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Abstract

We provide a classification of graphical models according to their
representation as subfamilies of exponential families. Undirected graph-
ical models with no hidden variables are linear exponential families
(LEFs), directed acyclic graphical models and chain graphs with no
hidden variables, including Bayesian networks with several families of
local distributions, are curved exponential families (CEFs) and graph-
ical models with hidden variables are stratified exponential families
(SEFs). An SEF is a finite union of CEFs satisfying a frontier con-
dition. In addition, we illustrate how one can automatically generate
independence and non-independence constraints on the distributions
over the observable variables implied by a Bayesian network with hid-
den variables. The relevance of these results for model selection is
examined.

1 Introduction

A graphical model is a family of probability distributions. The set of dis-
tributions associated with a graphical model are usually defined in one of
the following two ways. Implicitly, by a set of constraints that the dis-
tributions must satisfy, or, parametrically (explicitly), by a mapping from
a set of parameters to a set of distributions. Graphical models without
hidden variables can be defined implicitly using a set of independence con-
straints. Graphical models with hidden variables, on the other hand, are
usually defined parametrically because the non-independence constraints on
the distributions over the observable variables are not easily established. In
this paper, we discuss a procedure for identifying non-independence (and
independence) constraints true of the distributions in a parametrically de-
fined family. In addition, we provide a classification of graphical models
according to their representation as subfamilies of exponential families. The
relevance for model selection of both the procedure and the classification is
examined.

The properties of linear exponential families (LEFs) have been exten-
sively studied in statistics. We begin by reviewing LIEFs and demonstrating
the well-known fact that undirected graphical models with no hidden vari-
ables are LEFs (e.g., Lauritzen, 1996). This result provides access to the
properties of these families. In particular, with respect to model selection,
Schwarz (1978) established, under some regularity assumptions, that the
Bayesian Information Criteria (BIC) is a valid asymptotic rule for selecting
models from a collection of linear exponential families.

We show that directed acyclic graphical models and chain graphs with no
hidden variables are curved exponential families (CEFs). Roughly, a curved



exponential family is a set of distributions such that (1) each member of the
set is an exponential family distribution and (2) the family corresponds to a
smooth manifold. Showing that some graphical models are CEFs provides
access to the properties of these families which have been studied in the
statistics community (e.g., Kass and Vos, 1997). In particular, Haughton
(1988) established, under some regularity assumptions, that BIC is a valid
asymptotic rule for selecting models from a set of curved exponential fam-
ilies. Asymptotic techniques are not needed for choosing between multi-
nomial Bayesian networks because a closed-form formula for the marginal
likelihood P(data|model) is known for these classes (Cooper and Herskovits,
1992). Such a formula is not known for various Bayesian networks including
those using noisy or-gates or causal independence models and so our classi-
fication of these graphical models as CEFs justifies using BIC for selecting
models within these classes.

We also show that graphical models with hidden variables are stratified
exponential families (SEFs). An SEF is a finite union of CEFs satisfying
a frontier condition. We show that SEFs arise naturally from both implic-
itly defined and parametrically defined graphical models. With respect to
model selection, Geiger, Heckerman, and Meek (1996) note that although
researchers have been using BIC for selecting models among Bayesian net-
works with hidden variables, this methodology has not yet been established
as an asymptotic approximation of a Bayesian procedure as it has for CEFs.

Finally, we discuss a procedure called implicitization that takes a para-
metrically defined graphical model and generates both independence and
non-independence constraints. We illustrate the implicitization procedure
on several Bayesian networks with hidden variables finding both new and
previously known constraints on the distributions over the observable vari-
ables. Since these constraints vary from one model to another they can be
used to distinguish between models. For instance, when we applied implic-
itization to a particular Gaussian Bayesian network we generated the well
known tetrad difference constraints which have been used for model selec-
tion and evaluation by several researchers (see, e.g., Spirtes, Glymour, and
Scheines, 1993).

2 Linear Exponential Families

Exponential families of probability distributions play an important role in
the study of statistics. This class is essentially the only class of distributions
that has finite dimensional sufficient statistics. In this background section
we give a definition of linear exponential families (LEFs) and discuss the
well-known representation of undirected graphical models as LEFs (e.g.,



Lauritzen, 1996).

2.1 Definition of Linear Exponential Families

A family (or model) is a set of probability density functions. A probability
density in an exponential family is given by

plz|n) = e <mt(@)>—(n) (1)
where z is an element of a sample space X’ with a dominating measure pu and
t(z) is a sufficient statistics defined on X’ taking values in R with an inner
product < .,. >. The sample space X is typically either a discrete set, R",
or a product of these. In the later case, in this paper, the product sample
space is viewed as a finite set of variables each having a domain which is
either finite or R. The quantity ¢ (n) is the normalization constant.

