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Abstract – We consider the binary consensus problem
where each node in the network initially observes one of
two states and the goal for each node is to eventually
decide which one of the two states was initially held by the
majority of the nodes. Each node contacts other nodes and
updates its current state based on the state communicated
by the last contacted node. We assume that both signaling
(the information exchanged at node contacts) and memory
(computation state at each node) are limited and restrict
our attention to systems where each node can contact
any other node (i.e., complete graphs). It is well known
that for systems with binary signaling and memory, the
probability of reaching incorrect consensus is equal to the
fraction of nodes that initially held the minority state. We
show that extending both the signaling and memory by
just one state dramatically improves the reliability and
speed of reaching the correct consensus. Specifically, we
show that the probability of error decays exponentially
with the number of nodes N and the convergence time
is logarithmic in N for large N . We also examine the
case when the state is ternary and signaling is binary. The
convergence of this system to consensus is again shown
to be logarithmic in N for large N , and is therefore
faster than purely binary systems. The type of distributed
consensus problems that we study arises in a variety
of applications including those of sensor networks and
opinion formation in social networks – our results suggest
that robust and efficient protocols can be built with rather
limited signaling and memory.

I. INTRODUCTION

A. Problem and Motivation

The binary consensus problem is the following – Given
a network where each node initially observes one of two
states, 0 or 1, how to construct a robust distributed protocol
which ensures that the nodes reach the right consensus, i.e.,
the majority observation at the start of the protocol. We are
interested in the binary consensus problem when there is a
limitation on the memory and the communication between the
nodes of the network. In particular, we analyze two protocols
for the binary consensus problem. In both the protocols, we
restrict the nodes to store one of three values 0, 1 and e.
In the first protocol, we restrict the signaling to be ternary,
i.e, a node can communicate only one of three states, and
in the second, we consider the case when the signaling is
binary. We call the two protocols respectively, the ternary
signaling and the binary signaling protocol. The extra state e
corresponds to an “undecided” state where the node is unsure
of the majority value. This state can also be thought of as an
extra quantization level which corresponds to the averaging
of a 0 and a 1. In [18], the authors also introduce nodes
with an “undecided” state, but only in the beginning of the
protocol execution. The dynamics of the two protocols that we
propose are very different from the dynamics in [18]. We are
interested in characterizing our two protocols with respect to
error probability of final consensus and convergence rate. Our

results are for the case when the underlying graph is complete
– analysis for general graphs is of interest but is out of the
scope of this paper and is left for future work.

The distributed binary consensus problem arises in several
applications. For instance, consider a ranking application in
networks where each node has personally ranked two items.
A node can observe from some other node how this node has
ranked the items at current time, which again depends on the
observations of this encountered node from other nodes. The
objective is to get all the nodes to agree on the rank of the
item based on the initial majority opinion. Other examples are
sensor networks where the binary observations could be some
state of nature, or social networks, where the observations
reflect an opinion held on some recently released media item
(video or audio or piece of news), when this opinion as well as
the media item is displayed on publicly accessible web pages.
The protocol with binary signaling is not only of technical
interest to understand the performance under even further
limited information exchange, but is of interest also from
a practical stance. For example, in our ranking application
scenario, note that the nature of the application may well be
such that each node can only signal one of two states, e.g. each
node must display one of two media items. The user may be in
the “indifferent state” e with respect to both items but will still
have to display one of the media items in her profile page and
thus signal a preference for this media item to other nodes. In
the ternary model, the user could have signalled indifference to
other nodes through an appropriate display that indicates state
e (e.g. show both videos or show equal preference scores).

B. Related Work

One approach for binary consensus is the voter model,
where at a sampling instant, a node picks up the opinion of a
randomly chosen neighbouring node. At any given time, nodes
store binary values and communicate binary observations. The
voter model has been extensively studied in the context of
infinite lattices [13], finite graphs [6], [1], [7], heterogenous
random graphs [16] and social networks [18]. While the
voter model guarantees consensus, the probability of incorrect
consensus is a constant bounded away from zero depending on
the initial fraction (and location) of the minority observations
– “the proportional agreement” [7]. However, the voter model
is economical with respect to memory and signaling.

At the other extreme, if there are no memory or signaling
constraints, any robust averaging algorithm would guarantee
reliable consensus. Indeed, the average value of the initial
observations indicates the majority observation. Various ap-
proaches to averaging have been analyzed, such as gossip
based algorithms [3] and belief propagation [14]. These av-
eraging protocols requires that real values be stored and
exchanged between nodes. This appears to be an excessive
overhead when the observations are binary and the objective
is to obtain the majority observation.

More recently, in the context of averaging algorithms, the
effects of quantization of the values exchanged between nodes
has been studied [8],[5]. In [5], the quantized algorithm
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guarantees consensus, in that the nodes agree on a final value.
However the algorithm does not preserve the average at every
step. Bounds on the error between the final consensus value
and the initial average are provided as a function of the
number of quantization levels. In [8], randomized gossip-
type quantized averaged algorithms are studied under the
assumption that the initial observations are integer values.
However, the algorithms preserve the average of the initial
observations, and the consensus attained is approximate, i.e.,
the final readings can differ by 1.

In binary distributed hypothesis testing (distributed detec-
tion), nodes observe a binary hypothesis through independent
noisy channels and communicate with each other in a rate
constrained manner, the objective being that one or several
nodes should agree on a reliable estimate of the hypothesis.
Binary detection is related to the consensus problem in two
ways. On one hand, one can derive a distributed detection
scheme by first applying locally optimal detection rules to
map the observation of each sensor node into an estimate
of the hypothesis, and then running a consensus protocol to
disseminate the majority estimate to all the nodes. On the
other hand, the binary consensus problem can be viewed as
a particular distributed detection problem, where the channel
for the observations is a binary symmetric channel which flips
the binary hypothesis with a given probability. All nodes are
required to reliably construct the hypothesis. However, to our
knowledge, such binary channels have never been considered
in the distributed detection literature. See [17] and [2] for a
survey of this research area.

