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Abstract

Early aggregation is a technique for speeding up the processing of GROUP BY

queries by reducing the amount of intermediate data transferred between main memory

and disk. It can also be applied to duplicate elimination because duplicate elimination

is equivalent to grouping with no aggregation functions. This paper describes six

di�erent algorithms for grouping and aggregation, shows how to incorporate early

aggregation in each of them, and analyzes the resulting reduction in intermediate data.

In addition to the grouping algorithm used, the reduction depends on several factors:

the number of groups, the skew in group size distribution, the input size, and the

amount of main memory available. All six algorithms bene�t from early aggregation

with grouping by hash partitioning producing the least amount of intermediate data.

If the group size distribution is skewed, the overall reduction can be very signi�cant,

even with a modest amount of additional main memory.

1 Introduction

SQL queries containing GROUP BY with aggregation are common in decision support ap-
plications. Duplicate elimination can be viewed as a special case of grouping: GROUP BY
without aggregation functions. A widely used algorithm for evaluatingGROUP BY queries
is to �rst sort the input records on the grouping columns and then perform aggregation on
the sorted record stream.

The amount of data output from the run formation phase and carried through the merge
phase can be reduced by a technique here called early aggregation. The basic idea is straight-
forward: when creating a run, maintain in memory a set of group records, one for each group
seen so far; when an input record arrives, combine it with the matching group record if one
exists, otherwise initialize a new group record. Combining an input record with a group
record simply consists of updating the aggregation functions. When memory becomes full,
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the group records are sorted and output as a run. The records carried into the merge phase
then represent partially aggregated groups instead of individual input records. Early ag-
gregation can also be applied during the merge phase by combining records from the same
group whenever possible. Early aggregation always reduces the number of records processed
during the merge phase. If the number of groups is small, all groups may �t in main memory
and no merging is required.

Sorting is not the only way to evaluate GROUP BY queries. This paper describes how
to incorporate early aggregation into six algorithms: an algorithm simply scanning the input
repeatedly, an algorithm based on repeated union, two algorithms based on sorting, and two
algorithms based on hash partitioning.

The e�ect of early aggregation is to reduce the amount of intermediate data transferred
between main memory and disk. The main contribution of this paper is an analysis of
the reduction resulting from early aggregation. The reduction depends on several factors:
number of groups, the skew in the distribution of groups sizes, input size, the amount of
main memory available and, of course, the grouping algorithm used. The analysis shows that
the reduction can be very signi�cant, even when using a modest amount of main memory.

2 Previous Work

Early aggregation is not a new idea. Most published work deals with duplicate elimination,
typically in main memory. Munro and Spira[5] gave a computational bound for the number
of comparisons required to sort a multiset with early duplicate removal. Several algorithms,
based on various sorting algorithms, e.g., quick sort, hash sort and merge sort, have been
proposed for duplicate elimination. Abdelguer� and Sood[1] gave the computational com-
plexity of the merge sort method based on the number of three-way comparisons. Teuhola
and Wegner[7] gave a duplicate elimination algorithm based on hashing with early duplicate
removal, which requires linear time on the average and O(1) extra space. Wegner[8] gave a
quick sort algorithm for the run formation phase and analyzed its computational complexity.

However, we are mainly interested in large-scale grouping and aggregation requiring ex-
ternal storage. The processing cost is then dominated by the cost of I/O, and the CPU
time can be largely ignored. D. Bitton and D.J. Dewitt [2] analyzed the bene�ts of early
duplicate elimination during run merging in external merge sort. Their analysis is based
on several simplifying assumptions: all groups are assumed to be of the same size, the only
merge pattern considered is balanced two-way merge, and duplicate elimination during run
formation is not considered. This analysis is also summarized in [3].

Parallel database systems running on shared-nothing systems normally perform aggrega-
tion in two steps: each node �rst performs grouping and aggregation on its local data and
then ships the result to one or more nodes where the partial results are integrated. Shatdal
and Naughton [6] pointed out that if the input is large and the duplication factor is low (few
records per group), then the �rst step may do a lot of work for a relatively small reduction
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in output size. If so, it is better to skip local aggregation and simply send the input tuples
directly to the nodes performing the �nal aggregation.

A paper by Yan and Larson [9] contains some early results (based on a simulation study)
of the bene�ts of applying early aggregation to grouping by sorting.

3 Preliminaries

In this section we derive three functions that will be needed when analyzing the various
GROUP BY algorithms. Assume that the source records are divided among D di�erent
groups, labeled 1; 2; :::; D. Let pi denote the probability that a record belongs to group i.
We call p1; p2; � � �; pD the group size distribution. The actual group labels do not matter so
we assume that the labels are assigned so that p1 � p2 � � � � � pD.

For the numerical results reported in this paper, we model the group size distribution
with a generalized Zipf distribution [4]. The distribution function is de�ned by:

pi =
1

c
(1=i)�; i = 1; 2; ::::; D

where � is a positive constant and c =
PD
i=1(1=i)

�. Setting � = 1 gives the traditional Zipf
distribution, and � = 0 gives a uniform distribution. Increasing � increases the skew in the
group size distribution, which, as we will see, increases the data reduction obtained by early
aggregation. Many phenomena, including the distribution of word occurrences in English
text, have experimentally been found to follow a traditional Zipf distribution.