Every probability distribution for a finite sample space X belongs to
an exponential family. For example, a sample space that consists of four
outcomes can be written in the form of Eq. (1) by choosing t(z) and 7 as
follows: t(z) = (t1(2),t2(x),ts(x)) where t;(x) = 1 if x is outcome 7, 1 < i <
3, and zero otherwise, and 7, = log(w;/wg) where w; is the probability of
outcome ¢, 1 < ¢ < 3, and wg =1 — Z?:l w; is the probability of the forth
outcome.

When the vector i has k coordinates and when p(z|y) cannot be repre-
sented with a parameter vector smaller than k, then the representation is
minimal and the order (or dimension) of this family is &, and the parameters
are called natural parameters. 1t is known that this order is unique for each
family. The natural parameter space is given by

N = {n e R /et(x)n—w(n)du(w) < o}

The set of probability distributions having the form (1) are denoted by S.
If for each 7 in N there exists P, in §, then § is said to be full exponential
family; if, in addition, N is an open subset of R¥, then & is said to be a linear
exponential family. The name linear exponential family draws from the
fact that the log densities form a vector space over R were the coordinates
of t(z), called the canonical statistics, are the basis of the vector space
and its dimension is the order of the family. Linear exponential families
include many common distribution functions, such as multivariate Normal
and multinomial distributions. (A linear exponential family in a minimal
representation is often called a regular exponential family).

A subfamily of linear exponential family is a subset Sg of §. A sub-
family is usually described by a mapping w — n(w) which defines Sy via



No = {n(w)|w € O} and where © is the domain of w. When 7 is a linear
mapping of rank p, and O is an open set, a new linear exponential family is
formed of order £ — p. In other words, a linear transformation 7 imposes p
independent linear constraints on the parameters and these constraints can
be used to reparameterize the family with k£ — p natural parameters. In Sec-
tions 3 and 4 we discuss exponential families that are formed by non-linear
transformations 7.

2.2 Undirected graphical models

In this subsection we discuss the representation of undirected graphical mod-
els as linear exponential families.

Let G be an undirected graph such that each vertex 7 in the vertex
set corresponds to a variable z;. We consider three cases. If all z; are
discrete, if all are continuous and their joint density is a multivariate non-
singular Gaussian, and if some are continuous and some are discrete with a
joint Conditional Gaussian (CG) distribution. An undirected graphical model
w.r.t. G is the set of probability distribution functions such that all of the
saturated independence facts implied by the graph hold; that is x; and z;
are conditionally independent given the remaining variables whenever nodes
v and j are not adjacent in G. Since multinomial, multivariate Gaussian and
CG distributions over a fixed set of variables belong to a linear exponential
family and since saturated independence constraints are linear restrictions
when expressed in terms of the natural parameters, undirected graphical
models define linear exponential families. We now explicate the three cases.

A Multinomial undirected graphical model is a family of probability distri-
butions over a finite set U of variables each having a finite domain such that
for some set of pairs of indices {(¢, )}, ; and ; are conditionally indepen-
dent given U\ {z;, z;}. Consider, for example, the graph given by a cycle of
size 4 with variables zq, ..., 24 arranged clockwise. Then the independence
constraints imposed by this graphical model are that z; and x5 are condi-
tionally independent given {z5, 24}, and that x5 and 24 are conditionally
independent given {zy,23}. Suppose, for simplicity, that the four random
variables are binary (having exactly two states) and denote by w; the prob-
ability of the joint ith state of the four binary variables (1 <1 < 15) where
wg = 1 — Y w;. Each independence constraint translates to 4 equations of
the form w;w; = wiw;. Dividing each equation by (w0)2 and taking the log,
yields 8 linear equations in terms of the natural parameters 7; = log w;/wg.
In general, multinomial graphical models are log-affine models which are
LEFs (Lauritzen, 1996, pp 76).

A Gaussian undirected graphical model is a family of multivariate non-
singular Gaussian distributions in which some of the off-diagonal elements ¢;;



of the precision matrix (the inverse of the covariance matrix) are set to zero.
Note that setting ¢;; to zero is equivalent to requiring that variable z; and
x; are conditionally independent given the remaining variables. Recalling
that a multivariate non-singular Gaussian distribution belongs to a linear
exponential family and the fact that setting the off-diagonal elements of
the precision matrix to zero is equivalent to placing linear restrictions on
the natural parameter space yields the conclusion that Gaussian undirected
graphical models are linear exponential families. For details see (Lauritzen,
1996, pp. 124-132).

A Conditional Gaussian undirected graphical model is a family of Con-
ditional Gaussian (CG) distributions over a set of discrete and continuous
variables defined by a set of saturated independence constraints stating that
variables ¢ and j are conditionally independent given the remaining vari-
ables. That CG undirected graphical models can be represented as linear
exponential families is shown in Lauritzen and Wermuth (1989). See also,
Lauritzen (1996, pp. 171-175).

3 Curved Exponential Families

A subfamily of a linear exponential family §o C & is usually described by
a mapping w — n(w) which defines Sy via Ng = {n(w)|w € ©} and where
O is an open set. A curved exponential family of dimension n is defined
to be a subfamily of an exponential family of order & such that Ng is a
n-dimensional manifold in R*. In this section we provide the definitions
of n-dimensional manifolds and show that Bayesian networks correspond to
smooth manifolds and are therefore curved exponential families (and not
linear exponential models). Conditional-Gaussian Bayesian networks and
Conditional-Gaussian chain graphs are also curved exponential models.

