
PERSISTENT QUERIES

ANDREAS BLASS AND YURI GUREVICH

Abstract. We propose a syntax and semantics for interactive
abstract state machines to deal with the following situation. A
query is issued during a certain step, but the step ends before
any reply is received. Later, a reply arrives, and later yet the
algorithm makes use of this reply. By a persistent query, we mean
a query for which a late reply might be used. Syntactically, our
proposal involves issuing, along with a persistent query, a location
where a late reply is to be stored. Semantically, it involves only a
minor modification of the existing theory of interactive small-step
abstract state machines.

1. Introduction

An abstract state machine (ASM) describes an algorithm by telling
what it does in any one step. A run of an ASM is the result of re-
peatedly executing the one-step instructions, possibly interleaved with
interventions from the environment. See [4] for details or see Section 4
below for a summary.

Previous theoretical work on ASMs has concentrated on what hap-
pens during a single step. For example, the papers [5, 1, 2, 3] estab-
lished, for various classes of algorithms, the theorem that every algo-
rithm in the class can be matched, step for step, by an ASM. Almost
nothing was said there about what happens between steps, because
almost nothing can be said; the environment can make essentially ar-
bitrary inter-step changes to the state.

Intra-step interaction with the environment, in contrast, was treated
in great detail in [2, 3]. The key difference from inter-step interaction
is that, although the environment can, during a step, give essentially
arbitrary replies to the algorithm’s queries, the effect of these replies
on the state and thus on the future course of the computation is under
the algorithm’s control.

In the present paper, we use inter-step interaction to treat an issue
arising out of intra-step interaction, namely the possibility of a query

Blass is partially supported by NSF grant DMS-0653696 and by a grant from
Microsoft Research.

1

2 ANDREAS BLASS AND YURI GUREVICH

being answered after the completion of the step in which the query was
issued. We describe an extension of ASM syntax to accommodate such
late replies, and we relate it to the ASMs of [3].

As in [5, 2, 3], we restrict attention to small-step — also known as
sequential — algorithms. The amount of work that a small-step algo-
rithm performs during any one step is bounded independently of the
state or input. In the rest of the article, algorithms are by default
small-step. In [2, Part I], we argued that, in principle, the intra-step
interaction of an algorithm with the environment reduces to the algo-
rithm querying the environment and the environment answering these
queries. In the case of ordinary algorithms [2], every query issued dur-
ing a step needs to be answered before the algorithm finishes the step.
In the general case [3], however, the algorithm may finish a step without
having all the replies.

If, in such a situation, the reply to a query arrives after the algo-
rithm’s step has ended, then the question arises how to handle the late
reply. It may happen that the algorithm does not need that late reply;
consider for example an algorithm that issues two queries and sets x
to 1 when at least one of the two replies arrives. In such a case, the
late reply can simply be ignored or discarded. But suppose that the
algorithm eventually, at some later step, needs the late reply. In the
framework of [3] where attention is restricted to one step of an algo-
rithm, the natural solution was this. If and when the algorithm needs a
late reply, it issues an auxiliary query inquiring whether the reply is in.
Another possibility, close to current programming practice, is to fork
out a separate computation thread that will wait for the late reply and
will perhaps do some work with the late reply if and when it appears
[6]. Here we propose a new solution that does not require additional
queries or additional computation threads.

We base our discussion on the model of interactive computation in-
troduced and analyzed in [3], which we review in Section 4. This model
differs from the earlier, more special model of [2] in two ways, one
of which is the possibility of completing a computation step without
waiting for replies to all the queries issued during the step.1 It is this
possibility that opens the door to the topic of late replies and their
subsequent use by the algorithm. The primary purpose of this paper
is to describe an ASM model that incorporates such persistent queries
and their late replies.

1The other is that the algorithm can take into account the order in which replies
are received.

PERSISTENT QUERIES 3

The paper is organized as follows. We begin in Section 2 with some
examples showing the relevance of late replies. In Section 3, we briefly
describe our proposed extension of the traditional ASM syntax to han-
dle persistent queries and late replies. This description is intended to
convey the general idea, without presupposing details about the tradi-
tional syntax and semantics. Those details and the associated semanti-
cal notions are reviewed in Section 4, in preparation for a more careful
presentation of our proposal. Section 5 discusses in more detail the
possibility of finishing a step while some of that step’s queries remain
unanswered. Finally, Section 6 presents in detail our ASM model for
this situation, and shows how these ASMs can be represented in the
model from [3].

As indicated above, we limit ourselves here to small-step algorithms,
i.e., algorithms that work in discrete steps (as opposed to distributed
algorithms where there may be no clear notion of (global) step because
agents act asynchronously) and do only a bounded amount of work
per step, with the bound depending only on the algorithm, not on the
input or state (as opposed to, for example, massively parallel algorithms
where the number of available processors may be increased according
to the input size).

There are several justifications for this limitation. First, many of the
algorithms used in practice are small-step.

Second, even in massively parallel or distributed algorithms, the in-
dividual processors or agents are usually small-step algorithms. Com-
munication between agents is, from the point of view of any one agent,
an interaction with its environment. An important motivation for de-
veloping a general model for interaction between an algorithm and its
environment is this situation where the algorithm under consideration
is one agent — a small-step algorithm — while the environment in-
cludes the other agents.

Third, small-step algorithms are the only class of algorithms for
which the general theory of interactive algorithms has been worked
out in detail and for which interactive ASMs have been proved to be
adequate to capture all algorithms of the class [2, 3]. For parallel al-
gorithms, the analogous work has been done only in the absence of
intra-step interaction [1], and the case of distributed algorithms re-
mains entirely in the domain of future work. Thus, the foundation on
which we shall build in the present paper is currently available only for
small-step algorithms.

Finally, it is reasonable to expect that what we do here for small-
step algorithms will suggest how to do the analogous tasks for broader
classes of algorithms, once the necessary framework is in place. What

4 ANDREAS BLASS AND YURI GUREVICH

we do here may also be useful in extending our work on parallel al-
gorithms [1] to include external interactions, because it allows greater
flexibility in handling the flood (or trickle) of replies that a parallel
algorithm might receive all at once.

PART I: AN IMPROVED INTERACTIVE SMALL-STEP ASM
MODEL

In this part we explain a new model of interactive small-step ab-
stract state machines that allows us to handle persistent queries. The
explanation covers the syntax and its intended meaning. In the second
part of the paper we cover the formal semantics of the new model in
full detail.

2. Persistent Queries and Late Replies

As indicated earlier, we are concerned in this paper with providing
an ASM formalism that conveniently handles the following situation:
An algorithm issues a query during a certain step, but finishes the step
without getting an answer to that query. The answer arrives later and
is then used in some subsequent step of the algorithm.

By a late reply, we mean a reply from the environment to a query q,
reaching the algorithm after the completion of the step in which q was
issued. If a late reply to q can influence the subsequent work of the
algorithm, then we call q a persistent query.

Remark 1. The most natural meaning of “can influence” in the pre-
ceding sentence involves what can actually happen in runs of the algo-
rithm. Like other run-time properties, persistence is then undecidable
in general. That undecidabilty does no harm to our work in this paper.
On the other hand, when writing programs, one is faced with the need
to decide which queries should be considered persistent and treated by
the methods of this paper. For this purpose, one should interpret “can
influence” to mean that the programmer does not know with certainty
that a late answer will never be used. It does no harm if a program
treats a query as persistent even when, at run time, it turns out not to
be persistent.

Example 2. We revisit Example 3.3 of [3, Part I]. In that example, a
broker has a block of shares to sell and offers the entire block to two
clients. As soon as he gets a positive reply from either client, he sells
all the shares to that client. (The situation where positive replies from
both clients reach the broker simultaneously is discussed in [3, Part I,
Example 3.20], but it need not concern us here.) Suppose that the

PERSISTENT QUERIES 5

broker has sold the shares to client A and completed his step (with
an update to his state, recording the sale) without having received any
reply from client B. Later, he gets a reply from B, who also wants to buy
the shares. He should then tell B, “Sorry, I already sold the shares to
someone else, whose acceptance of my offer reached me before yours.”
Thus, the actions of the broker (regarded as an algorithm) take into
account B’s reply, even though the reply came after the completion of
the step in which the associated query (the offer to sell the shares) was
issued. So that query is persistent.

Example 3. A pollster sends questionnaires to many people. Being a
small-step algorithm, the pollster sends the questionnaires a few at a
time, so the sending occupies numerous steps. Later, the filled-in ques-
tionnaires arrive and the pollster processes them. Usually, a question-
naire will be filled in and returned only after the end of the (pollster’s)
step in which it was sent out. So the filled-in questionnaires are late
replies, and the associated queries, the original, blank questionnaires,
are persistent queries.

Even if one of the respondents is so quick that the pollster gets the
reply in the same step in which he issued the query (so we are dealing
with a traditional reply, as in [2, 3], not a late reply), the pollster will
probably want to postpone processing this reply until after he finishes
mailing all the questionnaires. More generally, an algorithm may well
treat all replies the same, whether they are late or not.

How should persistent queries and late replies be treated in the con-
text of ASMs?

Recall (from [4] or [2] or [3] — see Section 4 below for a review) how
queries arise and how their answers are used in the computation done
by an ASM. Queries are produced by terms f(t1, . . . , tn) in the ASM
program, where f is an external function symbol. The queries and
replies from any single step of the computation form a history (in [3],
an answer function in [2]), which is empty at the beginning of a step
and gradually grows as queries are issued and answered. The history
influences the algorithm’s actions (issuing additional queries, ending
the step, updating the state) during that step, but it is reset to empty
for the start of the next step. This is in accordance with the general
principle — intuitively the definition of “state” — that the state must
include all the information from past steps that can influence the future
progress of the computation.

As in previous work [2, 3], we adopt the so-called Lipari convention,
namely that if the same external function symbol occurs several times

6 ANDREAS BLASS AND YURI GUREVICH

in an ASM program, and if its arguments at different occurrences hap-
pen to evaluate to the same elements in a particular state, then all
those occurrences result in only a single query during a single step of
the algorithm. For a discussion of alternative conventions and of our
reasons for adopting the Lipari convention, see [2, Part II, Section 4].

Remark 4. One of those alternative conventions, the must-vary conven-
tion, is commonly used in practice. This convention requires all occur-
rences of external functions in a program to produce different queries,
even if they involve the same function with the same arguments. The
idea is that, whenever a query is issued, an additional component, an
ID, is added automatically, and all these IDs are distinct. Thus, even
if two queries look the same to the ASM, the IDs make them distinct.
(In [2], the must-vary convention applied to the queries issued within a
single step, but we naturally take it to also apply to queries from differ-
ent steps. All the IDs are distinct, whether from the same step or not.)
It appears that, given a suitable formalization of ASM semantics under
the must-vary convention, what we do in this paper would work under
that convention as well. We do not attempt to develop the must-vary
version of the theory here, but we shall add occasional remarks about
how this convention would affect our discussion.

