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Abstract

This paper is intended to serve as an overview of a rapidly emerging research and applications area. In

addition to providing a general overview, motivating the importance of data mining problems within the

area of knowledge discovery in databases, our aim is to list some of the pressing research challenges, and

outline opportunities for contributions by the optimization research communities. Towards these goals, we

include formulations of the basic categories of data mining methods as optimization problems. We also

provide examples of successful mathematical programming approaches to some data mining problems.
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Data Mining and Knowledge Discovery in Databases (KDD) are rapidly evolving areas of research that are

at the intersection of several disciplines, including statistics, databases, pattern recognition/AI, optimization,

visualization, and high-performance and parallel computing. In this paper, we outline the basic notions in

this area, de�ne some of the key ideas and problems, and motivate their importance. One of our goals is to

outline areas to which the optimization research community can make signi�cant contributions. Towards this

end, we follow our high-level coverage of this area with speci�c formulations of some of the basic problems in

data mining as mathematical programming problems.

To make the exposition concrete, we include case studies where mathematical programming approaches

provided e�ective solutions to data mining problems. However, the bulk of applications in this area have been

achieved using statistical pattern recognition, machine learning, and database approaches. We do not cover

those application case studies in this paper. Applications are covered in [45], and in a special issue of Commu-

nications of the ACM [42] (see http://research.microsoft.com/datamine/ACM-contents.htm for contents and

abstracts). A new technical journal, Data Mining and Knowledge Discovery, dedicated to this area has also

been recently launched (see http://research.microsoft.com/datamine for more details).

0.1 From Transactions to Warehouses to KDD

With the widespread use of databases and the explosive growth in their sizes, individuals and organizations

are faced with the problem of e�ectively utilizing this data. Traditionally, \use" of data has been limited to

querying a reliable store via some well-circumscribed application or canned report-generating entity. While

this mode of interaction is satisfactory for a wide-class of well-de�ned processes, it was not designed to support

data exploration, decision support applications, and ad hoc querying of the data. Now that data capture and

storage has become easy and inexpensive, certain questions begin to naturally arise: Will this data help

my business gain an advantage? How can we use historical data to build models of underlying processes

which generated such data? Can we predict the behavior of such processes? How can we \understand" the

data? These questions become particularly important in the presence of massive data sets. A large database

represents a large body of information that is presumed to be valuable since it records vital measurements of an

entity of interest, be it a business venture, a scienti�c endeavor, or the operations of a government entity. Yet

in a typical setting, this potentially valuable data resource is far from being e�ectively accessible. The current

interfaces between humans and storage systems do not support navigation, exploration, summarization, or

modeling of large databases. Providing these types of capabilities and more is the goal of the emerging research

area of Data Mining and Knowledge Discovery in Databases.

As transaction processing technologies were developed and became the mainstay of many business processes,

great advances in addressing problems of reliable and accurate data capture were achieved. While transactional

systems provide a solution to the problem of logging and book-keeping, little emphasis was placed on supporting

summarization, aggregation, and ad hoc querying over transactional stores. A recent wave of activity in

the database �eld, called data warehousing, has been concerned with turning transactional data into more

traditional relational databases that can be queried for summaries and aggregates of transactions. Data

warehousing also includes the integration of multiple sources of data along with handling the host of problems

associated with such an endeavor. These problems include: dealing with multiple data formats, multiple

database management systems (DBMS), integrating distributed databases, data cleaning, and providing a

uni�ed logical view of an underlying collection of nonhomogeneous databases.

A data warehouse represents a large collection of data which in principle can provide views of the data

that are not practical for individual transactional sources. For example, a supermarket chain may want to

compare sales trends across regions at the level of products, broken down by weeks, and by class of store

within a region. Such views are often precomputed and stored in special-purpose data stores that provide a

multi-dimensional front-end to the underlying relational database and are sometimes called multi-dimensional

databases (see [32] for an overview).

Data warehousing is the �rst step in transforming a database system from a system whose primary purpose

is reliable storage to one whose primary use is decision support. A closely related area is called On-Line

Analytical Processing (OLAP), named after principles �rst advocated by Codd [37]. The current emphasis

of OLAP systems is on supporting query-driven exploration of the data warehouse. Part of this entails

precomputing aggregates along data \dimensions" in the multi-dimensional data store. Because the number

of possible aggregates is exponential in the number of \dimensions", much of the work on OLAP systems is
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Figure 1: Illustration of the OLAP data cube.

concerned with deciding which aggregates to pre-compute and how to derive other aggregates (or estimate

them reliably) from the precomputed projections. Figure 1 illustrates one such example for data representing

summaries of �nancial transactions in branches of a nationwide bank. The attributes (dimensions) have an

associated hierarchy which de�nes how quantities are to be aggregated (rolled-up) as one moves to higher

levels in the hierarchy. The entry in each cell in this cube is typically an aggregate of some quantity of interest

(e.g. sales) or a count of items (e.g. number of items sold). In the example of Figure 1, our bank recorded 23

transactions on checking accounts during period A made by customers in the \Mid" income range. This cell

appears as the top left-hand corner cell of the three dimensional cube illustrated. The hierarchy on the left

in this �gure allows the user to produce similar summaries at various levels of the hierarchy. The illustration

shows the \account type" dimension at the leaves of the hierarchy.

Note that the multidimensional store may not necessarily be materialized as in principle it could be derived

dynamically from the underlying relational database. For e�ciency purposes, some OLAP systems employ

\lazy" strategies in precomputing summaries and incrementally build up a cache of aggregates [32, 61].

0.2 Why Data Mining?

In the OLAP framework, the analysis and exploration is driven entirely by the human analyst. Hence OLAP

may be viewed as extending the SQL querying framework to accommodate queries that if executed on a

relational DBMS would be computationally prohibitive. Unlike OLAP, data mining techniques allow for the

possibility of computer-driven exploration of the data. This opens up the possibility for a new way of interacting

with databases: specifying queries at a much more abstract level than SQL permits. It also facilitates data

exploration for problems that, due to high-dimensionality, would otherwise be very di�cult for humans to

solve, regardless of di�culty of use of, or e�ciency issues with, SQL.

A problem that has not received much attention in database research is the query formulation problem:

how can we provide access to data when the user does not know how to describe the goal in terms of a speci�c

query? Examples of this situation are fairly common in decision support situations. For example, in a business

setting, say a credit card or telecommunications company would like to query its database of usage data for

records representing fraudulent cases. In a data analysis context, a scientist dealing with a large body of data

would like to request a catalog of events of interest appearing in the data. Such patterns, while recognizable

by human analysts on a case by case basis are typically very di�cult to describe in a SQL query. A more

natural means of interacting with the database is to state the query by example. In this case, the analyst

would label a training set of cases of one class versus another and let the data mining system build a model

for distinguishing one class from another. The system can then apply the extracted classi�er to search the full

database for events of interest. This is typically more feasible because examples are usually easily available,

and humans �nd it natural to interact at the level of cases.

Another major problem which data mining could help alleviate is the fact that humans �nd it particularly

di�cult to visualize and understand a large data set. Data can grow along two dimensions: the number
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of �elds (also called dimensions or attributes) and the number of cases. Human analysis and visualization

abilities do not scale to high-dimensions and massive volumes of data. A standard approach to dealing with

high-dimensional data is to project it down to a very low-dimensional space and attempt to build models in this

simpli�ed subspace. As the number of dimensions grow, the number of choice combinations for dimensionality

reduction explode. Furthermore, a projection to lower dimensions could easily transform a relatively easy

discrimination problem into one that is extremely di�cult. In fact, some mining algorithms (e.g. support

vector machines [120] discussed later in this paper) employ a reverse techniques where dimensionality is

purposefully increased to render the classi�cation problem easy (linear).

However, even if one is to accept that dimensionality reduction is necessary if exploration is to be guided

by a human, this still leaves a signi�cant projection selection problem to solve. It is infeasible to explore all of

the ways of projecting the dimensions or selecting the right subsamples (reduction along columns versus rows).

An e�ective means to visualize data would be to employ data mining algorithms to perform the appropriate

reductions. For example, a clustering algorithm could pick out a distinguished subset of the data embedded

in a high-dimensional space and proceed to select a few dimensions to distinguish it from the rest of the data

or from other clusters. Hence a much more e�ective visualization mode could be established: one that may

enable an analyst to �nd patterns or models which may otherwise remain hidden in the high-dimensional

space.

Another factor that is turning data mining into a necessity is that the rates of growth of data sets exceed

by far any rates with which traditional \manual" analysis techniques could cope. Hence, if one is to utilize

the data in a timely manner, it would not be possible to achieve this goal in the traditional data analysis

regime. E�ectively this means that most of the data would remain unused. Such a scenario is not realistic

in any competitive environment where those who better utilize data resources will gain a distinct advantage.

This sort of pressure is present in a wide variety of organizations, spanning the spectrum from business, to

science, to government. It is leading to serious reconsideration of data collection and analysis strategies that

are nowadays causing the accumulation of huge \write-only" data stores. The stores are \write-only" because

there are no tools to make access natural, convenient, or easy: the result is no one bothers to read.

1 KDD and Data Mining

The term data mining is often used as a synonym for the process of extracting useful information from

databases. In this paper, as in [44], we draw a distinction between the latter, which we call KDD, and

\data mining". The term data mining has been mostly used by statisticians, data analysts, and the database

communities. The earliest uses of the term come from statistics and its usage in most settings was negative

with connotations of blind exploration of data without a priori hypotheses to be veri�ed. However, notable

exceptions can be found. For example, as early as 1978 [75], the term is used in a positive sense in a

demonstration of how generalized linear regression can be used to solve problems that are very di�cult for

humans and the traditional statistical techniques of that time to solve. The term KDD was coined at the �rst

KDD workshop in 1989 [101] to emphasize that \knowledge" is the end product of a data-driven process.