Curved exponential families were studied by Efron who explored geomet-
rical interpretation of various statistical measures using these families (e.g.,
Efron, 1978). A comprehensive treatment of this topic is given by Kass
and Voss (1997). We study curved exponential models because the stan-
dard asymptotic theory is valid for these models. In particular Haughton’s
(1988) results on model selection applies to all graphical models discussed
in this and the previous section.

3.1 Manifolds

A diffeomorphism f : U C R® — R™ is a smooth (C*) 1-1 function hav-
ing a smooth inverse. A subset M of R" is called a k-dimensional smooth
manifold in R™ if for every point @ € M there exists an open set U in R"



containing 2 and a diffeomorphism f: U N M — R*. We sometime refer to
M as a k-dimensional manifold or just as a manifold. Since composition of
diffeomorphisms is a diffeomorphism, we get the following proposition.

Proposition 1 Ifg: A C R — B C R" is a diffeomorphism, then M C A
is a manifold if and only if g(M) is a manifold and N C B is a manifold if
and only if =1 (N) is a manifold.

Another way to verify whether a subset of R"™ is a manifold is given by
the following Theorem (e.g., Spivak, 1965).

Theorem 1 Let A C R™ be open and let h : A — R™™" be a smooth
function such that h'(x) has rank m — n whenever h(z) = 0. Then h™'(0)
s a n-dimensional manifold in R™.

Note that the rank of the Jacobian matrix A’ in Theorem 1 is m — n if
h has the form h;(z1,...,2m) = Tnyi — fi(21,...,2,) fori=1,...;m—n
where f; are smooth functions because in this case the (m—n) x m matrix b/
factors as [Q(;m—n)xn|lm—n] Where I,_, is the identity matrix of size m —n.

3.2 Multinomial Bayesian networks

A Bayesian network B(©,n, m) is a mapping B, ,, : © C R" — R™ where n
is the number of network parameters, m the number of observable parameters
and where © and B, , have specific form depending on the type of the
Bayesian network considered.

A Multinomial Bayesian network B(©, n,m) is a Bayesian network where
©, n, m and B, ,, are given as follows (Pearl, 1988). Let (z1,...,21) be
an ordered sequence of discrete random variables each having a finite set of
values. Let p;, be a subset of {zy,...,2;_1}, called the parents set of z;, and
let w; = {xy,..., 21} \ p;- Let 2, p! and «! be the jth value of z;, p;, and
u; with 7 > 0. Let |z4|, |p;| and |u;| be the domain sizes respectively. The
components of B, , : © C R" — R™ are defined by Oxflpﬁ,uf = 0xf|p§7 for
alla > 0,b>0,and ¢ > 0. Note that n = 3. (|a;| = 1)|p;| and m = Y, (|zi| —
) |psl|ui| = (I1; |z:]) — 1. The set © is the cartesian product of ©; ; over ¢ and
J where 9, ; = {(me)g, . ‘70xf—1|p§)|0 < 01,?'])5 < 1,30 0xf|p§ < 1}. The
components of the image of © under B, ,, are called the conditional-space
parameters.

Theorem 2 For every Multinomial Bayesian network B(©,n,m) the set
By, 1 (0©) is an n-dimensional manifold in R™.



Proof: Define the components of a function & by hq,p,;.c.(0) = 0paipp e —
0 app,u0 Where a > 0,0 > 0and ¢ > 0. Thus, h has 3= (|2 —1)[pil (Jus| - 1) =
m — n components. Note that h=1(0) = B, ., (0). Also note that A’ has the
form [Q (p—n)xnllm—n] Where Iy, is the identity matrix and so A’ has full
rank. Thus, according to Theorem 1, B, ,,,(©) is a n-dimensional manifold
in B™. O )

A second definition of a multinomial Bayesian network B is obtained by

defining Bmm with the equations: wy, . = Hle 0 b pe where b and ¢ are

ek i
i

values of #; and p,; obtained by the projection of (ay,...,a;) to the coordi-
nates that correspond to these variables. The mapping By, (©) = B, (©)
is a diffeomorphism for positive € values and so the conclusion of Theorem 2
remains valid under this definition as one would expect. The components of
the image of © under B, ,, are called the joint-space parameters.

The practical significance of Bayesian networks stems, among other rea-
sons, from the small number of network parameters compared to the number
of joint-space parameters. When the number of network parameters is still
too large because |p;| is too large for some i’s, additional factorizations are
usually introduced. These include decision tree and decision graph models
(Friedman and Goldszmidt 1996; Chickering, Meek, and Heckerman, 1997),
noisy-or gates, leaky noisy-or gates, max-gates and causal independence
models (Pearl, 1988, Henrion, 1987, and Heckerman and Breese, 1996).
These models share the following characteristic.