Our work also relates to hypothesis testing with limited
memory considered in [11] – Given a sequence X1, X2, . . .
of i.i.d. Bernoulli random variables with unknown mean p,
the goal is to identify, in which of given m disjoint intervals
that cover the interval [0, 1], the parameter p lies. Limited
information can be stored about the sequence {X}i1 at any
time i. It was found that to identify the correct hypothesis
with diminishing probability of error with the number of
samples, it is necessary and sufficient to maintain m+1 states.
Hence, for binary hypothesis testing, 3 states are sufficient.
Our problem is different as we consider a dynamical system
where observations are taken from other nodes in the network
and thus not necessarily i.i.d.

Our work also relates to diffusion of innovations and
cascading, which is one of the central questions in social
sciences and of interest in a number of on-line settings. The
specific question is that of understanding how an initial idea
or behavior attains wide adoption across the network – see
[10] for a survey of results and models.

In summary, to the best of our knowledge, the problem
studied in this paper has not been addressed previously and
the results that we establish appear novel.

C. Summary of our Results

We show that adding one extra state increases both the
reliability and the speed of reaching the correct consensus.
We show that if α is the initial fraction of nodes observing

the majority value, then, under the ternary signaling protocol,
the probability of reaching the false consensus decays expo-
nentially with rate N log 2(1 − H(α)) (Corollary 1). Here,
N is the number of nodes and H(·) is the binary entropy
function. This result is in contrast to previous quantized
algorithms, where reliable binary consensus is only possible as
the number of quantization levels gets large. When N is large,
the convergence time is shown to be (Theorem 2) logarithmic
in the number of nodes in the network. This result says that to
reach consensus, a node need not sample all the other nodes
in the network. It suffices for the node to sample, uniformly
at random, a logarithmic number of nodes. In [9], it is shown
that the convergence of a gossip-type averaging algorithm is
logarithmic in the number of nodes on a complete graph. Thus,
our results show that on a complete graph, three states are
sufficient to obtain a convergence as fast as for real-valued
states. For binary signaling, we show (Theorem 4) that the
error probability is no worse than the classical voter model
but is worse (Corollary 2) than ternary signaling by a factor
that increases exponentially with N . For large N , we show
(Corollary 3) that the convergence time under binary signaling
is slower by at least a factor 2 than ternary signaling. However,
we establish (Corollary 3) that this slow-down is no worse than
a factor 3. While we are not able to obtain an exponential
upper bound on the error probability under binary signaling,
our simulation results indicate that even under binary signaling
the error probability may be decaying exponentially.

The organization of the paper is as follows. Section II gives
the preliminaries, Section III analyzes the ternary signaling
protocol while Section IV analyzes the binary signaling pro-
tocol. Section V compares the analysis with simulations and
is followed by the conclusion in Section VI.

II. PRELIMINARIES

Consider an undirected graph G = (V, E) where V is
the set of vertices and E is the set of edges. Let vector
X(0) = [X1(0), . . . , XN (0)]> represent the vector of binary
0, 1 observations Xi(0) observed by node i. Let

X̂(0) =

{
0 1

N

∑N
i=1Xi(0) ≤ 0.5

1 1
N

∑N
i=1Xi(0) > 0.5

represent the majority of the initial observations at the nodes.
Our goal is to construct a reliable distributed protocol with
minimal communication and memory overhead that computes
the majority X̂(0) at each node.

We use the asynchronous time model defined in [3]. Each
node has a clock which ticks at the times of a rate 1 Poisson
process. The inter-tick times at each node are rate 1 exponen-
tials, independent across nodes and over time. Equivalently,
this corresponds to a single clock ticking according to a rate
N Poisson process at times Zk, k ≥ 1 , where {Zk+1 − Zk}
are i.i.d. exponentials of rate N . At time Zk, a node i chosen
uniformly at random from V contacts a neighbouring vertex
j, again chosen at random and updates its value based on the
signal received from j.
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Throughout the paper for two sequences aN and bN we
write aN ∼ bN , large N , meaning that aN/bN tends to 1 as
N tends to infinity. Also, U and V denote the number of nodes
that are in state 1 and 0, respectively, while u = limN→∞

U
N

and v = limN→∞
V
N denote the asymptotic fraction of the

nodes that are in state 1 and 0, respectively.

III. TERNARY SIGNALING

The ternary signaling model corresponds to the following
two constraints, respectively, on the communication and the
state at every node in G.
• Communication is ternary – a node can communicate

only one of three states to its neighbouring node.
• State is ternary – a node can store only one of three states.
Our protocol under this model is the following – At any

time, a node can store one of three values 0, 1 or e. The value
e implies that the node is undecided about the majority value.
Let U ,V and S represent, respectively, the set of nodes storing
0, 1 and e. If a node in U (resp. V) contacts a node in U ,S
(resp. V,S), then it does not update its value. If a node in U
(resp. V) contacts a node in V (resp. U), it updates its value
to e(resp. e). If a node in S contacts a node in U (resp.V),
then it updates it’s value to 1 (resp. 0).

A. System Dynamics
We describe the dynamics for a general graph G. Let Ui = 1

if node i is in state 1 and Vi = 1 if node i is in state 0.
We encode the state e by Ui = Vi = 0. Let p(i, j) ≥ 0 be
given for each node pair i and j. At a sampling instance, a
node i samples node j with probability p(i, j). The state of
the system evolves according to the continuous-time Markov
process (U,V) specified by the transition rates:

(U,V)→


(U + ei,V) : (1− Ui − Vi)

∑
j p(i, j)Uj

(U− ei,V) : Ui

∑
j p(i, j)Vj

(U,V + ei) : (1− Ui − Vi)
∑

j p(i, j)Vj

(U,V − ei) : Vi

∑
j p(i, j)Uj ,

where ei is a vector of dimension N with all coordinates
equal to 0 but the i-th coordinate equal to 1.

