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AbstractWe provide a classi�cation of graphical models according to theirrepresentation as subfamilies of exponential families. Undirected graph-ical models with no hidden variables are linear exponential families(LEFs), directed acyclic graphical models and chain graphs with nohidden variables, including Bayesian networks with several families oflocal distributions, are curved exponential families (CEFs) and graph-ical models with hidden variables are strati�ed exponential families(SEFs). An SEF is a �nite union of CEFs satisfying a frontier con-dition. In addition, we illustrate how one can automatically generateindependence and non-independence constraints on the distributionsover the observable variables implied by a Bayesian network with hid-den variables. The relevance of these results for model selection isexamined.1 IntroductionA graphical model is a family of probability distributions. The set of dis-tributions associated with a graphical model are usually de�ned in one ofthe following two ways. Implicitly, by a set of constraints that the dis-tributions must satisfy, or, parametrically (explicitly), by a mapping froma set of parameters to a set of distributions. Graphical models withouthidden variables can be de�ned implicitly using a set of independence con-straints. Graphical models with hidden variables, on the other hand, areusually de�ned parametrically because the non-independence constraints onthe distributions over the observable variables are not easily established. Inthis paper, we discuss a procedure for identifying non-independence (andindependence) constraints true of the distributions in a parametrically de-�ned family. In addition, we provide a classi�cation of graphical modelsaccording to their representation as subfamilies of exponential families. Therelevance for model selection of both the procedure and the classi�cation isexamined.The properties of linear exponential families (LEFs) have been exten-sively studied in statistics. We begin by reviewing LEFs and demonstratingthe well-known fact that undirected graphical models with no hidden vari-ables are LEFs (e.g., Lauritzen, 1996). This result provides access to theproperties of these families. In particular, with respect to model selection,Schwarz (1978) established, under some regularity assumptions, that theBayesian Information Criteria (BIC) is a valid asymptotic rule for selectingmodels from a collection of linear exponential families.We show that directed acyclic graphical models and chain graphs with nohidden variables are curved exponential families (CEFs). Roughly, a curved1



exponential family is a set of distributions such that (1) each member of theset is an exponential family distribution and (2) the family corresponds to asmooth manifold. Showing that some graphical models are CEFs providesaccess to the properties of these families which have been studied in thestatistics community (e.g., Kass and Vos, 1997). In particular, Haughton(1988) established, under some regularity assumptions, that BIC is a validasymptotic rule for selecting models from a set of curved exponential fam-ilies. Asymptotic techniques are not needed for choosing between multi-nomial Bayesian networks because a closed-form formula for the marginallikelihood P (datajmodel) is known for these classes (Cooper and Herskovits,1992). Such a formula is not known for various Bayesian networks includingthose using noisy or-gates or causal independence models and so our classi-�cation of these graphical models as CEFs justi�es using BIC for selectingmodels within these classes.We also show that graphical models with hidden variables are strati�edexponential families (SEFs). An SEF is a �nite union of CEFs satisfyinga frontier condition. We show that SEFs arise naturally from both implic-itly de�ned and parametrically de�ned graphical models. With respect tomodel selection, Geiger, Heckerman, and Meek (1996) note that althoughresearchers have been using BIC for selecting models among Bayesian net-works with hidden variables, this methodology has not yet been establishedas an asymptotic approximation of a Bayesian procedure as it has for CEFs.Finally, we discuss a procedure called implicitization that takes a para-metrically de�ned graphical model and generates both independence andnon-independence constraints. We illustrate the implicitization procedureon several Bayesian networks with hidden variables �nding both new andpreviously known constraints on the distributions over the