For each variable z; in the Bayesian network, a subset of k; states of p;
are designated as reference states. The components of B, ,, : © C R" — R™
are defined by Oxflpﬁ,uf = fi(0x7|pgv .. .70wq|pki—1) forall a > 0,b > k;, and
¢ > 0 where f; are smooth functions. We call Bayesian networks defined in
this way Bayesian networks with explicit local constraints. The number of
network parameters is given by n = >_,(|a;| — 1)k; where k; is often much
smaller than p;.

When the number of reference states is zero, namely each f; is the con-
stant function, we get a multinomial Bayesian network. In the case of a
noisy-or model the reference states are the states where exactly one parent
is on and the other parents are off. For leaky noisy-or model the reference
states also include the state when all the parents of x; are off. For deci-
sion tree models, the reference states are those which correspond to a path
from the root to a leaf in the decision tree; all parents on the path are at a
specified state and all those not on the path are at state zero.

Theorem 3 For every Bayesian network B(©,n,m) having explicit local
constraints the set B, ,, (0) is an n-dimensional manifold in R™.



Proof: Suppose the local constraints are given by f;. Define the compo-
nents of a function h by

hai,bi,cz‘ (0) =
Ocoipruz = fillugippues -+ s O it o)

where (¢ > 0,6 > 0, ¢ > 0)or (¢ >0, b > ki, c =0). Note that h has
Yol = 1) [|pil (Jug) = 1) + (|pi] = ki)] = m —n components. The conclusion
now follows from Theorem 1. O

Recall that for a multinomial distribution with u states each associated
with a positive parameter w; such that >, w; = 1, the map n; = log w;/wy,
1 = 1,...,u— 1 defines a diffeomorphism between the natural parameter
space 1 and the multinomial parameters {wi}g_l. Consequently, due to
Theorem 2, we have established the following claim.

Theorem 4 FEvery Bayesian network B(©,n,m) with explicit local con-
straints is a curved exponential model of dimension n.

We note that the results of Heckerman and Meek (1997), while applied
to a different class of models, essentially show that multinomial Bayesian
networks are CEFs.

3.3 Gaussian graphical models

The parameters of a multivariate non-singular Gaussian distribution can
be described in various ways. The most common representation is by the
elements of a covariance matrix 3 and a vector of means p. A second rep-
resentation is by a precision matrix X~ and g. These two representations
are related by the diffeomorphism f : ¥ — 37!, A third representation
is constructed as follows. Assign a total order to the k variables. Specify
the regression coefficients b; ; of z; given x,...,2;_1, and the conditional
variance and conditional means of z; given x4, ..., 2;_1. The third represen-
tation is called the regression parameterization and is related to the second
representation by a well-known diffeomorphism (e.g., Shachter and Kenley,
1989).

A Gaussian Bayesian network is a family of multivariate non-singular
Gaussian distributions in which some b;; are set to zero (Shachter and Ken-
ley, 1989). A Gaussian undirected graphical model was defined in Section 2.2
to be a family of multivariate non-singular Gaussian distributions in which
some of the off-diagonal elements of the precision matrix are set to zero.
Both models define a map B, , : © C R" — R™. It follows from Theo-
rem 1 that B, ;,, (©) is a n-dimensional manifold in R since the components



of h can be defined as projections and so A’ has the form [Q ,_pn)xn [ Tm—n]
where [,,_,, is the identity matrix and () is a matrix of zeros.

The difference between the two models is that the restrictions formed
by setting elements of the precision matrix to zero define linear constraints
in the natural parameter space and therefore Gaussian undirected graphical
models are also LEFs while the restrictions set by a Gaussian Bayesian
network are not linear in the natural parameter space. To demonstrate the
latter fact we note that the restriction b3; = 0 imposed by the Gaussian
Bayesian network z; — x4 ¢ x3 can, in terms of the precision parameters,
be written as ¢ 2t3 3 = t1 3t2,3 and thus is not linear in the natural parameter
space. See Geiger and Heckerman (1994) for the relationships between ¢; ;
and b; ; for this three-node model.

We note that Spirtes, Richardson, and Meek (1997) show that Gaussian
MAGs define smooth manifolds. Since Gaussian MAGs are a generaliza-
tion of Gaussian Bayesian networks, their results also imply that Gaussian
Bayesian networks define smooth manifolds.

4 Semi-algebraic sets, Implicitation, and Strati-
fied Exponential Families

In this section we provide a definition of semi-algebraic sets and then show
that graphical models, whether implicitly or parametrically defined, cor-
respond to semi-algebraic sets. We note that semi-algebraic sets define
a union of smooth manifolds rather than a single smooth manifold as in
Section 3. We then describe a process called implicitization that takes a
graphical model defined parametrically and generates both independence
and non-independence constraints over the observable variables. We illus-
trate the implicitization process on several Bayesian networks with hidden
variables. Finally, we define stratified exponential families (SEFs), a gen-
eralization of curved exponential families, and show that graphical models
representing Conditional-Gaussian, Gaussian, or multinomial distributions
with or without hidden variables are SEFs.