With this rough description of the situation (see Section 4 for a
detailed description), we turn to the question of handling persistent
queries and late replies in the context of ASMs.

Perhaps the first approach that comes to mind is that, when an
algorithm wants to use a late reply to a previously issued query q, it
simply re-issues q. Then the late reply to the old q would appear, in
the history of the later step, as the reply to the new q.

Remark 5. Under the must-vary convention, this approach would not
arise, since there would be no such thing as re-issuing a query.

The trouble with this approach is that re-issuing an old query already
has a different meaning: It is an entirely new query, not related (in
general) to the previous query. In particular, if q is issued and answered
at some step and then issued again at a later step, it may get an
entirely different reply the second time. In other words, the histories
that occur in different steps of a computation are not required to agree
in any way. Recall that each step of an algorithm’s computation begins
with an empty history and gradually builds up to a larger history as
queries are issued and answered, but at the end of the step, its history
disappears, so there is no connection between the query q issued at two
different steps. Formally, this fact is incorporated in the the definition

PERSISTENT QUERIES 7

of coherence and the Step Postulate in [3] (reviewed in Section 4 below),
which make no allowance for any influence of the histories of earlier
steps. Informally, the same fact is a consequence of the general principle
that all the information from the computation’s past that can affect
its future must be in the state, not in some other memory of histories
from previous steps.

An algorithm, having issued q in some earlier step but having re-
ceived no answer, might well want to both use a late reply to that q
and also issue q anew for a possibly different reply. Obviously, this sit-
uation cannot be modeled by using a re-issued q to represent looking
for a late reply.

The same difficulty can also be seen in the two examples above. If
the broker looked for a late reply from client B by re-issuing the query,
then this would look to B like a new offer to sell a (possibly different)
block of shares. Similarly, for a pollster to look at the replies he has
received is quite different from sending out the questionnaires again.

A second approach also uses queries whereby the algorithm looks
for late replies, but these queries will not be repetitions of the orig-
inal queries. Instead, this approach is similar to the use of implicit
queries, which was introduced in [2, Part I, Section 2] as a way to rep-
resent an algorithm’s paying attention to unsolicited information from
the environment. (See also [2, Part II, Example 5.14] and [3, Part I,
Remark 3.7].) The idea here is that, when it wants to use a late reply
to a query q, the algorithm is, in effect, asking the environment to pro-
vide that late reply, if one exists. That is, the algorithm issues a query
asking, “What late reply, if any, has been received for the query q?”

Remark 6. Unlike the first approach, the second makes sense in the
must-vary context. The following paragraph would, however, be modi-
fied. Instead of needing tags in case the same query is issued at several
previous steps (an impossibility under must-vary), the algorithm would
need to know the IDs that were attached to its previous queries.

Actually, this query needs to be more detailed. The query q could
have been issued at several earlier steps, and these occurrences of q
would be treated by the environment as distinct queries, which could
receive different answers. So late replies might be available for several
of these occurrences. The algorithm needs to say which occurrence it
wants. So the implicit query might have the form “What late reply,
if any, has been received for the query q that I issued in step n?” To
avoid the need for both the algorithm and the environment to count
steps, the algorithm might assign some tags to persistent queries at
the time it issues them, and inform the environment about the tags, so

8 ANDREAS BLASS AND YURI GUREVICH

that it can later ask “What late reply, if any, has been received for the
query q that I issued with tag t?”

A version of this approach was suggested in [2, Part I, Section 2],
even though the algorithms of that paper never finished a step with
unanswered queries. Nevertheless, the possibility of an query-reply
pair spanning several steps was addressed as follows. The query should
be regarded as a simple message to the environment, whose answer
received in the same step is an uninformative “OK,” and the “real”
answer in some later step should be regarded as a message from the
environment, which is formally regarded as the reply to an implicit
query “I’m willing to receive a message.” This version leaves it up to
the environment to say which old query it is answering with its new
message.

The use of new queries to request late replies to old queries has
some drawbacks. It requires additional work from the environment,
namely storing all late replies until the algorithm asks for them, and
then delivering them immediately. This produces a mismatch between
the ASM model and what would ordinarily happen in practice. A
real environment would probably deliver a late reply as soon as it is
available and expect the algorithm to deal with it from then on.

If a reply is not yet available when requested, the algorithm might
well keep issuing the same request, step after step, and just reading
all those requests would be a burden for the environment. This hardly
matters as long as we take the algorithm’s point of view and regard
the environment as given. But it would matter in a distributed al-
gorithm, where an agent’s environment consists of other agents and
the algorithms executed by those agents would have to include ways of
handling a barrage of queries for which the answer isn’t available.

Such approaches also clash, on a more philosophical level, with the
standard ASM notion of state. Once a late reply is available, it is
something that resulted from the past steps of the computation and
may be relevant to the future; so it ought to be part of the state.

A third approach, quite common in practice, is the use of futures,
new threads created to allow the algorithm (or the parent thread) to
proceed without waiting for late replies to persistent queries. A future
could receive a late reply and either report it to the parent thread
(or some other thread) or do some other work with it. It could also
do additional work both before and after the late reply arrives. This
approach would take us out of the realm of small-step algorithms for
two reasons. First, the new threads need not be synchronized with
the parent thread or with each other, so we would no longer have a
global state advancing step by step. Second, even if we demanded

PERSISTENT QUERIES 9

synchronization, a situation could arise where an algorithm has issued
a great many queries at various steps in the past (only a few queries
at any one step, if the algorithm is small-step) and has a great many
futures waiting for the replies. If these futures do any computing while
they wait, the total work they do might not be bounded. Since we
want to remain in the framework of small-step algorithms, we do not
adopt futures as our method of handling late replies.

We therefore prefer a fourth approach, in which a late reply is
recorded directly in the algorithm’s state. The next section explores
this approach in somewhat more detail.

3. ASMs With Persistent Queries

In this section, we discuss the last approach mentioned above for
handling persistent queries and late replies. When a late reply becomes
available, the environment should record it in the state of the algorithm.

The environment’s action of recording the late reply, since it takes
place without a new query from the algorithm, is an inter-step interac-
tion. It directly updates the algorithm’s state, without any action by
the algorithm. So this update cannot occur earlier than first inter-step
moment after the reply becomes available. It might occur later, if the
environment is busy with other tasks or if communication is slow. For-
tunately, this makes no difference difference to our discussion (though
it may make a difference to the efficiency of the algorithm). Indeed,
from the point of view of an algorithm (or ASM) it makes no difference
if a late reply, received at the start of a certain step, was actually avail-
able much earlier to the environment; the algorithm simply doesn’t see
such availability. As far as the algorithm is concerned, the only notion
of “available” is “delivererd to me by the environment.”

If this method of communication between the environment and the
algorithm is to succeed, they must agree as to where, in the algorithm’s
state, a late reply to a particular query is to be recorded. The environ-
ment must know where to put the reply, and the algorithm must know
where to find the reply when needed. We propose that this agreement
be achieved as follows. Whenever it issues a query for which a late
reply might be relevant (a persistent query), the algorithm should give
the environment, along with the query, a reply location, where any late
reply to this query should be recorded.

As in [4] (and all subsequent work on ASMs), we take location to
mean a pair 〈f, a〉 where f is a function symbol of the algorithm’s
vocabulary and a is a tuple of elements of the state, an n-tuple if f is
n-ary.

10 ANDREAS BLASS AND YURI GUREVICH

Recall (from [2, 3] or see Section 4 below) that a query is a tuple of
elements of the disjoint union X t Λ, where X is (the underlying set
of) the state and Λ is a set of labels. If the function symbol f is among
the labels, then a location 〈f, a〉 is almost a query. “Almost” because
the location is 〈f, 〈a1, . . . , an〉〉 while the query is 〈f, a1, . . . , an〉; we
shall ignore such bracketing distinctions in the future and write as if
locations are queries.

It is not enough, however, for the algorithm to issue, along with any
persistent query, its reply location as a second query (an Output in the
sense of [2] or an issue in the sense of [3], to which the environment
gives an automatic, immediate, and uninformative reply). The algo-
rithm must tell the environment which reply location goes with which
query. After all, the algorithm might issue many queries simultane-
ously.

The simplest way for the algorithm to convey the necessary informa-
tion to the environment is to issue, along with any persistent query q,
a second query that contains both q and the reply location. We adopt,
by convention, the following format for this second query. It is the
concatenation of three sequences:

• the query q,
• the one-term sequence 〈rl〉, and
• the reply location l.

Here the special label rl (abbreviating “reply location”) marks where
the query ends and the reply location begins (and indicates that there
is a reply location, i.e., that this is not just another query); we assume
that this marker rl is chosen to be distinct from all other labels used
by the algorithm.

Here a simplification is possible, if the environment is willing to
cooperate. The information in the original query q is repeated in the
first part of the additional message 〈q, rl, l〉 that specifies the reply
location l. So there is no real need to issue q; it would suffice to issue
〈q, rl, l〉 if the environment is smart enough to interpret it as follows:
Regard the part before rl as a query in the traditional sense, but, if
the reply is late, then put it into the location given after rl.

As a further simplification, we adopt the convention that the reply
to a persistent query should be put into its reply location even if the
reply arrives during the step in which the query was issued. We impose
no requirement, however, on how soon such a reply is put into the reply
location. It need not happen at the end of the step in which the query
was issued; it might happen at the end of some later step. The reason
for this flexibility is that we do not wish to impose requirements on how

PERSISTENT QUERIES 11

fast the environment works, or even on the relative speed of different
parts of the environment. Thus, one part of the environment may be
able to provide an immediate reply directly to the algorithm (as in [2])
while the part of the environment responsible for inter-step changes
to the algorithm’s state is slower. Fortunately, this flexibility does no
harm to our theory.

Instead of having the environment put on-time replies into the reply
location, we could program algorithms so that, when a persistent query
is issued and answered during the same step, the algorithm writes the
reply into the reply location. Our convention relieves the algorithm of
this duty, assigning it to the environment instead.

Does this reassignment unduly burden the environment? One can
argue that it actually makes the environment’s job easier. If only late
replies are to be written to the reply location, then the environment
must watch the step-by-step progress of the algorithm’s work, in order
to know whether a particular reply is late. With our convention, the
environment need not monitor the algorithm in such detail; all replies
to persistent queries go into the assigned reply locations. The only
difference between on-time and late replies is that the former are seen
by the algorithm, in its history (or answer function), without having
to wait until the end of the step.