An input record will either be absorbed by a group already in memory or create a new
group. Let N denote the number of records read so far. We model group labels as being
independently and randomly drawn from the distribution p1; p2; � � �; pD. Then the expected
number of distinct group labels occurring in a sample of N records equals

G(N) = D �

DX
i=1

(1� pi)
N ;

where (1 � pi)
N is the probability that no record with group label i occurs among the N

input records. Note that the function G is well de�ned also for non-integer arguments.
We will also need the absorption rate at point N , that is, the probability that record

N + 1 will be absorbed into one of the groups already in memory. The probability that it
will not be absorbed and, hence, will create a new group is G(N+1)�G(N). The absorption
rate at N is then

A(N) = 1� (G(N + 1)�G(N)) = 1�
DX
i=1

pi(1� pi)
N :

The functions G(N) and A(N) are plotted in Figures 1 and 2 for three di�erent group size
distributions: a uniform distribution, a Zipf distribution with � = 0:5 and a traditional Zipf
distribution (� = 1:0).
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Figure 1: No of distinct groups seen as a
function of records read, 10,000 groups.

Figure 2: Absorption rate as a function of
records read, 10,000 groups.

Now assume that we have memory space for storing at most M group records (M < D).
We are interested in how many input records we expect to have processed when memory
overows. The expected number of records needed to reach this point is

R(M) = G�1(M);

that is, the inverse of the function G. R(M) can be computed by numerically solving the
equation M = G(X) for X.

We can plug R(M) into the function A to obtain an estimate of the absorption rate
obtained when storing M group records in memory. This function equals

A(R(M)) = 1�
DX
i=1

pi(1� pi)
R(M):

A(R(M)) is a measure of the \absorption power" of memory space forM group records. Note
that this function applies only when the M group records stored in memory correspond to
the �rst M distinct groups encountered in the input.

For the special case of a uniform distribution (pi = 1=D), we can derive simple closed
formulas for the three functions of interest.

G(N) = D(1� (1� 1=D)N)

R(M) = log(1�1=D)(1�M=D) = ln(1�M=D)= ln(1� 1=D)

A(R(M)) = M=D

4 Repeated scanning

Let's start with a very simple algorithm. Simply scan the input and apply early aggregation,
that is, maintain group records in memory. When memory has been completely �lled,
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continue scanning the input, absorb all records that match a group already in memory
and write all non-matching input records to an overow �le. The groups in memory are
output when reaching the end of the input. The overow �le is then used as the input �le
for the next pass. This process is repeated until a pass produces no overow records.

It is easy to see that each pass outputs as many groups as there is room for in memory.
The number of passes is therefore equal to the total number of distinct groups in the input
divided by the number of groups that �t in memory. However, what matters more is the
amount of data written to and read from overow �les. This depends on the distribution of
group sizes; large groups tend to be processed in the �rst pass.

Analysis

Assume that we have room forM group records in memory. The algorithm will then extract
M complete groups in each pass over the input or over the overow �le produced in the
previous pass. We �rst consider the number of overow records produced by the initial pass.
Based on the analysis in section 3, we expect the �rst R(M) input records to produce no
overow records - this is the build-up phase. At this point, we have M records in memory
with an absorption rate of A(R(M)) or, equivalently, a rejection rate of 1� A(R(M)). The
absorption rate does not change after memory has been �lled. Hence we can estimate the
number of records output to the overow �le as

W1(N) =

(
(N � R(M))(1� A(R(M))) if R(M) < N
0 if R(M) � N

=

(
(N � R(M))

PD
i=1 pi(1� pi)

R(M) if R(M) < N
0 if R(M) � N

The following observation is key to estimating the number of records output after multiple
passes. Provided that overow �les are read in the same order as they are written, then n
passes, each extracting M groups, will produce exactly the same groups as one pass extracting

nM groups. (This can be generalized: n passes extracting M1;M2; � � �;Mn groups, respec-
tively, will produce the same groups as one pass extracting M1 +M2 + � � �+Mn groups.) It
follows that

Wn(N) =

(
(N � R(nM))(1� A(R(nM))) if R(nM) < N
0 if R(nM) � N

=

(
(N � R(nM))

PD
i=1 pi(1� pi)

R(nM) if R(nM) < N
0 if R(nM) � N

The total number of group records written to (and read from) overow �les is then

W (N) =
X

1�i<D=M

Wn(N):
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Figure 3: Intermediate data volume as a
function of input size when using repeated
scanning. 10,000 groups, 10% in memory.

Figure 4: Intermediate data volume as a
function of memory size when using repeated
scanning. 10,000 groups, 1,000,000 input
records.

Figures 3 and 4 illustrate how the volume of intermediate data varies with input size
and amount of memory used. The intermediate data volume is expressed as a fraction of
the number of input records. Figure 3 plots the intermediate data volume as a function
of input size. The relative volume increases fairly sharply with the input size at �rst but
converges to a steady state. The steady state value decreases as the skew in the group size
distribution increases. Figure 4 shows the e�ects of increasing the amount of memory used
during grouping. As one might expect, increasing memory has the best payo� when the
amount of memory is low, i.e. the marginal bene�t of additional memory decreases.

5 Repeated union with aggregation

Our second algorithm resembles a nested-loop join with the group records in memory as the
outer table and a temporary �le containing all group records created so far as the inner table.
The �rst time memory overows, we output the group records in memory to a temporary �le
on disk. We then �ll memory again, applying early aggregation. Next we scan the temporary
�le and, for each record in the �le, look for a matching record in memory. If one exists, we
merge it with the record from the �le, delete it from the in-memory table, and output the
updated record (to a second temporary �le). If no matching record exists, we output the
record read without change. When reaching the end of the temporary �le, we output all
records remaining in the in-memory table. This process of �lling memory and combining it
with the result obtained so far continues until there are no more input records. The actual
operation performed has more in common with union than with join which is why we call
this algorithm repeated union with aggregation.

The explanation above indicated that two temporary �les would be needed, one for input
and one for output. This is not always necessary. Instead we can simply update the record in
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the temporary �le whenever we �nd a matching record in the hash table. Records remaining
in the hash table are appended to the end of the temporary �le. This idea can be applied
only if updating a record is guaranteed not to change its length. The record length may
change, for example, if the aggregation includes MAX on a variable length column.