4.1 Semi-algebraic sets

The set of all polynomials in zq,...,z, with real coefficients is denoted
by R[zy,...,2,]. Let ¢i,...,q: be polynomials in R[zy,...,x,]. A variety
Vig,...,q) is the set {(z1,...,2,) € R"|q;(z1,...,2,) =0forall 1 <i<
t}. A variety is also called an algebraic set.

A subset V' of R" is called a semi-algebraic set if V. = Uj_, ML, {z €
R™ P, ;(x) <; 0} were P;; are polynomials in R[zq,...,2,] and <; is one



of the three comparison operators {<,=,>}. Loosely speaking, a semi-
algebraic set is simply a set that can be described with a finite number of
polynomial equalities and inequalities. A variety is clearly a semi-algebraic
set.

Amap f: X =Y where X C R" and Y C R™ are semi-algebraic sets,
is called semi-algebraic if the graph of f is a semi-algebraic set of R"T™.
Note that if f is a polynomial map then f is a semi-algebraic map because
its graph can be described by m polynomial equalities: y; — f;(z) = 0,
where 1 < 7 < m. A key result about semi-algebraic sets is given by the
Tarski-Seidenberg theorem (see, e.g., Benedetti and Risler, 1990).

Theorem 5 (Tarski-Seidenberg) Let f : X — Y be a semi-algebraic
map. Then the image f(X) CY is a semi-algebraic set.

Now we examine the connection between varieties and smooth manifolds.
To show that a variety is a smooth manifold one could apply Theorem 1
where the components of the function & are the polynomials that define the
variety. A point of a variety at which the rank of this Jacobian drops below
its maximal rank is called an algebraic singularity. We can apply Theorem 1
only if there are no algebraic singularities. Consider, for example, the variety
V(22 — y*2% + 2%) which is plotted in Figure 1. The Jacobian matrix of this
variety is given by (2z, —2y2?, 322 —224?) and thus every point on the y-axis
is an algebraic singularity.

This variety is not a smooth manifold because, locally, at each point of
the y-axis other than the origin the surface looks like the intersection of two
smooth manifolds. To prove that the variety V(z? — y?2% + 23) is not a
smooth manifold it suffices to observe that as we approach any point on the
y-axis other than the origin we have two tangent planes where each plane
contains a tangent vector that is not spanned by the other tangent plane.
One might hope that if there are algebraic singularities in a variety then the
surface is not a manifold, however, there are examples of smooth manifolds
that have algebraic singularities (e.g., the origin in V((2% + y?)(y — 2?)),
Kendig, 1977). In general, to prove that a variety is not a manifold one
must examine the particular defining polynomials.

In addition, as our example suggests, if one removes all singular points
from a variety, the remaining set is a union of smooth manifolds. This
Theorem is due to Whitney (See, e.g., Milnor, 1968).

Another fact about semi-algebraic sets is that they admit a stratification.
We will define this concept in Section 4.5 but the idea can be illustrated with
the variety V(2?2 — y?2? + z3). This variety can be described as a union of
several 2-dimensional smooth manifolds along with a 1-dimensional smooth
manifold— the y-axis. These manifolds define a stratification of the variety.

10



Figure 1: A plot of part of the variety V(2?2 — y?2% + 27).

4.2 Implicit representations

When the set of distributions associated with a graphical model is given im-
plicitly, as with graphical models without hidden variables, it is straightfor-
ward to determine whether or not the model corresponds to a semi-algebraic
set. In this section we show that all graphical models defined in previous sec-
tions and also other types of graphical models correspond to semi-algebraic
sets. In the next subsection we examine graphical models with hidden vari-
ables.

The set of distributions associated with a graphical model with structure
g is the set of distributions that satisfy all the independence facts entailed
by a Markov condition with respect to the structure g. For multinomial and
Gaussian graphical models an independence fact is expressible as a finite
set of polynomial equalities. Combined with the inequalities which state
that multinomial parameters are positive, and that variances are positive,
respectively, the resulting graphical model corresponds to a semi-algebraic
set.

There are several classes of implicitly defined graphical models that
can accommodate a combination of discrete and continuous variables using
Conditional-Gaussian distributions. Among these models, in addition to all
of the models in the previous sections, are AMP chain graphs (Andersson,
Madigan, and Perlman, 1996), and reciprocal graphs (Koster, 1997). These
graphical models all correspond to semi-algebraic sets because independence
facts in CG-distributions are expressible as polynomial equalities.

11



4.3 Parametric representations

In this section we discuss graphical models with hidden variables which
are usually defined parametrically. In particular we show that multinomial
Bayesian networks with hidden variables correspond to semi-algebraic sets.
We note that a similar claim holds for any graphical model representing
CG-distributions of which we are aware.