We now focus our analysis of the ternary signaling protocol
on the complete graph with N nodes. In particular, we choose
p(i, j) = 1/N , for all i, j ∈ 1, . . . , N . Let U =

∑
i Ui and

V =
∑
i Vi. We then have that (U, V ) is a continuous-time

Markov process specified by the transition rates

(U, V )→


(U + 1, V ) : (N − U − V )U/N
(U − 1, V ) : UV/N
(U, V + 1) : (N − U − V )V/N
(U, V − 1) : V U/N

(1)

Note that this is a Markov process on finite state space
SN , {(U, V ) ∈ IN2

+ : U + V ≤ N} and it therefore
terminates in one of the absorbing states (N, 0) or (0, N).
Above and hereafter, (U, V ) sometimes denotes the random
process (U(t), V (t)), and sometimes a deterministic value
taken by the random process. The meaning should be clear
from the context.

We are interested in the probability of error of our ternary
signaling protocol for the complete graph as well as the

expected time to convergence. The two quantities are examined
in the following two sections.

B. Probability of Error

For any (U, V ), define

fU,V , IP((U(t), V (t)) = (N, 0) for some t ≥ 0
|(U(0), V (0)) = (U, V )).

(2)

From (1), using the first-step analysis [4] we have that fU,V
satisfies the following recursion:

(εU + εV + 2UV )fU,V = εUfU+1,V + UV fU−1,V

+ εV fU,V+1 + UV fU,V−1 (3)

where ε = N −U − V . The boundary conditions of fU,V are
given by f0,V = 0 for V ≥ 1 and fU,0 = 1 for U ≥ 0.

An error occurs when the protocol converges to the false
consensus i.e., U(0) > V (0) and (U(t), V (t)) hits (0, N) or
vice versa. i.e., U(0) < V (0) and (U(t), V (t)) hits (N, 0).
Without loss of generality, we focus on the case U(0) < V (0),
for which fU,V is the error probability. Note that by the
symmetry of the protocol, fU,U = 1

2 for U = 1, . . . , bN2 c.
The following theorem provides the solution to fU,V and

thus establishes an exact expression for the error probability.

Theorem 1. The solution to (3) when V > U is given by

fU,V =
1
2

U∑
j=1

aU,V (j)
2(U−j)+(V−j) (4)

where

aU,V (j) =
V − U

(U − j) + (V − j)

(
(U − j) + (V − j)

(U − j)

)
. (5)

The proof is in the appendix. It turns out that fU,V satisfies
a recursion for the error probability of the auxiliary Markov
process (X,Y ) specified by the transition probabilities

(X,Y )→
{

(X,Y − 1) : 1
21{Y >0}

(X − 1, Y ) : 1
21{X>0}

with the same boundary conditions. This recursion is solved
by a path counting argument using the Ballot theorem [15].

Theorem 1 implies that for a large number of nodes N with
initial state (U, V ) such that (U, V ) scales linearly with N , we
have that the error probability fU,V decays exponentially with
N . The rate of this decay is given in the following corollary.

Corollary 1. Let the initial state (U, V ) be such that there
exists α ∈ (1/2, 1] for which (U, V )/N → (1 − α, α) as N
tends to infinity. We have

1
N

log2 fU,V ∼ − [1−H(α)] , large N,

where H(x) is the entropy of a binary random variable with
mean x.1

Therefore, the probability of error decays exponentially with
N at a rate which depends on the portion of nodes α that

1I.e. H(x) = −x log2(x)− (1− x) log2(1− x) for x ∈ [0, 1].
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hold the initial majority opinion. This is in sharp contrast to
the classical voter model for the complete graph where the
probability of error is a constant (1 − α) and is independent
of N . Thus, the addition of a state e into the communication
has the effect of making consensus far more robust.

The next section examines the speed of convergence of the
ternary protocol.

C. Convergence Time

In contrast to the previous section, where the analysis is
done for finite N , in this section we examine the rate of
convergence of the protocol in the asymptotic setting, i.e.,
for large N . At time t, there are U(t) nodes in state 1,
V (t) nodes in state 0, and S(t) nodes in state e. We have
U(t) + V (t) + S(t) = N for all t ≥ 0.

Define the scaled state uN (t) = U(t)/N , vN (t) = V (t)/N ,
and sN (t) = S(t)/N . The Markov process (U, V, S) is a den-
sity dependent Markov jump process, so by the known conver-
gence result by Kurtz [12], we know that under the assumption
that (uN (0), vN (0), sN (0)) goes to a fixed (u(0), v(0), s(0)),
then (uN (t), vN (t), sN (t)) uniformly converges on any com-
pact time interval to (u(t), v(t), s(t)), given by the system of
ordinary differential equations:

du(t)
dt

= u(t)s(t)− u(t)v(t)

dv(t)
dt

= v(t)s(t)− v(t)u(t)

ds(t)
dt

= 2u(t)v(t)− s(t)(u(t) + v(t)).

As s(t) = 1− u(t)− v(t), it suffices to consider:

du(t)
dt

= u(t)(1− u(t)− 2v(t)) (6)

dv(t)
dt

= v(t)(1− v(t)− 2u(t)). (7)

Theorem 2. The system (6)–(7) has the following properties:

1) If u(0) < v(0) [resp. u(0) > v(0)] then
(u(t), v(t), s(t)) goes to (0, 1, 0) [resp. (1, 0, 0)].

2) If u(0) = v(0), then (u(t), v(t), s(t)) goes to ( 1
3 ,

1
3 ,

1
3 ).

3) The time t to reach (u(t), v(t)) is given by

t = log
(

(v(t)− u(t))3

u(t)v(t)

)
− log

(
(v(0)− u(0))3

u(0)v(0)

)
4) For v(0) > u(0), the time t(N) to reach (u(t), v(t)) so

that u(t) and 1− v(t) are order 1/N is such that

t(N) ∼ logN, large N. (8)

Item 4 tells us that the convergence time is logarithmic in
the number of nodes N with multiplicative constant 1.

While we established good properties for the ternary proto-
col with respect to the error probability and convergence time,
we point out that these established results are for complete
graphs. In the following, we give an example of a graph for
which the ternary protocol provides no additional benefits over

the voter model with respect to either the error probability or
the convergence time.

Consider a line graph. Suppose that the initial observations
at the nodes are given as: The first U nodes from the left
observe 1 and the remaining V = N − U nodes observe
0. The graph and the initial observations at the nodes are
illustrated in Figure 1. It can be shown that the dynamics
of ternary signaling parallels that of the classical voter model.
The probability of false consensus is a constant (given by U

N if
the nodes observing 0 are in a majority) and the convergence
time is quadratic in N . The detailed proof is in Appendix
VII-H.