It is also possible to do an \index union", that is, we store the groups found so far in an
indexed �le with the grouping column as the index key. Performing the \union" operation
then consists of scanning the records in the in-memory table, locating matching records via
the index, and updating the records found. Whenever no matching record is found, a new
record is added to the �le. It is questionable whether using an index is worthwhile. Even
when the number of records in memory is quite small, we can expect to update almost every
page in the indexed �le. If so, a complete sequential scan is much faster.

Analysis

From the analysis in section 3 we know that the expected number of input records consumed
is R(M) when memory overows. The �rst memory load will produce exactly M output
records. The second memory load triggers a \union" of the M records in memory with
the M records output previously. However, the \union" may produce less than 2M output
records because matching input records will be merged, producing a single output records.
TheM group records read from the temporary �le and theM group records in memory each
consumed R(M) input records. The output from the \union" cannot contain two records
related to the same group. It follows that the output after the \union" will consist of as

many records as we can expect to �nd distinct groups among 2R(M) input records, which is
given by the function G. The expected number of records output from the �rst \union" is
therefore equal to G(2R(M)) if 2R(M) < N and G(N) otherwise.

It is now easy to see how this generalizes to multiple \union" passes. The output from
the nth \union" is a consolidation of nR(M) input records if nR(M) < N . Otherwise it
is a consolidation of the N input records. Putting it all together we obtain the following
formula for estimating the number of records in the intermediate �le output after n memory
loadings:

Wn(M) =

8><
>:
M if n = 1 and R(M) < N
G(nR(M)) if n > 1 and nR(M) < N
G(N) otherwise

The total number of records of intermediate data produced by the algorithm is then

W (M) =
n<N=R(M)�1X

n=1

Wn(M)

This function is plotted in Figures 5 and 6. A comparison with the corresponding �gures in
the previous section immediately shows that this method outputs much more intermediate
data than even the simple repeated scanning algorithm.
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Figure 5: Intermediate data volume as a
function of input size when using repeated
unioun with aggregation. 10,000 groups, 10%
in memory.

Figure 6: Intermediate data volume as a
function of memory size when using repeated
union with aggregation. 10,000 groups,
1,000,000 input records.

6 Grouping by sorting

GROUP BY queries are often evaluated by �rst sorting the input on the grouping columns
and then performing aggregation on the sorted record stream. The most widely used sort
method (for large �les) is merge sort which consists of two phases: run formation and run
merging. Each phase is discussed in a separate section.

6.1 Run formation

There are two types of run formation algorithms: those producing �xed-length runs and
those producing variable-length runs. Fixed-length run formation algorithms read a certain
amount of input into memory (limited by the size of available memory), sort the data in
memory using some sorting algorithm, and then write out the result as a run. This process
continues until all input records have been processed. We will use the more descriptive name
load-and-sort run formation for this class of algorithms.

Variable-length run formation algorithms may produce runs that are larger than the
available memory. The basic idea is straightforward: when memory becomes full, output
just a small part of a run (minimum one record) and read in more records. New records with
a key greater than or equal to the key of the last record output, are added to the current
run. Those whose key is too low become part of the next run. The standard algorithm is
replacement selection, see reference [4] for details of the algorithm. E. F. Moore showed that,
for randomly ordered input, the expected length of each run is twice the available memory
size [4]. When the input exhibits some degree of pre-sortedness, runs are likely to be even
longer.

Replacement selection produces runs that are, on average, twice as large as memory
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used during run formation. Even so, load-and-sort algorithms are often used in practice.
Replacement selection has two drawbacks: excessive data movement and complex memory
management when input records are of variable length. When a record is output (actually
copied to an output bu�er), it leaves a hole somewhere in memory. If records are of �xed
length, any incoming record can be moved into the hole. But that is precisely the problem.
It takes time to copy every record from an input bu�er to some place in memory. Load-and-
sort algorithms do not incur this extra copying step: we use the available memory as input
bu�ers, do pointer sorting, and copy records directly into output bu�ers. Variable length
records compound the problem because there is no guarantee that an incoming record will �t
into the hole. Even if it does, it may not be an exact �t, leaving a smaller hole. After a while,
we end up with many small, virtually unusable pieces of free space. Unless we occasionally
do memory packing to reclaim unused space, the net e�ect is to reduce the number of records
that �t in memory which reduces the bene�ts of replacement selection.

Early aggregation can easily be incorporated into either type of run formation algorithm.
The runs will be of �xed or variable length depending on what action is taken when memory
becomes full. We can sort the group records and output them as a run, in which case all runs
will be of the same length. The other option is to apply replacement selection to the group
records, that is, output one (or more records) and use the space for a new group record. In
this case, the runs will be of variable length but with an expected length of 2M .

Regardless of what run formation algorithm is used, input records now require some
processing (lookup, aggregate) and cannot just be left in their input bu�ers. So when
applying early aggregation, they all require the same amount of copying. However, the
memory management problem for replacement selection still remains.

Analysis

Assume that runs are created by a load-and-sort algorithm, that is, we read input records
applying early aggregation until memory is �lled, then sort the group records in memory
and output them as a run. A run will then consist of M (group) records and we can expect
to have consumed R(M) input records. Hence, we can expect the run formation phase to
produce N=R(M) runs, containing a total of NM=R(M) group records. Figure 7 plots the
functionM=R(M) for three di�erent group size distributions. As expected, the more skewed
the distribution is, the more early aggregation pays o�.

