
Effective Program Verification
for Relaxed Memory Models

January 31, 2008

Technical Report
MSR-TR-2008-12

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Effective Program Verification
for Relaxed Memory Models

Sebastian Burckhardt Madanlal Musuvathi
Microsoft Research

{sburckha,madanm}@microsoft.com

Abstract
Program verification for relaxed memory models is hard. The high
degree of nondeterminism in such models challenges standard ver-
ification techniques. This paper proposes a new verification tech-
nique for the most common relaxation, store buffers. Crucial to
this technique is the observation that all programmers, including
those who use low-lock techniques for performance, expect their
programs to be sequentially consistent. We first present a monitor
algorithm that can detect the presence of program executions that
are not sequentially consistent due to store buffers while only ex-
ploring sequentially consistent executions. Then, we combine this
monitor with a stateless model checker that verifies that every se-
quentially consistent execution is correct. We have implemented
this algorithm in a prototype tool called Sober and present experi-
ments that demonstrate the precision and scalability of our method.
We find relaxed memory model bugs in several programs, includ-
ing a previously unknown bug in a production-level concurrency
library that would have been difficult to find by other means.

1. Introduction
Developers of performance-critical multi-threaded software often
try to avoid the overhead of traditional locking by either making
direct use of hardware primitives for atomic operations (such as in-
terlocked exchange, or compare-and-swap), or by employing reg-
ular loads and stores for synchronization purposes. Unfortunately,
such “low-lock” programs are notoriously hard to get right [4, 21].
Subtle bugs can arise in these programs due to memory reordering
caused by the relaxed memory model of the underlying hardware
[1] . These errors are hard to find and debug as they most often show
up only in specific thread interleavings and in particular hardware
configurations. On the other hand, low-lock code is heavily used
both in low-level libraries and in critical paths of a system. Be-
cause these parts are crucial to the reliability of the entire system,
it is important to develop verification techniques.

In general, the same program may exhibit more executions on
a relaxed model than on a sequentially consistent (SC) machine
[19], as illustrated in Fig. 1. Let T Y

π denote the set of executions of
program π on memory model Y . Most existing program verifica-
tion tools can not verify directly whether the executions in T Y

π are
correct (unless Y = SC). A few specialized memory model sen-
sitive verification tools exist [4, 14, 23, 26, 27] but scalability and
automation remain a challenge.

A key observation of this paper is that programmers, even those
writing low-lock code, expect their programs to be sequentially
consistent. They design their programs to be correct for SC exe-
cutions and insert memory ordering fences to counter relaxations
where necessary. In particular, any program execution that is not SC
is almost always an error, resulting either from an insufficient use
of fences or a misunderstanding of the underlying memory model.

This observation suggests that we can sensibly verify the re-
laxed executions T Y

π by solving the following two verification
problems separately:

1. Use standard verification methodology for concurrent programs
to show that the executions in T SC

π are correct.

2. Use specialized methodology for memory model safety verifica-
tion, showing that T Y

π = T SC
π . We say the program π is Y -safe

if T Y
π = T SC

π .

In this paper we focus on verifying memory model safety for the
most common relaxation in modern multiprocessors, store buffers
with store-load forwarding. The corresponding memory model is
historically called TSO (total store order) [25], and we use the
terms TSO -safety and store buffer safety interchangeably. Under
TSO, processors may delay the effect of a store instruction in a
processor-local FIFO buffer (to hide the memory latency). While
the values of these store instructions are immediately visible to
the local processor, other processors see these values only when
the store buffer is committed at a later time. Fig. 1(b) shows a
simple example. We provide a rigorous characterization of TSO
in Section 3.3.

Apart from the fact that store buffers are so common (as appar-
ent in Fig. 1(a), T TSO

π ⊆ T Y
π for almost all models Y), our moti-

vation for focusing on TSO largely arises from the need to prepare
the huge body of legacy code heavily optimized to run on x86 ma-
chines for future multicore chip generations. These processors are
likely to make increased use of store buffers but are otherwise fairly
conservative as far as the memory model is concerned [16].

The main contribution of this paper is a technique for checking
the store buffer safety of a program while only exploring its sequen-
tially consistent executions, which lets us perform the steps 1 and
2 above simultaneously. Our technique relies on a notion of bor-
derline execution, which is an SC execution that can be extended
into an execution in T TSO

π \ T SC
π . We establish that a program is

store buffer safe exactly if there are no borderline executions (The-
orem 7). Then we present an efficient, precise monitor for detecting
borderline executions, using a novel generalized vector clock algo-
rithm.

We have implemented these ideas in a prototype tool called
Sober. Sober combines our store buffer safety monitor with the
stateless model checker CHESS [22] which systematically enumer-
ates the SC executions of a bounded concurrent test program and
checks them for errors such as null pointers or assertion violations.
In principle, Sober terminates with one of three possible outputs.
First, Sober may detect a regular program error and output an erro-
neous execution. Second, Sober may report that the program is not
store buffer safe. Finally, Sober may terminate without finding an
error, proving that all TSO executions of the program are correct.
In practice, exhaustive verification is too time-consuming for most

SC

TSO

390

IA-32

RMO

PPC
Initially: X = Y = 0

processor 1 processor 2
X = 1 Y = 1
r1 = Y r2 = X

Eventually: r1 = 0, r2 = 0

When the two threads run on different processors, the stores to X and Y in the first line can
possibly be delayed by the store buffers in these processors. Subsequent loads in the second
line see the initial values of X and Y if the store buffers have not yet been committed.

(a) (b)

Figure 1. (a) A comparison of various memory models [5, 9, 15, 17, 25]. (b) An execution that is possible on TSO but not on SC.

programs and we resort to iterative context-bounding [22], which
provides verification guarantees up to a specific preemption bound.

Section 5 describes our initial experiments. Using Sober we
found and fixed store buffer issues in several programs, includ-
ing Dekker’s mutual exclusion protocol [2] and the Bakery proto-
col [18]. We got our greatest success so far when we applied Sober
to a component of a concurrency library at Microsoft. This com-
ponent implements a low-lock datastructure. Sober demonstrated a
store buffer problem that the developer immediately agreed was a
real error. This bug was never detected during the extensive code-
review and testing the component underwent.

2. Related Work
Prior work has addressed the verification of programs for relaxed
memory models using explicit state enumeration [23, 6, 14] and
using constraint solving [12, 28, 3, 4]. Our work improves upon
them in scalability.

To our knowledge, this paper is the first to demonstrate the
possibility of program verification without exploring the additional
nondeterminism of memory-model relaxation. See the experiments
in Huynh and Roychoudhury [14] for the state space explosion
caused by this nondeterminism even for simple programs.

This paper is definitely not the first to observe that sequen-
tial consistency is the most natural memory model for program-
mers [19, 1, 13]. The Java Memory Model [20] guarantees se-
quential consistency for a broad class of programs, namely those
which are data-race free. In contrast, our characterization of mem-
ory model safety precisely captures those programs which behave
sequentially consistent in a memory model. In particular, a program
with data-races might still be memory-model safe.

Specialized algorithms to automatically insert fences based on
static analysis [24, 7] can guarantee memory-safety in principle.
However, doubts remain about their precision in the presence of
aliasing, loops, and conditionals and the performance implication
of conservative fence insertion. Also, the memory models consid-
ered in these algorithms assume atomic memory and cannot model
store buffers, the main emphasis of this paper.

3. Problem Formulation
We represent the relevant aspects of a program executions by a
memory trace, or just trace. A trace is a collection of events,
each representing a memory access (either a store, a load, or an
interlocked operation1) by a specific processor to a specific address.
Each event has an issue index, which is a sequence number relative

1 We do not need to include memory fence operations because a full fence
is semantically equivalent to an interlocked operation to a location that is
not accessed anywhere else.

to all events by the same processor. Furthermore, each event has a
coherence index, which is the sequence number of the value that is
read or written by the event, relative to the entire value sequence
written to the targeted memory location during the execution.