1 0

1 2 U U + 1 N − 1 N

Fig. 1. Initial state on the line graph.

IV. BINARY SIGNALING

So far, we showed that for complete graphs, increasing the
computation and signaling state from binary to ternary yields
significant improvements for both the error probability and the
convergence time. However, it is a priori unclear whether this
benefit is because of augmenting both the computation state
and the signaling or just the state. In this section, we study the
improvements that are achieved if only the computation state
is ternary and the signaling remains binary. Our protocol under
this model is the following – as in Section III, a node can store
one of three values 0, 1 or e. Signaling, however, is binary,
i.e., nodes are only allowed to display one of two values 0 or
1. If a node in state 0 (respectively 1) is contacted by another
node, it displays its state. If a node in state e is contacted by
another node, it draws one of the values {0, 1} at random (with
uniform probabilities) and displays that value. The updating
rules are as in Section III, i.e., if a node in state 0 (respectively
1) contacts a node that displays a 1 (respectively a 0), then the
contacting node changes its state to e. If the contacting node is
in state e, it changes its state to the displayed value. Otherwise,
the state of the contacting node remains unchanged.

A. System Dynamics

It can be readily checked that the system dynamics are
fully described by the Markov process (U, V ) specified by
the transition rates:

(U, V )→


(U + 1, V ) : 1

2 (N − U − V )(1 + U−V
N )

(U − 1, V ) : 1
2U(1 + V−U

N )
(U, V + 1) : 1

2 (N − U − V )(1 + V−U
N )

(U, V − 1) : 1
2V (1 + U−V

N ).
(9)

Note that this is a Markov process on a finite state space
SN , {(U, V ) ∈ IN2

+ : U + V ≤ N} and it therefore
terminates in one of the absorbing states (N, 0) or (0, N). We
are interested in the probability of error of the binary signaling
protocol for the complete graph as well as the expected time of
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convergence. The two quantities are examined in the following
two sections.

B. Probability of Error

Let fU,V be defined as in (2). From (9), using first-step
analysis, one can show that fU,V satisfies[

(U + ε)
(
V +

ε

2

)
+ (V + ε)

(
U +

ε

2

)]
fU,V

= U
(
V +

ε

2

)
fU−1,V + V

(
U +

ε

2

)
fU,V−1 (10)

+ε
(
U +

ε

2

)
fU+1,V + ε

(
V +

ε

2

)
fU,V+1

where ε , N − (U + V ) with the boundary conditions given
by fU,U = 1

2 for U ∈ {0, . . . , N2 }, f0,N = 0, and fN,0 = 1.
As before, fU,V gives the error probability when U < V . The
following theorem provides a lower bound on fU,V .

Theorem 3. The solution to (10) for V > U satisfies fU,V ≥
pV−U where

pV−U =
1
2

∑2N−1
i=N+V−U

Ni

i!∑2N−1
i=N

Ni

i!

. (11)

The lower bound decays exponentially with N with rate
specified in the following.

Corollary 2. Let the initial state (U, V ) be such that there
exists α ∈ (1/2, 1] for which (U, V )/N → (1 − α, α) as N
tends to infinity. We have

1
N

log(pV−U ) ∼ − [1− 2α(1− log(2α))] , large N. (12)

The function 1−2α(1− log(2α)) is increasing convex with
α on [1/2, 1] (as the derivative 2 log(2α) is increasing with
α) and we have

0 ≤ 1− 2α(1− log(2α)) ≤ 2 log 2− 1 ≈ 0.3863.

For the ternary signaling protocol, we established that the
decay rate of the error probability was a(α) = [1−H(α)] log 2.
If we let b(α) = 1− 2α(1− log(2α)), then it can be checked
that the difference a(α)− b(α) is increasing in α and

0 ≤ a(α)− b(α) ≤ 1− log 2.

In summary, for any fixed fraction V/N > 1/2, the gap
between the error probabilities under binary signaling and
ternary signaling is exponentially large.

We are not able to prove an upper bound to the error
probability that is exponentially decaying in N . However, we
can show the following:

Theorem 4. For V ≥ U , fU,V ≤ U
N .

The above theorem says that binary signaling is at least as
reliable as the classical voter model. The proof follows by
considering the recursion (10) only on the line U + V = N
and showing that the probability of reaching (N, 0) (when

restricted to this line) upper bounds fU,V . The detailed proof
can be found in Appendix VII-I.

C. Convergence Time
As in the analysis of the convergence time for the ternary

signaling protocol in Section III-C we consider the asymptotic
behaviour of the system for a large number of nodes N . The
limit dynamics are given by the following system of ordinary
differential equations:

du(t)
dt

=
1
2
(
(1− v(t))2 − (1 + v(t))u(t)

)
(13)

dv(t)
dt

=
1
2
(
(1− u(t))2 − (1 + u(t))v(t)

)
. (14)

Let z = u+ v and w = v − u. By simple calculus,

d

dt
z(t) = 1− 3

2
z(t) +

1
2
w(t)2 (15)

d

dt
w(t) =

1
2

(1− z(t))w(t). (16)

An interesting observation is the following:

Proposition 1. For the system (13)–(14), the initial majority
remains the majority forever.

Proof: The result follows by noting the fact z(t) ≤ 1,
for all t ≥ 0, thus from (16), the sign of w(t) = v(t) − u(t)
remains unchanged for all t ≥ 0.

We are not able to provide an exact derivation of the
convergence time for this system. However, the following
theorem and its corollary give lower and upper bounds, both
of the same order as in ternary signaling. The proofs are given
in the appendix.

Theorem 5. The solution (u(t), v(t)) of the system (13)–(14)
satisfies:

1) For any initial point (u(0), v(0)) such that v(0) > u(0)
we have that for a finite t0 ≥ 0, and all t ≥ t0,

u(t) ≥ (1− v(t))2

1 + v(t)
(17)

u(t) ≤ 3
2

+ v(t)− 1
2

√
1 + 24v(t). (18)

2) Time lower bound: for any t ≥ t0,

t− t0 ≥ log

(
v(t0)

v(t)

(
3v(t)− 1

3v(t0)− 1

) 8
3
(

1− v(t0)

1− v(t)

)2
)

.