Now assume that we are using replacement selection for run formation. Replacement
selection is similar to the repeated scanning algorithm (section 4) in the sense that there are
always M group records in memory. The di�erence is that the scanning algorithm keeps the
same records in memory throughout the whole pass while replacement selection replaces one
group record with another whenever memory overows. We know that the absorption rate
is A(R(M)) when memory overows the �rst time. We approximate the absorption rate for
replacement selection by this rate and estimate the number of records output from the run
formation phase as NA(R(M)). Replacement selection produces runs containing 2M group
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records, on average, so the number of runs can be estimated as NA(R(M))=(2M).
It is clear that A(R(M)) overestimates the absorption rate of replacement selection be-

cause the same records are not kept in memory during the whole pass. We have not been
able to come up with a more exact analysis but we ran several simulation experiments to
get some idea of the discrepancy. The estimated and observed absorption rates are plotted
in Figure 8. For a uniform distribution, A(R(M)) is the correct absorption rate and the
estimated and observed rates coincide. The discrepancy increases with the skew but even
for the highly skewed traditional Zipf distribution (� = 1:0) the di�erence is small.
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Figure 7: Relative output volume as a func-
tion of memory size when creating runs by
load and sort, 10,000 groups.

Figure 8: Relative output volume as a func-
tion of memory size when creating runs by re-
placement selection, 10,000 groups.

6.2 Run merging

There are many valid merge patterns because the only requirement is that each merge step
must reduce the number of runs so that we eventually end up with a single, completely sorted
run. It is not even necessary to have separate run formation and merge phases. We can
structure a sort as two concurrent activities connected in a producer-consumer relationship.
We can have multiple run-producing tasks running concurrently with multiple merge tasks
consuming (and producing) runs. A merge task monitors a list of available runs and starts
merging as soon as there are enough runs and memory space available to make a merge
worthwhile.

We will, however, consider a traditional approach with a separate merge phase where
each merge step has the same fan-in, except possibly the �rst one. So given S initial runs,
possibly of variable length, and a maximummerge fan-in ofK, which merge pattern results in
the minimum data transmission? The surprisingly simple solution can be found in reference
[4], pp 365-366: �rst add enough dummy runs of length zero to make the number of runs
divisible by K � 1 and then repeatedly merge together the K shortest existing runs until
only one run remains.
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Analysis

We �rst analyze the output from one merge step and then show how to compute the inter-
mediate data volume produced by the optimal merge pattern just described.

Suppose we are merging K initial runs and that we apply early aggregation during the
merge. An initial run is a run created during run formation. Let L denote the run length.
If runs were formed by load-and-sort, the run length equals M and if runs were formed by
replacement selection, the (expected) run length is 2M . We will read KL group records but
the number of records output will be less because all records related to the same group but
in di�erent runs will be consolidated into a single output record. How many records can we
expect to output? The expected number of input records needed to create an initial run
equals

C(M) =

(
R(M) if using load and sort
A(R(M)) if using replacement selection

so creation of the K runs consumed a total of KC(M) input records. The run output from
the merge step will not contain any duplicates. Consequently, the number of records in the

output run is the same as the number of distinct groups occurring among the input records

consumed to create the K initial runs. The number of distinct groups occurring among x
input records is given by the function G(x) so we can estimate the number of output records
as

G(KC(M)) = D �

DX
i=1

(1� pi)
KC(M):

Now consider what happens if we merge K initial runs into a single run in multiple
steps. The key observation is this: the merge pattern does not a�ect the size of the output

run. Assume, for example, that we merge 8 initial runs into a single run. The result will be
exactly the same if this is done as one 8-way merge, as two 4-way merges followed by a 2-way
merge, or as four 2-way merges followed by two 2-way merges and a �nal 2-way merge. It
follows that the formula above can be used to estimate the output size from any merge step
by interpreting K as the number of initial runs contained in the input to the merge step.

We now know how to estimate the size of the output from any merge step. The easiest
way to compute the total intermediate data volume produced during a merge is by, in essence,
simulating the merge process. A sketch of the algorithm follows.

Algorithm: Intermediate Data Volume Produced by Optimal Merge

Input: RunList, a list giving the length of each initial run. The length

is expressed as the number of input records consolidated in the run.

RunCount, number of runs in RunList.

FanIn, merge fan in.

Output: DataVolume, the expected volume of intermediate data processed during

the merge. Expressed in number of group records. Includes the group

records in the initial runs but not the final output from the merge.
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Locals: PQ, a priority queue with elements of type (RecsOut, SourceRecs) where

RecsOut is the number of group records in a run and SourceRecs is the

number of original input records consolidated in the run. The element

with the lowest RecsOut has the highest priority.

PQ = empty ;

for each element r in RunList do

insert (G(r.length), r.length) into PQ ;

od

DummyRuns = (FanIn-1) - (RunCount-1) mod (FanIn-1) > 0 ;

if DummyRuns < FanIn-1 then

insert (0, 0 ) into PQ DummyRuns times ;

fi

DataVolume = 0 ;

while PQ contains more than one element do

SrcLength = 0 ;

for i from 1 to FanIn do

(LOut, LSrc) = extract top element from PQ ;

SrcLength = SrcLength + LSrc ;

DataVolume = DataVolume + LOut ;

od

insert (G(SrcLength), SrcLength) into PQ ;

od

output DataVolume ;

Numerical results are plotted in Figures 9 - 12. The �rst two �gures show the intermediate
data volume as a function of the input size and the last two as a function of memory
size. Applying early aggregation reduces the data volume very signi�cantly, especially if
the group size distribution is skewed. Consider, for example, the situation when processing
200,000 input records and forming runs by replacement selection (see Figure 10). Without
early aggregation, the intermediate data produced equals 2.00*200,000 = 400,000 records
(regardless of the skew in the input). With early aggregation using memory for 1000 group
records, the intermediate data volume is reduced to 1.30*200,000 = 260,000 records for a
uniform group size distribution and to as little as 0.43*200,000 = 86,000 records for a Zipf
distribution. Note that extra memory is required only during run formation.