We propose the following ASM syntax for generating the combined
queries — persistent query combined with reply location. (The same
syntax could also be used in a framework where q and 〈q, rl, l〉 are
issued separately.) Suppose the query q results from a term g(u) in
an ASM. So g is an m-ary external function symbol for some m and
u is an m-tuple of terms ui; q results from inserting the values (in the
algorithm’s current state) of the ui’s in the template associated to g.
(Recall from [2, Part II, Section 4.2] that a template is like a query but
with placeholders instead of elements of the state. An ASM provides,
for each external function symbol g, a template ĝ. The query issued
by g with arguments ui is obtained by replacing the placeholders in ĝ
by the values of the ui’s. See also Section 4 below.) Suppose further
that the desired location for late replies is 〈f, a〉. The components aj
of the tuple a must be the values, in the current state, of some terms
tj, in order for the algorithm to be able to refer to them. Then the
algorithm can specify the desired location by means of the term f(t).
To say, in an ASM program, that the algorithm should ask the query
arising from g(u) and to specify 〈f, a〉 as its reply location, we write

g(u)[=: f(t)].

12 ANDREAS BLASS AND YURI GUREVICH

For human readability, the brackets indicate that the main query here
is produced by g(u), and the reverse-assignment notation =: indicates
that f(t) is to be read as specifying a location (like the left side of an
update rule written with :=) and that the value to be put there is the
(eventual) value of g(u).

In the situation described here, since 〈f, a〉 is a location, the func-
tion symbol f must be in the state vocabulary, not an external function
symbol. In fact, we require all function symbols in the terms t to be
from the state vocabulary also. That is, the ASM should not need to
issue queries in order to determine reply locations. This requirement
arises from the combination of two circumstances. First, a reply loca-
tion for a query should be determined when the query is issued, not in
some later step. (It would be a serious problem if the query location
were determined only after the arrival of the reply that should go into
this location.) So any queries arising from external function symbols in
t need to be answered in the current step, not later. Second, it turns
out that whether a query must be answered in the current step depends
only on the context in which it appears in the ASM program. (The
relevant contexts are timing guards, guards built with Kleene connec-
tives, and issue rules. In all other contexts, queries must be answered
in the current step. This will be proved formally in Proposition 47 be-
low.) But a persistent query g(u) and its reply location f(t) share the
same context. So if the latter must be answered in the current step, so
must the former. And then the former doesn’t need a reply location.

Remark 7. We could relax this requirement and allow t to issue queries
provided we have some assurance, from a source other than the context
in the ASM program, that these queries will be answered in the current
step. Such assurance could come from knowledge about the environ-
ment. It could also come from other parts of the ASM program. A
simple example of the latter possibility is given by the program

if t = t then

if c ≺ g(u)[=: f(t)] then

x := 0
endif

endif.

Here t, c, and g are external but f is in the state vocabulary. A step
of this algorithm can finish without a value for g(u), provided c has a
value. But it cannot finish without a value for t, because of the guard
t = t (whose sole purpose is to require that t have a value).

PERSISTENT QUERIES 13

Example 8. Consider a simplified version of the broker example as de-
tailed in [3, Part I, Example 3.20]; the purpose of the simplification is
to avoid hiding the currently relevant topic, persistent queries and late
replies, in a sea of other considerations. We regard the broker’s offers
to the two clients (whom we name 0 and 1) as given by nullary exter-
nal functions q0 and q1 (instead of ternary functions having the stock,
the number of shares, and the price as arguments), and we assume the
broker breaks ties (when he gets positive answers from both clients si-
multaneously) in favor of client 0 (rather than non-deterministically or
randomly). Also, we assume that, as long as the broker has received no
answer from either client, or has a negative answer from one client and
no answer from the other, he simply waits. The resulting algorithm is
represented by the following ASM, in the notation of [3, Part II]. We
assume that the dynamic function symbols s0 and s1 are used to indi-
cate a sale to client 0 or 1, respectively, so they have the value false

in initial states.

if ¬ Halt then

do in parallel

if s0 = s1 = falsef q0 = true f (q0 � q1 g q1 = false)
then s0 := true endif

if s0 = s1 = falsef q1 = true f (q1 ≺ q0 g q0 = false)
then s1 := true endif

if s0 = s1 = false f q0 = false f q1 = false

then skip endif

Halt := true

enddo

endif

The so-called Kleene conjunction f and Kleene disjunction g that
are used in this ASM program are like ordinary conjunction ∧ and
disjunction ∨ except that pf q is false as soon as one conjunct is false,
even if the other is undefined, and dually for g. For more details, see
[3, Part II, Section 2.3] or Section 4 below.

Convention 9. In future examples, we shall omit “if ¬Halt then”
and the assocated “endif”, adopting instead the convention that an
ASM program is to be executed repeatedly until Halt becomes true.
This convention supersedes the one from [4] that the iteration continues
until there is no change of state from one step to the next. The new
convention allows an algorithm to continue waiting for a late reply
without making any changes to its state.

14 ANDREAS BLASS AND YURI GUREVICH

Now suppose, as in Example 2 above, we want the algorithm to re-
spond to a late reply from a losing client with a letter explaining that
the shares have already been sold. We assume (again for simplicity,
to avoid hiding the relevant issues) that the broker’s vocabulary con-
tains nullary symbols l0 and l1 denoting appropriate letters to the two
clients. And we assume that it also has nullary symbols a0 and a1,
initially denoting undef, to be used as the reply locations. Then the
modified algorithm, which behaves like the one above but also sends
the appropriate letter, is given in our proposed syntax by the following
ASM.

do in parallel

if s0 = s1 = falsef q0 = true f (q0 � q1[=: a1] g q1 = false)
then s0 := true endif

if s0 = s1 = falsef q1 = true f (q1 ≺ q0[=: a0] g q0 = false)
then s1 := true endif

if s0 = s1 = falsef q0 = false f q1 = false

then skip endif

if s0 = true ∧ a1 = true then issue(l1) endif

if s1 = true ∧ a0 = true then issue(l0) endif

if (a0 = true ∨ a0 = false) ∧ (a1 = true ∨ a1 = false)
then Halt := true endif

enddo

The first two lines have been modified by attaching reply locations
ai to the two query-producing terms qi. (It doesn’t really matter which
occurrence of qi is annotated with ai. We chose to use the occurrence
that is primarily responsible for the possibility of finishing the step
without a reply.) Two new lines have been added, containing instruc-
tions for issuing the appropriate letter to the losing client. The last
line makes the algorithm end its run when both clients have answered;
until then, even if the shares have been sold to one client, it waits for
an answer from the other client.

This example serves to illustrate a general feature of our notation.
The part of the program that tells what to do with late replies to the
queries qi does not mention those queries at all. Rather, it mentions
the locations ai where the late replies are to be found. The executor of
the algorithm need not remember, when using a late reply, the query
that it answers; only the location of the late reply is relevant, and it is
used like any other location in the state.

Remark 10. The example also has a somewhat special property, namely
that it doesn’t need modes. It is common, in ASM programs, to use

PERSISTENT QUERIES 15

certain nullary, dynamic symbols as modes, to keep track of what sort
of work the algorithm is currently doing. In the present example, there
would be two modes, one indicating that the broker is waiting for a
positive reply in order to sell the stock, and one indicating that the
stock has been sold to one of the clients but the broker may still need
to send a letter to the other client. It is often convenient to include
such modes and update them explicitly in an ASM program. In the
present case, however, this would be redundant, as the first mode is
already described by s0 = s1 = false and the second mode by the
negation of this.

Example 11. Consider the pollster example, 3. Let us assume that the
pollster sends out N questionnaires, numbered from 0 to N−1, that the
replies will be numbers, and that the desired output is the sum of all
these numbers. For simplicity, we also assume that the questionnaires
are sent one at a time and that all the replies eventually arrive, though
perhaps late and out of order; our pollster algorithm will keep running
without producing an output until all the replies have been received
and added. The pollster first sends out all the questionnaires (using
an internal variable i to keep track of where he is in this process)
and then goes through all the replies, adding them one at a time (re-
using i to keep track of this process as well). We describe what the
pollster does as an ASM, using the following vocabulary. As already
indicated, i is a dynamic, nullary symbol ranging from 0 to N − 1 and
indexing the queries and their replies; it is initially 0. An additional
dynamic, nullary symbol all-sent, initially false, tells whether all
the questionnaires have been sent. Unary functions q and l send each i
to the ith questionnaire q(i) and its reply location l(i). The initial value
of l(i) is undef for each i. A dynamic, nullary function sum, initially 0,
represents, at each step, the sum of the replies that have been added
so far. Elementary arithmetic is assumed to be available, particularly
+, <, and names for specific numbers. Here is the ASM:

16 ANDREAS BLASS AND YURI GUREVICH

do in parallel

if all-sent = false ∧ i < N then do in parallel

issue(q(i)[=: l(i)])
i := i+ 1

enddo endif

if all-sent = false ∧ i = N then do in parallel

i := 0
all-sent := true

enddo endif

if all-sent = true ∧ i < N ∧ l(i) 6= undef then do in parallel

sum := sum + l(i)
i := i+ 1

enddo endif

if all-sent = true ∧ i = N then Halt := true endif

enddo

Recall here Convention 9 that a run of the ASM ends when Halt be-
comes true; until then the program is executed repeatedly. We also
assume that Halt is initially false, so that the program runs.

Remark 12. When justifying the “query and reply” paradigm for intra-
step interaction in [2, Part I, Section 2], we wrote that, if an algorithm
sends a message to the outside world without expecting a reply, then
this situation can be modeled by imagining an automatic, immedi-
ate, and uninformative reply “OK,” essentially just an acknowledg-
ment that the message was sent. The Output rules in [2, Part II] and
the issue rules in [3, Part II] were introduced to produce such mes-
sages. There is, however, nothing in the official semantics in [2] or [3]
to require the environment to produce only “OK” as a reply to such
queries. Although an issue rule cannot make use of any nontrivial
information provided by its reply, nothing prohibits the existence of
such information.

In fact, there are situations where such nontrivial information is to
be expected, for example in

do in parallel

x := q

issue(q)

enddo

(where q is an external nullary symbol and x an internal dynamic one).
In this (admittedly silly) program, the query produced by the issue

PERSISTENT QUERIES 17

line is also produced, with the intention of using its reply, by the update
rule x := q.

Following the official semantics given for ASMs in [3, Part II], we
make no special assumptions about the replies to queries that result
from issue rules. These replies can be any elements of the state, just
as for any other queries.

This convention was used in Example 11, because the queries pro-
duced by issue(q(i)[=: l(i)]) are the questionnaires, whose replies
should be the numbers stored in locations l(i) and then added.

This example also used the earlier convention, whereby replies go into
the reply locations even if they are not late. Without this convention,
the ASM program would have to include instructions whereby, if an
answer to q(i) appears in the same step in which the query was issued,
the algorithm would put that answer into location l(i).