(19)
3) Time upper bound: for any t ≥ t0,

t− t0 ≤ 3 log

(
(v(t)− u(t))2

(v(t0)− u(t0))2
1− (v(t0)− u(t0))2

1− (v(t)− u(t))2

)
.

(20)

Corollary 3. From any initial point (u(0), v(0)) such that
v(0) > u(0) we have that the time t(N) for (u(t), v(t)) to
reach the state such that u(t) and 1− v(t) are of order 1/N
satisfies

2 log(N) +A ≤ t(N) ≤ 3 log(N) +B, large N (21)
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Fig. 2. Plot of log fu,v versus the number of nodes N for binary signaling
with (u(0), v(0)) = (0.45, 0.55). The exponent of the error probability
corresponds to the slope. Confidence intervals are for 95% of confidence.

where A and B are constants that depend on the initial point
(u(0), v(0)) but not on N . If the initial point (u(0), v(0))
satisfies the inequalities (17)–(18), then we can set,

A = log

v(0)(1− v(0))2(
3v(0)−1

2

) 8
3

 (22)

and

B = 3 log
(

1− (v(0)− u(0))2

2(v(0)− u(0))2

)
. (23)

We established that the binary protocol is slower than the
ternary protocol by at least a factor 2 for large complete
graphs. We also established that this slow-down is by at most
a factor 3. In the next section, we provide numerical results
that validate our convergence time analysis for the ternary and
binary signaling protocol.

V. NUMERICAL RESULTS

A. Probability of Error for Binary Signaling

Figure 2 shows the exponent of the error probability of
binary signaling obtained from simulations and also the lower
bound (12). The simulation plot indicates that the probability
of error for binary signaling decays exponentially with N , but
with slower rate than that of the lower bound (12).

The simulations confirm that (12) is an asymptotic lower
bound. Note that although the lower bound on the error
probability (11) is valid for all N , the approximations used
to get the exponent (12) are valid only for large values of N .
This is visible in Figure 2, where the so-called lower bound
is actually larger than the estimated error probability for N
below 600.
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Fig. 3. Convergence time versus the number of nodes N for binary and
ternary signaling with (u(0), v(0)) = (0.3, 0.7). Confidence intervals are
for 95% of confidence.

B. Convergence Time

Figure 3 shows the convergence time for binary and ternary
signaling and validates (8) and (21). In particular, the simula-
tions confirm that (a) convergence time grows logarithmically
for both binary and ternary signaling, (b) the multiplicative
constant for ternary signaling is 1, and (c) the multiplicative
constant for binary signaling lies between 2 and 3.

VI. CONCLUSION

The binary consensus problem has been studied for com-
plete graphs. It is shown how adding an extra state at the
nodes increases the reliability and speed of consensus. This is
primarily because the resulting mean field equations (6) and
(7) for ternary signaling and (13) and (14) are such that the
state dynamics are steered towards reliable consensus. We are
in the process of studying the performance of the protocols for
more general classes of graphs. Another direction of future
work would be to establish analogous results for the n-ary
consensus problems.
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VII. APPENDIX

A. Proof of Theorem 1

The proof follows from the following two lemmas.

Lemma 1. The solution to (3), for any N ≥ 1, is fU,V given
by

fU,V =
1
2
fU,V−1 +

1
2
fU−1,V (24)

with boundary conditions given by fU,0 = 1 for U ≥ 0 and
f0,V = 0 for V ≥ 1.

Proof: Assume that fU,V satisfies (24) for all (U, V ). We
show that this fU,V also satisfies the recursion (3) with the
same boundary conditions. We do this in several steps. First,
we show by induction that fU,V satisfies the recursion

(U + V )fU,V = UfU+1,V−1 + V fU−1,V+1, (25)

again with the same boundary conditions.
Base case: Let n , U + V = 2. It is easy to check that for
(U, V ) = (1, 1), both (24) and (25) yield f1,1 = 1

2 .
Induction step: Assume that fU,V satisfies (25) for all (U, V )
such that U + V ≤ n − 1. Now, for any (U, V ) satisfying
U + V = n, the induction assumption implies that

(U − 1 + V )fU−1,V = (U − 1)fU,V−1 + V fU−2,V+1

and

(U + V − 1)fU,V−1 = UfU+1,V−2 + (V − 1)fU−1,V .

Summing these two equations, we obtain

UfU−1,V + V fU,V−1 = UfU+1,V−2 + V fU−2,V+1.

Multiplying both sides by 1
2 and adding the same term

U
2 fU,V−1 + V

2 fU−1,V on both sides, we obtain

(U + V )
(

1
2
fU,V−1 +

1
2
fU−1,V

)
=

U

(
1
2
fU,V−1 +

1
2
fU+1,V−2

)
+ V

(
1
2
fU−2,V+1 +

1
2
fU−1,V

)
.

Using (24), we see that the above is equivalent to (25). This
concludes the induction step.

Next, we show that (24) and (25) together imply

(U + V )fU,V = UfU+1,V + V fU,V+1. (26)

This follows by applying the recurrence (24) on the points
(U, V + 1) and (U + 1, V ):

fU+1,V =
1
2
fU,V +

1
2
fU+1,V−1 (27)

fU,V+1 =
1
2
fU−1,V+1 +

1
2
fU,V . (28)

From (25), it holds that

(U + V )fU,V = UfU+1,V−1 + V fU−1,V+1

(a)
= U(2fU+1,V − fU,V ) + V (2fU,V+1 − fU,V )

where (a) follows from (27) and (28). The above rearranges
to (26). The proof of the lemma follows by noting that (3) is
a linear combination of (24) and (26). Since we know fU,V
is a solution to both these recursions, it follows that fU,V is
also a solution of (3).

Lemma 2. For U ≤ V , the solution to (24) is given by (4).

Proof: Recursing successively Eq. (24),

fU,V =
1
2
fU,V−1 +

1
2
fU−1,V

=
1
2

(
1
2
fU,V−2 +

1
2
fU−1,V−1) +

1
2

(
1
2
fU−1,V−1 +

1
2
fU−2,V )

. . .