7 Grouping by partitioning

GROUP BY queries can also be evaluated by partitioning. The basic idea is to �rst
partition the input into smaller work �les by hashing on the grouping columns and then apply

12



0

0.5

1

1.5

2

2.5

3

0 50000 100000 150000 200000 250000

In
te

rm
ed

ia
te

 d
at

a 
vo

lu
m

e,
 W

(N
)/

N

No of records, N

Uniform
alpha 0.5
alpha 1.0

No early aggr

0

0.5

1

1.5

2

2.5

3

0 50000 100000 150000 200000 250000

In
te

rm
ed

ia
te

 d
at

a 
vo

lu
m

e,
 W

(N
)/

N

No of records, N

Uniform
alpha 0.5
alpha 1.0

No early aggr

Figure 9: Intermediate data volume as a
function of input size for grouping by sorting
with run formation by load and sort and us-
ing an optimal merge pattern. 10,000 groups,
10% in memory, fan in 10.

Figure 10: Intermediate data volume as a
function of input size for grouping by sorting
with run formation by replacement selection
and using an optimal merge pattern. 10,000
groups, 10% in memory, fan in 10.
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Figure 11: Intermediate data volume as a
function of memory size when using sorting
with run formation by load and sort. 10,000
groups, 1,000,000 input records, fan in 10.

Figure 12: Intermediate data volume as a
function of memory size when using sorting
with run formation by replacement selection.
10,000 groups, 1,000,000 input records, fan in
10.
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simple hash grouping on each partition �le. The objective is to create partitions containing
su�ciently few distinct groups so that the �nal grouping can be done in memory. Early
aggregation is applied during the partitioning phase to reduce the amount of data written to
partition �les. We consider two algorithms based on partitioning: one partitioning rejected
input records and one partitioning partially aggregated groups.

7.1 Partitioning rejects

The repeated scanning algorithm explained in section 4 writes all rejected records into a
single �le. We can improve on this by dividing them among P �les by hash partitioning.
This requires P output bu�ers, one for each partition �le, where rejected records are placed.
An output bu�er is written as soon as it becomes full. In addition, all non-empty output
bu�ers are written when we reach the end of the input stream.

We need some policy for assigning rejected records to partitions. The simplest solution
is a �xed, uniform assignment. We make the hash table size mP where m is an integer and
any rejected record hashing to 0; 1; � � �; m � 1 is written to partition 1, any rejected record
hashing to m;m + 1; � � �; 2m� 1 is written to partition 2, and so on.

When we reach the end of the input stream, the group records in memory are complete
and can be output. Exactly the same algorithm is then applied to each one of the partition
�les, in any order. This may produce additional, second level partition �les which may create
third level partition �les, and so on. This continues until there are no more partition �les
to process. Note that we must use a di�erent hashing function at each level. Otherwise, all
records rejected when processing a partition �le will end up in a single partition �le at the
next level. The algorithm will still produce the correct result but not as e�ciently.

We can save on disk storage for partition �les by processing them in order of size, from
smallest to largest. A smaller partition is expected to contain fewer distinct groups. Hence,
we can expect it to generate fewer, if any, overow records. We must somehow keep track of
partitions remaining to be processed. If we organize this as a priority queue with the priority
determined by partition size, the smallest available partition will always be processed �rst.

Allocating a few extra output bu�ers makes it possible to overlap writing to partition
�les and processing of input records.

If we are doing duplicate elimination, all we need to store in memory are record keys, not
complete records. Whenever we encounter a new group and there is still room in memory, we
output the complete record to the result, and store just its key in the hash table. (Rejected
records are still output as is to partition �les.) This trick may allow many more records to
be stored in memory.

Analysis

So far we have ignored the space needed by �le bu�ers because the number of bu�ers needed
has been small. Methods based on partitioning may consume a signi�cant amount of memory
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as �le bu�ers for the P partition �les used in each step. We measure the size of a bu�er in
(group) records and denote the size of a �le bu�er by B.

Partitioning rejects resembles repeated scanning in the sense that they both output re-
jected records to overow �les. The analysis exploits this similarity. The only, but important,
di�erence is the hash partitioning of the rejected records into P �les.

The initial pass of the algorithm will produce exactly the same number of records as the
�rst pass of the repeated scanning algorithm with memory size M � PB. This equals

W1(N) =

(
(N � R(M1))(1� A(R(M1))) if R(M1) < N
0 if R(M1) � N

=

(
(N � R(M1))

PD
i=1 pi(1� pi)

R(M1) if R(M1) < N
0 if R(M1) � N

where M1 =M � PB and B is the output bu�er size (in records).
The next pass processes each of the (at most) P partition �les applying the same par-

titioning algorithm. We model this as P passes of the simple repeated scanning algorithm.
(Clearly, this is not entirely correct - it will underestimate the number of records rejected
during the second pass. More about this in a moment.) According to the analysis of repeated
scanning, the e�ect is the same as a single pass using memory of size (M � PB)(1 + P ).
The one in the formula accounts for the initial pass. Continuing in this fashion, the e�ect
of a complete third partitioning pass is the same as a single pass using memory of size
(M � PB)(1 + P + PP ). This gives us the following formula for estimating the number of
records output from the nth partitioning pass:

Wn(N) =

(
(N � R(Mn))(1� A(R(Mn))) if R(Mn) < N
0 if R(Mn) � N

=

(
(N � R(Mn))

PD
i=1 pi(1� pi)

R(Mn) if R(Mn) < N
0 if R(Mn) � N

where Mn = (M � PB)(1 + P + P 2 + � � � + P n�1). The total number of records output to
partition �les can then be estimated as

W (N) =
Wn=0X
n=1

Wn(N):

Figures 13 and 14 plot the number of records output to partition �les relative to the
number of input records. Compared with other grouping algorithms the amount of interme-
diate data is small except when memory is very tight. The knee in the graph for uniformly
sized groups is where the shift from one partitioning pass to two partitioning passes occurs.
Similar knees occur when shifting from two to three passes, etc.