observable vari-ables. Since these constraints vary from one model to another they can beused to distinguish between models. For instance, when we applied implic-itization to a particular Gaussian Bayesian network we generated the wellknown tetrad di�erence constraints which have been used for model selec-tion and evaluation by several researchers (see, e.g., Spirtes, Glymour, andScheines, 1993).2 Linear Exponential FamiliesExponential families of probability distributions play an important role inthe study of statistics. This class is essentially the only class of distributionsthat has �nite dimensional su�cient statistics. In this background sectionwe give a de�nition of linear exponential families (LEFs) and discuss thewell-known representation of undirected graphical models as LEFs (e.g.,2



Lauritzen, 1996).2.1 De�nition of Linear Exponential FamiliesA family (or model) is a set of probability density functions. A probabilitydensity in an exponential family is given byp(xj�) = e<�;t(x)>� (�) (1)where x is an element of a sample space X with a dominating measure � andt(x) is a su�cient statistics de�ned on X taking values in Rk with an innerproduct < :; : >. The sample space X is typically either a discrete set, Rn,or a product of these. In the later case, in this paper, the product samplespace is viewed as a �nite set of variables each having a domain which iseither �nite or R. The quantity  (�) is the normalization constant.Every probability distribution for a �nite sample space X belongs toan exponential family. For example, a sample space that consists of fouroutcomes can be written in the form of Eq. (1) by choosing t(x) and � asfollows: t(x) = (t1(x); t2(x); t3(x)) where ti(x) = 1 if x is outcome i, 1 � i �3, and zero otherwise, and �i = log(wi=w0) where wi is the probability ofoutcome i, 1 � i � 3, and w0 = 1 �P3i=1 wi is the probability of the forthoutcome.When the vector � has k coordinates and when p(xj�) cannot be repre-sented with a parameter vector smaller than k, then the representation isminimal and the order (or dimension) of this family is k, and the parametersare called natural parameters. It is known that this order is unique for eachfamily. The natural parameter space is given byN = f� 2 Rkj Z et(x)�� (�)d�(x) <1gThe set of probability distributions having the form (1) are denoted by S.If for each � in N there exists P� in S, then S is said to be full exponentialfamily; if, in addition, N is an open subset of Rk, then S is said to be a linearexponential family. The name linear exponential family draws from thefact that the log densities form a vector space over R were the coordinatesof t(x), called the canonical statistics, are the basis of the vector spaceand its dimension is the order of the family. Linear exponential familiesinclude many common distribution functions, such as multivariate Normaland multinomial distributions. (A linear exponential family in a minimalrepresentation is often called a regular exponential family).A subfamily of linear exponential family is a subset S0 of S. A sub-family is usually described by a mapping w ! �(w) which de�nes S0 via3



N0 = f�(w)jw 2 �g and where � is the domain of w. When � is a linearmapping of rank p, and � is an open set, a new linear exponential family isformed of order k � p. In other words, a linear transformation � imposes pindependent linear constraints on the parameters and these constraints canbe used to reparameterize the family with k� p natural parameters. In Sec-tions 3 and 4 we discuss exponential families that are formed by non-lineartransformations �.2.2 Undirected graphical modelsIn this subsection we discuss the representation of undirected graphical mod-els as linear exponential families.Let G be an undirected graph such that each vertex i in the vertexset corresponds to a variable xi. We consider three cases. If all xi arediscrete, if all are continuous and their joint density is a multivariate non-singular Gaussian, and if some are continuous and some are discrete with ajoint Conditional Gaussian (CG) distribution. An undirected graphical modelw.r.t. G is the set of probability distribution functions such that all of thesaturated independence facts implied by the graph hold; that is xi and xjare conditionally independent given the remaining variables whenever nodesi and j are not adjacent in G. Since multinomial, multivariate Gaussian andCG distributions over a �xed set of variables belong to a linear exponentialfamily and since saturated independence constraints are linear restrictionswhen