In our view KDD refers to the overall process of discovering useful knowledge from data while data mining

refers to a particular step in this process. Data mining is the application of speci�c algorithms for extracting

structure from data. The additional steps in the KDD process, such as data preparation, data selection, data

cleaning, incorporating appropriate prior knowledge, and proper interpretation of the results of mining, are

essential to ensure that useful knowledge is derived from the data. Blind application of data mining methods

(rightly criticized as \data dredging" in the statistical literature) can be a dangerous activity easily leading

to discovery of meaningless patterns. We give an overview of the KDD process in Figure 2. Note that in

the KDD process, one typically iterates many times over previous steps and the process is fairly messy with

plenty of experimentation. For example, one may select, sample, clean, and reduce data only to discover after

mining that one or several of the previous steps need to be redone. We have omitted arrows illustrating these

potential iterations to keep the �gure simple.

1.1 Basic De�nitions

We adopt the de�nitions of KDD and data mining provided in [44] as follows:
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Figure 2: An overview of the steps comprising the KDD process.

Knowledge Discovery in Databases: is the process of identifying valid, novel, potentially useful, and

ultimately understandable structure in data. This process involves selecting or sampling data from a data ware-

house, cleaning or preprocessing it, transforming or reducing it (if needed), applying a data mining component

to produce structure, and then evaluating the derived structure. See Figure 2.

By structure we mean models or patterns. A pattern is classically de�ned to be a parsimonius description

of a subset of data. a model is typically a description of the entire data.

Data Mining: is a step in the KDD process concerned with the algorithmic means by which patterns or

models (structures) are enumerated from the data under acceptable computational e�ciency limitations.

The structure produced by the data mining component must meet certain criteria to be deemed knowledge

(the evaluation criteria phase of the KDD process (see Figure 2)). Criteria of interest include validity (e.g.

estimated prediction accuracy on new data) or utility (gain, perhaps in dollars saved due to better predictions

or speed-up in response time of a system). Other criteria such as novelty and understandability are much more

subjective and di�cult to de�ne. In certain contexts understandability can be estimated by simplicity (e.g.,

the number of bits to describe a pattern). Sometimes the measures are combined under a single interestingness

measure (e.g., see [111] and references within). Interestingness functions can be explicitly de�ned or can be

manifested implicitly via an ordering placed by the KDD system on the discovered patterns or models. The

term knowledge in KDD is user-oriented, domain-speci�c, and determined by the interestingness measure; it is

not a general de�nition of knowledge and should not be taken as an attempt at a general (e.g. philosophical)

de�nition.

Data mining techniques can be divided into �ve classes:

1. Predictive Modelling: where the goal is to predict a speci�c attribute (column or �eld) based on the

other attributes in the data. We discuss this class of techniques in Section 2.

2. Clustering: also called segmentaion, targets grouping the data records into subsets where items in each

subset are more \similar" to each other than to items in other subsets. We discuss these thechniques in

Section 3).

3. Dependency Modeling: targets modeling the generating joint probability density function of the process

(or processes) that could have generated the data. We discuss this class of techniques in Section 4.

4. Data Summarization: targets �nding interesting summaries of parts of the data. For example, similarity

between a few attributes in a subset of the data.
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5. Change and Deviation Detection: accounts for sequence information in data records. Most methods

above do not explicitly model the sequence order of items in the data.

The last two items are covered briey in Section 5. The �rst three are covered in detail in their respective

sections. Many of these techniques have been historically developed to work over memory-resident data, and

not much attention has been given to integrating them with database systems. Some of these techniques are

beginning to be scaled to operate on large databases. In classi�cation, examples include scalable decision

tree algorithms [95, 33] and scalable approaches to computing classi�cation surfaces [21, 102]. In clustering

scalable approaches include [17, 125, 60, 2]. In data summarization, examples include [18, 78, 3].

We provide example formulations of some data mining problems as mathematical programs. The formula-

tions are intended as general guidelines and do not necessarily represent best-possible formulations. The goal

is to de�ne some of the problems and show how they can be addressed in an optimization framework.

We next describe our notation.

1.2 Notation

� All vectors will be column vectors unless transposed to a row vector by a superscript T .

� For a vector x in the n-dimensional real space Rn, jxj will denote a vector of absolute values of the

components xj ; j = 1; : : : ; n of x.

� For a vector x in Rn, x+ denotes the vector in Rn with components maxf0; xig.

� For a vector x in Rn, x� denotes the vector in R
n with components (x�)i equal 1 if xi > 0 and 0 otherwise

(i.e. x� is the result of applying the step function to the components of x).

� The base of the natural logarithm will be denoted by ", and for a vector y 2 Rm; "�y will denote a

vector in Rm with components "�yi ; i = 1; : : : ;m.

� For x 2 Rn and 1 � p < 1, the norm kxkp will denote the p-norm: kxkp =

0
@ nX

j=1

jxj j
p

1
A

1

p

and

kxk1 = max
1�j�n

jxj j.

� The notation A 2 Rm�n will signify a real m�n matrix. For such a matrix AT will denote the transpose

of A and Ai will denote the i-th row of A.

� A vector of ones in a real space of arbitrary dimension will be denoted by e. A vector of zeros in a real

space of arbitrary dimension will be denoted by 0.

� The notation argmin
x2S

f(x) will denote the set of minimizers of f(x) on the set S.

� A separating plane, with respect to two given point sets A and B in Rn, is a plane that attempts to

separate Rn into two halfspaces such that each open halfspace contains points mostly of A or B.

� For two vectors x; y 2 Rn, x ? y denotes orthogonality, that is the scalar product xT y = 0.

We now discuss the predictive modeling data mining class.

2 Predictive Modeling

The goal of predictive modelling is to estimate a function g which maps points or feature vectors from an input

space X to an output space Y , given only a �nite sampling of the mapping, fxi; g(xi)gM
i=1 � Rn+1. Hence we

are to predict the value of some �eld (Y) in a database based on the values of other �elds (X ). We are to

accurately construct an estimator ĝ of g from this �nite sampling or training set. The training set may or may

not be corrupted by noise.
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Problems in predictive modeling can be distinguished by the form of the output space Y . If the predicted
quantity is is numeric or continuous (i.e. Y = R, the real line), then the prediction problem is a regression

problem (e.g. predicting a physical measurement such as height). If the predicted quantity is discrete (i.e.

Y = f0; 1; : : : ;K � 1g) then we have a classi�cation problem (e.g. predicting whether a tumor is benign or

cancerous).

There are a wide variety of techniques for classi�cation and regression. In general, the problem is cast as

determining the most likely value of Y given the other �elds X over the training data (in which the target

variable Y is given for each observation), and utilizing one's prior knowledge of the problem.

Linear regression combined with non-linear transformation on inputs could be used to solve a wide range

of problems. Transformation of the input space is typically the di�cult problem requiring knowledge of the

problem and quite a bit of \art". In classi�cation problems this type of transformation is often referred to as

\feature extraction".

The issue of evaluating the estimate ĝ in terms of how well it performs on data not included in the training

set, or how well ĝ generalizes, is paramount. Often it is possible to allow an algorithm to construct ĝ from

a su�ciently complex function class so that ĝ approximates g arbitrarily well on the training set. But this

complex ĝ usually approximates g poorly on points not in the training set [110]. This is the case of over�tting

the training data. While biasing a classi�cation algorithm to construct ĝ from a less complex function class

often improves generalization ability, it may not be desirable in all problem domains [106]. Overtraining can

also lead to poor generalization even when the complexity of the function class from which ĝ is constructed

is optimal [14]. The key to good generalization is correctly estimating the complexity of the true mapping g

while avoiding overtraining. This problem is compounded by the fact that we have only a �nite sampling of

g, which, in addition, may be corrupted by noise.

In general, it should be noted that the problem of trading o� the simplicity of a model with how well

it �ts the training data is a well-studied problem. In statistics this is known as the bias-variance tradeo�

[54], in Bayesian inference it is known as penalized likelihood [13, 63], and in pattern recognition/machine

learning it manifests itself as the minimum message length (MML) [123] problem. The MML framework, also

called minimum description length (MDL) [103] dictates that the best model for a given data set is one that

minimizes the coding length of the data and the model combined. If a model �ts the data exactly, then the

data need not be encoded and the cost is that of coding the model. Similarly, if the data is not represented

by a model, then the cost of this scheme is the cost of encoding the data. One can show that minimizing the

MDL is equivalent to selecting the model that minimizes the Bayes risk assuming cost of errors is uniform,

speci�cally, for a data set D, the MDL prefers the model M for which Prob(M jD) is maximized. This can be

shown by applying Bayes rule:

Prob(M jD) = Prob(DjM)
Prob(M)

Prob(D)

and then taking the logarithm of each side. This reduces to

� log(Prob(M jD)) = � log(Prob(DjM))� log(Prob(M)) + log(Prob(D))

Noting that Prob(D) is a constant for all models being compared, and that the minimal cost of encoding an

object requires at least logarithm of its probability in bits, we see that MDL calls for choosing the model with

the maximum likelihood given the data.

Given this brief introduction to predictive modelling we focus our attention on the classi�cation problem.

2.1 Classi�cation

2.1.1 Overview

In classi�cation the basic goal is to predict the most likely state of a categorical variable (the class) given

the values of other variables. This is fundamentally a density estimation problem. If one could estimate the

probability that the class (value of Y), given the value of x 2 X , then one could derive this probability from

the joint density on Y and X . However, this joint density is rarely known and di�cult to estimate. Hence one
has to resort to various techniques for estimating this density, including:
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1. Density estimation, e.g. kernel density estimators [41] or graphical representations of the joint density

[63].