We already mentioned that the model underestimates the amount of intermediate data
produced by the algorithm. Simulation experiments showed that the error is very small as
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long as the number of partitioning levels is no more than two. The model assumes an abrupt
switch-over, that is, all partition �les on the same level overow at the same time. That
would indeed be true if all partition �les received exactly the same number of distinct groups.
In reality, the switch-over is more gradual because hash partitioning does not assign groups
completely evenly among the partitions.
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Figure 13: Intermediate data volume as a
function of input size when using simple par-
titioning. 10,000 groups, 10% in memory, 10
partitions, bu�er size 25 records.

Figure 14: Intermediate data volume as a
function of memory size when using simple
partitioning. 10,000 groups, 1,000,000 input
records, 10 partitions, bu�er size 25 records.

7.2 Partitioning partially aggregated records

The previous algorithm outputs rejected input records to P partition �les. Instead we can
output partially aggregated records in the same way as the sort based algorithms. This idea
can be implemented in a variety of ways. We experimented with several di�erent algorithms
and the algorithm described in this section emerged as the winner, i.e. it produced the least
intermediate data.

We �rst create a hash table with P entries, called the partition table. The available
memory is divided into �xed-size pages; initially all pages are empty and placed on a list of
free pages. An entry in the partition table will point to a chain of pages containing group
records that hashed to that entry. Each entry is also assigned a separate partition �le. Pages
overowing from a partition are written to the associated partition �le.

We then start reading and processing input records. As a record arrives, we �rst attempt
to locate a matching group record. If a matching group record is found, its aggregation
columns are updated and we are done. Otherwise, we have to create a new group record. If
there is enough room on the last (or any) page in the appropriate chain, we simply append
the new group record, update the aggregation �elds and we are done. It there is insu�cient
space on the last page of the chain, we �rst have to get another page from the free list and
add it to the end of the chain.
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This initial phase continues until there are no more free pages or no more input records.
If the input runs out before we run out of memory space, we simply output all the group
records in memory and the process is �nished.

The more interesting case occurs when we run out of memory, i.e. we need another page
and there are no more free pages. To create free space we must empty a page by writing it
to its partition �le. The question is: which page do we select as a victim? We will get back
to this question but, for now, assume that we have settled on some policy for selecting which
page to output. We write out the selected page, disconnect it from its current chain, clear
it, and append it to the end of the chain that needed more memory.

We also keep track of whether a partition has overowed or not and whether a page is clean
or dirty. A page is clean if all its (group) records were created before the partition overowed,
otherwise it is considered dirty. This distinction becomes important when reaching the end
of the input stream. We know for certain that a group record on a clean page cannot
merge with any other group records so clean pages can be output directly without further
processing. Dirty pages contain group records that may merge with other group records and
hence dirty pages have to be written to the partition �le. A more sophisticated alternative
is to distinguish between clean and dirty group records. A group record is marked dirty if it
was created after its partition overowed. However, this level of detail may not be worth it.

Now back to the replacement policy, that is, which page(s) to output when we need a
free page and memory is full. The goal is to minimize the intermediate data volume, which
implies that (a) we should output only full or almost full pages and (b) select pages with a
low absorption rate.

The following variant of LRU (least recently used) replacement was found to perform
well. We maintain several LRU queues and pages are assigned to the queues based on �ll
factor and whether they are clean or dirty. Assume for the moment that records are of �xed
length and that a page has room for 10 records. We then create a total of 20 LRU queues
(plus a list of free pages): one for dirty pages storing 10 records, one for clean pages storing
10 records, one for dirty pages storing 9 records, one for clean pages storing 9 records, and
so on. When we need to free up a page, we search for a victim in the same order: the (10,
dirty) queue, the (10, clean) queue, the (9, dirty) queue, the (9, clean) queue, and so on.
The �rst page found is written to its partition �le, cleaned and freed for reuse. Other search
orders, representing di�erent trade-o�s, are of course possible.

This approach can be easily adapted to variable length records: de�ne some number of
�ll factor ranges and have two LRU queues for each �ll factor range. For example, the �ll
factor ranges could be: over 90% �lled, 80% to 90% �lled, 70% to 80% �lled, down to less
than 10% �lled. It is not necessary that all ranges be of the same size; any division into
ranges will do. However, uniform ranges makes it much easier to determine to which queue
a page belongs.

To speed up search, one might be inclined to use a large partition table and assign
multiple entries to the same partition �le. This turned out to be a bad idea: it results
in poor memory utilization and a low absorption rate, thereby increasing the volume of
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intermediate data. Suppose that we have memory space for 100 pages and that we create a
partition table with 100 entries. On average, each entry will then be assigned one page but
there will be considerable variation: some entries will have several pages assigned and many
will have none. At some point while processing input records, we will run out of free pages
so we have to output a page. This is likely to happen well before all pages are full. In fact,
it may happen before any page is full. Suppose pages are, on average, half �lled when we
need to output a page. In e�ect, we are then making use of only half the memory for early
aggregation. Furthermore, we may have to write out pages that are not completely �lled.

Now suppose we use a much smaller table of, say, 20 entries. On average, each entry will
be assigned �ve pages, again with some variation. However, we are now guaranteed that at
least 80 pages will be completely �lled because only the last page on each of the 20 chains
can remain partially �lled. This improves the e�ective memory utilization, which increases
the absorption rate. In addition, we never have to output a partially �lled page (with one
exception: ushing out pages when reaching end of the input stream).

So the partition table size should be determined by the number of pages available. In
the experiments reported in the next section, the table size was set to the number of pages
divided by �ve, with an upper bound of 50. This achieves an intermediate data volume close
to minimum. To speed up searching, it is better to maintain a separate, much larger, hash
table which is used strictly for lookup.