Remark 13. Futures can provide a particular way of implementing our
approach to late replies. A future that simply waits for a late reply and,
when one arrives, writes it into the appropriate reply location thereby
accomplishes what we require of the environment. Nevertheless, there
is a conceptual difference. By assigning to the environment the task of
putting the late replies into the proper locations, we maintain sequen-
tiality of the algorithm. By assigning the same task to futures, a part
of the algorithm, one enters the more complex domain of asynchronous,
distributed algorithms.

PART II: THE DETAILS

4. Interactive Abstract State Machines

We now begin a more formal treatment of ASMs with persistent
queries. We build on the ASM model described in [3]. In the present
section, we summarize the material from [3] that we need here. This
summary also serves to explain things that were taken for granted
in the preceding sections. We do not, however, repeat the extensive
discussion offered in [3] to motivate and explain the model.

We begin by recalling the definitions, conventions, and postulates
for interactive small-step algorithms. This material is taken from [3,
Part I, Section 3].

States Postulate: The algorithm determines

• a finite vocabulary Υ,
• a nonempty set S of states, which are Υ-structures,
• a nonempty subset I ⊆ S of initial states,

18 ANDREAS BLASS AND YURI GUREVICH

• a finite set Λ of labels (to be used in forming queries).

As in earlier papers, we use the following conventions concerning
vocabularies and structures.

Convention 14.

• A vocabulary Υ consists of function symbols with specified ar-
ities.

• Some of the symbols in Υ may be marked as static, and some
may be marked as relational. Symbols not marked as static are
called dynamic.

• Among the symbols in Υ are the logic names: nullary symbols
true, false, and undef; unary Boole; binary equality; and the
usual propositional connectives. All of these are static and all
but undef are relational.

• An Υ-structure X consists of a nonempty base set, usually de-
noted by the same symbol X, and interpretations of all the
function symbols f of Υ as functions fX on that base set.

• In any Υ-structure, the interpretations of true, false, and
undef are distinct.

• In any Υ-structure X, the interpretations of relational symbols
are functions whose values lie in {trueX , falseX}.

• In any Υ-structure X, the interpretation of Boole maps trueX
and falseX to trueX and everything else to falseX .

• In any Υ-structure X, the interpretation of equality maps pairs
of equal elements to trueX and all other pairs to falseX .

• In any Υ-structure X, the propositional connectives are in-
terpreted in the usual way when their arguments are in
{trueX , falseX}, and they take the value falseX whenever
any argument is not in {trueX , falseX}.

• We may omit subscripts X, for example from true and false,
when there is no danger of confusion. �

Definition 15. A potential query in stateX is a finite tuple of elements
of X t Λ. A potential reply in X is an element of X. �

Here X tΛ means the disjoint union of X and Λ. So if they are not
disjoint, then they are to be replaced by disjoint isomorphic copies.
We shall usually not mention these isomorphisms; that is, we write as
though X and Λ were disjoint.

Definition 16. An answer function for a state X is a partial map
from potential queries to potential replies. A history for X is a pair
ξ = 〈ξ̇,≤ξ〉 consisting of an answer function ξ̇ together with a linear

PERSISTENT QUERIES 19

pre-order ≤ξ of its domain. By the domain of a history ξ, we mean the

domain Dom(ξ̇) of its answer function component, which is also the
field of its pre-order component. �

Recall that a pre-order of a set D is a reflexive, transitive, binary
relation on D, and that it is said to be linear if, for all x, y ∈ D, x ≤ y
or y ≤ x. The equivalence relation defined by a pre-order is given by

x ≡ y ⇐⇒ x ≤ y ≤ x.

The equivalence classes are partially ordered by

[x] ≤ [y] ⇐⇒ x ≤ y,

and this partial order is linear if and only if the pre-order was.
We also write x < y to mean x ≤ y and y 6≤ x. (Because a pre-order

need not be antisymmetric, x < y is in general a stronger statement
than the conjunction of x ≤ y and x 6= y.) When, as in the definition
above, a pre-order is written as ≤ξ, we write the corresponding equiva-
lence relation and strict order as ≡ξ and <ξ. The same applies to other
subscripts and superscripts.

We use histories to express the information received by the algorithm
from its environment during a step. The answer function part ξ̇ of a
history tells what replies the environment has given to the algorithm’s
queries, and the pre-order part ≤ξ tells in what order these replies

were received. Specifically, if q is in the domain of ξ, then ξ̇(q) is the
environment’s answer to the query q. If p, q ∈ Dom(ξ) and p <ξ q, this

means that the answer ξ̇(p) to p was received strictly before the answer

ξ̇(q) to q. If p ≡ξ q, this means that the two answers were received
simultaneously.

We emphasize that the timing we are concerned with here is logical
time, not physical time. That is, it is measured by the progress of
the computation, not by an external clock. In particular, we regard
a query as being issued by the algorithm as soon as the information
causing that query (in the sense of the Interaction Postulate below) is
available. This is why we include, in histories, only the relative ordering
of replies. The ordering of queries relative to replies or relative to each
other is then determined. The logical time of a query is the same as
the logical time of the last of the replies needed to cause that query.

Definition 17. Let ≤ be a pre-order of a set D. An initial segment
of D with respect to ≤ is a subset S of D such that whenever x ≤ y
and y ∈ S then x ∈ S. An initial segment of ≤ is the restriction of ≤
to an initial segment of D with respect to ≤. An initial segment of a
history 〈ξ̇,≤ξ〉 is a history 〈ξ̇ �S,≤ξ �S〉, where S is an initial segment

20 ANDREAS BLASS AND YURI GUREVICH

of Dom(ξ̇) with respect to ≤ξ. (We use the standard notation � for the
restriction of a function or a relation to a set.) We write ηE ξ to mean
that the history η is an initial segment of the history ξ. If q ∈ D, then
we define two associated initial segments as follows.

(≤ q) = {d ∈ D : d ≤ q}
(< q) = {d ∈ D : d < q}. �

Interaction Postulate For each state X, the algorithm determines
a binary relation `X , called the causality relation, between finite his-
tories and potential queries.

The intended meaning of ξ `X q is that, if the algorithm’s current
state is X and the history of its interaction so far (as seen by the
algorithm during the current step) is ξ, then it will issue the query
q unless it has already done so in the current step. When we say
that the history so far is ξ, we mean not only that the environment
has given the replies indicated in ξ̇ in the order given by ≤ξ, but also
that no other queries have been answered. Thus, although ξ explicitly
contains only positive information about the replies received so far, it
also implicitly contains the negative information that there have been
no other replies. Of course, if additional replies are received later, so
that the new history has ξ as a proper initial segment, then q is still
among the issued queries, because it was issued at the earlier time when
the history was only ξ. This observation is formalized as follows.

Definition 18. For any state X and history ξ, we define sets of queries

IssuedX(ξ) = {q : (∃η E ξ) η `X q}
PendingX(ξ) = IssuedX(ξ)−Dom(ξ̇). �

Thus, IssuedX(ξ) is the set of queries that have been issued by the
algorithm, in state X, by the time the history is ξ, and PendingX(ξ) is
the subset of those that have, as yet, no replies.

The following definition describes the histories that are consistent
with the given causality relation. Informally, these are the histories
where every query in the domain has a legitimate reason, under the
causality relation, for being there.

Definition 19. A history ξ is coherent, with respect to a state X or
its associated causality relation `X , if Dom(ξ̇) is finite and

(∀q ∈ Dom(ξ̇)) q ∈ IssuedX(ξ �(< q))

�

PERSISTENT QUERIES 21

Remark 20. In [3, Part I, Definition 3.12], the definition of coherence

did not require Dom(ξ̇) to be finite; instead, it had the weaker require-
ment that the linear order of ≡ξ-classes induced by ≤ξ is a well-order.
The stronger requirement of finiteness was, however, deduced later from
the Bounded Work Postulate for all attainable histories; see [3, Part I,
Corollary 3.28]. Since we omit such deductions here, it seems clearer
to build finiteness explicitly into the notion of coherent history.

Definition 21. A history ξ for a state X is complete if PendingX(ξ) =
∅. �

The terminology reflects the fact that, if a complete history has arisen
in the course of a computation, then there will be no further interaction
with the environment during this step. No further interaction can orig-
inate with the environment, because no queries remain to be answered.
No further interaction can originate with the algorithm, since ξ and
its initial segments don’t cause any further queries. So the algorithm
must either terminate its run (successfully) if Halt becomes true, or
proceed to the next step (by updating its state), or fail. The next
definitions and postulates describe these end-of-step matters. They do
not explicitly mention termination (other than by failure), but this is
covered anyway, since updates are covered and termination amounts to
an update of Halt to the value true.

Definition 22. A location in a state X is a pair 〈f, a〉 where f is a
dynamic function symbol from Υ and a is a tuple of elements of X,
of the right length to serve as an argument for the function fX in-
terpreting the symbol f in the state X. The value of this location
in X is fX(a). An update for X is a pair (l, b) consisting of a lo-
cation l and an element b of X. An update (l, b) is trivial (in X)
if b is the value of l in X. We often omit parentheses and brack-
ets, writing locations as 〈f, a1, . . . , an〉 instead of 〈f, 〈a1, . . . , an〉〉 and
writing updates as 〈f, a, b〉 or 〈f, a1, . . . , an, b〉 instead of (〈f, a〉, b) or
(〈f, 〈a1, . . . , an〉〉, b). �

The intended meaning of an update 〈f, a, b〉 is that the interpretation
of f is to be changed (if necessary, i.e., if the update is not trivial) so
that its value at a is b.

Step Postulate — Part A The algorithm determines, for each
state X, a set FX of final histories. Every complete, coherent history
has an initial segment (possibly the whole history) in FX .

Intuitively, a history is final for X if, whenever it arises in the course
of a computation in X, the algorithm completes its step, either by

22 ANDREAS BLASS AND YURI GUREVICH

failing or by executing its updates and proceeding to the next step or
terminating the run if Halt has become true.

Definition 23. A history for a state X is attainable (in X) if it is
coherent and no proper initial segment of it is final. �

The attainable histories are those that can occur under the given
causality relation and the given choice of final histories. That is, not
only are the queries answered in an order consistent with `X (coher-
ence), but the history does not continue beyond where FX says it should
stop.

Step Postulate — Part B For each state X, the algorithm de-
termines that certain histories succeed and others fail. Every final,
attainable history either succeeds or fails but not both.

Definition 24. We write F+
X for the set of successful final histories

and F−
X for the set of failing final histories.