3.1 Traces
Formally, let Op = {st, ld, il}, let N be the set of natural numbers,
let Proc = {1, . . . , N} be a finite set of processor identifiers for
some fixed bound N ∈ N, let Adr be a finite set of memory
addresses, and let N0 ⊆ Z be the set of nonnegative integers. Then
we define the set of events as Evt = Op×Proc×N×Adr×N0, and
we denote elements e ∈ Evt using the syntax o(p, i, a, c), where
o ∈ Op, p ∈ Proc, i ∈ N is the issue index, a ∈ Adr, and c ∈ N0

is the coherence index. We use corresponding projection functions
o(e), p(e), i(e), a(e), c(e) for an event e. Given a set E ⊆ Evt of
events, we define the following subsets for notational convenience:

(commands by proc. p) E(p) = {e ∈ E | p(e) = p}
(load events) L(E) = {e ∈ E | o(e) = ld}
(store events) S(E) = {e ∈ E | o(e) = st}

(events that write) W (E) = {e ∈ E | o(e) ∈ {st, il}}
(events that read) R(E) = {e ∈ E | o(e) ∈ {ld, il}}

(events that write to a) W (E, a) = {e ∈ W (E) | a(e) = a}

We call a function f : Evt → N an index function for a subset
S′ ⊆ Evt if f(S′) = {1, . . . , |S′|} (including the special case
where S′ is empty).

DEFINITION 1 (Traces). A trace is a subset E ⊆ Evt satisfying

(E1) For all p ∈ Proc, i is an index function for E(p).
(E2) For all a ∈ Adr, c is an index function for W (E, a).
(E3) For all l ∈ L(E), either c(l) = 0, or there exists a

w ∈ W (E, a(l)) such that c(l) = c(w).

Define T ⊆ P(Evt) to be the set of all traces. We say a trace E is
a prefix of a trace E′ if E ⊆ E′.

To reason about traces, we introduce binary relations →p and →c:

• We use the program order →p⊆ Evt × Evt to describe the
relative order of events by the same processor. Specifically, we
define e →p e′ if and only if p(e) = p(e′) and i(e) < i(e′).
For any trace E, →p is a partial order on E and a total order on
E(p) for all p ∈ Proc.

• We use the conflict order →c⊆ Evt × Evt to describe the rel-
ative order of conflicting accesses (where we call two accesses
e, e′ ∈ Evt conflicting if a(e) = a(e′) and {e, e′}∩W (Evt) 6=
∅). Specifically, we define: e →c e′ if and only if a(e) = a(e′)
and either (1) o(e′) ∈ W (Evt) and c(e) < c(e′), or (2)
(e, e′) ∈ W (Evt) × L(Evt) and c(e) ≤ c(e′). The conflict

order is not actually an ’order’ in the mathematical sense be-
cause it is not transitive.

3.2 Memory Models
We now proceed to define the memory models SC (sequential
consistency) and TSO (total store order) using an axiomatic style.
To state the definitions concisely, we define the binary relation
→hb, called happens-before relation, to be the union of the program
and conflict orders: →hb= (→p ∪ →c). Note that this definition
does not make →hb implicitly transitive; we will take the transitive
closure →∗

hb explicitly if required by the context.

DEFINITION 2 (SC). Define the set T SC ⊆ T of sequentially
consistent traces to consist of all traces E that satisfy the following
condition:

(SC1) The relation →hb is acyclic on E.

To define TSO for any given event set E, we first define the
relaxed happens-before relation →rhb:

→rhb = →hb \ { (e, e′) | e →p e′ ∧ o(e) = st ∧ o(e′) = ld}
Thus the→rhb relation does not put a happens-before edge between
a store and a subsequent load of the same processor (even if they
have the same address). This reflects the existence of a store buffer:
a store may globally commit after subsequent loads by the same
processor, and thus not globally appear as ’happening before the
load’.

DEFINITION 3 (TSO). Define the set T TSO ⊆ T of totally-store-
ordered traces to consist of all traces E that satisfy the following
conditions:

(TSO1) The relation →rhb is acyclic on E.
(TSO2) never (e →p e′ ∧ e′ →c e) for any e, e′ ∈ E

The axiom (TSO2) is required to guarantee that loads correctly
“snoop” the store buffer: the coherence index of a load may not
be less than that of a previous store to the same address by the
same processor. We establish the connection between these concise
axiomatic definitions and a more verbose operational description of
SC and TSO in the appendix.

3.3 Program Traces
We now formally define the set of traces T Y

π that a program π may
exhibit on a memory model Y ∈ {SC, TSO}. To keep our for-
malization light, we represent a program π abstractly by a function
nextπ : T × Proc → P(Op × Adr). The set nextπ(E, p) de-
scribes what instructions (combinations of operation and address)
may possibly be issued by processor p next, after having executed
E. For a trace E, let last(E, p) be the element e ∈ E(p) such that
i(e) is maximal, or undefined if E(p) = ∅. We say that a program
π is locally deterministic if for all (E, p) ∈ domnextπ , we have
(1) |nextπ(E, p)| ≤ 1, and (2) for all prefixes E′ ⊆ E such that
last(E′, p) = last(E, p), we have nextπ(E, p) = nextπ(E′, p).
In the following, we will assume without further mention that all
programs are locally deterministic. For a trace E ∈ T , define the
set of possible successor events under program π as

succπ(E) = {e ∈ (Evt \ E) | (E ∪ {e} ∈ T)

and nextπ(E, p(e)) = (o(e), a(e))}.

DEFINITION 4 (Program Traces). For a program π and memory
model Y ∈ {SC, TSO}, define the set of traces T Y

π inductively as
the smallest set satisfying (i) ∅ ∈ T Y

π , and (ii) for all E ∈ T Y
π and

e ∈ succπ(E) such that E ∪ {e} ∈ T Y , we have E ∪ {e} ∈ T Y
π .

DEFINITION 5 (Store Buffer Safety). The program π is called
store buffer safe if and only if T TSO

π = T SC
π .

4. Solution
We now describe how we can check store buffer safety by exploring
T SC

π only. The idea is to look for borderline traces which are
defined as follows.

DEFINITION 6 (Borderline Trace). A sequentially consistent trace
E ∈ T SC

π of a program π is called a borderline trace if there exists
an e ∈ succπ(E) such that E ∪ {e} ∈ (T TSO

π \ T SC
π).

THEOREM 7. A program π is store buffer safe if and only if it has
no borderline traces.

PROOF. If E ∈ T SC
π is a borderline trace, then there exists a trace

E ∪ {e} ∈ (T TSO
π \ T SC

π) implying T SC
π 6= T TSO

π . Conversely,
assume T SC

π 6= T TSO
π . Because T SC

π ⊆ T TSO
π , there must exist

E ∈ (T TSO
π \ T SC

π). By construction of T TSO
π , there exist traces

E0, . . . , En ∈ T TSO
π and events e1, . . . , en such that E0 = ∅,

{ek} = Ek \ Ek−1, and En = E. Because En /∈ T SC
π but

E0 ∈ T SC
π , there exists a minimal k such that Ek /∈ T SC

π . This
implies that Ek−1 ∈ T SC

π and Ek−1 is a borderline trace (because
Ek−1 ∪ {ek} ∈ (T TSO

π \ T SC
π)). 2

The following cycle characterization lemma provides an ef-
ficient method to detect borderline traces. For a trace E, let
lastR(E, p) be the element e ∈ E(p)∩R(E) such that i(e) is max-
imal, or be undefined if (E(p)∩R(E)) = ∅; and let write(E, a, c)
denote the element e ∈ W (E, a) such that c(e) = c if it exists, or
be undefined otherwise.

LEMMA 8 (Cycle Characterization). Let E ∈ T SC
π be a sequen-

tially consistent trace of π, and let e = o(p, i, a, c) ∈ succπ(E).
Let E′ = E ∪ {e}. Then:

(1) E′ /∈ T SC
π if and only if o = ld and write(E, a, c + 1) →∗

hb
last(E, p).

(2) E′ /∈ T TSO
π if and only if o = ld and either

(i) write(E, a, c + 1) →∗
rhb lastR(E, p), or

(ii) there exists c′ > c such that p(write(E, a, c′)) = p.

