mmldiv Extension because it covered all 
the bus macros that the load/return Extensions did not use. The 
time required for ngdbuild, map, place and route of the two 
designs was about 6-8 minutes with normal effort for place and 

route. The algorithm therefore takes about 10 minutes per 
iteration. When using high effort for place and route this time 
doubles. We choose not to use high effort in order to perform 
more iterations, and to only select high effort starting from the 

best placement to better meet timings. All times are for Xilinx ISE 
10.1.02 on a 2.4 GHz Intel Dual core processor with 2 gigabytes 
of RAM. 

The history of the currently accepted solutions is shown in Figure 
8. The full history, including the alternate scores is shown in 
Figure 9.  The results show that there is wide variance between 
the scores depending on how the bus macros are placed. The 
average score in the design space was 175,682 ps.  Different bus 

macro placements have noticeable effects on the timings. The 
worst solution had a total score of 796,915 ps while the best 
solution had a score of 22,964 ps. The original (manual) 
placement for the design had a score of 97,714 ps. The timing 
constraints used can be changed based on the desired optimization 
the user wants the floor-planner to head towards. The original 
placement had a max period for ld/return of 9.902ns and for 
mmldiv of 10.120ns. The best solution found had a max period for 

ld/return of 9.919ns and for mmldiv of 9.611ns. Turning back on 
high effort would yield better results for the timing score. This 
layout has a positive effect on the max frequency that can be used 
in the system. For timing critical designs this tool will help meet 
timing constraints and enable higher frequencies of the design due 
to better placement. 

Figure 10 shows the original placement given for the bus macros 
around the PR region. Figure 11 shows the best placement found 
by the tool. There are no bus macros around the top of the PR 
region because in this design the region is located at the top of the 
chip, leaving no room for placement of any static logic. The bus 
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Figure 11 – Best bus macro placement. 

 

Figure 10 – Manual bus macro placement. 

macro naming convention used in Figure 10 and Figure 11 is I/O, 
macro number, and then 0-n for the number of macros needed for 
the bus width, each macros carrying a maximum of 8 signals. For 
example a 32-bit input bus signal used macros I0-0, I0-1, I0-2, 
and I0-3. A 32-bit output bus signal used macros O3-0, O3-1, O3-

2, and O3-3. In Figure 11, the best solution placement does not 
group the bus signals near each other. This makes it hard to figure 
out the best placement by hand as there is no observable pattern to 
the best layout. For example, in Figure 11 the bus signals for O2 
are on the left, bottom, and upper-right of the chip. This 
demonstrates the challenge the designer would have to face to find 
the best placement and consequently the best timings. Note that 
when using actual bus macros it is necessary to express at the 

HDL level on which side of the PR region the bus macro must be 
located. Each combination then requires manual changes to the 
UCF file. On the other hand, trying to follow the pattern observed 
in Figure 11 for other designs seems impractical.  

6. LIMITATIONS 
The bit-stream relocation program currently does not generate the 

CRC values at the end of the stream. The CRC checker can be 
disabled post-bit-stream generation, or by adding in some options 
with the “POST_CRC*” constraints in the UCF file. Not 
generating a new CRC value for the partial bit-streams had no 
effect on the configuration taking place for the ML401 and 
ML402 boards used for testing. 

The floor-planner currently only handles asynchronous bus 
macros. Adding support for synchronous bus macros requires 
handling flip-flops as well. The tool requires some additional user 
input to identify the bus macros from the UCF file. Currently the 
user must manually update the HDL code with the new directions 

for the bus macros found by the tool. Future work seeks to reduce 
and eliminate these requirements from the user. 

The 280 iterations we ran took 41 hours on a 2.4 GHz Intel Dual 
core processor with 2 gigabytes of RAM. This means that even 
simple changes in the interfaces would require a day or so before 
the new placement of the bus macros is found. This effectively 
limits the use of the placement algorithm to designs that are stable 
enough to be ready for optimization. 

7. CONCLUSIONS 
We have shown that relocatable bit-streams are beneficial in two 
dimensions: they reduce the number of bit-streams stored on a 

deployed system and they save compilation time during 
development. Both savings scale linearly with the number of PR 
regions used in a system.  

We have presented an on-chip algorithm and the corresponding 
tool-flow for performing bit-stream relocation. The algorithm was 
implemented and evaluated in two different architectures, leading 
to different performance numbers. In both cases, the content and 
destination of the bit-stream have the same and very noticeable 
effect on the maximum achieved throughput. The span between 
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maximum and minimum throughput is between a factor of four 
and a factor of seven, depending on the memory system. In all 
cases, the throughput is quite far from the maximum bandwidth of 
the configuration port. 

We have presented a new tool, a floor-planner that finds the best 
placement of the bus-macros along the perimeter of the PR 
regions. To the best of our knowledge, this problem has not been 

addressed before in the literature. We have shown that the 
placement of the bus-macros affects the placement of the static 
logic and thus the best timing achievable by the system. In the 
example shown, the best solution found had a timing score of 
22,964 ps while the worst solution found had a timing score of 
796,915 ps. The floor-planner finds the best placement without 
manual intervention. The best placement has no discernible 
relationship with the placement indicated in the best-practice.  