2. Metric-space based methods: de�ne a distance measure on data points and guess the class value based

on proximity to data points in the training set. For example, the K-nearest-neighbor method [41].

3. Projection into decision regions: divide the attribute space into decision regions and associate a prediction

with each. For example linear discriminant analysis determines linear separators and neural networks

compute non-linear decision surfaces [64]. Decision tree or rule-based classi�ers make a piecewise constant

approximation of the decision surface [26, 81, 6].

The third class of methods is by far the most commonly used and studied. It is usually more practical

because it sidesteps the harder problem of determining the density and just concentrates on separating various

regions of the space.

2.1.2 Mathematical Programming Formulations

We address the task of estimating a classi�cation function which assigns a given vector x 2 Rn into one of two

disjoint point sets A or B in n-dimensional feature space. We have X = Rn, Y = f0; 1g and the classi�cation

function has the following form.

g(x) =

(
1 if x 2 A

0 if x 2 B:
(1)

We represent the m elements of the �nite point set A � Rn as the matrix A 2 Rm�n where each element

of A is represented by a row in A. Similarly, we represent the k elements of the �nite point set B as B 2 Rk�n.

We attempt to discriminate between the points of A and B by constructing a separating plane:

P = fx j x 2 Rn; xTw = g; (2)

with normal w 2 Rn and distance
jj

kwk2
to the origin. We wish to determine w and  so that the sep-

arating plane P de�nes two open halfspaces fx j x 2 Rn; xTw > g containing mostly points of A, and

fx j x 2 Rn; xTw < g containing mostly points of B. Hence we wish to satisfy

Aw > e; Bw < e (3)

to the extent possible. Upon normalization, these inequalities can be equivalently written as follows:

Aw � e + e; Bw � e � e: (4)

Conditions, (3) or equivalently (4), can be satis�ed if and only if, the convex hulls of A and B are disjoint.

This is not the case in many real-world applications. Hence, we attempt to satisfy (4) in some \best" sense,

for example, by minimizing some norm of the average violations of (4) such as

min
w;

f(w; ) = min
w;

1

m
k(�Aw + e + e)+k1 +

1

k
k(Bw � e + e)+k1: (5)

Recall that for a vector x, x+ denotes the vector with components maxf0; xig.
Two principal reasons for choosing the 1-norm in (5) are:

(i) Problem (5) is then reducible to a linear program (6) with many important theoretical properties making

it an e�ective computational tool [9].
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(ii) The 1-norm is less sensitive to outliers such as those occurring when the underlying data distributions

have pronounced tails, hence (5) has a similar e�ect to that of robust regression [65],[62, pp 82-87].

The formulation (5) is equivalent to the following robust linear programming formulation (RLP) proposed

in [8] and e�ectively used to solve problems from real-world domains [91]:

min
w;;y;z

�
eT y

m
+

eT z

k
j�Aw + e + e � y; Bw � e + e � z; y � 0; z � 0

�
: (6)

The linear program (6) or, equivalently, the formulation (5) de�ne a separating plane P that approximately

satis�es the conditions (4). We note that this LP is feasible (w = 0,  = 0, y = e, z = e) and the objective is

bounded below by zero, hence a solution to (6) always exists. We further note that the solution w = 0 occurs

if and only if

eTA

m
=

eTB

k
; (7)

in which case the solution w = 0 is not unique [9, Theorems 2.5 and 2.6]. Hence a useful plane P (2) is always

generated by the robust linear program (6).

The linear programming formulation (6) obtains an approximate separating plane that minimizes a weighted

sum of the distances of misclassi�ed points to the approximate separating plane. Minimization of such a

weighted sum of the distances of misclassi�ed points by a linear program is merely a surrogate for minimizing

the number of misclassi�ed points by the separating plane. Next, we propose a precise mathematical pro-

gramming formulation of the nonconvex problem of minimizing the number of such misclassi�ed points [83].

This is done by �rst proposing a simple linear complementarity formulation of the step function (Lemma 2.1)

and then using this result to formulate the misclassi�cation minimization problem as a linear program with

equilibrium (linear complementarity) constraints (LPEC).

A linear program with equilibrium constraints (LPEC) is a linear program with a single complemetarity

constraint (an orthogonality condition between two linear functions). LPECs arise when the constraints

involve another linear programming problem. LPECs can model machine learning problems [83, 86], while

more general mathematical programs with equilibrium constraints (MPECs) [79] can model more general

problems such as economic and tra�c equilibrium problems.

Note �rst that the system (4) is equivalent to

eT (�Aw + e + e)� + eT (Bw � e + e)� = 0; (8)

where as stated earlier x� denotes the vector with components (x�)i equal to 1 if xi > 0 and 0 otherwise. The

left hand side of (8) counts the number of points misclassi�ed by the plane P (2). For the linearly separable

case, no points are misclassi�ed and equality in (8) holds. In the more general case where the sets A and B
have intersecting convex hulls and hence are not linearly separable, equality in (8) does not hold but it is used

as a target for the minimization problem

min
w;

eT (�Aw + e + e)� + eT (Bw � e + e)�: (9)

This problem has a zero minimum if and only if the plane P (2) strictly separates A from B. Otherwise P
minimizes the number of misclassi�ed points. Speci�cally, it minimizes

c(w; ) = cardinality

8>><
>>:(i; j)

��������
Aiw �  � 1 < 0;

�Bjw +  � 1 < 0;

1 � i � m;

1 � j � k

9>>=
>>; : (10)
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We note that (9) is always solvable since there exists only a �nite number of twofold partitions of A [ B
that are linearly separable [83]. Any such partition that minimizes the number of points misclassi�ed also

minimizes (9). We reduce (9) to an LPEC by �rst representing the step function (�)� as a complementarity

condition via the plus function (�)+, which is a re-statement of [86, Equation 2.11].

Lemma 2.1 Characterization of the step function (�)�. For r 2 Rm; u 2 Rm; a 2 Rm and e, a vector of

ones in Rm:

r = (a)�; u = (a)+ , (r; u) 2 argmin
r;u

�
eT r

���� 0 � r ? u� a � 0;

0 � u ? �r + e � 0

�
: (11)

In the above problem, the complementarity terminology speci�cally applies to the �rst set of constraints

0 � r ?� 0 in the following way. If a component of r, say ri, is strictly positive, then the fact that u� a � 0

and r ? u� a implies that u� a = 0. In essence, if a component of a vector on one side of the ? is strictly

positive, the corresponding component of the vector on the other side of the ? must be zero.

We now combine Lemma 2.1 and the minimization problem (9) to obtain the following misclassi�cation

minimization characterization which is a re-statement of [83, Proposition 2.2].

Proposition 2.2 Misclassi�cation Minimization as a Linear Program with Equilibrium Con-

straints (LPEC). A plane wTx =  minimizes the number of misclassi�cations c(w; ) as de�ned by (10) if

and only if (w; ; r; u; s; v) solve the following linear program with equilibrium constraints:

minimize
w;;r;u;s;v

eT r + eT s

subject to

u+Aw � e � e � 0 v �Bw + e � e � 0

r � 0 s � 0

rT (u+Aw � e � e) = 0 sT (v �Bw + e � e) = 0

�r + e � 0 �s+ e � 0

u � 0 v � 0

uT (�r + e) = 0 vT (�s+ e) = 0

(12)

Since problem (12) is a linear program with equilibrium constraints (LPEC), it is a special case of the

more general mathematical program with equilibrium constraints (MPEC) studied in detail in [79]. Being

linear, (12) is endowed with some features not possessed by the more general MPECs, principally exactness

of a penalty formulation without boundedness of the feasible region and without assuming nondegeneracy.

These properties and an algorithm for solving (12) are given in [83].

We note that a hybrid algorithm is proposed in [35] addressing the misclassi�cation minimization problem

(9) which performs the following two steps at each iteration. The �rst step consists of determining w 2 Rn

by solving the linear program (6) for a �xed value of  2 Rn. The new  is then determined as the one that

minimizes the number of points misclassi�ed by the separating plane P , with w determined in the previous

step. The Hybrid Misclassi�cation Minimization Algorithm [35, Algorithm 5] terminates when the number of

misclassi�cations is not decreased.

Up to this point we have proposed mathematical programming formulations for computing a separating

plane (2) to distinguish between the members of A and B in the the training set. We have not yet addressed

the issue of generalization or how well the estimated classi�cation function ĝ (1) performs on new data not

included in the training set. We investigate two approaches with the goal of improving the generalization

ability of the resulting classi�er. The �rst is feature selection or computing a separating surface utilizing a

minimum number of problem features. The second is the support vector machine which attempts to compute

a separating with a maximum margin of separation between the two sets A and B.

2.1.3 Feature Selection

We propose improving the generalization ability of ĝ (1) by computing a separating plane P which utilizes a

minimum number of problem features. Having a minimal number of features often leads to better generalization
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and simpler models that can be more easily interpreted. This problem is also addressed by statistics [55, 73],

machine learning [69, 74] as well as by other mathematical programming formulations [25, 85].