PROOF. (1⇐). If o = ld and write(E, a, c + 1) →∗
hb last(E, p),

then
e →c write(E, a, c + 1) →∗

hb last(E, p) →p e

which forms a →hb-cycle, implying E′ /∈ T SC by (SC1), and
thus E′ /∈ T SC

π . (2⇐). either (i) or (ii) must hold; if (i) holds,
we proceed as in case (1⇐): we use e →c write(E, a, c + 1)
and lastR(E, p) →p e to construct a cycle (this time, a →rhb-
cycle) which implies E′ /∈ T TSO by (TSO1), and thus E′ /∈
T TSO

π . If (ii) holds, then either write(E, a, c′) →p e or e →p

write(E, a, c′); but the latter is impossible because both E and
E′ are traces (specifically, because i is an index function on both
E(p) and E′(p)). Therefore, write(E, a, c′) →p e. Along with
e →c write(E, a, c′) we conclude E′ /∈ T TSO by (TSO2), and
thus E′ /∈ T TSO

π . (1⇒). Assume E′ /∈ T SC
π . Then E′ /∈ T SC (by

Def. 4(ii)), which means (SC1) does not hold: specifically, E∪{e}
has a→hb-cycle. Because→hb is acyclic on E (because E ∈ T SC),
it must be of the form e →hb e1 →hb . . . →hb en →hb e
where all ek ∈ E and n ≥ 1. Now, e →hb e1 by definition
implies that either e →p e1 or e →c e1. As reasoned earlier, it
can not be the case that e →p e1 (because E and E′ are both
traces), thus e →c e1. This implies that o = ld (because c is
an index function on both W (E, a) and W (E′, a)). Because e
is a load and e →c e1, we know o(e1) ∈ {st, il}, a(e1) = a
and c(e1) > c, and thus either write(E, a, c + 1) = e1 or
write(E, a, c + 1) →c e1. Therefore write(E, a, c + 1) →∗

hb en.
Now, it can not be the case that en →c e (otherwise en →∗

c e1

which creates a →hb-cycle within E, contradicting E ∈ T SC
π), thus

1 function is_store_buffer_safe(e1e2 . . . en)
2 returns boolean {
3 var k,p,a,c : N; var E : T ;
4 E := ∅;
5 for (k := 1; k <= n; k++) {
6 if (o(ek) = ld) {
7 p := p(ek); a := a(ek); c := c(ek);
8 while (c > 0) {
9 if (p = p(write(E,a,c)))

10 break;
11 if (write(E,a,c) →∗

rhb lastR(E,p))
12 break;
13 if (write(E,a,c) →∗

hb last(E,p))
14 return false;
15 c := c - 1;
16 }
17 }
18 E := E ∪ ek;
19 }
20 return true;
21 }

Figure 2. Our algorithm to monitor store buffer safety in a given
interleaving.

en →p e. Therefore, either en = last(E, p) or en →p last(E, p).
We can thus conclude that write(E, a, c + 1) →∗

hb last(E, p) as
desired. (2⇒). If E′ /∈ T TSO

π then E′ /∈ T TSO (by Def. 4(ii)).
Thus either (TSO1) or (TSO2) must be violated. First, assume
that E′ does not satisfy (TSO1). Just as in (1⇒) (but using the
relation →rhb⊆→hb), we conclude that there exists a cycle of the
form e →rhb e1 →rhb . . . →rhb en →rhb e, that e →c e1, that
o = ld, that write(E, a, c + 1) →∗

rhb en, and that en →p e.
The latter implies that o(en) 6= st (otherwise not en →rhb e),
and therefore either en = lastR(E, p) or en →rhb lastR(E, p).
Thus condition (i) is satisfied. Next, assume that E′ does not satisfy
(TSO2). Because E does, and because we know that not e →p e′

for any e′ ∈ E (because E and E′ are both traces), there must exist
an e′ ∈ E such that e′ →p e and e →c e′. This implies o(e) = ld
(because c is an index function on both W (E, a) and W (E′, a)).
Because e is a load and e →c e′, we know o(e′) ∈ {st, il},
a(e′) = a and c(e′) > c. Thus, condition (ii) is satisfied with
c′ = c(e′). 2

4.1 Monitor Algorithm
Fig. 2 shows our implementation of a monitor that can monitor
store buffer safety in any interleaved execution of the program. It
processes the events in the sequence in order (and can thus be used
online or offline) and reports any detected borderline traces. We
now qualify the soundness and completeness of this monitor. For a
sequence w = e1 . . . en ∈ Evt∗ of events, let Ew = {e1, . . . en}.
The sequence w is called an interleaving of a program π if (1) the
ek are pairwise distinct, (2) Ew ∈ T SC

π , (3) ex →hb ey =⇒ x <
y, and (4) nextπ(Ew, p) = ∅ for all p ∈ Proc.

THEOREM 9 (Soundness). If an an interleaving w of program π is
reported unsafe by our monitor, then π is not store buffer safe.

PROOF. Assume is_store_buffer_safe(w) returns false for
w = e1 . . . en. Let E, k, p, i, a and c′ be the values of the
program variables E, k, p, i, a, and c at the time of the return,
respectively. Then E = {e1, . . . , ek−1}, and ek = ld(p, i, a, c)
for some c. Let e = ek, and let e′ = ld(p, i, a, c′ − 1). We now
argue that E′ = E ∪ {e′} ∈ (T TSO

π \ T SC
π), which implies that

E is a borderline trace and thus T SC
π 6= T TSO

π by Theorem 7 as
desired. First, note that e′ ∈ succπ(E) because E ∪ {e} ∈ T SC

π

implies E ∪ {e′} ∈ T and (o, a) ∈ nextπ(E, p) (using that π
is locally deterministic). We can thus enlist the help of Lemma 8
to show E′ ∈ (T TSO

π \ T SC
π). First, because the program returned

at line 14, we know write(E, a, c′) →∗
hb last(E, p), which im-

plies E′ /∈ T SC
π by Lemma 8, part (1). Second, because the pro-

gram did not break at line 12 right before returning on line 14,
we know that not (write(E, a, c′) →∗

rhb lastR(E, p)). Moreover,
because the while loop was not broken at line 10, we know that
p(write(E, a, c′′)) 6= p for all c′′ ≥ c′. By Lemma 8, part (2) we
conclude that E′ ∈ T TSO

π . 2

As for completeness, we clearly cannot detect all borderline
traces by looking at a single interleaving w only. However, it is
possible to detect them reliably by checking a sufficient set of
interleavings. Specifically, we call a set of interleavings I ⊆ Evt∗

a representative for program π if for all E ∈ T SC
π there exists an

interleaving w ∈ I such that E ⊆ Ew and there are no →hb-edges
from Ew \ E into E.

THEOREM 10 (Completeness). Let I be a representative set of
interleavings of a program π. Then, if π is not store buffer safe,
our monitor will detect it on some interleaving w ∈ I .

PROOF. By Theorem 7, we know that T SC
π 6= T TSO

π implies that
there exists a borderline trace E ∈ T SC

π . Thus there exists an el-
ement e = o(p, i, a, c) ∈ Evt such that E′ = (E ∪ {e}) ∈
T TSO

π \ T SC
π . Because I is representative, it must contain an in-

terleaving w = e1 . . . en such that E ⊆ Ew is a prefix. Because
(o(e), a(e)) ∈ nextπ(E, p), there must be a k such that p(ek) = p
and i(ek) = i (otherwise last(Ew, p) = last(E, p) and thus
nextπ(E, p) = nextπ(Ew, p), contradicting nextπ(Ew, p) = ∅).
We now claim that if the algorithm reaches the k-th iteration, it
must return false (if it returns prior to that, it also returns false
and we are satisfied). Let Ek = {e1, . . . , ek−1}. By Lemma 8,
part (1), we know that write(E, a, c + 1) →∗

hb last(E, p) within
E. Now, by the choice of k, we know E(p) = Ek(p), thus
last(E, p) = last(Ek, p), and because w is an interleaving (re-
spects →hb), this implies write(Ek, a, c + 1) →∗

hb last(Ek, p)
within Ek. Moreover, we know that c(ek) ≥ (c + 1) because w
is an interleaving and write(Ek, a, c + 1) appears before ek in
w. Thus, the while loop (which assigns c(ek) to the variable c ini-
tially, and then keeps decrementing it) must eventually return true at
line 14 unless it is broken at either line 10 or line 12. But that is not
possible, for the following reasons. First, suppose line 10 breaks.
Let c′ be the value of the variable c at that time; then c + 1 ≤
c′ ≤ c(ek) and p(write(Ek, a, c′)) = p. Now, because E(p) =
Ek(p), we know write(Ek, a, c′) ∈ E. Thus, write(E, a, c′) =
write(Ek, a, c′), implying p(write(E, a, c′)) = p which in turn
implies E′ /∈ T TSO