8. FUTURE WORK 
The following is a list of the remaining avenues for continued 
work in this area. We also present some areas that we explored 
but did not yield the desired results.  

8.1 Relocatable Bus-macro Placement 
If we do not require signals into the PR region to go through 
LUTs, then the timing increase incurred when doing relocation 
could be further reduced. This is because more signals can be 
closer to the static logic instead of being placed farther away 
around the perimeter of the PR region. With relocatable regions 
the bus-macros must be in the same relative placement, which can 
be less than ideal for timing. Quantifying the exact penalties, say 
by comparing with the best floor-planned solution, is an area for 
further study. More analysis can be done on the impact of forcing 

the relative placement between the two relocatable regions. If the 
penalties are significant they would motivate the development of a 
tool for performing partial reconfiguration without the need to use 
LUTs. 

8.2 Analysis of Bit-streams 
The ability to correlate a bit-stream to its function is important to 
ensure that no problems occur when configuring the PR regions. 
Yet the manufacturers are reluctant to disclose the format of the 

bit-stream files. The tools presented in [4] can reverse engineer 
the netlist from the bit-stream. This potentially allows run-time 
modifications and more extensive verification. Future work can 
deal with run-time checking the bit-stream for any potential 
damage before downloading it to the extension. Some previous 
work allowed off-line bit-stream modifications [5]. 

Our results show that a tool that splits the MFWR commands in a 
bit-stream would be beneficial to performance. This is a real 
problem when relocating to an area that spans top-low regions, 
therefore requiring bit-reversal but only for part of the frames. 
There are other opportunities for post-analysis on a bit-stream, 

before installing it on chip. For instance, a bit-stream could be 
compressed to further reduce the space requirement in memory. 
This would add the overhead of decompression software in the 
system but could save space. If the savings are enough that the 
bit-stream can now live in BRAM the net effect on performance 
could actually be positive. Other features in post bit-stream 
analysis could be extracting the size, number of frames, and 
configuration frames contained in the file in an up-front header. 

This would indicate the time required for activating the stream 
considering the different target PR regions. The system software 

scheduler might decide to select a different PR region, depending 
on the time required to activate the bit-stream in the various cases. 

Post-analysis can simplify relocation of a bit-stream to hetero-
geneous regions, by breaking up frames opportunistically. The 
frame address is auto-incremented to the next available frame and 
this can lead to saving in FAR commands. For instance, in the 
case of relocating from a BRAM interconnect (requiring 20 

routing frames) to a CLB (requiring 20 routing frames and 2 
content frames), we need to break up the group of frames 
encompassing the BRAM interconnect to the next resource.  

8.3 Performance of Relocation 
We implemented our relocation algorithm in C, for two different 
processors and different hardware configurations. The results are 
strikingly different and warrant more study on exactly what is the 
memory impact, instruction impact, and architecture impact for 

the relocation times. This would be helpful in evaluating when to 
use relocation and when not to. Precise, full-system simulation 
and detailed part-information can lead to precise modeling of the 
process and the collection of data that is verified against the 
working systems. 

The common case that requires only frame address modifications 
can be handled in hardware. This is the idea in BiRF, REPLICA, 
and pBITPOS. The hardware module would result in much faster 
reconfiguration times and lower overhead, at a small price in area. 
When used in connection with the ideas previously described for 
post-analysis, the module could be extended to support 
heterogeneous PR regions as well. 

The main advantage of a hardware relocation module is in 
decreasing the time to bit-reverse a frame. Bit-reversal is a simple 

wiring matter in hardware and the algorithm could proceed at full 
wire-speed. The hardware implementation would also reduce the 
over-head in computing the adjustment to the frame addresses. 

8.4 Relocating to Mirror PR regions 
We abandoned the idea of creating relocatable PR regions that are 
mirror images of each other. The idea was to place the bus-macros 
of one PR region on the right side, and the bus-macros of the other 
region on the left side. The signals from the static region would be 

routed in the center area between the two regions, saving in 
routing resources and leading to better timings. Relocation would 
require changing the bit-stream in just a few basic places, say to 
make it route “left” instead of routing “right”. Possibly this would 
affect only the short, long, hex wires outside the Switch Box, 
Slices, etc. Since the manufacturer does not provide that 
information, this process would involve figuring out the bit 
position of those routed lines through some automated testing 

process, for instance via xdl2ncd and then ncd2bit. Then the bit-
stream would be parsed to find out the difference. An issue 
brought up beyond the mere routing is the possible change in the 
RC characteristics of the resulting circuit, which would result in 
different timings and possibly incorrect behaviors. 