expressed in terms of the natural parameters, undirected graphicalmodels de�ne linear exponential families. We now explicate the three cases.AMultinomial undirected graphical model is a family of probability distri-butions over a �nite set U of variables each having a �nite domain such thatfor some set of pairs of indices f(i; j)g, xi and xj are conditionally indepen-dent given U n fxi; xjg. Consider, for example, the graph given by a cycle ofsize 4 with variables x1; : : : ; x4 arranged clockwise. Then the independenceconstraints imposed by this graphical model are that x1 and x3 are condi-tionally independent given fx2; x4g, and that x2 and x4 are conditionallyindependent given fx1; x3g. Suppose, for simplicity, that the four randomvariables are binary (having exactly two states) and denote by wi the prob-ability of the joint ith state of the four binary variables (1 � i � 15) wherew0 = 1 �Pwi. Each independence constraint translates to 4 equations ofthe form wiwj = wkwl. Dividing each equation by (w0)2 and taking the log,yields 8 linear equations in terms of the natural parameters �i = logwi=w0.In general, multinomial graphical models are log-a�ne models which areLEFs (Lauritzen, 1996, pp 76).A Gaussian undirected graphical model is a family of multivariate non-singular Gaussian distributions in which some of the o�-diagonal elements tij4



of the precision matrix (the inverse of the covariance matrix) are set to zero.Note that setting tij to zero is equivalent to requiring that variable xi andxj are conditionally independent given the remaining variables. Recallingthat a multivariate non-singular Gaussian distribution belongs to a linearexponential family and the fact that setting the o�-diagonal elements ofthe precision matrix to zero is equivalent to placing linear restrictions onthe natural parameter space yields the conclusion that Gaussian undirectedgraphical models are linear exponential families. For details see (Lauritzen,1996, pp. 124{132).A Conditional Gaussian undirected graphical model is a family of Con-ditional Gaussian (CG) distributions over a set of discrete and continuousvariables de�ned by a set of saturated independence constraints stating thatvariables i and j are conditionally independent given the remaining vari-ables. That CG undirected graphical models can be represented as linearexponential families is shown in Lauritzen and Wermuth (1989). See also,Lauritzen (1996, pp. 171{175).3 Curved Exponential FamiliesA subfamily of a linear exponential family S0 � S is usually described bya mapping w ! �(w) which de�nes S0 via N0 = f�(w)jw 2 �g and where� is an open set. A curved exponential family of dimension n is de�nedto be a subfamily of an exponential family of order k such that N0 is an-dimensional manifold in Rk. In this section we provide the de�nitionsof n-dimensional manifolds and show that Bayesian networks correspond tosmooth manifolds and are therefore curved exponential families (and notlinear exponential models). Conditional-Gaussian Bayesian networks andConditional-Gaussian chain graphs are also curved exponential models.Curved exponential families were studied by Efron who explored geomet-rical interpretation of various statistical measures using these families (e.g.,Efron, 1978). A comprehensive treatment of this topic is given by Kassand Voss (1997). We study curved exponential models because the stan-dard asymptotic theory is valid for these models. In particular Haughton's(1988) results on model selection applies to all graphical models discussedin this and the previous section.3.1 ManifoldsA di�eomorphism f : U � Rn ! Rm is a smooth (C1) 1-1 function hav-ing a smooth inverse. A subset M of Rn is called a k-dimensional smoothmanifold in Rn if for every point x 2 M there exists an open set U in Rn5



containing x and a di�eomorphism f : U \M ! Rk. We sometime refer toM as a k-dimensional manifold or just as a manifold. Since composition ofdi�eomorphisms is a di�eomorphism, we get the following proposition.Proposition 1 If g : A � Rn ! B � Rn is a di�eomorphism, then M � Ais a manifold if and only if g(M) is a manifold and N � B is a manifold ifand only if g�1(N) is a manifold.Another way to verify whether a subset of Rn is a manifold is given bythe following Theorem (e.g., Spivak, 1965).Theorem 1 Let A � Rm be open and let h : A ! Rm�n be a smoothfunction such that h0(x) has rank m � n whenever h(x) = 0. Then h�1(0)is a n-dimensional manifold in Rm.Note that the rank of the Jacobian matrix h0 in Theorem 1 is m � n ifh has the form