π by Lemma 8, part (2ii), contradicting the
assumption. Next, suppose line 12 breaks. Let c′ be the value
of the variable c at that time; then c + 1 ≤ c′ ≤ c(ek) and
write(Ek, a, c′) →∗

rhb lastR(Ek, p) within Ek. Now, because
E(p) = Ek(p), lastR(Ek, p) = lastR(E, p). Because there are
no →hb-edges (and thus no →rhb-edges) from Ew into E, this im-
plies that write(E, a, c′) →∗

rhb lastR(E, p). Because c + 1 ≤ c′,
this implies write(E, a, c) →∗

rhb lastR(Ek, p), which in turn im-
plies E′ /∈ T TSO

π by Lemma 8, part (2i), contradicting the assump-
tion. 2

A stateless model checker (such as Verisoft [11] or CHESS[22])
can provide us with a representative set of interleavings if the
program is bounded (we call a program bounded if there exists
a number M ∈ N such that |E| < M for all E ∈ T SC

π). The
following theorem clarifies that this is true even if partial order
reduction is employed. We call a set of interleavings I ⊆ Evt∗ a
partial-order-complete set for program π if for all interleavings w
of π, there exists a w′ in I such that Ew = Ew′ .

THEOREM 11. If I is a partial-order-complete set of interleavings
for a bounded program π, then it is representative for π.

1 type timestamp: array[2*N] of N0;
2 var lc: array[Proc] of timestamp;
3 sc: array[Proc] of timestamp;
4 mc1: array[Proc][Adr] of timestamp;
5 mc2: array[Adr] of timestamp;
6 initially lc[*][*] = sc[*][*] = mc1[*][*][*] = mc2[*][*] = 0;
7 function merge(ts1, ... tsn : timestamp) returns timestamp {
8 return (maxi(tsi[1]), ... , maxi(tsi[N*2]));
9 }

10 function process_event(e : Evt) returns timestamp {
11 match e with
12 ld(p,i,a,c) ->
13 ts := merge(lc[p], mc1[p][a]);
14 ts[2*p] := ts[2*p] + 1; // advance load count for p
15 lc[p] := merge(lc[p], ts);
16 mc2[a] := merge(mc2[a], ts);
17 st(p,i,a,c) ->
18 ts := merge(sc[p], lc[p], mc2[a]);
19 ts[2*p+1] := ts[2*p+1] + 1; // advance store count for p
20 forall q 6= p do
21 mc1[q][a] := merge(mc1[q][a], ts);
22 mc2[a] := merge(mc2[a], ts);
23 sc[p] := merge(sc[p], ts);
24 il(p,i,a,c) ->
25 ts := merge(sc[p], lc[p], mc2[a]);
26 ts[2*p] := ts[2*p] + 1; // advance load count for p
27 ts[2*p+1] := ts[2*p+1] + 1; // advance store count for p
28 forall q ∈ Proc do
29 mc1[q][a] := merge(mc1[q][a], ts);
30 mc2[a] := merge(mc2[a], ts);
31 lc[p] := merge(lc[p], ts);
32 sc[p] := merge(sc[p], ts);
33 return ts;
34 }

Figure 3. A vector clock for tracking the transitive closure →∗
rhb.

PROOF. We now prove Theorem 11. The significance of this theo-
rem arises from the fact that most stateless model checkers, such
as Verisoft [11] and CHESS [22], use partial-order reduction tech-
niques [10, 8] to only explore a subset of all interleavings of the
program. Theorem 11 shows that to prove the store buffer safety
of a program it is sufficient to run the monitor algorithm of Sec-
tion 4.1 only on the set of executions explored by any partial-order
reduction algorithm.

We will assume the most commonly used definition of depen-
dent events in a program. Two events are dependent if and only if
they are performed by the same thread or access the same memory
location with at least one of the accesses being a write. Effectively,
two events in an execution are dependent if and only if they are
ordered by →∗

hb. Two events are independent if they are not depen-
dent on each other. Two interleavings w and w′ are equivalent if
one can be obtained from the other by iteratively commuting two
consecutive independent events. Thus, w and w′ are equivalent if
and only if Ew = Ew′ .

By definition, a partial-order-complete set for program π con-
tains at least one representative from each equivalence class of all
interleavings of π. Therefore, the set of interleavings explored by
any partial-order reduction algorithm is a partial-order-complete
set. Now we can prove Theorem 11.

Let E be an execution in T SC
π and let I be any partial-order-

complete set for π. Using Definition 4 and the fact that π is
bounded, we can inductively generate a sequence of executions
E = E1, E2, . . . , En such that for all 1 ≤ i < n, (1) Ei+1 ∈ T SC

π ,
(2) ∃ei ∈ succπ(Ei) : Ei+1 = Ei ∪ {ei} ∧ ∀e ∈ Ei : e →∗

hb ei,
and (3) succπ(En) = ∅. Informally, this sequence represents the
execution of π from the program state at E till completion. Let w
be an interleaving of π such that Ew = En. By definition, there
exists an interleaving w′ ∈ I such that Ew′ = Ew = En. More-
over, by construction, E ⊆ En and there are no →hb-edges from

En \ E into E. Since we started with an arbitrary E ∈ T SC
π , we

conclude that I is a representative set. 2

4.2 Vector Clocks
The pseudocode in Fig. 2 does not detail how to decide the condi-
tions on lines 11 and 13. While it is well known how to use vector
clocks to compute the transitive closure →∗

hb for a given interleav-
ing of length n in time O(nN), it is not immediately clear how
to do the same for →∗

rhb. We solved this problem by generalizing
vector clocks (Def. 13 below) and by engineering a vector clock in-
stance (Fig. 3) that can compute the transitive closure →∗

rhb in time
O(nN2).

THEOREM 12. Let w = e0 . . . en be an interleaving of some
program π, and let t1, . . . , tn be the timestamps returned by the
corresponding sequence of calls to process_event (Fig. 3). Then
ei →∗

rhb ej if and only if i ≤ j and ti[k] ≤ tj [k] for all
k ∈ {1, . . . , 2N}.

We first describe informally how this vector clock works. Our
vector clock uses timestamps of a fixed width (here 2N , where
N is the maximal number of processors) and maintains a number
of clocks (defined as global variables in Fig. 3). The computation
of each timestamp follows the following pattern: (1) some of the
clocks are read and merged, (2) some positions of the resulting vec-
tor are incremented to form the timestamp, and (3) the timestamp
is merged back into some of the clocks. The following definition
clarifies the conditions that underly this general mechanism (in(e)
and out(e) represent the clock sets in step (1) and (3), respectively,
and gps(e) represents the set of positions in step (2)).

DEFINITION 13 (General Vector Clock). Let Σ be a set of events,
and let → be a binary relation on Σ. A general vector clock for
(Σ,→) is a tuple (C, G, in, out , gps) where C is a set of clocks,

name and lines context falsification

description of code bound total borderline time [s] SoBeR CHESS

Fig. 1(b) 42 ∞ 10 4 < 0.1 < 0.2 < 0.2
dekker 82 1 5 4 < 0.1 < 0.2 < 0.2
(2 threads, 2 36 23 < 0.1 0.39 0.37
2 critical 3 183 50 < 0.1 1.9 1.8
sections) 4 1,219 124 < 0.1 13.2 13.0

5 8,472 349 < 0.1 106.0 100.6
bakery 122 0 1 1 < 0.1 < 0.2 < 0.2
(2 threads, 1 25 20 < 0.1 0.47 0.43
3 critical 2 742 533 < 0.1 10.3 9.8
sections) 3 12,436 8,599 < 0.1 189.0 181.0
takequeue 374 0 3 0 not found < 0.3 < 0.3
(2 threads, 1 47 14 0.34 0.72 0.69
6 operations) 2 402 189 0.43 5.2 4.9

3 2,318 1,197 0.74 28.9 27.8
4 9,147 5,321 0.84 125.5 118.9
5 29,821 17,922 0.86 481.5 461.6

no. of interleavings verification time [s]

Figure 4. Experiments on a 2.2GHz Intel Core Duo laptop running Windows Vista.