=
U∑
j=1

cjfj,j +
V∑
j=1

bjf0,j =
1
2

U∑
j=1

cj ,

we note that fU,V can be expressed as a linear combination
of the U + V boundary terms. Since f0,j = 0, we focus on
computing cj . Consider paths on the lattice SN that for any
two sites of SN are defined as a concatenation of downward
and leftward edges between neighbouring sites of SN . It is
easy to check that the coefficient cj is the product of the
number of paths from the site (U, V ) to the site (j, j) that
do not intersect with the U = V line, and 1/2(U−j)+(V−j).
The latter term is due to the accumulation of the 1

2 factor while
applying the recursion successively. The number of such paths
is given by the Ballot theorem [15]. Indeed, let the number of
ballots given to candidate 1 and candidate 2 be V −j and U−j,
respectively. The number of paths that do not intersect the
U = V line until the point (j, j) is equivalent to the number
of permutations for which candidate 1 is ahead of candidate 2
throughout the counting of ballots. It follows from the Ballot
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theorem that the number of such permutations is

(V − j)− (U − j)
(V − j) + (U − j)

(
(V − j) + (U − j)

(V − j)

)
=

V − U
(U − j) + (V − j)

(
(U − j) + (V − j)

(V − j)

)
.

The result follows.

B. Proof of Corollary 1

Let x = j/N , V = αN , and U = (1− α)N . From Eq. (5)
and Stirling’s approximation, we have

1
N

log
(
aU,V (j)2−((U−j)+(V−j))

)
∼ 1

N
log
(

(1− 2x)N
(α− x)N

)
− (1− 2x), large N

∼ −ν(x), large N

where
ν(x) , (1− 2x)

[
1−H

(
α− x
1− 2x

)]
.

By the principle of the largest term, we have

1
N

log2 fU,V ∼ − min
x∈[0,1−α]

ν(x), large N.

It is readily checked that ν(x) is increasing on [0, 1−α] hence
it achieves minimal value at x = 0. The result follows.

C. Proof of Theorem 2

Subtracting (6) from (7), we have

d((v(t)− u(t))
dt

= (v(t)− u(t))(1− u(t)− v(t)) (29)

The relation (29) says that the difference v(t) − u(t) is
increasing with t. Therefore the initial majority is the final
majority. (29) can equivalently be written as

d log(v(t)− u(t)) = (1− u(t)− v(t))dt (30)

Furthermore, (6) and (7) can be written, respectively as

d log u(t) = (1− u(t)− 2v(t))dt (31)
d log v(t) = (1− v(t)− 2u(t))dt (32)

Adding (31) and (32), we get

d log u(t)v(t) =
(
2− 3(u(t) + v(t))

)
dt (33)

Integrating (30) and (33) from 0 to t and rearranging, we
obtain ∫ t

0

(
u(x) + v(x)

)
dx = x− log

[
v(x)− u(x)

]t
0∫ t

0

(
u(x) + v(x)

)
dx =

2x
3
− 1

3
log
[
v(x)u(x)

]t
0
.

From the above two identities, we get

t = 3 log
v(t)− u(t)
v(0)− u(0)

− log
v(t)u(t)
v(0)u(0)

.

If t(N) is chosen so that u(t(N)) ≈ 1
N and v(t(N)) ≈ 1− 1

N ,
then for a constant C independent of N ,

t(N) ≈ logN + C.

Finally, when u(0) = v(0), then from the differential
equations, we have u(t) = v(t) for all t ≥ 0 and

du(t)
dt

= 2u(t)(1− 3u(t))

This is a logistic differential equation with the limit point
(1/3, 1/3, 1/3).

D. Proof of Theorem 3

Define K(t) = V (t) − U(t). At every step, the value of
K(t) = K updates to one of K − 1,K,K + 1. The transition
probabilities conditional on K updating to K − 1 or K + 1
are given by

IP(K(t+ 1) = K + 1|(U(t), V (t)) = (U, V ))

=
(U + ε)(V + ε

2 )
(U + ε)(V + ε

2 ) + (V + ε)(U + ε
2 )

IP(K(t+ 1) = K − 1|(U(t), V (t)) = (U, V ))

=
(V + ε)(U + ε

2 )
(U + ε)(V + ε

2 ) + (V + ε)(U + ε
2 )
.

We rewrite the first probability as

IP(K(t+ 1) = K + 1|(U(t), V (t)) = (U, V )) (34)

=
1

1 + (N−K)(N−U)
(N+K)(N−V )

. (35)

For a fixed K, one can check that the above probability is
maximum when (U = 0, V = K).

The probability of error is one-half times the the probability
of reaching the state K = 0 before reaching K = N . We
obtain a lower bound by assuming that the bias towards the
larger K (i.e., K = K + 1) is always maximum. Hence, we
consider a new Markov chain K ′ with transition probabilities

IP(K ′(t+ 1) = K − 1|K ′(t) = K) =
N

2N +K

IP(K ′(t+ 1) = K + 1|K ′(t) = K) =
N +K

2N +K
.

The probability of error pk for this Markov chain satisfies

(2N +K)pK = (N +K)pK+1 +NpK−1, (36)

for K = 1, . . . , N − 1 with boundary conditions p0 = 1
2 ,

pN = 0. The lower bound to fU,V is given by

fU,V ≥ pV−U for U ≤ V.

It can be verified that the solution to (36) is

pK =
1
2

∑2N−1
i=N+K

Ni

i!∑2N−1
i=N

Ni

i!

. (37)
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Fig. 4. The vector field of (13)–(14).

E. Proof of Corollary 2

We consider the asymptotics of pK defined in (37) for large
N where (U, V )/N tends to (1−α, α) for fixed α ∈ (1/2, 1].

From (37),

log(pK) = − log 2 + log
(∑2N−1

i=N+K
Ni

i!

)
−

− log
(∑2N−1

i=N
Ni

i!

)
.

(38)

Now, N i/i! is decreasing with i for N ≤ i ≤ 2N . Hence, by
the principle of the largest term,

1
N

log

(
2N∑

i=N+K

N i

i!

)
∼ 1
N

log
(

NN+K

(N +K)!