hi(x1; : : : ; xm) = xn+i � fi(x1; : : : ; xn) for i = 1; : : : ; m � nwhere fi are smooth functions because in this case the (m�n)�m matrix h0factors as [Q(m�n)�njIm�n] where Im�n is the identity matrix of size m�n.3.2 Multinomial Bayesian networksA Bayesian network B(�; n;m) is a mapping Bn;m : � � Rn ! Rm where nis the number of network parameters,m the number of observable parametersand where � and Bn;m have speci�c form depending on the type of theBayesian network considered.AMultinomial Bayesian network B(�; n;m) is a Bayesian network where�, n, m and Bn;m are given as follows (Pearl, 1988). Let (x1; : : : ; xk) bean ordered sequence of discrete random variables each having a �nite set ofvalues. Let pi be a subset of fx1; : : : ; xi�1g, called the parents set of xi, andlet ui = fx1; : : : ; xi�1g n pi. Let xji , pji and uji be the jth value of xi, pi andui with j � 0. Let jxij, jpij and juij be the domain sizes respectively. Thecomponents of Bn;m : � � Rn ! Rm are de�ned by �xai jpbi ;uci = �xai jpbi , forall a > 0, b � 0, and c � 0. Note that n =Pi(jxij�1)jpij andm =Pi(jxij�1)jpijjuij = (Qi jxij)�1. The set � is the cartesian product of �i;j over i andj where �i;j = f(�x1i jpji ; : : : ; �xa�1i jpji )j0 < �xji jpji < 1;Pk>0 �xki jpji < 1g. Thecomponents of the image of � under Bn;m are called the conditional-spaceparameters.Theorem 2 For every Multinomial Bayesian network B(�; n;m) the setBn;m(�) is an n-dimensional manifold in Rm.6



Proof: De�ne the components of a function h by hai;bi ;ci(�) = �xai jpbi ;uci ��xai jpbi ;u0i where a > 0, b � 0 and c > 0. Thus, h hasPi(jxij�1)jpij(juij�1) =m�n components. Note that h�1(0) = Bn;m(�). Also note that h0 has theform [Q(m�n)�njIm�n] where Im�n is the identity matrix and so h0 has fullrank. Thus, according to Theorem 1, Bn;m(�) is a n-dimensional manifoldin Rm. 2A second de�nition of a multinomial Bayesian network B̂ is obtained byde�ning B̂n;m with the equations: wa1;:::;ak = Qki=1 �xbi jpci where b and c arevalues of xi and pi obtained by the projection of (a1; : : : ; ak) to the coordi-nates that correspond to these variables. The mapping Bn;m(�)! B̂n;m(�)is a di�eomorphism for positive � values and so the conclusion of Theorem 2remains valid under this de�nition as one would expect. The components ofthe image of � under B̂n;m are called the joint-space parameters.The practical signi�cance of Bayesian networks stems, among other rea-sons, from the small number of network parameters compared to the numberof joint-space parameters. When the number of network parameters is stilltoo large because jpij is too large for some i's, additional factorizations areusually introduced. These include decision tree and decision graph models(Friedman and Goldszmidt 1996; Chickering, Meek, and Heckerman, 1997),noisy-or gates, leaky noisy-or gates, max-gates and causal independencemodels (Pearl, 1988, Henrion, 1987, and Heckerman and Breese, 1996).These models share the following characteristic.For each variable xi in the Bayesian network, a subset of ki states of piare designated as reference states. The components of Bn;m : � � Rn ! Rmare de�ned by �xai jpbi ;uci = fi(�xai jp0i ; : : : ; �xai jpki�1i ) for all a > 0, b � ki, andc � 0 where fi are smooth functions. We call Bayesian networks de�ned inthis way Bayesian networks with explicit local constraints. The number ofnetwork parameters is given by n = Pi(jxij � 1)ki where ki is often muchsmaller than pi.When the number of reference states is zero, namely each fi is the con-stant function, we get a multinomial Bayesian network. In the case of anoisy-or model the reference states are the states where exactly one parentis on and the other parents are o�. For leaky noisy-or model the referencestates also include the state when all the parents of xi are o�. For deci-sion tree models, the reference states are those which correspond to a pathfrom the root to a leaf in the decision tree; all parents on the path are at aspeci�ed state and all those not on the path are at state zero.Theorem 3 For every Bayesian network B(�; n;m) having explicit localconstraints the set Bn;m(�) is an n-dimensional manifold in Rm.7