We propose a mathematical programming feature selection approach by introducing an extra term which

penalizes the nonzero elements of the weight vector w, with parameter � 2 [0; 1) into the objective of (6) while

weighting the original objective by (1� �) as follows:

min
w;;y;z

8<
:(1� �)

�
eT y

m
+

eT z

k

�
+ �eT jwj�

������
�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0

9=
; ; � 2 [0; 1): (13)

Notice that the vector jwj� 2 Rn has components which are equal to 1 if the corresponding components

of w are nonzero and components equal to zero if the corresponding components of w are zero. Hence eT jwj�
counts the number of nonzero components of w. Problem (13) balances the error in separating the sets A and

B,

�
eT y

m
+

eT z

k

�
and the number of nonzero elements of w, (eT jwj�). Further, note that if an element of w

is zero, the corresponding feature is removed from the problem.

Problem (13) is equivalent to the following parametric program:

min
w;;y;z;v

8>><
>>:(1� �)

�
eT y

m
+

eT z

k

�
+ �eT v�

��������
�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0;

�v � w � v

9>>=
>>; ; � 2 [0; 1): (14)

This feature selection problem will be solved for a value of � 2 [0; 1) for which the resulting classi�cation

function estimate ĝ (1) generalizes best, estimated by cross-validation [114]. Typically this will be achieved in

a feature space of reduced dimensionality.

The discontinuous term eT v� in (14) can be modelled using Lemma 2.1 resulting in an LPEC formulation

[24]. Another approach is to approximate the discontinuous step function with the continous sigmoid function

[24]. A further continous approximation utilizes the negative exponential:

v� � t(v; �) = e� "��v; � > 0; (15)

and leads to the smooth problem:

min
w;;y;z;v

8>><
>>:(1� �)

�
eT y

m
+

eT z

k

�
+ �eT (e� "��v)

��������
�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0;

�v � w � v

9>>=
>>; ; � 2 [0; 1): (16)

We note that this problem is the minimization of a concave objective function over a polyhedral set. Even

though it is di�cult to �nd a global solution to this problem, the Successive Linear Approximation (SLA)

algorithm [24, Algorithm 2.1] terminates at a stationary point which satis�es the minimum principle necessary

optimality condition for problem (16) [24, Theorem 2.2]. This algorithm computes solutions which are locally

optimal. Even though global optimality cannot be guaranteed, this fast �nite procedure produces a sparse

weight vector w with empirically observed good generalization properties [24].

2.1.4 Support Vector Machines

The previous discussion of feature selection naturally leads to a strongly related framework: the support

vector machine (SVM) [120, 107, 99]. While most approaches are based on the idea of minimizing an error in

separating the given data (i.e. minimizing training set error), SVMs incorporate structured risk minimization

[120, 28] which minimizes an upper bound on the generalization error. For a more detailed discussion of SVMs,

see [120, 29, 122].
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Consider the simple case when the sets A and B are linearly separable. The idea is to determine, among

the in�nite number of planes correctly separating A from B, the one which will have smallest generalization

error. SVMs choose the plane which maximizes the margin separating the two classes. Margin is de�ned

as the distance between the separating hyperplane to the nearest point in A plus the distance from the

hyperplane to the nearest point in B. Recall that in the linearly separable case, the inequalities (4) are

satis�ed. The nearest point in A to the separating plane, denoted as Ai, satis�es Aiw =  + 1. Similarly,

the nearest point in B to the separating plane sati�es Biw =  � 1. The margin then is
2

kwk2
. If A and B

are linearly inseparable, SVMs determine a separating plane P that maximizes the margin and minimizes a

quantity measuring misclassi�cation errors. In keeping with the notation already introduced, the margin term

is weighted by � 2 [0; 1) and a measure of misclassi�cation error is weighted by (1� �):

minimize
w;;y;z

(1� �)(eT y + eT z) + �

2
kwk22

subject to

�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0:

(17)

The Wolfe dual [84] of this quadratic programming problem is usually solved. Points Ai 2 A and Bi 2 B
corresponding to inequality constraints of (17) with positive dual variables constitute the support vectors of

the problem. These points are the only data points that are relevant for determining the optimal separating

plane. Their number is usually small and it is proportional to the generalization error of the classi�er [99].

If the margin is measured by some arbitrary norm k � k, then the term appearing in the objective of the

SVM problem penalizes the weight vector with the dual norm k � k0 [87]. For a general norm k � k on Rn, the

dual norm k � k0 on Rn is de�ned as

kxk0 = max
kyk=1

x0y:

A p-norm and q-norm are dual to each other for 1 � p; q � 1 and 1
p
+ 1

q
= 1. Note that the 2-norm is

dual to itself, hence it's appearance in the objective of (17). The 1-norm and 1-norm are dual to each other.

Hence, if the margin is measured in the 1-norm, the penalty on w is kwk1 giving rise to the following linear
programming formulation of the SVM problem [20].

minimize
w;;y;z

(1� �)( e
T
y

k
+ e

T
z

m
) + �kwk1

subject to

�Aw + e + e � y;

Bw � e + e � z;

y � 0; z � 0:

(18)

The linear programming formulations (6), (18) and the linear programming subproblems of the Successive

Linearization Approximation algorithm for problem (16) [24] are scaled to massive datasets via the Linear

Program Chunking (LPC) algorithm [21]. The quadratic programming formulation of the support vector

machine problem is e�ciently scaled via the Sequential Minimal Optimization (SMO) algorithm [102] and by

\chunking" methods [98].

These mathematical programming formulations have been extended to constructively training neural net-

works [82, 8, 11, 19], decision tree construction [6, 11, 82, 7] and calculating nonlinear discriminants by

nonlinearly transforming the given data [120, 29, 99].

We now present a few case studies.

2.1.5 Case Study: Breast Cancer Diagnosis

The formulation (6) has been successfully used to determine a classi�cation function that objectively performs

breast cancer diagnosis [91]. Speci�cally, cellular features of a breast mass are used to classify the mass as

either benign or malignant. This classi�cation function is a central component of the Xcyt image analysis

program. This case study is detailed in [91] and is briey summarized here.
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First, a uid sample from the breast mass is obtained by an outpatient procedure involving a small gauge

needle, known as a �ne needle aspirate (FNA). The uid is placed on a slide and stained to highlight the

cellular nuclei of the constituent cells. A digitized image is then obtained from the slide.

Xcyt then uses a curve-�tting program to determine exact boundaries of the nuclei, initiated by an operator

using a mouse pointer. Ten features are then computed for each nucleus. The mean value, extreme value and

standard error are then computed over the nuclei in a given image, for each of the ten features. Hence, this

procedure maps each breast mass to a 30-dimensional real-valued vector.

The Wisconsin Diagnostic Breast Cancer Database contains 569 30-dimensional vectors computed by the

Xcyt system (available from UCI Repository of Machine Learning Databases, University of California, Irvine,

http://www.ics.uci.edu/ ~mlearn/ MLRepository.html). Actual diagnostic outcome for these 569 patients is

known. Malignant cases were veri�ed by biopsy and benign cases con�rmed by biopsy or subsequent exami-

nations. The diagnostic tags determine the sets A and B for the classi�cation problem.

Best results, determined by 10-fold cross-validation [114], were obtained with a separating plane calculated

by (6) using 3 of the 30 dimensions: extreme area, extreme smoothness and mean texture. Predicted tenfold

cross-validation accuracy was 97.5%. This level of accuracy is as good as the best results achieved at specialized

cancer institutions [91].

2.1.6 Case Study: Face Detection

We present a \Support Vector Machine approach for detecting vertically oriented and unoccluded frontal views

of human faces in grey level images" [99]. This case study is detailed in [99] and is briey summarized here.

In the face detection problem, input is an arbitrary image. The task is then to determine whether or not

there are any human faces in the image. If so, return their location. The system discussed here works by

scanning an image for candidate face-like patterns at many di�erent scales. A SVM is then used to classify

these patterns as face/non-face. The SVM problem that is solved is quadratic programming problem (17).

An SVM is trained from a database of face/non-face 19 � 19 = 361 pixel patterns. These 361 dimensions

are augmented with quadratic features, hence the computed separating surface is quadratic in the original

space of 361 features. The value of � in (17) was
200

201
� 0:99502. In order to compensate for sources in

image variation, the following pre-processing steps were performed: masking, illumination gradient correction

and histogram equalization. After a decision surface has been obtained through solving problem (17), the

run-time system is used over images that do not contain faces to produce negative training examples to use

in the future. After re-solving (17), the classi�er is incorporated into a run-time system which performs the

following operations: 1) re-scale the input image several times, 2) cut 19 � 19 window patterns, 3) pre-process

the window pattern, 4) classify the image, and 5) if the pattern is a face, draw a rectangle around it.

Experimental results presented in [99] used two sets of images. Set A contained 313 high-quality images

with one face per image. Set B contained 23 images of mixed quality with a total of 155 faces. \: : : it is

important to state that set A involved 4,669,960 pattern windows, while set B 5,383,682." [99]. The system

is compared with [116] in Table 1.

Test Set A Test Set B

Detect Rate False Alarms Detect Rate False Alarms

SVM 97.1% 4 74.2% 20

Sung et al. 94.6% 2 74.2% 11

Table 1: Face detection experimental results.

We now concentrate on the regression task.

2.2 Regression

We now discuss the regression problem which di�ers from the classi�cation problem in that the function g

which we are trying to estimate has a continuous output in contrast to a discrete output for the classi�cation
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problem. Other methods addressing the regression problem, which are also optimization problems, include

neural networks [64] and smoothing splines [121].

2.2.1 Mathematical Programming Formulations

We present mathematical programming formulations that attempt to estimate the true, unknown regression

function g by a linear combination of functions from some pre-de�ned function set. We relax the notion that

elements of the function set be linearly independent. Hence the solution to the problem is not unique and

from all possible solutions, we wish to �nd one which performs best, or generalizes, to new data. For instance,

the set of functions discussed in [36] consist of an \overcomplete waveform dictionary { stationary wavelets,

wavelet packets, cosine packets, chirplets, and warplets, : : : ". Notice that by choice of the function set, linear

regression and polynomial regression are easily cast in this framework.