G is a set of groups, in, out are functions Σ → P(C), and gps
is a function Σ → P(G) such that the following conditions are
satisfied:

(VC1) for all σ ∈ Σ, gps(σ) 6= ∅.
(VC2) for all g ∈ G, → is a total order on {σ ∈ Σ | g ∈
gps(σ)}.
(VC3) for all σ, σ′ ∈ Σ, we have (out(σ) ∩ in(σ′) 6= ∅) ⇔
(σ → σ′).

To conclude the proof of Theorem 12, we first connect the
general definition of vector clock to Fig. 3. To do so, we de-
fine Σ = Evt and →=→rhb. Furthermore, we use clocks C =
{lc[p], sc[p], mc1[p][a], mc2[a] | a ∈ Adr, p ∈ Proc}, and groups
G = {r1, w1, r2, w2, . . . , rN , wN}, and we define gps in such a
way that (rp ∈ gps(e) ⇔ e ∈ R(Evt(p))) and (wp ∈ gps(e) ⇔
e ∈ W (Evt(p))). We then define in(e) to contain the clocks that
get merged into the timestamp (in the respective match clause for e
in Fig. 3), and out to define the clocks to which a timestamp prop-
agates. Now, (VC1) is satisfied because each access is a read or a
write (possibly both), (VC2) is satisfied (→rhb is a total order within
each R(Evt(p)) and W (Evt(p))), and (VC3) is satisfied (which we
can check by manual, pairwise comparison of the match cases).

We now formalize the computation performed by a general
vector clock and shows that it gives correct results. Given a general
vector clock as in Def. 13, define the set of timestamps T = (N0)

G,
define a partial order on timestamps t1 ≤ t2 ⇔ (∀g ∈ G :
t1(g) ≤ t2(g)), and define the operations merge : P(T) → T
and increment : T × E → T as follows: merge(S)(g) =
maxt∈S t(g) (with corner case merge(∅)(g) = 0), and

increment(t, e)(g) =

{
t(g) + 1 if g ∈ gps(e)
t(g) otherwise.

Given a sequence of events σ1, . . . , σn, we say the vector clock
(C, G, in, out , gps) computes the timestamps t1, . . . tn ∈ T if for
each clock c ∈ C there exist timestamps c1, . . . cn ∈ T such that
the following conditions are satisfied:

(t1) c1(g) = 0 for all c ∈ C, g ∈ G.

(t2) ti = increment(merge{ci | c ∈ in(σi)}) for 1 ≤ i ≤ n.

(t3) ci+1 =

{
merge{ci, ti} if c ∈ out(σi)
ci otherwise

for 1 ≤ i ≤ (n− 1).

THEOREM 14. Let Σ be a set of events, let → be a binary relation
on Σ, let σ1, . . . , σn ∈ Σ be a sequence of events satisfying

(σi → σj ⇒ i < j), and let t1, . . . , tn ∈ T∗ be computed by
a vector clock for (Σ,→). Then σi →∗ σj if and only if ti ≤ tj .

PROOF. In the following, let P = {1, . . . , n} be the set of positions.
For i ∈ P , define the set Mi = {j ∈ P | σj → σi}. To prepare for
the proof, we first prove the following two properties for arbitrary
i, j ∈ P and g ∈ G:

ti = increment(merge{tk | k ∈ Mi}, σi) (1)

(ti(g) ≤ tj(g) ∧ g ∈ gps(σi)) ⇒ σi →∗ σj (2)

To prove (1), note that merge is a “flat” function, meaning that
merge(merge(A), B) = merge(A ∪ B). Thus merge{ci |
c ∈ in(σi)} = merge(

⋃
c∈in(σi)

merge({tj | (j < i) ∧ c ∈
out(σj)} ∪ {c1}) = merge{tj | (j < i) ∧ out(σj) ∩ in(σi) 6=
∅} = merge{tk | k ∈ Mi}. By applying this to (t2), we get
(1). To prove (2), assume it is not true. Then we can pick j ∈ P
minimal such that there exist i, g such that ti(g) ≤ tj(g) and
g ∈ gps(σi), yet not σi →∗ σj . Clearly, this implies i 6= j.
Now, first consider the case g ∈ gps(σj). Because i 6= j and by
(VC2) and (σi → σj ⇒ i < j), this implies σi → σj which is
a contradiction. Thus g /∈ gps(σj). Moreover, tj(g) 6= 0 (because
ti(g) 6= 0 and ti(g) ≤ tj(g) by assumption). Thus, the merge in
(1) can not be empty, meaning that there exists a k ∈ Mj such that
tj(g) = tk(g). By minimality of j, σi →∗ σk. But this implies a
contradiction.

We now prove the two directions of the theorem. (⇒). Assume
there exist k1, . . . , kl ∈ P such that σi = σk1 → · · · → σkl = σj .
Then km ∈ Mkm+1 for 1 ≤ m < l. By (1) this implies tk1 ≤
· · · ≤ tkl and thus ti ≤ tj . (⇐). Assume ti ≤ tj . Pick an arbitrary
c ∈ gps(σi) (which is nonempty by (VC1)). Then ti(g) = tj(g)
and thus σi →∗ σj by (2). 2

5. Experiments
We present experimental results for four C# programs (Fig. 4). The
largest one (takequeue) implements a low-lock datastructure and is
part of a concurrency library at Microsoft. For all programs, Sober
(1) falsified the original version (found that it is not store buffer
safe), and (2) verified a fixed version (which we obtained by adding
more memory fences whenever Sober showed us a borderline trace)
up to some bound on the number of preemptions [22] (column 2).

We make two observations. First, a large percentage of inter-
leavings trip the monitor (columns 3,4). Therefore, a violation is
found quickly (column 5). This indicates that our monitor may be
useful for falsification even in a plain testing setup (without do-

ing exhaustive space exploration). Second, when verifying a cor-
rect program, the number of interleavings and the verification time
increase dramatically with the context bound as usual [22]; how-
ever, the overhead by the store buffer safety monitor is fairly low in
practice (columns 6,7), indicating that it makes sense to turn it on
by default within the CHESS tool.

6. Conclusions and Future Work
We have presented a novel method to verify store buffer safety
using a non-intrusive monitor that is run alongside sequentially
consistent executions of the program. We have demonstrated that
this method is scalable, automatic and precise enough to find store-
buffer-related bugs in realistic low-lock code, such as concurrency
libraries.

As future work, we consider including memory model relax-
ations other than store buffers, and we plan to apply our monitor to
larger execution traces.

References
[1] S. Adve and K. Gharachorloo. Shared memory consistency models:

a tutorial. Computer, 29(12):66–76, 1996.

[2] M. Ben-Ari. Principles of Concurrent Programming. Prentice Hall
Professional Technical Reference, 1982.

[3] S. Burckhardt, R. Alur, and M. Martin. Bounded verification of
concurrent data types on relaxed memory models: A case study. In
Computer-Aided Verification (CAV), LNCS 4144, pages 489–502.
Springer, 2006.

[4] S. Burckhardt, R. Alur, and M. Martin. CheckFence: Checking
consistency of concurrent data types on relaxed memory models. In
Programming Language Design and Implementation (PLDI), pages
12–21, 2007.

[5] Compaq Computer Corporation. Alpha Architecture Reference
Manual, 4th edition, January 2002.

[6] D. Dill, S. Park, and A. Nowatzyk. Formal specification of abstract
memory models. In Symposium on Research on Integrated Systems,
pages 38–52. MIT Press, 1993.

[7] X. Fang, J. Lee, and S. Midkiff. Automatic fence insertion for
shared memory multiprocessing. In International Conference on
Supercomputing (ICS), pages 285–294, 2003.