To overlap writing to partition �les and processing, we hold back a few pages on the free
list. When we need to write a page from a partition, we immediately allocate a page from
the free list so that processing can continue while writing.

The discussion above assumes that we output one page at a time. If pages are small,
we can reduce disk overhead (total seek time and latency) by writing multiple pages in
a single write operation. This works particularly well if the system supports gather-write
and scatter-read. Note, however, that all pages written together must belong to the same
partition which makes selecting the best set of pages more complex.

Analysis

This algorithm is quite complex and we have not been able to come up with a mathematical
model. Instead we have to rely on simulation experiments. The results of one series of
experiments are plotted in �gures 15 and 16. The page size is 25 records and the number of
partitions was chosen as the number of pages divided by 5, with a maximum of 50 partitions.
The graphs are very similar to the corresponding graphs for the algorithm partitioning rejects.

8 Comparison of Algorithms

Figures 17 and 18 compare the volume of intermediate data produced by the six algorithms
considered in this paper. The line labeled \Lower bound" may need some explanation.
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Figure 15: Intermediate data volume as
a function of input size when partitioning
partially aggregated records. 10,000 groups,
10% in memory, page size 25 records, min 5
pages/partition.

Figure 16: Intermediate data volume as a
function of memory size when partitioning
partially aggregated groups. 10,000 groups,
100,000 input records, page size 25 records,
min 5 pages/partition.

It shows the volume of intermediate data produced by partitioning rejects but under the
unrealistic assumptions that output bu�ers take zero space and one partitioning step is
always su�cient. We claim that no method can produce less intermediate data provided that
(a) the input data is truly random, without clustering and (b) no look-ahead or preprocessing
of the input is allowed. Any method producing less intermediate data must achieve a higher
absorption rate. All of memory is used for early aggregation so we cannot increase the
absorption rate by storing more records in memory. So the only possibility would be replace
some of the records now in memory with records having a higher absorption rate, i.e. from
a group with a higher occurrence propability. If the group size distribution is uniform,
switching which records are kept in memory will not help because every group has the same
probability of occurring in the rest of the input. If the group size distribution is not uniform,
the reasoning is slightly di�erent. Consider the �rst time memory overows. Is the new
record expected to have a higher absorption rate than any of the records already in memory,
i.e. does it belong to a larger group? If so, we can increase the absorption rate by replacing
that group. The answer is no. The larger the group, the sooner we can expect to encounter
its �rst record in the input. The group records in memory represent those groups that were
encountered the earliest. So any record that does not match one of the groups in memory is
expected to be from a smaller group and therefore have a lower absorption rate.

Three of the algorithms considered, namely repeated union, repeated scanning and sorting
with run formation by load-and-sort, produce much more intermediate data than the other
three both when groups are of uniform size and when the group size distribution is highly
skewed. They show slightly di�erent behaviour though. Repeated union is worst regardless
of the amount of memory available for early aggregation. Repeated union and sorting with
run formation by load-and-sort perform surprisingly poorly even when as much as 80% or
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Figure 17: Comparison of intermediate data volume produced by di�erent grouping algo-
rithms, 10,000 groups, 1,000,000 records, 10% in memory,uniform distribution.

90% of the groups �t in memory. The explanation is the same for both algorithms. Suppose
we have memory space for n records in memory. The problem is that the whole memory
contents is output as soon as we encounter the (n+1)st distinct record in the input stream.
All the other methods take less drastic action, either outputting one record or one page,
thereby achieving much higher absorption rates. Repeated union, repeated scanning, and
sorting with run formation by load-and-sort are not discussed further in this paper.

The two versions of partitioning show virtually identical performance, which is also close
to the lower bound when more than 10% of the groups �t in memory. Sorting with run
formation by replacement selection performs almost as well. The di�erence is signi�cant
only for groups of uniform size when a moderate amount of memory is available (10-40%).

9 Implementation Considerations

Record size

A word of caution regarding algorithms that output partially aggregated records may be
appropriate �rst. Early aggregation never increases the number of output records, but the
output records (group records) may be larger than the records that would be output with-
out early aggregation. This may happen when several aggregation functions are computed
on the same column; for example, when computing MIN(PRICE), AVG(PRICE), and
MAX(PRICE). The column PRICE in an input record will then be expanded to four
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Figure 18: Comparison of intermediate data volume produced by di�erent grouping algo-
rithms, 10,000 groups, 1,000,000 records, 10% in memory, Zipf distribution (� = 1).

columns in group records. (Four because AVG has to be expanded into SUM and COUNT
If output (group) records are larger than input records and the number of records is reduced
only slightly, the total amount of data output may increase.

Code complexity

Partitioning rejects is clearly the easiest algorithm to implement. The only di�cult decisions
are (a) how many partition �les to use and (b) how large to make their output bu�ers. This
will determine how much memory remains for early aggregation. It is not clear what the
optimal allocation is even if we were able to get reliable estimates of input size and number
of distinct groups. In the absence of reliable estimates, a reasonable approach is to allocate
a modest fraction of memory for output bu�ers, say no more than 10-20% and to use 5-20
partition �les.

Implementing sorting with run formation by replacement selection is fairly di�cult. The
tricky part is e�cient memory management for variable length records. However, adding
early aggregation to an existing implementation does not appear overly di�cult. To be able
to locate matching group records quickly, we add a hash table used strictly for fast lookup.
Maintaining this hash table requires some care if records may move while residing in memory.

The algorithm for partitioning of partially aggregated records requires a fair amount of
code but the code is reasonably straightforward. In addition to the partition table we need
to maintain three auxiliary structures: a list of free pages, a set of LRU queues and a hash
table for fast lookup. Searching for a matching record via the partitioning table is too slow;
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there are too many records behind each entry.