We are provided with a �nite number of samples of the true regression function fxi; g(xi)gM
i=1 2 Rn+1.

We allow for the possibility that g cannot be sampled precisely in which case our given data looks like

fxi; g(xi) + �igM
i=1 where �i is the error in measurement of g(xi). The set F = ff1; f2; : : : ; fNg denotes the

prede�ned function set with which to form our estimate:

ĝ(x) =

NX
j=1

wjfj(x): (19)

By sampling the elements of F at the data points x1; x2; : : : ; xM , the problem of estimating the coe�cients

wj in (19) reduces to solving the linear system:

Aw = b: (20)

Here (A)ij = fj(x
i) and bi = g(xi) (or g(xi) + �i in the case involving noise).

Consider the simplest case where there is no noise in the RHS vector b (i.e. g can be sampled precisely),

and the set of function in F gives rise to a matrix A for which exact solutions to Aw = b exist. The method

of frames [39] �nds a solution with minimal 2-norm:

minimize
w

kwk2

subject to Aw = b:
(21)

For the same, noise-free situation, the Basis Pursuit method [36] �nds a solution with minimal 1-norm:

minimize
w

kwk1

subject to Aw = b:
(22)

Consider a noisy RHS vector b in which case an exact solution to the system Aw = b may not exist. Then

the least squares solution to (20) is obtained by solving the following problem [66]:

min
w2RN

kAw � bk2: (23)

If the elements of b consist of noisy measurements of g and the noise is uncorrelated over samples with zero

mean and equal variance, then the estimate computed by solving (23) has the smallest variance in the class of

estimation methods satisfying the following two conditions: 1) the estimate is unbiased and, 2) the estimate

is a linear function of b [66].

We consider the least one norm formulation which may provide an estimate ĝ (19) which is more robust

to outliers in the case of noise in b. This formulation is the following linear program
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minimize
w;y

eT y

subject to �y � Aw � b � y:
(24)

We now explicitly consider determining an estimate ĝ from the over-determined function set F with good

generalization properties. We �rst consider the following Parsimonious Least Norm Approximation (PLNA)

which \chooses" the fewest elements of F such that ĝ approximates our sampling of the true regression function

[22]:

min
w

(1� �)kAw � bk1 + �(eT jwj�); � 2 [0; 1): (25)

The value of � is chosen to maximize a measure of generalization, estimated by cross-validation [114], for

instance.

Problem (25) can be re-formulated as the following nondi�erentiable constrained optimization problem for

� 2 [0; 1), (in all further problem formulations, � will be assumed to be in this interval):

minimize
w;y;v

(1� �)(eT y) + �(eT v�)

subject to
�y � Aw � b � y;

�v � w � v

(26)

The step vector v� can again be approximated by the concave exponential (15). With this approximation

(25) becomes the following concave minimization over a polyhedral set:

minimize
w;y;v

(1� �)(eT y) + �(eT (e� "��v))

subject to
�y � Aw � b � y;

�v � w � v

(27)

This problem is e�ectively solved by the successive linearization algorithm [22, Algorithm 3.1] which

terminates �nitely at a point satisfying the minimum principle necessary optimality condition for (27). For a

su�ciently large, but �nite value of the parameter � in the negative exponential, a solution of (27) is in fact

a solution of (26) [22, Theorem 2.1].

The Least Least Norm Approximation (LLNA) method minimizes the 1-norm residual plus a 1-norm

penalty on the size of the coe�cient vector w [22] whose solution involves solving a single linear program:

min
w

(1� �)kAw � bk1 + �kwk1: (28)

The Method-of-Frames De-Noising [36] refers to the minimization of the least square �t error plus a 2-norm

penalization term on the coe�cient vector:

min
w

(1� �)

2
kAw � bk22 +

�

2
kwk22: (29)

Similarly, the Basis Pursuit De-Noising [36] refers to a solution of:

min
w

(1� �)

2
kAw � bk22 + �kwk1: (30)

The Support Vector Method has also been extended to the regression problem [119]. In our setting, this

problem can then be formulated as:
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min
w

(1� �)

N
(eT (jAw � bj�) + �kwk22: (31)

Here j � j� is the following loss functional [119]:

j�j� =

(
0 if j�j < �;

j�j � � otherwise:
(32)

Problem (31) can then be formulated as the following constrained quadratic program:

minimize
w;y

(1��)

N
(eT y) + �(wTw)

subject to
�y � �e � Aw � b � y + �e;

y � 0:

(33)

In [115] a similar Tolerant Training Method is proposed in which the following quadratic program is solved

for some nonnegative tolerance � (which is analogous to � above) and some small value of
�

1� �
:

minimize
w;y;z

(1��)

2

�
kyk22 + kzk

2
2

�
+ �

2
kwk22

subject to
�z � �e � Aw � b � y + �e;

y; z � 0:

(34)

Again, the linear programming formulation (28) and the linear programming subproblems of the Successive

Linearization Algorithm for (27) [22] are e�ectively scaled to massive datasets via the Linear ProgramChunking

algorithm [21].

2.2.2 Regression Case Study

We now present a case study in attempting to recover a true continuous signal g(t), given only a �nite, noisy

sampling. This case study appears in [22] and is summarized here.

The linear systems used are based upon ideas related to signal processing [57, 117] and more speci�cally

to an example in [1, Equation (8)].

We consider the following true signal g(t) : [0; 1] �! R:

g(t) =

3X
j=1

xj"
�ajt; t 2 [0; 1]; a = [0 4 7]0; x = [0:5 2:0 � 1:5]0: (35)

We assume that the true signal g(t) cannot be sampled precisely, but that the following observed signal

can be sampled:

~g(t) = (g(t) + error); sampled at times : ti = i4 t; 4t = 0:04; i = 0; 1; : : : ; 25: (36)

We further assume that we do not know the true signal g(t) (35), and we attempt to model it as:

ĝ(t) =

10X
j=1

xj"
�ajt; t 2 [0; 1]; a = [0 4 7 0:1 2 3 3:9 4:1 6:9 7:1]0: (37)

The problem now is to compute the coe�cients xj ; j = 1; : : : ; 10; of ĝ(t) (37) so that we can adequately

recover g(t), given only the noisy data ~g(ti) (36). The coe�cient vector on the \basis functions" will be denoted
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by x instead of w, as it is denoted in the problem formulations in Section 2.2. Notice that by substituting the

following coe�cient vector x� into (37), ĝ(t) = g(t):

x� = [0:5 2:0 � 1:5 0 0 0 0 0 0 0]0: (38)

Thus the true linear system (testing set) Ax = b is then given by:

Aij = "�ajti ; bi = g(ti); i = 0; : : : ; 25; j = 1; : : : 10; (39)

and is solved exactly by x� of (38).

The observed linear system (training set) Ax = b+ p is then given by:

*
Aij = "�ajti ; bi = g(ti);

pi = random number with mean = 0 & standard deviation = 1;

i = 0; : : : ; 25; j = 1; : : : ; 10:

+
(40)

We will refer to a solution of the Parsimonious Least Norm Approximation (25), with b of (25) replaced

by b+ p, as a PLNA solution. Similarly, we shall refer to a solution of problem (28), with b replaced by b+ p

as an LLNA (Least Least Norm Approximation) solution.

We compute solutions of the observed system Ax = b+p, where A; b; and p are de�ned in (40), by PLNA,

LLNA and by least squares. These solutions are then evaluated by the observed system (training set) residual

kAx� b� pk1 and the true system (testing set) residual kAx � bk1 and graphically comparing the recovered

signal ĝ(t) (37) to the true signal g(t) (35).

In Figure 3(a) we plot the true signal, the observed signal and the signal recovered by solving, for one

noise vector p, PLNA (25) with � = 0:30 and LLNA (28) for � = 0:80. Figure 3(b) displays the true signal,

the observed signal and signal recovered for the same problem by least squares. The signal recovered by both

PLNA and LLNA is considerably closer to the the true signal than that obtained by the least squares solution.

In this section we have proposed mathematical programming formulations which address two fundamental

areas of predictive modeling: classi�cation and regression. We now discuss a fundamentally di�erent, very

important data mining tool { clustering.

3 Clustering

3.1 Overview

Given a �nite sampling of points (or database) from a space X , fxigM
i=1, the target of of clustering or seg-

mentation is to group the data into sets of \like" points. The goal being to obtain clusters which provide

a high-level characterization of points belonging to an individual cluster. For instance, a cluster of similar

objects may turn out to share a common cause or elements of a given cluster may relate to some important

goal [110].

The fundamental di�erence between clustering and predictive modeling discussed previously is the classi�-

cation function g. In the classi�cation problem, we are given a sampling of this function over the training data

(i.e. we \know" the class membership of the training data). In the clustering problem, we are attempting to

de�ne a \useful" classi�cation function over the set fxigM
i=1.

Unlike classi�cation we usually do not know the number of desired \clusters" a priori. Clustering algorithms

typically employ a two-stage search: An outer loop over possible cluster numbers and an inner loop to �t the

best possible clustering for a given number of clusters. Given the number k of clusters, clustering methods

can be divided into three classes:

1. Metric-distance based methods: a distance measure is de�ned and the objective becomes �nding the

best k-way partition such that cases in each block of the partition are closer to each other (or centroid)

than to cases in other clusters.
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(a) Dashed curves are the recovered signal ĝ(t) with coef-
�cient vector x(�) determined by (25) with � = 0:3 and
kAx(�)�bk1 = 4:7410 for PLNA and by (28) with � = 0:8
and kAx(�) � bk1 = 4:7076 for LLNA.
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Note: kAx(ls)� bk1 = 8:9733.