[8] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In POPL 05: Principles of Programming
Languages. ACM Press, 2005.

[9] B. Frey. PowerPC Architecture Book v2.02. International Business
Machines Corporation, 2005.

[10] P. Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems: An Approach to the State-Explosion Problem.
LNCS 1032. Springer-Verlag, 1996.

[11] P. Godefroid. Model checking for programming languages using
Verisoft. In POPL 97: Principles of Programming Languages, pages
174–186, 1997.

[12] G. Gopalakrishnan, Y. Yang, and H. Sivaraj. QB or not QB: An
efficient execution verification tool for memory orderings. In
Computer-Aided Verification (CAV), LNCS 3114, pages 401–413,
2004.

[13] M. Hill. Multiprocessors should support simple memory-consistency
models. IEEE Computer, 31(8):28–34, 1998.

[14] T. Huynh and A. Roychoudhury. A memory model sensitive checker
for C#. In Formal Methods (FM), LNCS 4085, pages 476–491.
Springer, 2006.

[15] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, November 2006.

[16] Intel Corporation. Intel 64 Architecture Memory Ordering White
Paper, August 2007.

[17] International Business Machines Corporation. z/Architecture
Principles of Operation, first edition, December 2000.

[18] L. Lamport. A new solution of dijkstra’s concurrent programming
problem. Communications of the ACM, 17(8):453–455, 1974.

[19] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comp., C-28(9):690–
691, 1979.

[20] J. Manson, W. Pugh, and S. Adve. The Java memory model. In
Principles of Programming Languages (POPL), pages 378–391,
2005.

[21] V. Morrison. Understand the impact of low-lock techniques in
multithreaded apps. MSDN Magazine, 20(10), October 2005.

[22] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In Programming
Language Design and Implementation (PLDI), pages 446–455, 2007.

[23] S. Park and D. L. Dill. An executable specification, analyzer and
verifier for RMO (relaxed memory order). In Symposium on Parallel
Algorithms and Architectures (SPAA), pages 34–41, 1995.

[24] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory. ACM Trans. Program. Lang. Syst.,
10(2):282–312, 1988.

[25] D. Weaver and T. Germond, editors. The SPARC Architecture Manual
Version 9. PTR Prentice Hall, 1994.

[26] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Memory-model-
sensitive data race analysis. In International Conference on Formal
Engineering Methods (ICFEM), LNCS 3308, pages 30–45. Springer,
2004.

[27] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Rigorous concur-
rency analysis of multithreaded programs. In PODC Workshop on
Concurrency and Synchronization in Java Programs (CSJP), 2004.

[28] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A
framework for axiomatic and executable specifications of memory
consistency models. In International Parallel and Distributed
Processing Symposium (IPDPS), 2004.

A. Operational Memory Models
In the following, we present our operational models for SC and
TSO. Operational memory models describe what traces are valid
by specifying an automaton which emits events as it transitions.
Traces are valid with respect to the operational model if and only if
there exists an accepting run of the automaton such that the emitted
events match the events in the trace. We then prove (Thm. 16 and
17) that the axiomatic definitions of SC and TSO (Def. 2 and 3)
are equivalent to the operational models.

We now describe this concept more formally. We call our la-
beled transition systems trace automata (note that they are not re-
quired to be finite), and work over a fixed set Evt of events (we
defined this set previously). A trace automaton over Evt is a tuple
A = (S, T, initial, accept, guard, apply) where S is a set of states,
T ⊇ Evt is a set of transitions (transitions in T \ Evt are called
internal), initial : S → bool and accept : S → bool are predi-
cates that characterize the initial and accepting states, guard maps
each transition t ∈ T to a boolean function guard〈t〉 : S → bool
(describing the guard of t), and apply maps each transition t ∈ T
to a function apply〈t〉 : S → S (describing the effect of t on the
state). We then say a sequence w = w0 . . . wn ∈ T ∗ is an accepted
run by A if there exist states s0, . . . , sn+1 ∈ S such that all of the
following hold:

• initial(s0) = true
• accept(sn+1) = true
• guard〈wi〉(si) = true for all 0 ≤ i ≤ n

• apply〈wi〉(si) = si+1 for all 0 ≤ i ≤ n

We define L(A) ⊆ T ∗ to be the set of all accepted runs of A. For
a sequence w ∈ T ∗, let (w ↑ Evt) be the subsequence of w that
contains only the elements that are in Evt. We then define the set
of memory traces of an event automaton A as T (A) = {w ↑ Evt |
w ∈ L(A)}.

We now define the trace automata ASC and ATSO. The automa-
ton ASC has no internal transitions; the automaton ATSO has internal
transitions stc(p, i, a, c) that correspond to the time at which the
store st(p, i, a, c) commits globally (which may happen at a later
time than the issuing of the store).

DEFINITION 15. Define the automaton ASC as shown in Fig. 5,
and define the automaton ATSO as shown in Fig. 6.

We now prove that the axiomatic definitions of SC and TSO
(Def. 2 and 3) are equivalent to the operational models.

THEOREM 16. T (ASC) = T SC.

PROOF.
We prove equality by showing mutual containment, starting

with T (ASC) ⊆ T SC. Let E ∈ T (ASC). By definition, this implies
that there exists an accepting run w = w0 . . . wn ∈ Evt∗ of ASC,
with corresponding state sequence s0, . . . , sn+1 ∈ S, such that
E = {w0, . . . , wn}. We now need to show that E is indeed a trace
(Def. 1) and that it is sequentially consistent (Def. 2).

First, we show that E is indeed a trace, that is, satisfies con-
ditions (E1), (E2) and (E3) of Def. 1. To do so, we first look at
how the i[p] component of the state is updated during the run.
A quick look at the pseudocode in Fig. 5 reveals that i[p] starts
out as 0 and gets incremented by each wk for which p(wk) = p,
and for each such wk we have i(wk) = (sk.i[p]) + 1. This im-
plies that for all p, i is an index function on {wk | p(wk) = p}
and thus on E(p) (note that the events wk are pairwise unequal
because they either go to different processors, or receive a differ-
ent processor index). (E1) is thus satisfied. Similarly, we can look
at the events that modify the m[a] component of the state. We see

that m[a] starts out as 0 and gets incremented by each wk such that
a(wk) = a and o(wk) ∈ {st, il}, and for each such wk we have
c(wk) = (sk.m[a]+1). This implies that for all a, c is an index
function on {wk | (a(wk) = a) ∧ (o(wk) ∈ {st, il})} and thus on
W (E, a). (E2) is thus satisfied. Finally, we can see that for each wk

satisfying o(wk) = ld, the coherence index c(wk) matches the cur-
rent m[a], and is thus either equal to 0 (the initial value of m[a]) or
to the value last written to m[a] by a previous store or interlocked
event (and thus equal to the coherence index of that event). (E3) is
thus satisfied and E is indeed a trace.

Next, we need to show that E is sequentially consistent accord-
ing to Definition 2, that is, we need to show that →hb is acyclic
on E. Because i[p] and m[a] grow monotonically, we know that
for any wi, wj , it must be the case that wi →p wj ⇒ i < j and
wi →c wj ⇒ i < j. Therefore, wi →hb wj ⇒ i < j. Thus,
→hb is acyclic on {w1, . . . , wn} = E. This concludes the proof of
T (ASC) ⊆ T SC.

We now proceed to the second half of the proof and show
T SC ⊆ T (ASC). Given any E ∈ T SC, let w = w0 . . . wn ∈ Evt∗

be a sequence such that E = {w0, . . . , wn} and such that i < j
whenever wi →hb wj (such a sequence always exists because E
is finite and →hb is acyclic by (SC1)). We then claim that w is an
accepted run by ASC. To show that this is indeed true, consider the
state sequence s0, s1, . . . , sn such that initialSC(s0) = true and
applySC〈wi〉(si) = si+1. Then it remains to show that for all i,
guard〈wi〉(si) = true. We do this by examining the conditions that
appear in these guards individually.

• The condition i[p]==i-1 (which appears in all guards of
events in E(p)) is guaranteed to be satisfied because i[p] starts
as zero, is incremented by each wi ∈ E(p), is not modified by
any events not in E(p), and (E1) guarantees that i is an index
function on E(p).