Data movement

Given the relatively slow speed of main memory (compared to cache memory), it is important
to minimize the amount of in-memory data movement. The two partitioning based algo-
rithms do not incur any extra data movement: data is moved immediately from input bu�ers
to output pages that can be written directly. Output records need never be moved. Sorting
with replacement selection, on the other hand, always requires an extra copying step. Every
output record has to be copied from somewhere in memory into an output bu�er. Some
output records may also require additional copying during memory compaction.

Large units of I/O

The total I/O time depends not only on the amount of data transferred but also on the
number of I/O operations. Each disk operation (read or write) incurs signi�cant overhead in
the form of seek time and rotational delay. The overhead can be reduced by using large units
of I/O, that is, having each read and write operation transfer multiple pages. We might,
for example, have each I/O operation transfer 64KB (8 times 8KB pages or 16 times 4KB
pages). (For the sake of brevity, we will not discuss how to overlap I/O and processing.)

Sorting with replacement selection can easily be adapted to use large units of I/O both
for writing and reading of intermediate data. For run formation, all that is required is to
allocate a large output bu�er. During the merge phase, we need one large bu�er for each
input �le and one for the output �le.

The algorithm partitioning rejects can also easily be adapted to use large units of I/O
simply by making the output bu�ers for each partition �le large. However, this may consume
a large fraction of available memory space, especially if the number of partitions is high. This
reduces the memory available for early aggregation, thereby increasing the intermediate data
volume. It is not clear what the best tradeo� is, i.e. when it is better to use memory for
output bu�ers than for early aggregation.

The algorithm partitioning rejects does not use separate output bu�ers; all data is packed
onto pages which can be written directly. If the system supports gather-write, a single write
operation can transfer several pages (from the same partition) to disk. The only change
required is to the policy for selecting which page to output: instead of selecting a single
page, it now needs to select a set of pages from one of the partitions. For input from a
partition �le, all that is needed is a single large input bu�er.

Hash table organization

All three algorithms make use of a hash table to quickly locate a matching group record.
This will be a frequent operation so careful attention to the organization of this table is
warranted. To reduce the cost of key comparisons, it may be worthwhile storing in the
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hash table itself key signatures, that is, the hash value of the key (before taking it modulo
the table size to obtain the entry number). To check whether two keys are equal, we �rst
compare their key signatures and only if they are equal do we proceed with a comparison of
the keys. Not only is it faster to compare signatures, it also improves cache behaviour.

Dynamic memory adjustment

Dynamic memory adjustment is the ability to reduce or increase the amount of memory
used by an algorithm during run time. Few database systems implement dynamic memory
adjustment today but this is likely to increase in the future. Dynamic memory adjustment
makes it much easier to manage memory space and improves system throughput.

We will �rst consider sorting with run formation by replacement selection. Adjusting
memory usage during run formation is easy. To decrease memory usage, we output some
extra records and compact the records in memory to free up a contiguous piece of memory.
To make use of additonal memory we just just stop outputting records until the additional
memory is �lled. The merge stage normally does not use large amounts of memory so
adjusting memory usage during this stage is less important.

Dynamic memory adjustment is also easy when partitioning aggregated records. To free
up memory, we just output one or more pages and return the pages. It may be necessary to
move some pages around if contiguous pieces of memory have to be returned. If additional
memory becomes available, all we need to do is add it to the list of free pages.

The algorithm partitioning rejects does not lend itself to dynamic memory adjustment.
Memory cannot be freed up during a partitioning step (except early in the process when
little aggregation has occurred). A group record in memory can be output to a partition �le
only if it contains exactly one on input record and it cannot be output to the �nal result
until we reach the end of input. As soon as one record has been output to a partition �le,
we can no longer create new group records in memory if the group, if rejected, would belong
to that partition. This means that we cannot always make use of additional memory.

10 Conclusion

Early aggregation reduces the amount of intermediate data that has to be stored on disk
when evaluating a GROUP BY query. We described how to incorporate early aggregation
into six algorithms for grouping and aggregation.

For �ve of the algorithms we were also able to accurately model the data reduction
obtained by early aggregation. The reduction obtained by a given algorithm depends on

1. the memory factor, that is, what fraction of the distinct groups �t in memory (more
is better),

2. the group size distribution (the more skewed, the better), and
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3. the duplication factor, that is, the number of input records relative to the number of
distinct groups (higher is better),

Three of the algorithms, namely sorting with replacement selection and the two algo-
rithms based on hash partitioning, achieve much higher data reduction than the other three.
The two partitioning based algorithms yield virtually the same data reduction which is
somewhat better than that of sorting with replacement selection.

The data reduction can be very signi�cant even with a modest amount of memory. For
example, if only 10% of the groups �t in memory, early aggregation can reduce the interme-
diate data volume by 80% if the group size distribution is su�ciently skewed. If the number
of groups is small, all group records may �t in memory completely and no intermediate data
is produced.

The di�erence in intermediate data volume is not su�cient to declare a clear winner
among the three algorithms; each algorithm has advantages and drawbacks. Partitioning
rejects is the easiest to implement but memory cannot be adjusted at run time and a signi�-
cant part of memory may be taken up by output bu�ers (thereby increasing the intermediate
data volume). Sorting with replacement selection generates more intermediate data and re-
quires extra in-memory copying but produces sorted output which may reduce the cost of
subsequent operations. Partitioning partially aggregated records requires more code than
partitioning rejects but memory adjustment at run time is easy and all the available memory
space is used for early aggregation.

Previous analyses (of early duplicate elimination) assumed that groups are all of the same
size. The model in this paper extends this to arbitrary group size distributions. A remaining
open problem is how to take into account clustering of data, that is, when records from
groups are clustered together more closely than what is expected under a random model of
the data source.
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