)
for large N . By Stirling’s approximation, we have that

1
N

log
(
Nm

m!

)
∼ m

N

(
1− log

(m
N

))
, large N.

Using the last asymptote in (38), we have

1
N

log(pK) ∼ K

N
−
(

1 +
K

N

)
log
(

1 +
K

N

)
, large N.

The result follows by noting that K/N ∼ 2α− 1.

F. Proof of Theorem 5

1) Item 1: Figure 4 illustrates the vector fields
(du/dt, dv/dt) in the region {v > u, v + u ≤ 1}. Item
1 says that after a finite time t0, (u(t), v(t)) lies between the
curves representing the points where, respectively, du/dt = 0
and d(u+ v)/dt = 0.

The claim follows by direct inspection of the vector field of
the system (13)–(14) – see Fig. 4. It suffices to consider only
(u, v) ∈ Ω defined by Ω = {(u, v) ∈ [0, 1]2 : v > u, u+v ≤
1}. Indeed, for the system (13)–(14), if (u(0), v(0)) ∈ Ω,
then (u(t), v(t)) ∈ Ω, for any t ≥ 0. This follows from
Proposition 1. The claim in the theorem says that for any
(u(0), v(0)) ∈ Ω there exists a finite t0 ≥ 0 such that
(u(t), v(t)) ∈ A, for all t ≥ t0, where the set A is defined by

A = {(u, v) ∈ Ω : (1−v)2/(1+v) ≤ u ≤ 3/2+v−
√

1 + 24v/2}.

We first note that if (u(0), v(0)) ∈ A, then (u(t), v(t)) ∈ A,
for all t ≥ 0. To see this, note that at the boundary (1 −

v)2/(1 + v) = u the vector field is such that (d/dt)u = 0 and
(d/dt)v > 0, thus points inwards into the set A. Similarly,
note that the boundary u = 3/2 + v −

√
1 + 24v/2 is the

same as v = f(u), where f(u) , 3/2 + u −
√

1 + 24u/2 at
which the vector field is such that (d/dt)v = −(d/dt)u. It
suffices to show that (d/du)f(u) ≤ −1, for all u ∈ A. The
last inequality is equivalent to u ≤ 1/3, which is indeed true
for u ∈ A. Thus, the vector field also points inwards into the
set A at the boundary u = f(v).

It remains only to show that for (u(0), v(0)) ∈ Ω \ A, we
have (u(t0), v(t0)) ∈ A, for some finite t0 ≥ 0. Recall that
we defined w(t) = v(t) − u(t), and z(t) = u(t) + v(t). We
consider the following cases.

• Case 1: (u(0), v(0)) ∈ B1 where B1 = {(u, v) ∈ Ω :
u ≤ (1 − v2)/(1 + v)}. In this region, we have that
(du/dt) ≥ 0, (dv/dt) ≥ 0. Extend a vertical line upward
(900) and a unit slope 450 line from (u(0), v(0)) until the
lines intersect the curve u = (1− v2)/(1 + v). Let C be
the region enclosed by the two lines and the curve. Since
both u and v are increasing in this region and since v is
increasing more than u, the process is constrained to lie
in C before hitting the set A. Clearly, dz/dt > 0 in C as
the region C is bounded away from the curve v = 3/2 +
u−
√

1 + 24u/2 (at which points, dz/dt = 0). Hence the
time t0 taken to hit the curve u = (1 − v2)/(1 + v) is
upper bounded by

t0 ≤ K1(1− u(0)− v(0))

where K1 <∞ is a constant.
• Case 2: (u(0), v(0)) ∈ B2 where B2 = {(u, v) ∈

Ω : v ≥ (1 − u)2/(1 + u)}. In this region, we
have that (du/dt) ≤ 0, (dv/dt) ≤ 0. Extend a hor-
izontal line leftward (1800) and a unit slope (−1350)
line from (u(0), v(0)) until the lines intersect the curve
v = (1−u2)/(1+u). Let D be the region enclosed by the
two lines and the curve. Since both u and v are decreasing
in this region and since u is decreasing more than v, the
process is constrained to lie in D before hitting the set
A. Clearly, dz/dt < 0 in D as the region D is bounded
away from the curve v = 3/2 + u−

√
1 + 24u/2. Hence

the time t0 taken to hit the curve v = (1− u2)/(1 + u)
is upper bounded by

t0 ≤ K2(u(0) + v(0))

where K2 <∞ is a constant.
• Case 3: (u(0), v(0)) ∈ B3 where B3 = {(u, v) ∈ Ω :

3/2 +u−
√

1 + 24u/2 ≤ v ≤ (1−u)2/(1 +u)}. In this
region, we have that (d/dt)u ≤ 0 ≤ (d/dt)v, and we also
have (d/dt)(v+u) ≤ 0. Let t0 be the time when u(t), v(t)
intersects with the curve v = 3/2+u−

√
1 + 24u/2. For

t ≤ t0,

dw

dt
=

1
2

(1− z(t))w(t)

≥ 1
2

(1− z(0))w(0) > 0
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The inequality follows since z(t) is decreasing and w(t)
is increasing with time. Therefore

t0 ≤ K3(1− w(0))

where K3 <∞ is a constant.
2) Item 2: From (14) and (17), we have

d

dt
v(t) ≤ 1

2

[(
1− (1− v(t))2

1 + v(t)

)2

−
(

1 +
(1− v(t))2

1 + v(t)

)
v(t)

]
.

We can rewrite the last inequality as

d

dt
v(t) ≤ v(t)(1− v(t))(3v(t)− 1)

(1 + v(t))2
.

Hence,
(1 + v(t))2dv(t)

v(t)(1− v(t))(3v(t)− 1)
≤ dt. (39)

Note that
(1 + v(t))2

v(t)(1− v(t))(3v(t)− 1)
=
−1

v(t)
+

2

1− v(t)
+

8

3v(t)− 1
.

It follows that∫ v(t)

v(t0)

(1 + v(t))2dv(t)
v(t)(1− v(t))(3v(t)− 1)

= −
∫ v(t)

v(t0)

d(log v(t))− 2
∫ v(t)

v(t0)

d(log(1− v(t)))

+
8
3

∫ v(t)

v(t0)

d(log(3v(t)− 1)).