• The condition m[a]==c-1 (which appears in the guards of
events in W (E, a)) is guaranteed to be satisfied because m[a]
starts as zero, is incremented by each wl ∈ W (E, a), is not
modified by any events not in W (E, a),and (E2) guarantees
that c is an index function on W (E, a).

• The condition m[a]==c (which appears in the guards of events
in L(E, a)) is guaranteed for the following reason. Let wx =
ld(p, i, a, c) ∈ E the load event in question. Note that m[a]
is only modified by events in W (E, a). Now, by (E3), either
c = 0, or there exists an event st(p′, i′, a, c) ∈ E. If c = 0,
then for all wy ∈ W (E, a), we have wx →c wy , which
implies x < y. Thus m[a] still has the initial value 0 in state
sx, and the condition is satisfied. On the other hand, if there is
an event wy = st(p′, i′, a, c) ∈ E, then by the same argument,
y < x. Moreover, by the same argument again, all other writes
wz ∈ W (E, a) must satisfy either z < y or x < z, which
implies that the condition m[a]==c is satisfied in state si.

2

THEOREM 17. T (ATSO) = T TSO.

PROOF.
First, let us define the functions issue, commit : Evt → TTSO

as follows:

issue(o(p, i, a, c)) = o(p, i, a, c)

commit(o(p, i, a, c)) =

{
o(p, i, a, c) if o 6= st
stc(p, i, a, c) if o = st

These functions help us reason about issue and commit transi-
tions corresponding to events.

ASC = (SSC, TSC, initialSC, acceptSC, guardSC, applySC)
TSC = {st, ld, il} × Proc × N× Adr × N0

SSC = {
m : array[Adr] of N;
i : array[Proc] of N;

}
initialSC = (forall a : m[a] == 0)

and (forall p : i[p] == 0)
acceptSC = true

t guardSC〈t〉 applySC〈t〉
st(p,i,a,c) (i[p] == i-1)

and (m[a] == c-1)
i[p] := i;
m[a] := c;

ld (p,i,a,c) (i[p] == i-1)
and (m[a] == c)

i[p] := i;

il (p,i,a,c) (i[p] == i-1)
and (m[a] == c-1)

i[p] := i;
m[a] := c;

Figure 5. The trace automaton ASC.

ATSO = (STSO, TTSO, initialTSO, acceptTSO, guardTSO, applyTSO)
TTSO = {st, stc, ld, il} × Proc × N× Adr × N0

STSO = {
m : array[Adr] of N;
ml : array[Proc,Adr] of N;
i : array[Proc] of N;
B : array[Proc] of FIFOQueue of Evt;

}
initialTSO = (forall a : m[a] == 0)

and (forall p,a : ml[p,a] == 0)
and (forall p : i[p] == 0)
and (forall p : B[p].length() == 0)

acceptTSO = (forall p : B[p].length() == 0)

t guardTSO〈t〉 applyTSO〈t〉
st(p,i,a,c) i[p] == i-1 i[p] := i;

ml[p,a] := c;
B[p].add(st(p,i,a,c));

stc(p,i,a,c) (B[p].peek()
== st(p,i,a,c))

and (m[a] == c-1)

m[a] := c;
B[p].pop();

ld (p,i,a,c) (i[p] == i-1) and
c == max { m[a], ml[p,a] }

i[p] := i;

il (p,i,a,c) (i[p] == i-1) and
(m[a] == c-1) and
B[p].length() == 0

i[p] := i;
m[a] := c;

Figure 6. The trace automaton ATSO.

We prove equality by showing mutual containment, starting
with T (ATSO) ⊆ T TSO. Let E ∈ T (ATSO). By definition, this
implies that there exists an accepting run w = w0 . . . wn ∈ T ∗

TSO of
ATSO, with corresponding state sequence s0, . . . , sn+1 ∈ S, such
that E = {w0, . . . , wn} ∩ Evt. We now need to show that E is
indeed a trace (Def. 1) and that it is totally-store-ordered (Def. 2).

First, we show that E is indeed a trace, that is, satisfies condi-
tions (E1), (E2) and (E3) of Def. 1. To do so, we first look at how the
i[p] component of the state is updated during the run. Just as in the
proof of Thm. 16, we conclude that (E1) is satisfied (note that the
internal transitions stc(p, i, a, c) do neither read nor update i[p]).
Next, we observe that the st(p, i, a, c) and stc(p, i, a, c) events oc-
cur in matching pairs, with st preceding stc. Too see why, consider
the variable B[p] for each p. It starts out empty and ends empty (be-
cause of the accepting condition). Because B[p] is a FIFO queue,
we can match the add and pop calls, which gives the claimed
match. Now, just as in the proof of Thm. 16, we figure that c is
an index function on {wk | (a(wk) = a) ∧ (o(wk) ∈ {stc, il})},
and because of the matching this implies that c is an index function

on {wk | (a(wk) = a) ∧ (o(wk) ∈ {st, il})} which implies (E2).
Finally, we can see that for each wk satisfying o(wk) = ld, the
coherence index c(wk) matches either the current m[a] or the cur-
rent ml[a]. It is thus either equal to 0 (the initial value of m[a] and
ml[a].) or to the value last written to m[a] or ml[a] by a previous
store or interlocked event (and thus equal to the coherence index of
that event). (E3) is thus satisfied and E is indeed a trace.

Next, we need to show that E satisfies conditions (TSO1) and
(TSO2). Let W = {w0, . . . , wn}, and define the total order <
on W by wi < wj ⇔ i < j. Because (as remarked earlier)
st(p, i, a, c) and stc(p, i, a, c) events occur in matching pairs, we
know commit(E) ⊆ W and for all e ∈ E, commit(e) ≥ e.
We now prove that →rhb is acyclic on E by showing the following
claim:

for all e, e′ ∈ E : (e →rhb e′) ⇒ (commit(e) < commit(e′))

We prove it by doing a case distinction on e →rhb e′.

• [e →p e′]. Then e, e′ ∈ E(p) for some p. Because i[p] grows
monotonically and is incremented by the events in E(p), we
know e < e′. Now, do another case distinction.

[o(e) 6= st] In this case commit(e) = e < e′ ≤
commit(e′).

[o(e) = o(e′) = st] e and e′ are pushed into the FIFO
buffer B[p] and popped by commit(e) and commit(e′), so
their relative order is preserved: e < e′ ⇒ commit(e) <
commit(e′).

[o(e) = st and o(e′) = ld] This case is not possible by
definition of →rhb.

[o(e) = st and o(e′) = il] The guard condition of e′

requires that the buffer B[p] be empty, therefore e <
commit(e) < e′ = commit(e′).

• [e →c e′]. Then a(e) = a(e′) for some a ∈ Adr. We do a
further case distinction.

[e, e′ ∈ W (E, a)] Because m[a] grows monotonically and
is incremented by the events in commit(W (E, a)), we can
see that e →c e′ ⇒ commit(e) < commit(e′).

[o(e) = ld and e′ ∈ W (E, a)] Because c(e) < c(e′), and
because m[a] grows monotonically, it can not be the case
that commit(e′) happens before e. Thus commit(e) = e <
commit(e′).

[o(e) = ld and o(e′) = ld] This case is not possible by
definition of →c.

[e ∈ W (E, a) and o(e′) = ld and c(e′) = c(e)]. In the
execution of e′ it can not be the case that ml[p,a] ==
c(e′) because e /∈ E(p(e′)) by definition of →rhb, and no
other store could have written that value to ml[p,a] (by
E2). Thus it must be the case that m[a] == c(e′) which
implies commit(e) < e′ = commit(e′).

[e ∈ W (E, a) and o(e′) = ld and cind(e′) > c(e)] In this
case there must exist a e′′ ∈ W (E, a) such that e →c e′′

and e′′ →c e′ and cind(e′′) = c(e′), and we can apply the
respective subcases.