Proof: Suppose the local constraints are given by fi. De�ne the compo-nents of a function h byhai;bi;ci(�) =�xai jpbi ;uci � fi(�xai jp0iu0i ; : : : ; �xai jpki�1i u0i )where (a > 0, b � 0, c > 0) or (a > 0, b � ki, c = 0). Note that h hasPi(jxij�1) [jpij(juij � 1) + (jpij � ki)] = m�n components. The conclusionnow follows from Theorem 1. 2Recall that for a multinomial distribution with u states each associatedwith a positive parameter wi such that Piwi = 1, the map �i = logwi=w0,i = 1; : : : ; u � 1 de�nes a di�eomorphism between the natural parameterspace � and the multinomial parameters fwigu�10 . Consequently, due toTheorem 2, we have established the following claim.Theorem 4 Every Bayesian network B(�; n;m) with explicit local con-straints is a curved exponential model of dimension n.We note that the results of Heckerman and Meek (1997), while appliedto a di�erent class of models, essentially show that multinomial Bayesiannetworks are CEFs.3.3 Gaussian graphical modelsThe parameters of a multivariate non-singular Gaussian distribution canbe described in various ways. The most common representation is by theelements of a covariance matrix � and a vector of means �. A second rep-resentation is by a precision matrix ��1 and �. These two representationsare related by the di�eomorphism f : � ! ��1. A third representationis constructed as follows. Assign a total order to the k variables. Specifythe regression coe�cients bi;j of xi given x1; : : : ; xi�1, and the conditionalvariance and conditional means of xi given x1; : : : ; xi�1. The third represen-tation is called the regression parameterization and is related to the secondrepresentation by a well-known di�eomorphism (e.g., Shachter and Kenley,1989).A Gaussian Bayesian network is a family of multivariate non-singularGaussian distributions in which some bij are set to zero (Shachter and Ken-ley, 1989). A Gaussian undirected graphical model was de�ned in Section 2.2to be a family of multivariate non-singular Gaussian distributions in whichsome of the o�-diagonal elements of the precision matrix are set to zero.Both models de�ne a map Bn;m : � � Rn ! Rm. It follows from Theo-rem 1 that Bn;m(�) is a n-dimensional manifold in Rm since the components8



of h can be de�ned as projections and so h0 has the form [Q(m�n)�njIm�n]where Im�n is the identity matrix and Q is a matrix of zeros.The di�erence between the two models is that the restrictions formedby setting elements of the precision matrix to zero de�ne linear constraintsin the natural parameter space and therefore Gaussian undirected graphicalmodels are also LEFs while the restrictions set by a Gaussian Bayesiannetwork are not linear in the natural parameter space. To demonstrate thelatter fact we note that the restriction b31 = 0 imposed by the GaussianBayesian network x1 ! x2  x3 can, in terms of the precision parameters,be written as t1;2t3;3 = t1;3t2;3 and thus is not linear in the natural parameterspace. See Geiger and Heckerman (1994) for the relationships between ti;jand bi;j for this three-node model.We note that Spirtes, Richardson, and Meek (1997) show that GaussianMAGs de�ne smooth manifolds. Since Gaussian MAGs are a generaliza-tion of Gaussian Bayesian networks, their results also imply that GaussianBayesian networks de�ne smooth manifolds.4 Semi-algebraic sets, Implicitation, and Strati-�ed Exponential FamiliesIn this section we provide a de�nition of semi-algebraic sets and then showthat graphical models, whether implicitly or parametrically de�ned, cor-respond to semi-algebraic sets. We note that semi-algebraic sets de�nea union of smooth manifolds rather than a single smooth manifold as inSection 3. We then describe a process called implicitization that takes agraphical model de�ned parametrically and generates both independenceand non-independence constraints over the observable variables. We illus-trate the implicitization process on several Bayesian networks with hiddenvariables. Finally, we de�ne strati�ed exponential families (SEFs), a gen-eralization of curved exponential families, and show that graphical modelsrepresenting Conditional-Gaussian, Gaussian, or multinomial distributionswith or without hidden variables are SEFs.4.1 Semi-algebraic setsThe set of all polynomials in x1; : : : ; xn with real coe�cients is denotedby R[x1; : : : ; xn]. Let q1; : : : ; qt be polynomials in R[x1; : : : ; xn]. A varietyV(q1; : : : ; qt) is the set f(x1; : : : ; xn) 2 Rnjqi(x1; : : : ; xn) = 0 for all 1 � i �tg. A variety is also called an algebraic set.A subset V of Rn is called a semi-algebraic set if V = [si=1 \rij=1 fx 2RnjPi;j(x),ij 0g were Pij are polynomials in R[x1; : : : ; xn] and ,ij is one9