Figure 3: Signal Recovery. Solid curve is the true signal g(t). Circles connected by dotted lines are the

observed signal ~g(ti) sampled at discrete times and the dashed curves are the recovered signals.
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2. Model-based methods: a model is hypothesized for each of the clusters and the idea is to �nd the best �t

of that model to each cluster. Let the data be denoted by D := fxigM
i=1. IfM` is the model hypothesized

for cluster `, (` 2 f1; : : : ; kg), then one way to score the �t of a model to a cluster is via the likelihood:

Prob(M`jD) = Prob(DjM`)
Prob(M`)

Prob(D)

The prior probability of the data, Prob(D) is a constant and hence can be ignored for comparison

purposes, while Prob(M`) is the prior assigned to a model. In maximum likelihood techniques, all

models are assumed equally likely and hence this term is ignored. A problem with ignoring this term is

that more complex models are always preferred and this leads to over�tting the data.

3. Partition-based methods: basically enumerate various partitions and then score them by some criterion.

The above two techniques can be viewed as special cases of this class. Many techniques in the AI

literature fall under this category and utilize ad hoc scoring functions.

In the next section we focus on mathematical programming formulations for nonhierarchical clustering in

which the number of clusters or groups is �xed a priori. For a description of hierarchical clustering procedures,

see [68].

3.2 Mathematical Programming Formulations

We �rst address the following explicit description of the clustering problem: given m points fx1; x2; : : : ; xmg
in n-dimensional real space Rn, and a �xed integer k of clusters, determine k \centers" in Rn, fc1; c2; : : : ; ckg,
such that the sum of the \distances" of each point to a nearest cluster center is minimized. The clustering

problem then is:

min
c1;::: ;ck

mX
i=1

min
`=1;::: ;k

kxi � c`k; (41)

where the norm k � k is some arbitrary norm on Rn. Note that the objective function of (41) is the summation

of the minimum of a set of convex functions which is, in general, neither convex nor concave. Hence this is

a di�cult optimization problem. We propose simplifying this problem slightly by introducing a \selection"

variable ti` justi�ed by the following simple lemma [23, Lemma 3.1].

Lemma 3.1 Let a 2 Rk. Then

min
1�`�k

fa`g = min
t1;::: ;tk

(
kX

`=1

t`a`

�����
kX

`=1

t` = 1; t` � 0; ` = 1; : : : ; k

)
: (42)

This simple lemma allows us to reformulate problem (41) as the following constrained optimization problem:

minimize
c`;ti`

P
m

i=1

P
k

`=1 ti` � kx
i � c`k

subject to
P

k

`=1
ti` = 1; ti` � 0; i = 1; : : : ;m; ` = 1; : : : ; k

(43)

Notice that for a �xed data point xi, if �̀ is the index such that center c
�̀
is nearest to xi, then t

i�̀= 1 and

ti` = 0, ` 6= �̀. If multiple centers have the same minimum distance to xi, then the t-values corresponding to

these cluster centers will be nonzero and form a convex combination of this minimum distance.

We focus our attention on solving (43) with the 1-norm distance for which problem (43) can be written as

the following bilinear program [23]:

minimize
c;d;t

P
m

i=1

P
k

`=1 ti` � (e
T di`)

subject to
�di` � xi � c` � di`; i = 1; : : : ;m; ` = 1; : : : ; k;P

k

`=1 ti` = 1; ti` � 0; i = 1; : : : ;m; ` = 1; : : : ; k:

(44)
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Here di` 2 Rn is a dummy variable that bounds the components of the di�erence xi � c`. Hence eT di`
bounds the 1-norm distance between point xi and center c`. By using the 1-norm, not only can the clustering

problem (44) be formulated as a bilinear program, but the computed centers are less sensitive to outliers such

as those resulting when the underlying data distributions have pronounced tails.

We further note that the constraints of (44) are uncoupled in the variables (c; d) and the variable t. Hence

the Uncoupled Bilinear Programming Algorithm [10, Algorithm 2.1] is applicable. This algorithm alternates

between solving a linear program in the variable t and a linear program in the variables (c; d) and terminates

�nitely at a point satisfying the minimum principle necessary optimality condition for problem (44) [10,

Theorem 2.1]. Due to the simple structure of (44), the two linear programs can be solved explicitly in closed

form. This leads to the following algorithm.

Algorithm 3.2 k-Median Algorithm. Given k cluster centers c1;j ; c2;j ; : : : ; ck;j at iteration j, compute

c1;j+1; c2;j+1; : : : ; ck;j+1 by the following 2 steps:

1. Cluster Assignment: For i = 1; : : : ;m, assign xi to cluster l(i) such that cl(i);j is nearest to xi in the

1-norm.

2. Cluster Center Update: For ` = 1; : : : ; k set c`;j+1 to be the median of all xi assigned to c`;j.

Remark: The point c`;j+1 is a cluster center that minimizes the sum of the 1-norm distances to all points

in cluster `.

Stop when c`;j = c`;j+1; ` = 1; : : : ; k.

If we consider problem (43) with the 2-norm squared, the iterative algorithm is the popular k-Mean approach

to clustering [68]. The underlying problem for the k-Mean algorithm is the following:

minimize
c;t

P
k

`=1

P
m

i=1 ti`
�
1
2
kxi � c`k22

�
subject to

P
k

`=1 ti` = 1; ti` � 0; i = 1; : : : ;m; ` = 1; : : : ; k:
(45)

The iterative approach essentially involves solving a linear program in t for a �xed value of c (cluster

assignment step) and a quadratic program in c for a �xed value of t (cluster center update step). Again, these

two problems can be solved in closed form.

Algorithm 3.3 k-Mean Algorithm. Given k cluster centers c1;j ; c2;j ; : : : ; ck;j at iteration j, compute

c1;j+1; c2;j+1; : : : ; ck;j+1 by the following 2 steps:

1. Cluster Assignment: For each i = 1; : : : ;m, assign xi to cluster l(i) such that cl(i);j is nearest to xi in

the 2-norm.

2. Cluster Center Update: For ` = 1; : : : ; k set c`;j+1 to be the mean of all xi assigned to c`;j .

Remark: The point c`;j+1 is a cluster center that minimizes the sum of the 2-norm distances squared to

all the points in cluster `.

Stop when c`;j = c`;j+1; ` = 1; : : : ; k.

If the 2-norm (not 2-norm squared) is used in the objective of (43), the cluster center update subproblem

becomes the considerably harder Weber problem [38, 100] which locates a center in Rn closest in sum of

Euclidean distances to a �nite set of given points. Choosing the mean of the points assigned to a given cluster

as its center minimizes the sum of the 2-norm distances squared between the data points and the cluster center.

This property makes the centers computed by the k-Mean algorithm less robust to outliers in the data.

A scalable k-Mean algorithm is discussed and evaluated in [17]. Scalable approaches to clustering also

include the BIRCH algorithm [125], CURE [60] and CLIQUE [2].

We did not address the problem of e�ciently determining the initial placement of the k medians or means.

This issue is speci�cally addressed in [16]. Determining the number of clusters k is a harder problem. Most

practitioners run several clustering sessions with di�erent values for k and choose the \best" result [34].

Cross-validation is a good method for choosing k [112].

We note that k-Mean convergence has been shown in [109] and a discussion relating to the convergence

proof is presented in [4].

We next present results of applying these clustering techniques to extract clinically-important survival

curves from a breast cancer prognosis database.
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Figure 4: Estimated fraction of disease free patients versus time (months) for 3 clusters obtained with the

k-Median (a) and k-Mean Algorithms on the WPBC dataset.

3.3 Clustering Case Study

We present a case study comparing the k-Median and k-Mean algorithms. The k-Median and k-Mean algo-

rithms were applied to two features of the Wisconsin Prognosis Breast Cancer dataset (available from UCI

Repository of Machine Learning Databases, University of California, Irvine, http://www.ics.uci.edu/~mlearn/

MLRepository.html). The two features used were tumor size (diameter of the excised tumor in centimeters)

and lymph node status (number of axillary lymph nodes metastasized at time of surgery). These two features

were then normalized to have mean = 0 and standard deviation = 1. This dataset then consists of 194 points

in R2.

The k-Median and k-Mean algorithms were also applied to the SEER database [31] consisting of the two

features of tumor size and nodes positive for 21,960 instances.

The k-Median and k-Mean Algorithms were applied to both datasets with k = 3. Survival curves [70]

were then constructed for each cluster, representing expected percent of surviving patients as a function of

time, for patients in that cluster. The value of k = 3 was chosen for the purpose of determining clusters that

represented patients with \good", \average" and \poor" prognosis, as depicted by the survival curves. Initial

cluster centers where chosen by �rst dividing the coordinate axes into nine intervals over the range of the data

and choosing three centers as midpoints of the densest, second densest, and third densest intervals [23].

Figure 4(a) depicts survival curves computed from the WPBC dataset clustered by the k-Median Algorithm.

Figure 4(b) depicts survival curves for clusters obtained with the k-Mean Algorithm applied to the WPBC

dataset.

The key observation to make is that the curves in Figure 4(a) are well separated. Hence the clusters

obtained for k = 3, by the k-Median Algorithm can be used as prognostic tools. In contrast, the curves in

Figure 4(b) are poorly separated, and hence are not useful for prognosis.