This concludes the proof of (TSO1). It remains to show that (TSO2)
holds. Suppose e →p e′. Then as before, e, e′ ∈ E(p) for some
p, and a(e) = a(e′) = a for some a ∈ Adr. Furthermore,
e →p e′ implies e < e′ because i[p] is updated monotonically.
Assume e′ →c e. The following case distinction shows that a
contradiction results, which proves (TSO2) and concludes the proof
of T (ATSO) ⊆ T TSO.

• [e ∈ S(E) and e′ ∈ L(E)]. First, observe that ml[p,a]
grows monotonically because the stores commit in the order
issued. Now, because the execution of e′ reads ml[p,a], the
assumption e′ →c e implies e′ < e which is a contradiction.

• [e ∈ L(E) and e′ ∈ S(E) and c(e) = c(e′)]. Then the execu-
tion of e must satisfy either ml[p,a] == c(e) or m[a] ==
c(e). In either case, it follows that e′ < e which is a contradic-
tion.

• [e ∈ L(E) and e′ ∈ S(E)) and c(e′) < c(e)] In this case,
there must exist a e′′ ∈ W (E, a) such that e′ →c e′′ and
e′′ →c e and cind(e′′) = c(e). If e′ /∈ E(p), a →rhb-
cycle results and (TSO1) is violated, which is a contradiction.
Otherwise, it must be the case that e′ →p e′′ (because stores
commit in the order issued) and we can apply the previous case.

• [Other cases] In all other cases, a→rhb-cycle results and (TSO1)
is violated, which is a contradiction.

We now proceed to the second half of the proof and show
T TSO ⊆ T (ATSO). Now, suppose we are given a trace E ∈ T TSO.
Then we define the transition set E′ = issue(E) ∪ commit(E)
(note that this is not a disjoint union because issue(e) = commit(e) =
e for events e /∈ S(E)). Now, let → be the least binary rela-
tion on E′ such that the following conditions are satisfied for all
e1, e2 ∈ E:

(R1) If e1 →rhb e2 then commit(e1) → commit(e2)
(R2) If e1 →p e2 then issue(e1) → issue(e2)
(R3) If commit(e1) 6= e1 then e1 → commit(e1)

We now claim that → is acyclic on E′, by showing that a cy-
cle leads to a contradiction. Let e1 → . . . → ek−1 → ek = e1

be a minimal cycle in E′. Then k ≥ 2 because none of the rules
(R1),(R2),(R3) introduce self-loops. Now, distinguish the follow-
ing cases to conclude that → is acyclic on E′:

• [o(ei) 6= st for all i]. This implies that we can find e′i ∈ E such
that ei = commit(e′i). Now, ei → ei+1 implies e′i →rhb e′i+1

(because the → edge was either produced by (R1), or it was
produced by (R2) in which case e′i →p e′i+1 implies e′i →rhb

e′i+1 because o(e′i) 6= st). Thus the e′i form a →rhb cycle on E
which contradicts (TSO1).

• [o(ei) = st for some i]. Without loss of generality, we as-
sume that the number of i such that o(ei) = st is minimal,
and that o(e1) = st. Now, it must be the rule (R2) that pro-
duces the edge ek−1 → e1 (because neither (R1) nor (R3)
match op(e1) = st). Thus, there exists a x ∈ E such that
issue(x) = ek−1 and x →p e1. This means it can not be
(R2) that produces e1 → e2 (otherwise we can shorten the
cycle, because →p is transitive). Clearly (R1) does not match
either, so e1 → e2 must be produced by (R3). Therefore
e2 = commit(e1). Now, x →p e1 implies x →rhb e1, which
implies commit(x) → commit(e1) = e2. Now, if it is the
case that issue(x) = commit(x), then ek−1 = commit(x)
and thus ek−1 → e2 so we can shorten the cycle which is a
contradiction. On the other hand, if issue(x) 6= commit(x),
then x = issue(x) = ek−1 and x 6= commit(x), so we apply
(R3) to get ek−1 → commit(x) → commit(e1) = e2. Thus,
we have found a cycle with one less store operation which con-
tradicts minimality.

Now, let w = w0 . . . wn ∈ T ∗
TSO be a sequence of pairwise

distinct transitions such that {w0, . . . , wn} = E′ and such that
i < j whenever wi → wj (such a sequence always exists be-
cause E′ is finite and → is acyclic). We then claim that w is an
accepted run by ATSO. To show that this is indeed true, consider the
state sequence s0, s1, . . . , sn such that initialTSO(s0) = true and
applyTSO〈wi〉(si) = si+1. Then it remains to show that (1) for all
i, guardTSO〈wi〉(si) = true, and (2) acceptTSO(sn) = true. We do
this by examining the conditions that appear in these expressions
individually.

• The condition i[p]==i-1 (which appears in the guards of
events in E(p)) is guaranteed to be satisfied because i[p] starts
as zero and is incremented by each wi ∈ E(p). Now, (R2)
guarantees that the latter are applied in order.

• The condition m[a]==c-1 (which appears in the guards of
events in W (E, a)) is guaranteed to be satisfied because m[a]
starts as zero and is incremented by each wl ∈ W (E, a). Now,
(R1) guarantees that the latter are applied in order.

• The condition B[p].length()==0 appearing in acceptTSO is
satisfied in the final state for all p because (1) the queues are ini-
tially empty, (2) the only transitions that increment/decrement
the queue size are st(p, i, a, c) and stc(p, i, a, c), respectively,
and (3) by construction, E′ = issue(E) ∪ commit(E) and

we can thus pairwise match the transitions st(p, i, a, c) and
stc(p, i, a, c) within E′, and by (R3) we know that for each such
pair, st(p, i, a, c) precedes stc(p, i, a, c).

• The condition B[p].length()==0 appearing in the guards of
interlocked events by processor p is satisfied because as before,
the only transitions that increment/decrement the queue size are
st and stc events by p. But thos are guaranteed to precede the
interlocked event, by (R1).

• The condition B[p].peek()==st(p,i,a,c) appearing in the
guard of stc(p, i, a, c) is satisfied because (R3) guarantees that
st(p, i, a, c) has been added to the FIFO buffer, and (R1) guar-
antees that we pop the elements in order.

• The condition c==max{m[a],ml[p,a]} which appears in the
guards of load events is guaranteed for the following reason.
Let l = ld(p, i, a, c) ∈ E be the load event in question.
Note that m[a] and ml[p,a] are only modified by events in
W (E, a). Now, by (E3), either c = 0, or there exists an event
st(p′, i′, a, c) ∈ E. If c = 0, then for all s ∈ W (E, a), we
have l →rhb s, which implies that l precedes commit(s) (by
(R1)), and that l precedes issue(s) if p(s) = p. Thus m[a] and
ml[p,a] still have the initial value 0, and the condition is satis-
fied. On the other hand, if there is an event s = st(p′, i′, a, c) ∈
E, then distinguish the following two cases.

[p 6= p′] Then s →rhb l, and all other writes s′ ∈ W (E, a)
must satisfy either s′ →c s (meaning that commit(s′)
precedes commit(s) by (R1)), or l →c s′ (meaning that
commit(s′) trails commit(l) by (R1)). Thus m[a] = c
when l executes. Now, it remains to show that ml[p,a] <=
c. This follows trivially if ml[p,a] has its initial value 0;
otherwise, suppose there is a store s′ = st(p, i′′, a, c′) with
c′ > c that writes to ml[p,a] before l. But then l →c s′

which means not s′ →p l by (TSO2), thus l →p s′ and thus
issue(l) precedes issue(s′) which is a contradiction.

[p = p′] Then s →rhb l, and all other writes s′ ∈ W (E, a)∩
E(p) must satisfy either s′ →c s (implying s′ →p s by
(TSO2) and thus issue(s′) precedes issue(s) by (R2)), or
l →c s′ (implying l →p s′ by (TSO2) and thus issue(l)
precedes issue(s′) by (R2)). Thus ml[p,a] = c when l
executes. Now, it remains to show that m[a] <= c. This
follows trivially if m[a] has its initial value 0; otherwise,
suppose there is a store s′ = st(p′′, i′′, a, c′) with c′ > c
that writes to m[a] before l. But then l →c s′ which means
l →rhb s′ which in turn implies that commit(l) precedes
commit(s′) by (R1), which is a contradiction.

2