of the three comparison operators f<;=; >g. Loosely speaking, a semi-algebraic set is simply a set that can be described with a �nite number ofpolynomial equalities and inequalities. A variety is clearly a semi-algebraicset.A map f : X ! Y where X � Rn and Y � Rm are semi-algebraic sets,is called semi-algebraic if the graph of f is a semi-algebraic set of Rn+m.Note that if f is a polynomial map then f is a semi-algebraic map becauseits graph can be described by m polynomial equalities: yj � fj(x) = 0,where 1 � j � m. A key result about semi-algebraic sets is given by theTarski-Seidenberg theorem (see, e.g., Benedetti and Risler, 1990).Theorem 5 (Tarski-Seidenberg) Let f : X ! Y be a semi-algebraicmap. Then the image f(X) � Y is a semi-algebraic set.Now we examine the connection between varieties and smooth manifolds.To show that a variety is a smooth manifold one could apply Theorem 1where the components of the function h are the polynomials that de�ne thevariety. A point of a variety at which the rank of this Jacobian drops belowits maximal rank is called an algebraic singularity. We can apply Theorem 1only if there are no algebraic singularities. Consider, for example, the varietyV(x2� y2z2+ z3) which is plotted in Figure 1. The Jacobian matrix of thisvariety is given by (2x;�2yz2; 3z2�2zy2) and thus every point on the y-axisis an algebraic singularity.This variety is not a smooth manifold because, locally, at each point ofthe y-axis other than the origin the surface looks like the intersection of twosmooth manifolds. To prove that the variety V(x2 � y2z2 + z3) is not asmooth manifold it su�ces to observe that as we approach any point on they-axis other than the origin we have two tangent planes where each planecontains a tangent vector that is not spanned by the other tangent plane.One might hope that if there are algebraic singularities in a variety then thesurface is not a manifold, however, there are examples of smooth manifoldsthat have algebraic singularities (e.g., the origin in V((x2 + y2)(y � x2)),Kendig, 1977). In general, to prove that a variety is not a manifold onemust examine the particular de�ning polynomials.In addition, as our example suggests, if one removes all singular pointsfrom a variety, the remaining set is a union of smooth manifolds. ThisTheorem is due to Whitney (See, e.g., Milnor, 1968).Another fact about semi-algebraic sets is that they admit a strati�cation.We will de�ne this concept in Section 4.5 but the idea can be illustrated withthe variety V(x2 � y2z2 + z3). This variety can be described as a union ofseveral 2-dimensional smooth manifolds along with a 1-dimensional smoothmanifold| the y-axis. These manifolds de�ne a strati�cation of the variety.10
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Figure 1: A plot of part of the variety V(x2 � y2z2 + z3).4.2 Implicit representationsWhen the set of distributions associated with a graphical model is given im-plicitly, as with graphical models without hidden variables, it is straightfor-ward to determine whether or not the model corresponds to a semi-algebraicset. In this section we show that all graphical models de�ned in previous sec-tions and also other types of graphical models correspond to semi-algebraicsets. In the next subsection we examine graphical models with hidden vari-ables.The set of distributions associated with a graphical model with structureg is the set of distributions that satisfy all the independence facts entailedby a Markov condition with respect to the structure g. For multinomial andGaussian graphical models an independence fact is expressible as a �niteset of polynomial equalities. Combined with the inequalities which statethat multinomial parameters are positive, and that variances are positive,respectively, the resulting graphical model corresponds to a semi-algebraicset.There are several classes of implicitly de�ned graphical models thatcan accommodate a combination of discrete and continuous variables usingConditional-Gaussian distributions. Among these models, in addition to allof the models in the previous sections, are AMP chain graphs (Andersson,Madigan, and Perlman, 1996), and reciprocal graphs (Koster, 1997). Thesegraphical models all correspond to semi-algebraic sets because independencefacts in CG-distributions are expressible as polynomial equalities.11