8.5 Manipulation of LUT data 
The extendible bit-streams used in eMIPS are Extensions to the 
base data path; they recognize specific instructions and take over 

execution when the instructions appear in the I-stream. It would 
be beneficial to be able to change the opcode at run-time, so that 
one Extension could recognize an arbitrary opcode rather than just 
the one selected at design time. In principle, this requires a simple 
change to the content of selected LUT(s) to replace one six-bit 
value with a different one. It turns out that identifying the relevant 
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LUTs that compare the opcode is troublesome. We need a lot of 
chip-specific information at run-time just to know what frame we 
are currently at. Then we need to get the offsets of the LUTs in 
the frame. The .ll file can do this, but only for the LUTs in Slice 
M (i.e. must set it up in RAM/ROM mode). It would therefore 

seem that only the ncd file can tell us where those specific LUTs 
are located. If we cannot deduce that information from the bit-
stream it means that we have to trust the bit-stream blindly, which 
is not ideal.  

We tried to identify exactly what INIT values to send to a LUT to 
change its function. The problem that we encountered was that the 
inputs to the LUTs are rearranged into a different order, even for 
small differences. This allows the fastest throughput through the 
circuit as not all inputs are equal in delay. This makes it harder to 
correlate a LUT’s value with the value found in the bit-stream. 

8.6 Floor-planning of Bus-Macros 
The tool we built has a relatively high cost in execution time. 
Lowering this cost would make it more widely usable and/or 
allow us to use a larger number of designs to find the best 
placement. One idea for creating a faster method in the common 
case of homogeneous regions is as follows. Rather than working 
at the UCF level, start at the Verilog level. One immediate 
advantage over our approach is that there is more freedom in 
selecting which signals are grouped into a bus macro, because we 

no longer operate at the granularity of a LUT. We can create an 
area group constraint around the boundary of the PR region. The 
Xilinx tools run post place and route. The routed file is converted 
back to XDL. The automated tool uses the XDL file to create the 
bus macros and slice locations. This requires a single iteration and 
should immediately get a good placement for the bus macros. 
When used on different designs that target the same PR region the 
issue is then to match the bus-macro locations across all regions. 

If we allow complete freedom in grouping signals into bus 
macros, the optimal placement will likely create bus macros that 
carry both input and output signals. This is not currently 

supported and requires the creation of new bus-macros, for 
instance using the tools described in[6]. Further work is also 
needed to add support for synchronous bus macros. 

It was suggested that we try to group even more signals together 
in the floor-planner tool. For instance, when placing the bus-
macros for a 32-bit bus it might be advantageous to group signals 
at more than the LUT granularity. As shown in Figure 11, the best 
placement does not actually group bus signals together. This 
discourages the idea that better results would be obtained by 
keeping them together as they did not tend to cluster near each 

other in the best placement found by the tool. Work is needed to 
prove or disprove this point. 

8.7 Simulated Annealing 
We can improve on the simulated annealing algorithm used in the 
floor-planner. One idea is to make alterations at the single signal 
granularity rather than at the bus-macro granularity. This would 
allow greater flexibility in finding the adjustment closest to the 
optimal solution. 

We can try different number of swaps per iteration as well as 
different initial and cutoff temperatures. The goal is to reach a 
closer approximation of the optimal solution in a shorter time. We 

can also scale down the number of swaps performed in a step, 
based on the current temperature. For instance, a smaller number 
of swaps at lower temperatures might improve the final score. 

It might turn out that the best choice for how many swaps and the 
initial and cutoff temperatures are dependent on some general 
properties of the designs used by the user. If that is the case the 
tool should become more flexible for greater applicability. 

8.8 PR Region Placement 
We have assumed that the location of the PR region was an input 
to the bus-macro placer. This is often not the case and designers 
select that placement in an arbitrary way too. An important 
addition to the tool flow is therefore a tool to find the best location 
for the relocatable regions. The tool would be run first to 
determine the best on-chip placement for the PR region, then the 
bus macro floor-planner. The ideas presented in [16] could select 
the optimal area, but making sure we only find areas that are 
easily relocatable to each other. 

8.9 Virtex-5 Relocation and Bus Macros 
Our work so far has been restricted to the Virtex-4 FPGAs. We 
have used two LUTs and LOC constraints in the UCF file to 
automatically place the bus-macros. Reference [6] shows an 
alternative approach, namely using XDL to create the Xilinx bus-
macros. Future work could be creating new bus-macros for the 

Virtex-5 FPGA in order to extend our tool to that chip. Additional 
work using this approach could assure that routing in/out of the 
PR region is coherent among all the different PR regions. 

8.10 Arcs.Exclude Format 
The process described in [11] allows static routing in the PR 
region. We have explored the idea of combining the static routing 
restrictions from different PR regions into a single target PR 
region. We would use the arcs.exclude file that is part of the 

Xilinx flow to enforce the restrictions. Unfortunately, the format 
of that file is also not documented and it does not follow an easily 
recognizable logic. This makes it impossible to relocate the 
excluded routed lines from one PR region to another PR region.  
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