The intended meaning of “succeed” and “fail” is that a successful
final history is one in which the algorithm finishes its step and performs
a set of updates of its state, while a failing final history is one in which
the algorithm cannot continue — the step ends, but there is no next
state, not even a repetition of the current state. Such a situation can
arise if the algorithm computes inconsistent updates. It can also arise
if the environment gives inappropriate answers to some queries.

Step Postulate — Part C For each attainable history ξ ∈ F+
X

for a state X, the algorithm determines an update set ∆+(X, ξ), whose
elements are updates forX. It also produces a next state τ(X, ξ), which

• has the same base set as X,
• has fτ(X,ξ)(a) = b if 〈f, a, b〉 ∈ ∆+(X, ξ), and
• otherwise interprets function symbols as in X.

Convention 25. In notations like FX , F+
X , F−

X , ∆+(X, ξ), and τ(X, ξ),
we may omit X if only one X is under discussion. We may also add the
algorithm A as a superscript if several algorithms are under discussion.

�

Any isomorphism i : X ∼= Y between states can be extended in
an obvious, canonical way to act on queries, answer functions, histo-
ries, locations, updates, etc. We use the same symbol i for all these
extensions.

PERSISTENT QUERIES 23

Isomorphism Postulate Suppose X is a state and i : X ∼= Y is an
isomorphism of Υ-structures. Then:

• Y is a state, initial if X is.
• i preserves causality, that is, if ξ `X q then i(ξ) `Y i(q).
• i preserves finality, success, and failure, that is, i(F+

X) = F+
Y

and i(F−
X) = F−

Y .
• i preserves updates, that is, i(∆+(X, ξ)) = ∆+(Y, i(ξ)) for all

histories ξ for X.

Convention 26. In the last part of this postulate, and throughout
this paper, we adopt the convention that an equation between possibly
undefined expressions is to be understood as implying that if either
side is defined then so is the other. �

Bounded Work Postulate

• There is a bound, depending only on the algorithm, for the
lengths of the tuples in IssuedX(ξ) , for all states X and final,
attainable histories ξ.

• There is a bound, depending only on the algorithm, for the
cardinality |IssuedX(ξ)|, for all states X and final, attainable
histories ξ.

• There is a finite setW of Υ-terms (possibly involving variables),
depending only on the algorithm, with the following property.
Suppose X and X ′ are two states and ξ is a history for both of
them. Suppose further that each term in W has the same value
in X as in X ′ when the variables are given the same values in
Range(ξ̇). Then:

– If ξ `X q then ξ `X′ q (so in particular q is a query for X ′).
– If ξ is in F+

X or F−
X , then it is also in F+

X′ or F−
X′ , respec-

tively.
– ∆+(X, ξ) = ∆+(X ′, ξ).

Definition 27. An interactive, small-step algorithm is any entity sat-
isfying the States, Interaction, Step, Isomorphism, and Bounded Work
Postulates. �

Since these are the only algorithms under consideration in most of
this paper, we often omit “interactive, small-step.”

Definition 28. A set W with the property required in the third part
of the Bounded Work Postulate is called a bounded exploration witness

24 ANDREAS BLASS AND YURI GUREVICH

for the algorithm. Two pairs (X, ξ) and (X ′, ξ), consisting of states X
and X ′ and a single ξ that is a history for both, are said to agree on
W if, as in the postulate, each term in W has the same value in X as
in X ′ when the variables are given the same values in Range(ξ̇). �

This completes our review of the notion of interactive small-step
algorithm, as defined in [3, Part I]. This notion will be slightly modi-
fied in Section 6 to accommodate our proposal for handling persistent
queries. A modification is needed because, when an algorithm issues a
combination 〈q, rl, l〉 of a query q and a reply location l, the reply (if
received in the same step) is a reply to q. So it is q, not 〈q, rl, l〉, that
should appear in the domain of the history. See Section 6 for more
details.

We now turn to the notion of abstract state machine (ASM) from
Part II of [3]. ASMs describe algorithms, and the main result of [3] is
that all algorithms (as defined above) are behaviorally equivalent (in a
very strong sense defined in [3, Part I, Section 4]) to ASMs. We begin
our review of ASMs by summarizing the syntactic definitions from [3,
Part II, Section 2]; afterward, we shall also summarize the semantics.

An ASM uses a vocabulary Υ, subject to Convention 14, and a set
Λ of labels as in our discussion of algorithms above. In addition, it has
an external vocabulary E, consisting of finitely many external function
symbols. These symbols are used syntactically exactly like static, non-
relational symbols from Υ, but their semantics will be quite different. If
f is an n-ary external function symbol and a is an n-tuple of arguments
from a state X, then the value of f at a is not stored as part of the
structure of the state but is obtained from the environment as the reply
to a query. If the history contains no reply to this query, then f has
no value at a.

Definition 29. The set of terms is the smallest set containing
f(t1, . . . , tn) whenever it contains t1, . . . , tn and f is an n-ary func-
tion symbol from Υ ∪ E. (The basis of this recursive definition is, of
course, given by the 0-ary function symbols.) A Boolean term is a term
of the form f(t) where f is a relational symbol. �

Convention 30. By Υ-terms, we mean terms built using the function
symbols in Υ and variables. These are terms in the usual sense of
first-order logic for the vocabulary Υ. They occur, for example, in
the Bounded Work Postulate as elements of the bounded exploration
witness. Terms as defined above, using function symbols from Υ ∪ E
but not using variables, will be called ASM-terms when we wish to
emphasize the distinction from Υ-terms. A term of the form f(t) where
f ∈ E is called a query-term.

PERSISTENT QUERIES 25

We introduce timing explicitly into the formalism with the notation
(s � t), which is intended to mean that the replies needed to evaluate
the term s arrived no later than those needed to evaluate t. As ex-
plained in [3], � differs from function symbols in that s � t can have
a truth value even when only one of s and t has a value.

We also use a version of the Boolean connectives with similar be-
havior, so that, for example, a disjunction counts as true as soon as
one of the disjuncts is, even if the other disjunct has no truth value.
This behavior characterizes the connectives of Kleene’s strong three-
valued logic. We use the notations f and g for the conjunction and
disjunction of this logic; the traditional conjunction and disjunction,
which have values only when both constituents do, will continue to be
written ∧ and ∨.

Definition 31. The set of guards is defined by the following recursion.

• Every Boolean term is a guard.
• If s and t are terms, then (s � t) is a guard.
• If ϕ and ψ are guards, then so are (ϕf ψ), (ϕg ψ), and ¬ϕ.

�

Definition 32. The set of ASM rules is defined by the following re-
cursion.

• If f ∈ Υ is a dynamic n-ary function symbol, if t1, . . . , tn are
terms, and if t0 is a term that is Boolean if f is relational, then

f(t1, . . . , tn) := t0

is a rule, called an update rule.
• If f ∈ E is an external n-ary function symbol and if t1, . . . , tn

are terms, then

issue f(t1, . . . , tn)

is a rule, called an issue rule.
• fail is a rule.
• If ϕ is a guard and if R0 and R1 are rules, then

if ϕ then R0 else R1 endif

is a rule, called a conditional rule. R0 and R1 are its true and
false branches, respectively.

• If k is a natural number (possibly zero) and if R1, . . . , Rk are
rules then

do in parallel R1, . . . , Rk enddo

is a rule, called a parallel combination or block with the subrules
Ri as its components.

26 ANDREAS BLASS AND YURI GUREVICH

�

We may omit the end-markers endif and enddo when they are not
needed, for example in very short rules or in programs formatted so
that indentation makes the grouping clear.

The correspondence between external function calls and queries is
mediated by a template assignment, defined as follows.

Definition 33. For a fixed label set Λ, a template for n-ary function
symbols is any tuple in which certain positions are filled with labels
from Λ while the rest are filled with the placeholders #1, . . . ,#n, oc-
curring once each. We assume that these placeholders are distinct from
all the other symbols under discussion (Υ∪E∪Λ). If Q is a template for
n-ary functions, then we write Q[a1, . . . , an] for the result of replacing
each placeholder #i in Q by the corresponding ai. �

Thus if the ai are elements of a state X then Q[a1, . . . , an] is a po-
tential query in X.

Definition 34. For a fixed label set and external vocabulary, a tem-
plate assignment is a function assigning to each n-ary external function
symbol f a template f̂ for n-ary functions. �

The intention, which will be formalized in the semantic definitions
below, is that when an ASM evaluates a term f(t1, . . . , tn) where f ∈ E,
it first computes the values ai of the terms ti, then issues the query
f̂ [a1, . . . , an], and finally uses the answer to this query as the value of
f(t1, . . . , tn).

By assigning templates to external function symbols, rather than
to their occurrences in a rule, we incorporate into our framework the
“Lipari convention” of [2, Part II, Section 4.3]. This means that, if an
external function symbol has several occurrences in an ASM program
and if its arguments have the same values at these occurrences, then
only a single query will be issued in any one step as a result of all of
these occurrences. See Sections 4.3–4.6 of [2, Part II] for a discussion
of alternative conventions, and see [2, Part III, Section 7] for additional
information comparing these conventions.

Definition 35. An interactive, small-step, ASM program Π consists
of

• a finite vocabulary Υ,
• a finite set Λ of labels,
• a finite external vocabulary E,
• a rule R, using the vocabularies Υ and E, the underlying rule

of Π,

PERSISTENT QUERIES 27

• a template assignment with respect to E and Λ.

Convention 36. We use the following abbreviations:

(s ≺ t) for ¬(t � s),

(s ≈ t) for (s � t) f (t � s),

(s � t) for (t � s), and

(s � t) for (t ≺ s)

We abbreviate the empty block do in parallel enddo as skip. We
may omit parentheses when no confusion results. �

This completes the syntax of ASMs; we turn next to the semantics,
as presented in [3, Part II, Section 3]. We treat terms, guards, and
rules in turn. Their semantics are defined in the presence of a state X,
a template assignment, and a history ξ.

The semantics of terms specifies, by induction on terms t, the queries
that are caused by ξ under the associated causality relation `tX and
sometimes also a value Val(t,X, ξ) ∈ X. In the case of query-terms, the
semantics may specify also a query called the query-value q-Val(t,X, ξ).
Evaluation of a query-term t should first issue the query q-Val(t,X, ξ);
the reply, if any, to this query is the actual value Val(t,X, ξ) of t.

Definition 37 (Semantics of Terms). Let t be the term f(t1, . . . , tn).

(1) If Val(ti, X, ξ) is undefined for at least one i, then Val(t,X, ξ)
is also undefined, and ξ `tX q if and only if ξ `tiX q for at least
one i. If f ∈ E then q-Val(t,X, ξ) is also undefined.

(2) If, for each i, Val(ti, X, ξ) = ai and if f ∈ Υ, then Val(t,X, ξ) =
fX(a1, . . . , an), and no query q is caused by ξ.