A Multinomial Bayesian network B(©,n,m) with hidden variables is
a Bayesian network where ©, n, m and B, ,, are given as follows. Let
(21,...,2k) be an ordered sequence of discrete random variables each having
a finite set of values. Partition this set of variables into two disjoint non-
empty sets H and X. The variables in H are hidden. Those in X are
observable. For each z; define two disjoint subsets of {zy,...,2,_1}. The
observable parents p; C X and the hidden parents h; C H.

The components of B, , : © C R" — R™ are defined by w,, . ., =
>4 Hle 0x6|p¢hd where a; are not all zero and b, ¢, d are values of x4, p;, h;
obtained b}; tflelprojection of (a1, ..., ax) to the coordinates that correspond
to z;, p; and h;, respectively. As before, the domain © of B, ,, is the carte-
sian product of sets of the form {(t1,...,¢,,-1)[0 < t, < 1,32°,t. < 1}.
Note that n = Ef:1(|x2| = 1)|p;||hi| and m = Hle || — 1.

The Tarski-Seidenberg theorem guarantees that for a multinomial
Bayesian network with hidden variables, B, ,,(©) is a semi-algebraic set
because it is the image of a semi-algebraic set under a polynomial mapping.
Similarly, we note that Gaussian Bayesian network with hidden variables
also correspond to semi-algebraic sets due to their parametric definition via
a polynomial mapping called the trek-rule (see, e.g., Spirtes et al. 1993).
Consequently, the image of these graphical models can be described with a
set of polynomial equalities and polynomial inequalities.

4.4 Implicitization

As discussed in previous sections, the image of a parametric definition is
a semi-algebraic set. The process of taking a parametric definition of a
semi-algebraic set and finding a variety (an implicit definition) containing
the semi-algebraic set is called implicitization.! The implicitization proce-
dure is implemented in several software packages. In our examples we use
Mathematica.

'The implicitization procedure is often implemented in software packages by using
the Buchberger algorithm for finding Groebner Bases. This algorithm is applied to the
polynomial parametric definition. The polynomials in the resulting basis that do not
contain any of the parameters are the defining polynomials for the variety (See Cox,
Little, O’Shea, 1996).
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Consider the parametric representation of a surface in R® given by 2 =
t(u? —t*), y = u, and z = u? — t%. The implicitization procedure applied
to this parameterization yields the variety V(z? — y?2% 4+ 23) discussed in
Section 4.1. In this case the surface defined by the variety and the surface
defined by the parametric representation are the same, however, this need
not be the case. The implicitization procedure is guaranteed to find the
smallest variety that contains the image of the polynomial mapping. See
Cox, Little, O’Shea (1996) for details and a definition of smallest.

In this section we apply implicitization to various Bayesian networks
with hidden variables. It is well known that Bayesian networks with hid-
den variables entail both independence and non-independence constraints
on the distribution of the observed variables. In what follows we illustrate
how the implicitization procedure generates such constraints from a para-
metric definition of a Bayesian network with hidden variables. We start by
applying implicitization on a naive Bayesian model generating a previously
unknown constraint on the distributions over the observable variables. Then
we apply implicitization on two other examples generating two constraints
that were previously discovered manually; the tetrad difference constraint
and the Verma constraint. In fact, we have applied this technique to sev-
eral models not discussed in this paper often yielding new constraints on
the distributions over the observable variables. The potential use of such
constraints for model selection is discussed in Section 5.

Finally we note that the implicitation procedure does not handle inequal-
ity constraints. In our examples, we ignore inequality constraints and use
only equality constraints. Thus, the resulting implicit representation cap-
tures only equality constraints on the joint distributions over the observed
variables. We return to this issue when we discuss model selection.

4.4.1 Naive Bayes model

In our first example we consider the mapping from the parameters of the
Bayesian network to the observable joint parameters (described in Sec-
tion 3.2) for the naive Bayes model in Figure 2 where A and B are ternary
variables and H is binary and hidden. The Mathematica code for impliciti-
zation is given in Table 1.

Let w; ; = P(A =1, B = j). The result of implicitization, after algebraic
manipulation, are the constraints that det(w; ;) = 0, i.e. the determinant of
the joint parameters is zero, and that >, ; w; ; = 1.

Unlike the constraint det(w; ;) = 0, the constraints generated by the
implicitization procedure for other Bayesian network models did not seem
to exhibit such a clear syntactic structure.
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Figure 2: Simple naive Bayes model.

(* Naive Bayes model with a binary hidden variable and two observed variables each with three

values

h = p(H=0)

al] = p(a=]j given h=i) except for j=2
bij = p(b=j given h=1) except for j=2
wij = p(a =1, b = })¥)

Eliminate[
w00 == h a00 b0 + (1-
w01 == h a00 b1 + (1-

al0 b10,
alO bll,

all b10,
all bll,

w10 == h a01 b0 + (1-
wll == h a01 b0l + (1-

h)
h)
w02 == h a00 (1-b00-b01) + (1-h) al0 (1-b10-b11),
h)
h)

w12 == h a0l (1-b00-b01) + (1-h) all (1-b10-b11),
w20 == h (1-a00-a01) b00 + (1-h) (1-a10-all) b10,
w21 == h (1-a00-a01) b0l + (1-h) (1-al0-all) b11,

w22 == h (1-a00-a01) (1-b00-b01) + (1-h) (1-a10-al11) (1-b10-b11),

a00,a01,a10,a11,b00,b01,b10,b11,h]

Table 1: Mathematica code for implicitization.
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Figure 4: The p-structure.