Figure 5(a) depicts survival curves for three clusters obtained by the k-Median Algorithm on the SEER

dataset. Again, since these survival curves are separated, the clusters can be used as prognostic indicators. In

contrast, the two top curves in Figure 5(b), obtained by applying the k-Mean Algorithm to the SEER dataset,

coalesce and hence are not useful for prognosis.
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Figure 5: Estimated fraction of disease free patients versus time (months) for 3 clusters obtained with the

k-Median (a) and k-Mean Algorithms on the SEER dataset.

We note here that clustering can also be done via density estimation. Given k clusters, one can associate

a probability density function (model) with each of the clusters. The problem then reduces to estimating the

parameters of each model. This topic is included in the following discussion.

4 Dependency Modeling

4.1 Overview

Insight into data is often gained by deriving some causal structure within the data. Models of causality can be

probabilistic (as in deriving some statement about the probability distribution governing the data) or they can

be deterministic as in deriving functional dependencies between �elds in the data [101]. Density estimation

methods in general fall under this category, so do methods for explicit causal modeling (e.g. [58] and [63]).

We focus our attention speci�cally on density estimation.

4.2 Density Estimation Mathematical Programming Formulations

In the density estimation problem [108], we are given a �nite number of n-dimensional data points, that

is fx1; x2; : : : ; xMg. We assume that these data points are a �nite sample from some unknown probability

density function which maps a data point in Rn to the interval [0; 1]. The goal is to compute an estimate

of the true probability density function. We will denote our estimate of the true probability density function

(PDF) by p(x). Once p(x) is determined, then for any x in the domain of p, p(x) is in the closed interval [0; 1]

indicating the probability of observing x. Parametric approaches to density estimation �x the functional form

of the p(x). The strength of the parametric approach comes from the ability to quickly compute p(x) for any

given x. In contrast nonparametric models allow very general forms of the estimate p(x) but su�er in that the

number of model variables grows directly with the number of data points [13]. We consider a semi-parametric

approach to density estimation incorporating advantages of both the parametric and nonparametric models.
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The semi-parametric approach considered here is the mixture model. Here, our estimate p(x) of true PDF

is a linear combination of k \basis functions", where k is a parameter of the model typically much less than

the number of data points M . Aside from a slight change of notation, this section follows pages 60-67 of [13].

We estimate the PDF by:

p(x) =

kX
`=1

p(xj`)P (`): (46)

P (`) is the prior probability of the data point having been generated by component ` of the mixture and

p(xj`) are the conditional densities. The \basis functions" are these conditional densities p(xj`); ` = 1; : : : ; k

and the linear coe�cients are the prior probabilities P (`); ` = 1; : : : ; k. The prior probabilities satisfy:

kX
`=1

P (`) = 1; 0 � P (`) � 1; ` = 1; : : : ; k: (47)

Similarly, the component functions p(xj`) (\basis functions") are normalized so that

Z 1

�1

: : :

Z 1

�1

p(xj`)dx1dx2 : : : dxn = 1: (48)

Once the estimate (46) is determined, it is a probability density function. To generate a data point with

this PDF p(x), one of the components ` is randomly selected with probability P (`) and then a data point is

generated from the corresponding density p(xj`). P (`) is the prior probability that a data point was generated
from component ` of the mixture and p(xj`) is the probability of the given data point under component `.

We also introduce the notion of posterior probabilities, computed using Bayes' Theorem:

P (`jx) =
p(xj`)P (`)

p(x)
: (49)

These posterior probabilities satisfy:

kX
`=1

P (`jx) = 1: (50)

The value of P (`jx) represents the probability that a particular component ` is responsible for generating

data point x.

We now focus our attention on Gaussian mixture models where each of the k \basis functions" or com-

ponents is chosen as a Gaussian distribution with mean �` 2 Rn and a covariance matrix which is a scalar

multiple of the identity, �` = (�`)2I 2 Rn�n; ` = 1; : : : ; k. Then the component density functions (\basis

functions") are given by:

p(xj`) =
1

(2�(�`)2)
n
2

exp

�
�kx� �`k22

2(�`)2

�
: (51)

For Gaussian components of this form, the estimate (46) has as adjustable parameters P (`); �` 2 Rn and

�` 2 R; ` = 1; : : : ; k. The problem then reduces to estimating these parameters from the given data sample

fx1; : : : ; xMg � Rn.

The maximum likelihood approach determines values of these parameters that maximizes the likelihood

that the observed data fx1; : : : ; xMg was actually sampled from the estimated PDF p(x) (46). These values

are found by minimizing the negative log-likelihood for the given data:
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min�

MX
i=1

log

 
kX

`=1

p(xij`)P (`)

!
: (52)

Minimizing the negative log-likelihood for the case of the Gaussian mixture model then becomes:

min
P (`);�`;�`

�
MX
i=1

 
log

 
kX

`=1

1

(2�(�`)2)
n
2

exp

�
�kxi � �`k22

2(�`)2

�
P (`)

!!
: (53)

Problem (53) is a nontrivial optimization problem which has many local minima. The Expectation-

Maximization (EM) algorithm [40] iteratively minimizes (53) for P (`); ` = 1; : : : ; k for �xed values of �`

and �`, then minimizes (53) for �`; �`; ` = 1; : : : ; k for �xed P (`). The EM algorithm has been shown to

converge to a local minima of (53) [97]. We now summarize the EM algorithm for the Gaussian mixture

model.

Algorithm 4.1 Expectation-Maximization (EM) Algorithm. Given P j(`) 2 R; �j;` 2 Rn; �j;` 2 R; ` =

1; : : : ; k at iteration j, compute P j+1(`); �j+1;`; �j+1;` at iteration j + 1 in the following 3 steps:

1. Posterior Calculation: Set

P j(`jxi) =
pj(xij`)P j(`)P
k

`=1 p
j(xij`)P j(`)

; i = 1; : : : ;m; ` = 1; : : : ; k; (54)

where

pj(xij`) =
1

(2�(�j;`)2)
n
2

exp

�
�kxi � �j;`k22

2(�j;`)2

�
: (55)

2. Gaussian Parameter Update: for ` = 1; : : : ; k set

�j+1;` =

P
M

i=1 P
j(`jxi)xiP

M

i=1 P
j(`jxi)

; (56)

(�j+1;`)2 =
1

n

P
M

i=1 P
j(`jxi)kxi � �j+1;`k22P
M

i=1 P
j(`jxi)

: (57)

3. Prior Probability Update: for ` = 1; : : : ; k set

P j+1(`) =
1

M

MX
i=1

P j(`jxi): (58)

Stop when �j+1;` = �j;`; ��+1;` = �j;` and P j+1;` = P j;`; ` = 1; : : : ; k.
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We note that the EM algorithm can e�ectively be used to model databases with discrete attributes (di-

mensions) as well as continuous ones by assuming appropriate probability distributions for each of the k model

components, p(xj`); ` = 1; : : : ; k (e.g. a Gaussian distribution over continuous dimensions and multinomial

distributions over discrete dimensions). The EM approach to modeling is very general and exible.

The relationship between the hard assignment method of the k-Mean algorithm (Algorithm 3.3) and the

EM Algorithm can be found in [71]. In [97] a more general treatment of EM and the underlying optimization

problem can be found.

A scalable EM algorithm is discussed and evaluated in [18].

The issue of choosing initial parameter values for EM is discussed in [46]. Choosing the value of k is di�cult

for EM as well as k-Median and k-Mean.Methods include trying several di�erent values [34] or choosing k via

cross-validation [112].

In the following section we provide an overview of the data mining methods of data summarization and

change and deviation detection.

5 Other Methods

5.1 Data Summarization

Sometimes the goal of a data mining method is to simply extract compact patterns that describe subsets of

the data. There are two classes of methods which represent taking horizontal (cases) or vertical (�elds) slices

of the data. In the former, one would like to produce summaries of subsets: e.g. producing su�cient statistics,

or logical conditions that hold for subsets. In the latter case, one would like to predict relations between �elds.

This class of methods is distinguished from the other data mining methods discussed in that rather than

predicting a speci�ed �eld (e.g. classi�cation) or grouping cases together (e.g. clustering) the goal is to �nd

relations between �elds. One common method is by association rules [3]. Associations are rules that state that

certain combinations of values occur with other combinations of values with a certain frequency and certainty.

A common application of this is market basket analysis were one would like to summarize which products

are bought with what other products. While there are exponentially many rules, due to data sparseness

only few such rules satisfy given support and con�dence thresholds. Scalable algorithms �nd all such rules in

linear time (for reasonable threshold settings). While these rules should not be viewed as statements about

causal e�ects in the data, they are useful for modeling purposes if viewed as frequent marginals in a discrete

(e.g. multinomial) probability distribution. Of course to do proper inference one needs to know the frequent,

infrequent, and all probabilities in between. However, approximate inference can sometimes be useful.

5.2 Change and Deviation Detection

These methods account for sequence information, be it time-series or some other ordering (e.g. protein

sequencing in genome mapping). The distinguishing feature of this class of methods is that ordering of

observations is important and must be accounted for. Scalable methods for �nding frequent sequences in

databases, while in the worst-case exponential in complexity, do appear to execute e�ciently given sparseness

in real-world transactional databases [93].

6 Research Challenges

Successful KDD applications continue to appear, driven mainly by a glut in databases that have clearly grown

to surpass raw human processing abilities. For examples of success stories in applications in industry see [15]

and in science analysis see [43]. More detailed case studies are found in [45]. Driving the growth of this �eld

are strong forces (both economic and social) that are a product of the data overload phenomenon. We view

the need to deliver workable solutions to pressing problems as a very healthy pressure on the KDD �eld. Not

only will it ensure our growth as a new engineering discipline, but it will provide our e�orts with a healthy

dose of reality checks; insuring that any theory or model that emerges will �nd its immediate real-world test

environment.
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The fundamental problems are still as di�cult as they have been for the past few centuries as people

considered di�culties of data analysis and how to mechanize it.