The result (19) follows from the above relation and (39).
3) Item 3: Since (18) holds when t ≥ t0, dz(t)/dt =

(d/dt)(u+ v)(t) ≥ 0. Thus, from (15), we have

z(t) ≤ 2
3

+
1
3
w(t)2

where, recall, w(t) = v(t)−u(t). Now, from the last inequality
and (16), it follows that

dw(t)
(1− w(t)2)w(t)

≥ 1
6
dt.

Note that
1

(1− w(t)2)w(t)
=

1
2

1
1− w(t)

− 1
2

1
1 + w(t)

+
1

w(t)
.

Integrating, it follows

t− t0 ≤ 3 log
(
w(t)2

w(t0)2
1− w(t0)2

1− w(t)2

)
,

and hence the result asserted in (20).

G. Proof of Corollary 3

By Item 1 of Theorem 5, it suffices to show (21), (22) and
(23) for (u(0), v(0)) satisfying (17) and (18). The lower bound
in (21), together with (22), follows from (19) and the condition
v(t(N)) ≥ 1− 1

N . The upper bound in (21), together with (23),
follows from (20) and from the condition v(t(N))−u(t(N)) ≈
1− 1

N .

H. Ternary Signaling on the Line Graph

We analyze the behaviour of the ternary signaling protocol
for a line graph with a specific initial configuration. At a sam-
pling instance, a node can contact only one of its neighbours,
which in this case, are the nodes to the right and left of it.

Suppose that the initial observations at the nodes are given
as – The first U nodes from the left observe 1 and the
remaining V = N − U nodes observe 0. The graph and the
initial observations at the nodes are illustrated in Figure 1.
We will refer to this configuration as (U, 0, V ) where the 0
indicates that there are no nodes in state e. Let U denote the
set of nodes observing 1 and let V denote the set of nodes
observing 0.

Under ternary signaling, there are three possible configura-
tions that could result at the next step. The first configuration
is the original configuration which occurs when either a node
in U contacts a node in U or a node in V contacts a node
in V . For the second configuration (call it (U − 1, 1, V )),
node U contacts node U + 1 and updates its value to e
and in the third configuration (call it U, 1, V − 1), node
U + 1 contacts node U and updates its value to e. The
probability to transition from (U, 0, V ) to either of the last two
configurations, i.e., (U − 1, 1, V ) and (U, 1, V − 1) is equal.
The last two configurations are illustrated in the Figures 5 and
6 respectively.

1 0e

1 2 U U + 1 N − 1 N

Fig. 5. Configuration (U − 1, 1, V ). The node U updated to state e.

1 0e

1 2 U U + 1 N − 1 N

Fig. 6. Configuration (U, 1, V − 1). The node U + 1 updated to state e.

Suppose that the configuration (U − 1, 1, V ) occurs at the
next step. There are three possible configurations which can
occur at the subsequent step. The first is the configuration
(U − 1, 1, V ) itself when either a node in U contacts a node
in U (or contacts node U ) or a node in V contacts a node in V
(or contacts node U ). The second configuration is the starting
configuration (U, 0, V ) and occurs when the node U in state
e contacts node U − 1 and updates its state to 1. The third
configuration is a new configuration (U − 1, 0, V + 1) and
occurs when the node U contacts node U + 1 and updates it’s
value to 0. Furthermore, the probability to transition from (U−
1, 1, V ) to either of the last two configurations, i.e., (U, 0, V )
and (U − 1, 0, V + 1) is equal.

Likewise, from the configuration (U, 1, V − 1), there are
three possible configurations which can occur at the subse-
quent step – the configuration (U, 1, V − 1), the starting con-
figuration (U, 0, V ) and the new configuration (U+1, 0, V−1).
The probability to transition from (U, 1, V −1) to either of the
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last two configurations, i.e., (U, 0, V ) and (U + 1, 0, V − 1) is
equal.

Let fU,V denote the probability of reaching the all 0 state
starting from the (U, 0, V ) configuration. From the arguments
above, one can check that fU,V satisfies the recursion

fU,V =
1
2
fU−1,V+1 +

1
2
fU+1,V−1,

with the boundary conditions given by f0,N = 1 and fN,0 = 0.
This recursion is just the recursion for the classical voter model
and the solution for fU,V is given by

fU,V =
V

N
.

Let τU,V denote the time to absorption. From standard argu-
ments, it can be shown that

τU,V = 6UV

Note that as opposed to the complete graph case where
ternary signaling results in an exponentially low (in N )
probability of error, in the line graph for a particular starting
state, ternary signaling results in the same probability of error
as the voter model. This is true because the voter model on the
line graph for this particular starting configuration is equivalent
to the gambler’s ruin problem. The convergence time of the
ternary signaling scheme is quadratic in the number of nodes
N and is furthermore slower by a factor 6 as compared to the
voter model (due to the occurrence of intermediate states with
a node in state e).

I. Proof of Theorem 4

As in the proof of Theorem 3, we consider the embedded
state K = V−U . Equation (34) gives the conditional transition
probability of K = k updating to K = k+1. It can be checked
that this probability is minimum when U +V = N , i.e, when
(V = N+k

2 , U = N−k
2 ) and is equal to 0.5. The probability

of error is one-half times the the probability of reaching the
state K = 0 before reaching K = N . We obtain an upper
bound by assuming that the bias towards the larger K (i.e.,
K = k + 1) is always minimum. Hence, we consider a new
Markov chain K ′ with transition probabilities

IP(K ′(t+ 1) = k − 1|K ′(t) = k) =
1
2

(40)

IP(K ′(t+ 1) = k + 1|K ′(t) = k) =
1
2
. (41)

The error probability pk for this Markov chain is the solution
to

pk =
1
2
pk+1 +

1
2
pk−1, (42)

for k = 1, . . . , N−1 with boundary conditions p0 = 1
2 , pN =

0. The upper bound to fU,V is given by

fU,V ≤ pV−U for U ≤ V.

The recurrence (42) corresponds to the classical gambler’s ruin
problem and it is well known that pk = N−k

2N = U
N .