4.4.2 Tetrad difference constraints

Consider the Gaussian Bayesian network given in Figure 3 where H is not
observed. We apply the implicitization procedure to the mapping from the
network parameters (i.e., conditional means, regression coefficients, and con-
ditional variances) to the observable parameters (i.e., means and covariance
matrix of the multivariate Gaussian distribution). The results are the fol-
lowing two constraints called tetrad difference constraints;

cov(A, B)cov(C, D) — cov(A,Ceov(B,D) = 0
cov(A, B)eov(C, D) — cov(A, D)cov(B,C') = 0.

Spirtes et al. (1993) discuss this type of constraints and apply them to the
problem of model selection.

4.4.3 The P-structure

The final Bayesian network we consider is given in Figure 4 where all vari-
ables are binary except the hidden variable H which is ternary. For this ex-
ample we map the network parameters to the observable conditional-space
parameters (Section 3.2) using the ordering A < B < C' < D.

The results of implicitization on the mapping described above is a set
of four constraints; two constraints for the independence between A and C
given B and two constraints that we call the Verma constraints. The Verma
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constraints are discussed in detail in (Spirtes et al., 1993). The Verma
constraints are

> (P(BIA=0)P(D|A=0,B,C =0)
5 —P(B|JA=1)P(D|A=1,B,C=0))=0

> (P(BIA=0)P(D|A=0,B,C=1)
5 —P(B|A=1)P(D|A=1,B,C=1))=0.

We note that these constraints also hold when the edge b — ¢ is removed
from the P-structure. The resulting structure is sometimes called the W-
structure.

4.5 Stratified Exponential Families

A stratification of a subset E of R™ is a finite partition {A4;} of E such that
(1) each A; (called a stratum of F) is a smooth d;-dimensional manifold in
R™ and (2)if A; N A; # 0, then A; C A; and d; < d; (frontier condition)
where A; is the closure of A; in R™. See Akbulut and King (1992) for a
more general definition.

A stratification is called semi-algebraicif every stratum is semi-algebraic.
A stratified set is a set that has a stratification. The dimension of a strat-
ified set is dy— the largest dimension of a stratum. A key theorem about
semi-algebraic sets is that each semi-algebraic set has a semi-algebraic strat-
ification (Benedetti and Risler, 1990).

We note that if F is a stratified set and f is a diffeomorphism, then
f(F) is also a stratified set. This proposition, that stratification is preserved
under a diffeomorphism f, is proven as follows. Let {A;} be a stratification
of A. We show that {f(A;)} is a stratification of f(A). Clearly, {f(4;)} is
a partition of f(A). Due to Lemma 1, the image of a smooth manifold A;
under a diffeomorphism f is a smooth manifold f(A;) and so condition (1) of
the definition of stratified sets is satisfied. The frontier condition is satisfied
because A; C A; implies f(A;) C f(A;) which, due to continuity of f, implies
f(A;) C f(A;) as needed for satisfying the frontier condition.

We define a stratified exponential family (SEF) of dimension n as a
subfamily of an exponential family having a natural parameter space N of
order k if its parameter space Ng C N is a n-dimensional stratified set in
RF. Note that SEFS are a proper superset of CEFs.

An examination of all models considered in this paper reveals that Ny
defined by each of these models is a stratified set because it is a semi-
algebraic set or diffeomorphic to one.
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5 Asymptotic Model Selection

An important application of the classification of graphical models and the
implicitation procedure described in the previous sections is model selection.
In fact, the work described in this and previous sections is part of an on-
going project with David Heckerman of identifying and extending results on
asymptotic model selection for directed graphical models with and without
hidden variables (e.g., Geiger et al., 1996). In this section we review asymp-
totic model selection, place our results in this context, and discuss future
work.

A Bayesian approach to model selection is to compute the probability
that the data is generated by a given model via integration over all pos-
sible parameter values with which the model is compatible and to select a
model that maximizes this probability. We call this probability the marginal
likelihood. Although, in principle, this Bayesian approach is appealing, in
practice, it is often impossible to evaluate the integral, even by sampling
techniques, when the number of parameters is large. When the dataset
consists of many cases, asymptotic results for approximating the marginal
likelihood are useful.

Schwarz (1978) considered the problem of evaluating the marginal like-
lihood when a model is an affine subspace of the natural parameter space of
an exponential family. He derived an asymptotic formula for the marginal
likelihood, P(Data|Model) = L(A)N — d/2log N 4+ O,(1), where L is the
likelihood, g is the maximum likelihood estimator, d is the dimension of the
affine subspace, and NN is the sample size. This formula has become known
as the Bayesian Information Criteria (BIC). Its plausibility has also been
argued using the minimum description length (MDL) principle. We note
that Schwarz’s original proof applies to the undirected graphical models dis-
cussed in Section 2.2 because these models define a linear subspace of the
natural parameter space.