We �rst list the general challenges in KDD and data mining, and then we consider particular challenges

for mathematical programming approaches to data mining problems.

6.1 General Research Challenges

The challenges facing advances in this �eld are formidable. Some of these challenges include:

1. Develop mining algorithms for classi�cation, clustering, dependency analysis, summarization, and change

and deviation detection that scale to large databases. There is a tradeo� between performance and

accuracy as one surrenders to the fact that data resides primarily on disk or on a server and cannot �t

in main memory. The majority of approaches that assume that data can �t in main memory need to be

revised or redesigned.

2. Develop sampling approaches that are tightly coupled with mining algorithms and database access

methods. Selecting a random sample from a database can be as expensive as scanning the entire data. In

addition, any type of conditioning or strati�cation of the samples requires expensive indexing structures.

Since mining algorithms typically attempt a multitude of conditioning situations, specialized random

sampling schemes that exploit this behavior need to be developed.

3. Develop schemes for encoding \metadata" (information about the content and meaning of data) over

data tables so that mining algorithms can operate meaningfully on a database and so that the KDD

system can e�ectively ask for more information from the user.

4. While operating in a very large sample size environment is a blessing against over�tting problems, data

mining systems need to guard against �tting models to data by chance. This problem becomes signi�cant

as a program explores a huge search space over many models for a given data set. As one enumerates

many models, the probability that one of them will �t the data at hand by random chance approaches

one. Proper adjustments and tests against holdout sets are crucial.

5. Develop e�ective means for data sampling, data reduction, and dimensionality reduction that operate

on a mixture of categorical and numeric data �elds. While large sample sizes allow us to handle higher

dimensions, our understanding of high dimensional spaces and estimation within them is still fairly

primitive. The curse of dimensionality is still with us.

6. Develop schemes capable of mining over nonhomogeneous data sets (including mixtures of multimedia,

video, and text modalities) and deal with sparse relations that are only de�ned over parts of the data.

7. Develop new mining and search algorithms capable of extracting more complex relationships between

�elds and able to account for structure over the �elds (e.g. hierarchies, sparse relations); i.e. go beyond

the at �le or the single table assumption.

8. Develop data mining methods that account for prior knowledge of data and exploit such knowledge in

reducing search, that can account for costs and bene�ts, and that are robust against uncertainty and

missing data problems.

9. Enhance database management systems to support new primitives for the e�cient extraction of necessary

su�cient statistics as well as more e�cient sampling schemes. This includes providing SQL support for

new primitives that may be needed (e.g. [59]). Su�cient statistics are properties of the data that, from

the perspective of the mining algorithm, eliminate the need for the data. Examples of su�cient statistics

include histograms, counts, and sometimes data samples.

10. Scale methods to parallel databases with hundreds of tables, thousands of �elds, and terabytes of data.

Issues of query optimization in these settings are fundamental.

11. Account for and model comprehensibility of extracted models; allow proper tradeo�s between com-

plexity and understandability of models for purposes of visualization and reporting; enable interactive

exploration where the analyst can easily provide hints to help the mining algorithm with its search.
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12. Develop theory and techniques to model growth and change in data. Large databases, because they

grow over a long time, do not typically grow as if sampled from a static joint probability density. The

question of how does the data grow needs to be better understood and tools for coping with it need to

be developed. (See articles by P. Huber, by Fayyad & Smyth, and by others in [72])

13. Develop a theory and techniques for assessing signi�cance in the presence of the large. Traditional

techniques for assessing statistical signi�cance were designed to handle the small sample case: in the

presence of large data sets, these measures lose their intended \�ltering" power.

14. Incorporate basic data mining methods with \any-time" analysis that can quantify and track the trade-

o� between accuracy and available resources, and optimize algorithms accordingly. Any-time algorithms

are capable of providing \best solution so far" during their determination of the �nal solution. This is

a desirable property of algorithms that need to run for extended periods of time.

6.2 Challenges for Mathematical Programming

We list below some of the issues that are of particular relevance to data mining and potential mathematical

programming approaches for their resolution.

1. Scaling to large sets of constraints and variables.

(a) Decomposing constraints and variables into subsets. The parallel constraint distribution approach

of [49] is one way of decomposing problem constraints among parallel processors or parallel virtual

machines (PVM) [56, 77], while the parallel variable distribution of [50] can be similarly applied

when dealing with databases with a very large number of attributes.

(b) Algorithms for dealing with constraints and variables sequentially. Mathematical programming

approaches that deal with problem data in a sequential manner are very useful for processing large

databases. Such incremental approaches have already been developed for establishing convergence

of the online back-propagation algorithm that trains neural networks incrementally [90, 89] as well

as for handling more general types of problems [118, 113].

2. Approximate solutions.

(a) The problem of identifying constraints which are inactive and will remain inactive as optimization

proceeds is an important and interesting practical problem. Computational algorithms towards this

goal have appeared in [30, 52, 124, 12]. A possible simple approach for this problem is the use of the

classical exterior quadratic penalty function [51] and dropping constraints for which the product of

the penalty parameter (which is increasing to in�nity) times the constraint violation is less than

some tolerance. This product approximates the Lagrange multiplier for the constraint. A small or

zero value of this product is indicative of a small multiplier and hence an inactive constraint.

3. Mathematical programming languages geared for data mining problems.

Although there are languages speci�cally designed for setting up and solving mathematical programs,

such as AMPL [53] and GAMS [27, 67], and languages that can be easily adapted for the same purpose,

such as MATLAB [94], no speci�c language has been designed for mathematical programming applica-

tions to data mining. Such a language could make such applications more widely accepted by the data

mining community.

4. Data reduction techniques.

Removing redundant or irrelevant data from a mathematical programming application to data mining

is one of the key requirements for handling large databases and extracting knowledge from them via a

generalization paradigm. As such we believe that the use of the step function (�)� and its surrogate ap-

proximation, the exponential of equation (15), as an objective function penalty on the problem variables,

is one of the most e�ective ways for simplifying the problem and reducing data size. This approach, which
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leads to minimization of a concave function on (often) a polyhedral set [85], has been used very e�ec-

tively for feature selection [24] and noise suppression [22]. Although the polyhedral concave minimization

problem is a di�cult problem, fast and �nite algorithms for �nding very useful stationary points make

it a very e�ective tool for data reduction. Further study of the problem and other approaches constitute

important research areas.

5. E�ect of data perturbation on derived models.

Perturbation of mathematical programs is a widely studied area, for example [105, 104, 5, 48, 76]. Ap-

plying these results to speci�c data mining problems where the data is constantly being augmented and

revised without having to rebuild the mathematical programming model would be a valuable contribu-

tion.

6. Modeling noise.

Mathematical programming models that purposely tolerate error, either because there is noise in the

data or because the model is an inaccurate representation of the real problem, are likely to perform

better. One such approach, tolerant training [115], purposely tolerates such inaccuracies in the model,

and often leads to better predictive results. Extending this tolerant mathematical programming model

to a wider class of problems would be an important and practical contribution.

7. Visualization and understandability of derived models.

Presenting a model visually enhances its utility and increases the chances of its correct usage. Many

mathematical programming models possess this property. For example the robust linear separator of [9]

has a very simple geometric representation as a plane separating most or all the elements of two sets,

which has been used to advantage in medical applications [92, 91]. Similarly the multisurface separation

method [81, 88] can be geometrically depicted as placing the sets to be separated into distinct polyhedral

compartments.

8. Local versus global methods.

Because of size considerations we often do not want to model the whole data set. We therefore need to

pre-partition the data and model it locally. One way to achieve this is via a decision tree approach [6, 96]

in which the data is partitioned into local regions and modeled individually. A regression approach to

this is given by Regression trees in CART [26]. Another example is to cluster the data �rst, then model

each cluster locally.

9. Modeling rare events (e.g. low probability items like fraud or rare diseases).

This is an important problem which can be possibly addressed by a careful use of an appropriate norm

in the context of a separation problem. For example the use of the in�nity norm as originally proposed

in [80, 81] can be used for capturing such rare events. In general, objects that occurr with a very low

frequency (e.g. in fraud detection applications or in detecting quasars in sky surveys in astronomy [47])

are likely to be dismissed as insigni�cant outliers or simply disappear in L2-norm based methods and

standard principal component analysis.

10. Going beyond L-norms.

Current approaches utilize all dimensions of a problem with equal weight or use feature selection to

weight each dimension with a 0 or 1 weight. Allowing a variable weight in the interval [0; 1] for example

would introduce a scaling of the problem that could enhance separation either by a linear or nonlinear

separating approach [80, 81, 9].

7 Concluding Remarks

KDD holds the promise of an enabling technology that could unlock the knowledge lying dormant in huge

databases. Perhaps the most exciting aspect is the possibility of the evolution of a new breed of methods

properly mixing statistics, databases, optimization, automated data analysis and reduction, and other related

areas. This mix would produce new algorithms and methodologies, tuned to working on large databases and

scalable both in data set size and in parallelism.
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In this paper, we provided an overview of this area, de�ned the basic terms, and covered some of the basic

research challenges. We included mathematical programming formulations of some data mining problems and

provided sample case studies of mathematical programming approaches to data mining applications. We also

outlined prospects and challenges for the role of mathematical programming in KDD. While KDD will draw

on the substantial body of knowledge built up in its constituent �elds, it is inevitable that a new science will

emerge as these challenges are addressed, and that suitable mixtures of ideas from each of the constituent

disciplines will greatly enhance our ability to exploit massive, ever-growing, and ever-changing data sets.
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