(3) If, for each i, Val(ti, X, ξ) = ai, and if f ∈ E, then q-Val(t,X, ξ)

is the query f̂ [a1, . . . , an].

• If q-Val(t,X, ξ) = q ∈ Dom(ξ̇), then Val(t,X, ξ) = ξ̇(q),
and no query is caused by ξ.

• If q-Val(t,X, ξ) = q /∈ Dom(ξ̇), then Val(t,X, ξ) is unde-
fined, and q is the unique query such that ξ `tX q.

�

The semantics of guards, unlike that of terms, depends not only on
the answer function but also on the preorder in the history. Another
difference from the term case is that the values of guards, when defined,
are always Boolean values.

Definition 38 (Semantics of guards). Let ϕ be a guard and ξ a history
in an Υ-structure X.

28 ANDREAS BLASS AND YURI GUREVICH

(1) If ϕ is a Boolean term, then its value (if any) and causality
relation are already given by Definition 37.

(2) If ϕ is (s � t) and if both s and t have values with respect to
ξ, then Val(ϕ,X, ξ) = true if, for every initial segment η E ξ
such that Val(t,X, η) is defined, Val(s,X, η) is also defined.
Otherwise, Val(ϕ,X, ξ) = false. Also declare that ξ `ϕX q for
no q.

(3) If ϕ is (s � t) and if s has a value with respect to ξ but t does
not, then define Val(ϕ,X, ξ) to be true; again declare that
ξ `ϕX q for no q.

(4) If ϕ is (s � t) and if t has a value with respect to ξ but s does
not, then define Val(ϕ,X, ξ) to be false; again declare that
ξ `ϕX q for no q.

(5) If ϕ is (s � t) and if neither s nor t has a value with respect
to ξ, then Val(ϕ,X, ξ) is undefined, and ξ `ϕX q if and only if
ξ `sX q or ξ `tX q.

(6) If ϕ is ψ0 fψ1 and both ψi have value true, then Val(ϕ,X, ξ) =
true and no query is produced.

(7) If ϕ is ψ0 f ψ1 and at least one ψi has value false, then
Val(ϕ,X, ξ) = false and no query is produced.

(8) If ϕ is ψ0 fψ1 and one ψi has value true while the other, ψ1−i,
has no value, then Val(ϕ,X, ξ) is undefined, and ξ `ϕX q if and

only if ξ `ψ1−i

X q.
(9) If ϕ is ψ0 f ψ1 and neither ψi has a value, then Val(ϕ,X, ξ) is

undefined, and ξ `ϕX q if and only if ξ `ψi

X q for some i.
(10) The preceding four clauses apply with g in place of f and true

and false interchanged.
(11) If ϕ is ¬ψ and ψ has a value, then Val(ϕ,X, ξ) = ¬Val(ψ,X, ξ)

and no query is produced.
(12) If ϕ is ¬ψ and ψ has no value then Val(ϕ,X, ξ) is undefined

and ξ `ϕX q if and only if ξ `ψX q.

�

The semantics of a rule, for an Υ-structure X, an appropriate tem-
plate assignment, and a history ξ, consists of a causality relation, dec-
larations of whether ξ is final and whether it succeeds or fails, and a
set of updates.

Definition 39 (Semantics of Rules). Let R be a rule and ξ a history
for the Υ-structure X. In the following clauses, whenever we say that a
history succeeds or that it fails, we implicitly also declare it to be final;

PERSISTENT QUERIES 29

contrapositively, when we say that a history is not final, we implicitly
also assert that it neither succeeds nor fails.

(1) If R is an update rule f(t1, . . . , tn) := t0 and if all the ti have
values Val(ti, X, ξ) = ai, then ξ succeeds for R, and it produces
the update set {〈f, 〈a1, . . . , an〉, a0〉} and no queries.

(2) If R is an update rule f(t1, . . . , tn) := t0 and if some ti has no
value, then ξ is not final for R, it produces the empty update
set, and ξ `RX q if and only if ξ `tiX q for some i.

(3) If R is issue f(t1, . . . , tn) and if all the ti have values
Val(ti, X, ξ) = ai, then ξ succeeds for R, it produces the empty

update set, and ξ `RX q for the single query q = f̂ [a1, . . . , an]

provided q /∈ Dom(ξ̇); if q ∈ Dom(ξ̇) then no query is produced.
(4) If R is issue f(t1, . . . , tn) and if some ti has no value, then ξ is

not final for R, it produces the empty update set, and ξ `RX q
if and only if ξ `tiX q for some i.

(5) If R is fail, then ξ fails for R; it produces the empty update
set and no queries.

(6) If R is a conditional rule if ϕ then R0 else R1 endif and if
ϕ has no value, then ξ is not final for R, and it produces the
empty update set. ξ `RX q if and only if ξ `ϕX q.

(7) If R is a conditional rule if ϕ then R0 else R1 endif and if
ϕ has value true (resp. false), then finality, success, failure,
updates, and queries are the same for R as for R0 (resp. R1).

(8) IfR is a parallel combination do in parallel R1, . . . , Rk enddo

then:
• ξ `RX q if and only if ξ `Ri

X q for some i.
• The update set for R is the union of the update sets for

all the components Ri. If this set contains two distinct
updates at the same location, then we say that a clash
occurs (for R, X, and ξ).

• ξ is final for R if and only if it is final for all the Ri.
• ξ succeeds for R if and only if it succeeds for all the Ri and

no clash occurs.
• ξ fails for R if and only if it is final for R and either it fails

for some Ri or a clash occurs.

�

Definition 40. Fix a rule R endowed with a template assignment, and
let X be an Υ-structure and ξ be a history for X. If ξ is successful and
final for R over X, then the successor τ(X, ξ) of X with respect to R
and ξ is defined from the update set ∆+(X, ξ) as in the Step Postulate,
Part C.

30 ANDREAS BLASS AND YURI GUREVICH

It is easy to check (see [3, Part II, Lemma 3.18]) that τ is well-
defined; ∆+ will not prescribe two contradictory updates of the same
location under a successful, final history.

Definition 41. An interactive, small-step, ASM consists of

• an ASM program Π in some vocabulary Υ,
• a nonempty set S of Υ-structures called states of the ASM, and
• a nonempty set I ⊆ S of initial states,

subject to the requirements that S and I are closed under isomorphism
and that S is closed under transitions in the following sense. If X ∈ S
and if ξ is a successful, final history for Π in X, then the successor
τ(X, ξ) of X with respect to Π and ξ is also in S. �

It is shown in [3, Part II] that ASMs are algorithms, in the sense
defined above by the postulates, and that, conversely, all algorithms
are behaviorally equivalent to ASMs.

5. Impatience

We call an algorithm patient if it never finishes a step until the
environment has answered all queries from that step. (It patiently
waits for answers to all its queries.) Formally, this means that all final,
attainable histories are complete. Otherwise, we call the algorithm
impatient.

A query is said to be blocking if, once it is issued, the algorithm’s
step cannot end without a reply to this query. Thus, an algorithm is
patient if and only if all its queries are blocking.

In this paper, we are concerned with non-blocking queries, and specif-
ically with the possibility that the reply to such a query may arrive and
be used by the algorithm in a later step than the one that produced
the query. The present section describes where, in an ASM program,
non-blocking queries can originate. Of course, we must first say pre-
cisely what it means for a query to originate in a particular part of a
rule — or of a term, or of a guard.

We present the material in this section in the context of the tradi-
tional ASM syntax and semantics described above. It applies equally,
however, to the modified syntax and semantics that was described in
Section 3 and will be formalized in Section 6. The changes we introduce
do not affect the proofs in the present section.

The discussion will be simplified by the following definitions and
convention.

PERSISTENT QUERIES 31

Definition 42. Let S be a term or a guard or a rule, let X be a state,
and let ξ be a history for X. We define

IssuedSX(ξ) = {q : (∃η E ξ) η `SX q}
PendingSX(ξ) = IssuedSX(ξ)−Dom(ξ̇). �

Note that, in the case of a rule, this definition agrees with Def-
inition 18 for algorithms. We are just extending the “Issued” and
“Pending” notation to apply also to terms and guards (and adding the
superscript S, which was unnecessary earlier because the role of S was
played there by a fixed algorithm). The next definition also extends to
terms and guards terminology already available for rules.

Definition 43. Let S be a term or a guard, let X be a state, and let
ξ be a history for X. We say that the history ξ is final for S in X if
Val(S,X, ξ) is defined.

Convention 44. When we speak of syntactic parts of a term, guard, or
rule, we mean occurrences of those syntactic parts. Thus, for example,
“subrule” really means “occurrence of subrule.”

We now define the origins of a query caused by a term or guard or
rule. The definition involves going systematically through the defini-
tions of the semantics of term, guards, and rules (Definitions 37, 38,
and 39), and checking all the clauses where a query is caused. For
the reader’s convenience, we append to some clauses of the following
definition some additional information, in brackets, about the circum-
stances in which those clauses can apply. These bracketed comments
can easily be verified by inspection of Definitions 37, 38, and 39.

Definition 45. Let X be a state, and ξ a history for it, and q a
potential query.

• If t is a term f(t1, . . . , tn), if Val(ti, X, ξ) is undefined for at
least one i, and if ξ `tX q, then the origins of q in t are the
origins of q in all those ti for which ξ `tiX q.

• If t is a term f(t1, . . . , tn), if Val(ti, X, ξ) is defined for all i, and
if ξ `tX q, then q has exactly one origin in t, namely t itself.
[Here f is an external function symbol and q is the q-value of
t.]

• If ϕ is (s � t) and ξ `ϕX q, then the origins of q in ϕ are its
origins in s (if any, i.e., if ξ `sX q) and its origins in t (if any).
[According to the semantics of guards, if either s or t has a
value, then (s � t) issues no queries. So the present clause
applies only when ξ is not final for either of these terms.]

32 ANDREAS BLASS AND YURI GUREVICH

• If ϕ is ψ0 fψ1 or ψ0 gψ1 and ξ `ϕX q, then the origins of q in ϕ
are its origins in ψ0 (if any) and its origins in ψ1 (if any). [At
most one of ψ0 and ψ1 has a value under ξ, and if one does then
that value is true in the case of f and false in the case of g.]

• If ϕ is ¬ψ and ξ `ϕX q, then the origins of q in ϕ are the same
as in ψ.

• If R is an update rule f(t1, . . . , tn) := t0 and ξ `RX q, then the
origins of q in R are the origins of q in all those ti for which
ξ `tiX q.

• If R is issue f(t1, . . . , tn), if all the ti have values Val(ti, X, ξ) =
ai, and if ξ `RX q, then q has exactly one origin in R, namely
f(t1, . . . , tn). [Here f is an external function symbol and q is
the q-value of f(t1, . . . , tn).]