In this section we discuss a wider context in which BIC can be justified as
an asymptotic Bayesian procedure for selecting models from an exponential
family. First, we summarize Haughton’s (1988) results for model selection
when a model is a smooth manifold (not necessarily affine) of the natural
parameter space of an exponential family. Then we discuss how to use con-
straints and Haughton’s results for model selection. Finally, we highlight the
difference between CEFs and SEFs and discuss future research directions.

5.1 Model selection among CEFs

Haughton (1988) established, under some regularity assumptions, among
other results, that BIC is an O,(1) asymptotic approximation of the
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marginal likelihood for curved exponential families. The main regularity as-
sumption of her work, and of Schwarz’s work, is that the prior distribution
expressed in a local coordinate system near the maximum likelihood solution
is bounded and bounded away from zero. Other regularity assumptions are
used to insure that with sufficient data, a unique model is selected with high
probability. When these assumptions are acceptable, Haughton’s results on
model selection apply to all graphical models discussed in Section 3 since
these graphical models have been shown to be curved exponential families.
In particular these results on model selection apply to Bayesian networks
with several families of local distributions including decision trees and leaky
noisy-or distributions for which a closed-form formula for the marginal like-
lihood is not known.

5.2 Model selection using constraints

Graphical models with hidden variables can entail independence and non-
independence constraints on the distribution of the observable variables.
Since these constraints vary from one model to another they can be used to
distinguish between models. Moreover, since these constraints are over the
observable variables, their fit to data can be measured directly with statis-
tical tests. In this section we discuss how to use the constraints produced
by implicitization for model selection. We concentrate on two examples;
the tetrad difference constraints (Section 4.4.2) for which classical statis-
tical techniques have been established, and the constraints implied by the
P-structure (Section 4.4.3) for which we adapt BIC.

Gaussian Bayesian networks with hidden variables entail tetrad differ-
ence constraints. A classical test of the tetrad difference is provided by a
Wishart (1928) significance test. Bollen and Ting (1993) have used these and
similar distribution free tests for evaluating the quality of hidden variable
models. Spirtes has provided a graphical characterization and a method for
calculating tetrad difference constraints from Gaussian Bayesian networks
with hidden variables (see, Spirtes et al., 1993). By calculating the set of
tetrad difference constraints that are implied by each of a set of compet-
ing structures and using the Wishart significance test one can select models
from the set of competing structures. A procedure based on this character-
ization and the Wishart test is implemented in Tetrad Il (Scheines, Spirtes,
Glymour, and Meek, 1994).

Consider now the situation where we are interested in distinguishing be-
tween the P-structure in Figure 4, denoted by my, and the structure ms in
Figure 5; perhaps we are interested in whether or not B is a direct cause of
D. Note that the two structures cannot be distinguished by independence
facts alone since they have the same entailed independence facts on the ob-
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Figure 5: An alternative structure.

served variables. The model mj is a curved exponential family (Section 3.2),
however, m; may not be a CEF (it remains an open question to prove that
the P-structure is a CEF when H is ternary) and so applying BIC has not
vet been justified.

As an alternative, we consider the variety defined by the constraints over
the observable variables implied by my. Since the Jacobian matrix of this
variety has no algebraic singularities, and due to Theorem 1, we conclude
that the set of distributions satisfying these four constraints define a curved
exponential family which we denote by 711. Note that the set of distributions
parameterized by 7 is a superset of the distributions parameterized by m;.

Since both iy and ms9 are curved exponential families we can use BIC
to select between these two models. However, since my C 711, we can only
definitively reject mq in favor of my. If the selection criterion favors my
there would be some evidence in favor of my.

5.3 Model selection among SEFs

The difficulty in comparing models my and msy in the previous section and
the appeal to a super model 7y highlights two research questions that need
to be addressed. First, whether the graphical models described in Section 4
are CEFs, and second, whether BIC is a valid asymptotic Bayesian rule for
selecting models from a stratified exponential family.

We believe that many models described in Section 4 are not CEFs. In
particular, with David Heckerman and Henry King, we have examined the
Naive Bayesian model with binary observable variables and we believe that
this model is not a CEF. Our experience in analyzing whether or not a para-
metrically defined graphical model is a curved exponential family suggests
that the assumption that models describe smooth manifolds is difficult to
justify. It is clear, however, that this assumption simplifies many claims be-
cause it guarantees the existence of a well-defined tangent space associated
with each point in the parameter space.

A question arises, then, whether BIC is valid as an asymptotic proce-
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dure for Stratified Exponential Families. The proof of its validity for CEFs
in (Haughton, 1988) uses inherent properties of smooth manifolds and so
this proof does not extend to SEFs. However, we believe, and are working
with David Heckerman to show, that BIC is valid for stratified exponential
families for various definitions of stratified sets.
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