• If R is issue f(t1, . . . , tn), if some ti has no value, and if ξ `RX q,
then the origins of q in R are the origins of q in all those ti for
which ξ `tiX q.

• If R is a conditional rule if ϕ then R0 else R1 endif, if ϕ has
no value under ξ, and if ξ `RX q, then the origins of q in R are
the origins of q in ϕ.

• If R is a conditional rule if ϕ then R0 else R1 endif, if ϕ has
value true (resp. false), and if ξ `RX q, then the origins of q in
R are its origins in R0 (resp. R1).

• IfR is a parallel combination do in parallel R1, . . . , Rk enddo

and if ξ `RX q, then the origins of q in R are its origins in all
those Ri for which ξ `Ri

X q.

In the preceding definition, X and ξ were fixed and were therefore
not mentioned in the “origin” terminology. When necessary, we make
them explicit by a phrase like “origin of q in R with respect toX and ξ.”

Lemma 46. Let S be a term or guard or rule, let X be a state, let ξ
be a history for X, and let q be a potential query in X. Then ξ `SX q if
and only if q has at least one origin in S with respect to X and ξ. Any
origin of q is a query-term t, a subterm of S, with q-Val(t,X, ξ) = q.
Furthermore, this t is also the (unique) origin of q in t; in particular,
ξ `tX q.

Proof. Proceed by induction, first on terms, then on guards, and finally
on rules. In every case, the proof is just a comparison of the definition
of “origin” with the parts of Definitions 37, 38, and 39 that describe
the causality relation. �

After these preliminaries, we can look in detail at impatience, the
phenomenon of an ASM’s step ending even though some of its queries

PERSISTENT QUERIES 33

have not been answered. In more detail, the phenomenon involves five
entities:

• an ASM program Π,
• a state X of Π,
• a history ξ that is final for X with respect to Π (so the step

ends),
• a query q ∈ PendingΠ

X(ξ) (so q has been issued but not answered
during this step), and

• an initial segment η E ξ such that η `Π
X q.

In connection with the last of these items, η, recall that for q to be
issued during a step where the history is ξ it must be caused by some
initial segment of ξ, though not necessarily by ξ itself.

We have simplified the notation by using the same symbol Π for
an ASM program and for its underlying rule, even though the pro-
gram also includes additional materials, particularly the template as-
signment. This additional material will remain fixed, so our abuse of
notation will not cause confusion.

The following proposition describes the possible origins of queries
that remain unanswered at the end of a step. Notice that, when the S
in the proposition is a rule Π, then the hypotheses of the proposition
describe the five items listed above.

Proposition 47. Let S be a term or guard or rule. Let X be a state
and let η E ξ be two histories for X, such that ξ is final for X with
respect to S. Let q be a query such that η `SX q but q /∈ Dom(ξ̇). Then
all origins of q in S with respect to X and η are of one of the following
sorts:

• query-subterms of s or t in a timing guard s � t within S,
• query-subterms of ψ0 or ψ1 in a Kleene-conjunction ψ0 fψ1 or

Kleene-disjunction ψ0 g ψ1 within S,
• arguments t of issue-rules issue (t) within S.

Proof. Assume that S,X, η, ξ, and q are as in the hypothesis of the
proposition and that o is an origin of q in S with respect to X and η.
Assume also, as an induction hypothesis, that the proposition becomes
true if S is replaced by any proper subterm, subguard, or subrule (while
X, η, ξ, q, and o are unchanged.)

To save a little writing later, observe that the hypothesis that η `SX q
is redundant, because, according to Lemma 46, if it didn’t hold then
there would be no origin of q in S with respect to X and η, and so the
conclusion of the proposition would hold vacuously.

34 ANDREAS BLASS AND YURI GUREVICH

The proof will repeatedly use the observation that, if the conclusion
of the proposition holds when S is replaced by some subterm, subguard,
or subrule S ′ of S, then it also holds for S itself. The reason is that the
conclusion refers to S only in the context of saying that some guard
or rule occurs within S. If we find the desired guard or rule within S ′

then we certainly have it within S.
The fact that η `SX q must arise from one of the clauses of Defi-

nition 37, 38, or 39, with η in place of the ξ in the definition. And
this clause cannot be one of the many clauses where the definition says
that no query is caused, i.e., clause 2 and the first case in clause 3
of Definition 37; clauses 2, 3, 4, 6, 7, and 11 as well as the part of
clause 10 analogous to clause 7 in Definition 38; and clauses 1 and 5 of
Definition 39. We examine the remaining possibilities in turn, labeling
them according to the clause in Definition 37, 38, or 39 that provides
η `SX q.

37-1: S is a term f(t1, . . . , tn) and, for at least one i, Val(ti, X, η)
is undefined. According to Definition 45, o is an origin of q in some ti
(with respect to X and η). For such an i, ξ will be final with respect to
ti, i.e., Val(ti, X, ξ) will be defined, because otherwise, the same clause
of Definition 37 (now applied to ξ rather than η) would contradict
the assumption that ξ is final for S. Thus, the hypotheses of the
proposition are satisfied with ti in place of S. By induction hypothesis,
the conclusions of the proposition hold for ti, and, as observed above, it
immediately follows that they also hold for S. (Though it isn’t needed
for the proof, it may help the reader if we point out that this case
cannot actually occur. Indeed, by what we have just proved, we would
have a guard (involving ≺ or f or g) or an issue-rule within a term,
and this cannot happen in the ASM syntax.)

37-3, second part: S is a term f(t1, . . . , tn) where f is an external
function symbol; each ti has a value Val(ti, X, η) = ai; and

q = q-Val(S,X, η) = f̂ [a1, . . . , an].

(This clause in Definition 37 also says that q /∈ Dom(η̇), but this is im-

mediate from the assumptions that q /∈ Dom(ξ̇) and ηEξ.) Lemma 3.6
of [3, Part II] gives us that, when we pass from η to its extension ξ,
the values of the ti’s do not change. So we have Val(ti, X, ξ) = ai and
therefore (by the same clause of Definition 37)

q-Val(S,X, ξ) = f̂ [a1, . . . , an] = q.

PERSISTENT QUERIES 35

But then, since q /∈ Dom(ξ̇), the same clause tells us that ξ is not final
for S. This contradicts the hypothesis of the proposition, so this case
simply cannot arise.

38-1: Here S is guard that is a Boolean term, so this case is included
in the cases already treated where S is a term.

38-5: Here S is a timing guard (s � t) (and neither of the terms s, t
has a value with respect to η). By Lemma 46, o is a subterm of this
timing guard, and so we have the first of the three alternatives in the
conclusion of the proposition.

38-8 or 9: Here S is a Kleene conjunction, and so its subterm o
satisfies the second alternative in the proposition.

38-10: Here S is a Kleene disjunction, and so we again get the
second alternative of the proposition.

38-12: Here S is ¬ψ. By definition, origins in S are the same as
in ψ. Also, by definition, since ξ isn’t final for S, it isn’t final for ψ.
Thus, the induction hypothesis applies and tells us that the conclusion
of the proposition holds with ψ in place of S. But then it also holds
for S.

39-2: S is an update rule f(t1, . . . , tn) := t0 and not all ti have
values with respect to η. The argument here is essentially the same as
for case 37-1 above. o is an origin of q in some ti, and ξ must be final for
ti as otherwise it would not be final for S. By induction hypothesis, the
conclusion of the proposition holds with ti in place of S, and therefore
it also holds for S.

39-3: Here S is an issue-rule and, by definition of “origin,” o is its
argument. So we have the third alternative in the proposition.

39-4: The argument here is again essentially the same as for cases 37-
1 and 39-2; we spare the reader (and ourselves) a third occurrence of
this same argument.

39-6: Here S is a conditional rule whose guard ϕ has no value with
respect to η. By definition, o is an origin of q in ϕ with respect to
η. Furthermore, ξ must be final for ϕ, because otherwise it could not
be final for S. So the induction hypothesis applies and we get the
conclusion of the proposition with ϕ in place of S, and therefore also
for S.

39-7: S is a conditional rule if ϕ then R0 else R1 endif and ϕ
has a value with respect to η. We assume Val(ϕ,X, η) = true; the
case of false is the same with R0 and R1 interchanged. By definition,
the origins of q in S are the same as in R0. Also, by Lemma 3.12 of
[3, Part II], Val(ϕ,X, ξ) = true, so the finality of ξ for S implies that

36 ANDREAS BLASS AND YURI GUREVICH

ξ is also final for R0. So the induction hypothesis applies and gives us
the conclusion of the proposition with R0 in place of S. As usual, the
conclusion for S follows.

39-8: S is a parallel combination with components Ri. The defi-
nition of “origin” says that o is an origin of q in at least one of the
Ri. And ξ must be final for that Ri because otherwise it could not be
final for S. So the induction hypothesis gives us the conclusion of the
proposition with Ri in place of S, and the conclusion for S follows. �

Remark 48. In view of Proposition 47, we can limit the use of the new
syntax g(u)[=: f(t)] to the places described in the proposition, namely
subterms of timing guards, of Kleene conjunctions, and of Kleene dis-
junctions, and arguments of issue-rules. External function symbols
occurring anywhere else in an ASM program produce blocking queries,
so there is no need to provide locations for late replies. And if a reply-
location is provided for a blocking query, with the intention of having
an on-time reply recorded there, then the program can easily be altered
so that the ASM reads the reply in its history and writes it into the
desired location.

Example 49. Here are some trivial examples showing that all the al-
ternatives in the conclusion of Proposition 47 can occur (with S being
a rule). Assume that the vocabulary has three external, nullary func-

tion symbols a, b, c and that the templates â, b̂, ĉ assigned to them are
distinct.

For the first alternative in Proposition 47, consider the rule

if a ≺ b then x := 1 else x := 2 endif.

The empty history causes both â and b̂. Any history ξ with domain
{â} is final and has b̂ pending. This b̂ has exactly one origin, namely
the unique b in the rule. (The updates of x could be replaced by certain
other rules, for example skip, without affecting the idea.) The same
program also serves as an example if the reply for b arrives before that
for a; then the history with only the reply for b is final, a is pending,
and its only origin is in the timing guard a ≺ b.

For the second alternative, consider

if (a = b) f (a = c) then x := 1 else x := 2 endif.

The empty history causes all three of â, b̂, ĉ. Any history ξ with domain
{â, b̂} and with ξ(â) 6= ξ(b̂) is final and has ĉ pending. The only origin
of ĉ in this rule is the unique occurrence of c.

There is an analogous example with g in place of f. Just use a ξ
that gives the same reply to the two queries â and b̂.

PERSISTENT QUERIES 37

Finally, for the third alternative, just use the rule issue(a). The
empty history causes â and is final, with â pending.

Remark 50. We take this opportunity to clarify Remark 3.17 of [3,
Part II], which begins: “Issue rules are the only way an ASM can
issue a query without necessarily waiting for an answer.” This appears
to deny the possibility of the first two alternatives in Proposition 47.
Indeed, if “waiting for an answer” means “waiting until an answer
is received,” then the examples just given show that this is wrong. It
becomes correct, however, if “waiting for an answer” means “waiting at
least for a moment,” i.e., not finishing the step immediately. Note that,
in the parts of Example 49 that don’t use issue, the pending query is
caused not by the final history but by a proper initial segment. (In the
notation of Proposition 47, η 6= ξ.) In this sense, the ASM does wait
after issuing the query and before finishing the step.

Another description of what happens in these examples is that the
unanswered query q is issued by the final history ξ (in the sense of being
in Issued(ξ)) but it is not caused by the final history (ξ 6` q). In the
second sentence of Remark 3.17, we used the phrase “a history causes
a rule to issue a query,” which is ambiguous in view of the difference
between causing and issuing. It should be interpreted as causing, not
merely issuing.

6. Announcing Locations for Late Replies

In this section, we present the small modifications of [3] needed to
accommodate the 〈q, rl, l〉 method, proposed in Section 3, for handling
persistent queries in ASMs. Some of these modifications directly affect
the syntax and semantics of ASMs or (in one case) even the notion of
algorithm from [3]; we exhibit these with the heading “Modification.”
If these are violated, then our ASM programs with persistent queries
won’t make sense. Other modifications describe what we expect to see
in programs and in the environment’s behavior. These concern either
constraints on the environment or good programming practice; we label
these “Intention.” If they are violated, ASM programs with persistent
queries will still make sense, but it may not be the sense that was
intended.

Modification 1. The set Λ of labels contains the “reply location
marker” rl.

The purpose of this modification is of course to ensure availability of
the queries 〈q, rl, l〉 that we want to use when issuing a persistent query
q with reply location l. It may seem that we should also require that

38 ANDREAS BLASS AND YURI GUREVICH

all dynamic function symbols f should be among the labels, so that
they can be used in the location part l of 〈q, rl, l〉. This requirement
would do no harm, but it may be overkill, since there may be many
dynamic function symbols that will not be used for reply locations in
a particular program. Accordingly, we do not impose this requirement
but instead use the following definition to keep track of which function
symbols are available to serve as the first component of a reply location.

Definition 51. A function symbol is reply-available if it is dynamic
and is also a member of the set Λ of labels.

Remark 52. We have insisted here that the function-symbol component
of a reply location be dynamic. This is not strictly necessary; one
could imagine using a static function — one that the algorithm can
never update — in this role, since the updates would be done by the
environment, not by the algorithm. But it seems strange to allow this
when the update is being done at the request of the algorithm.

Notice, for example, the following undesirable consequence of al-
lowing reply locations that begin with a static function. Suppose the
environment can provide echoes; that is, an algorithm can issue a query
of the form “answer this with x,” where x is an element of the state,
and get reply x. Then by issuing the query

answer this with x [=: f(t)],

the algorithm can achieve (after the end of the current step) the effect
of the update f(t) := x. That should not be possible when f is static.

Remark 53. The definition of reply-available is designed to cohere with
our convention in Section 3 about the format of the queries that provide
reply locations. Had we chosen a different format, for example using
some codes for the function symbols, then the definition should be
modified accordingly.

Our next task is to understand, in a way that fits the general notions
of algorithms and ASMs, the external function calls accompanied by
reply locations. We can fit this syntactic construct

g(u1, . . . , um)[=: f(t1, . . . , tn)]

into the ASM framework by treating it as a new external function
symbol with all of u1, . . . , um, t1, . . . , tn as arguments. That is, we re-
quire the availability of a new (m+ n)-ary function symbol, which we
denote by g[=: f], and we treat g(u)[=: f(t)] as syntactic sugar for
g[=: f](u, t). The following modification and definition formalize this
convention.

PERSISTENT QUERIES 39

Modification 2. For certain pairs g, f , where g is an external function
symbol and f a reply-available function symbol, an external function
symbol g[=: f] is designated, with arity equal to the sum of the arities
of g and f .

Definition 54. When g[=: f] is defined, we say that f is reply-available
for g. In this case, if g is m-ary and f is n-ary, then g(u1, . . . , um)[=:
f(t1, . . . , tn)] means g[=: f](u1, . . . , um, t1, . . . , tn).

At this stage, we have ensured that ASM programs written with the
g(u)[=: f(t)] notation are syntactically correct, provided f is reply-
available for g. As a first step toward semantic correctness, we want
them to issue the right queries.

Intention 55. When g[=: f] is defined, the associated template is

ĝ[=: f] = 〈ĝ, rl, f,#(m+ 1), . . . ,#(m+ n)〉,

where g is m-ary and f is n-ary.

Remark 56. We have, once again, taken some liberties with the brack-
eting. Without liberties, we would have ĝ_〈rl, f,#(m+1), . . . ,#(m+
n)〉, where _ denotes concatenation of sequences. It may also be worth
noting that ĝ is the same as ĝ[#1, . . . ,#m].

The next modification says that, when the algorithm issues a query
that contains the rl label, it should get an answer to the “query part”
preceding rl, since the rest merely specifies a reply location. It turns
out that the only change needed in the definitions and postulates from
[3] is that, when 〈q, rl, l〉 is caused by an initial segment of a history
ξ, it is not this query itself but rather the initial segment q that counts
as issued.

Modification 3. The definition of IssuedX(ξ) in Definition 18 is
amended as follows. IssuedX(ξ) consists of those queries q such that

• q does not contain rl, and
• for some initial segment η of ξ, either η `X q or η `X 〈q, rl, l〉

for some sequence l.

Intention 57. The only external function symbols whose templates
contain rl are those of the form g[=: f].

The preceding “Intentions” imply that no template contains more
then one occurrence of rl. Nevertheless, our modification of the defini-
tion of Issued can handle queries with several rl’s; the first occurrence
of rl is the one that counts.

40 ANDREAS BLASS AND YURI GUREVICH

Remark 58. It is possible for an ASM program to prescribe two different
reply locations for what turns out to be the same query. For example,
we might have both g(u)[=: f(t)] and g(u′)[=: f ′(t′)] where, in some
(or even every) state u and u′ have the same values a but f 6= f ′.
Then the queries resulting from these two occurrences are different,
but they differ only after the rl. So our redefinition of Issued says that
only a single query is issued, namely ĝ[a]. According to Intention 59
below, a reply to this single query is to be written into both of the
reply locations.

To see that this is as it should be, consider the ASM program (in
the traditional sense) that results from deleting all the reply locations.
There, g(u) and g(u′) would issue only a single query, ĝ[a]. Our mod-
ifications and definitions ensure that the ASM with reply locations
behaves, in this respect, the same as the one without reply locations.

It remains only to formally state, as intentions, the constraints that
the environment should obey in order to make our ASMs with persis-
tent queries behave as intended.

Intention 59. If the algorithm has produced the query 〈q, rl, l〉,
thereby issuing q, and if l is a location, then the answer to q should be
written into location l. In case several answers are to be put into the
same l at the same time, the environment chooses one of them arbi-
trarily. The environment should not write into reply locations except
as prescribed here.

Usually, a program will not use the same reply location for several
different queries, and so the need for an arbitrary choice will not arise.
If, however, the program does assign the same reply location to several
queries, then not only might it encounter the nondeterminism described
here, but replies might be overwritten.

Note that, in telling the algorithm to write replies into the prescribed
locations, we have made no exception for on-time replies. If a query is
answered during the same step in which it was issued, then the reply
goes into both the history of that step and (when the step ends) the
reply location.

Intention 60. Replies to persistent queries are different from undef.

The point of this is to enable an algorithm to detect whether a query
has received a late reply. If the value of the reply location is initialized
to undef and is not updated otherwise than by a reply to q, then the
presence of a reply can be detected by comparing the value of this
location to undef.

PERSISTENT QUERIES 41

Remark 61. We briefly indicate an alternative approach that does not
require the environment to reinterpret 〈q, rl, l〉 as the query q (and
does not require us to redefine Issued). In this approach, g(u)[=: f(t)]
should produce two queries, namely the query q that would be issued by
g(u) alone and the additional query 〈q, rl, l〉 giving its reply location l.
The environment treats q like any other query, answering it (if possible)
in the usual way. It treats 〈q, rl, l〉 as a message, answering it with
an automatic, immediate “OK,” but remembering it so that it knows
where to write a reply to q later.

This approach requires a modification to [3] to allow two queries
to be caused at a single point in an ASM program. The template
assignment should now be multivalued, assigning to g[=: f] both the
template 〈ĝ, rl, f,#(m+1), . . . ,#(m+n)〉 used above and the template
ĝ. A secondary modification is to allow an m-ary template ĝ to be used
for an (m+ n)-ary function symbol g[=: f].

References

[1] Andreas Blass and Yuri Gurevich, “Abstract state machines capture parallel
algorithms,” ACM Trans. Computational Logic, 4 (4) (2003) 578–651; “Cor-
rection and extension,” ibid. 9 (3) (2008) to appear.

[2] Andreas Blass and Yuri Gurevich, “Ordinary interactive small-step algo-
rithms,” ACM Trans. Computational Logic, Part I: 7 (2) (2006) 363–419;
Part II: 8 (3) (2007) article 15; Part III, ibid. article 16.

[3] Andreas Blass, Yuri Gurevich, Dean Rosenzweig, and Benjamin Rossman, “In-
teractive small-step algorithms, Part I: Axiomatization, and Part II: Abstract
state machines and the characterization theorem” Logical Methods in Com-
puter Science, to appear.

[4] Yuri Gurevich, “Evolving algebras 1993: Lipari guide,” in Specification and
Validation Methods, ed. E. Börger, Oxford University Press (1995) 9–36.

[5] Yuri Gurevich, “Sequential abstract state machines capture sequential algo-
rithms,” ACM Trans. Computational Logic, 1 (1) (2000) 151–176.

[6] Wikipedia, “Futures and promises.“ (Viewed on August 1, 2008.)

Mathematics Department, University of Michigan, Ann Arbor, MI
48109–1043, U.S.A.

E-mail address: ablass@umich.edu

Microsoft Research, One Microsoft Way, Redmond, WA 98052,
U.S.A.

E-mail address: gurevich@microsoft.com

	1. Introduction
	PART I: AN IMPROVED INTERACTIVE SMALL-STEP ASM MODEL
	2. Persistent Queries and Late Replies
	3. ASMs With Persistent Queries
	PART II: THE DETAILS
	4. Interactive Abstract State Machines
	5. Impatience
	6. Announcing Locations for Late Replies
	References