4.3 Parametric representationsIn this section we discuss graphical models with hidden variables whichare usually de�ned parametrically. In particular we show that multinomialBayesian networks with hidden variables correspond to semi-algebraic sets.We note that a similar claim holds for any graphical model representingCG-distributions of which we are aware.A Multinomial Bayesian network B(�; n;m) with hidden variables isa Bayesian network where �, n, m and Bn;m are given as follows. Let(x1; : : : ; xk) be an ordered sequence of discrete random variables each havinga �nite set of values. Partition this set of variables into two disjoint non-empty sets H and X . The variables in H are hidden. Those in X areobservable. For each xi de�ne two disjoint subsets of fx1; : : : ; xi�1g. Theobservable parents pi � X and the hidden parents hi � H .The components of Bn;m : � � Rn ! Rm are de�ned by wa1;:::;ak =PdQki=1 �xbi jpcihdi where ai are not all zero and b; c; d are values of xi; pi; hiobtained by the projection of (a1; : : : ; ak) to the coordinates that correspondto xi; pi and hi, respectively. As before, the domain � of Bn;m is the carte-sian product of sets of the form f(t1; : : : ; tjxij�1)j0 < ta < 1;Pa ta < 1g.Note that n =Pki=1(jxij � 1)jpijjhij and m = Qki=1 jxij � 1.The Tarski-Seidenberg theorem guarantees that for a multinomialBayesian network with hidden variables, Bn;m(�) is a semi-algebraic setbecause it is the image of a semi-algebraic set under a polynomial mapping.Similarly, we note that Gaussian Bayesian network with hidden variablesalso correspond to semi-algebraic sets due to their parametric de�nition viaa polynomial mapping called the trek-rule (see, e.g., Spirtes et al. 1993).Consequently, the image of these graphical models can be described with aset of polynomial equalities and polynomial inequalities.4.4 ImplicitizationAs discussed in previous sections, the image of a parametric de�nition isa semi-algebraic set. The process of taking a parametric de�nition of asemi-algebraic set and �nding a variety (an implicit de�nition) containingthe semi-algebraic set is called implicitization.1 The implicitization proce-dure is implemented in several software packages. In our examples we useMathematica.1The implicitization procedure is often implemented in software packages by usingthe Buchberger algorithm for �nding Groebner Bases. This algorithm is applied to thepolynomial parametric de�nition. The polynomials in the resulting basis that do notcontain any of the parameters are the de�ning polynomials for the variety (See Cox,Little, O'Shea, 1996). 12



Consider the parametric representation of a surface in R3 given by x =t(u2 � t2), y = u, and z = u2 � t2. The implicitization procedure appliedto this parameterization yields the variety V(x2 � y2z2 + z3) discussed inSection 4.1. In this case the surface de�ned by the variety and the surfacede�ned by the parametric representation are the same, however, this neednot be the case. The implicitization procedure is guaranteed to �nd thesmallest variety that contains the image of the polynomial mapping. SeeCox, Little, O'Shea (1996) for details and a de�nition of smallest.In this section we apply implicitization to various Bayesian networkswith hidden variables. It is well known that Bayesian networks with hid-den variables entail both independence and non-independence constraintson the distribution of the observed variables. In what follows we illustratehow the implicitization procedure generates such constraints from a para-metric de�nition of a Bayesian network with hidden variables. We start byapplying implicitization on a naive Bayesian model generating a previouslyunknown constraint on the distributions over the observable variables. Thenwe apply implicitization on two other examples generating two constraintsthat were previously discovered manually; the tetrad di�erence constraintand the Verma constraint. In fact, we have applied this technique to sev-eral models not discussed in this paper often yielding new constraints onthe distributions over the observable variables. The potential use of suchconstraints for model selection is discussed in Section 5.Finally we note that the implicitation procedure does not handle inequal-ity constraints. In our examples, we ignore inequality constraints and useonly equality constraints. Thus, the resulting implicit representation cap-tures only equality constraints on the joint distributions over the observedvariables. We return to this issue when we discuss model selection.4.4.1 Naive Bayes modelIn our �rst example we consider the mapping from the parameters of theBayesian network to the observable joint parameters (described in Sec-tion 3.2) for the naive Bayes model in Figure 2 where A and B are ternaryvariables and H is binary and hidden. The Mathematica code for impliciti-zation is given in Table 1.Let wi;j = P (A = i; B = j). The result of implicitization, after algebraicmanipulation, are the constraints that det(wi;j) = 0, i.e. the determinant ofthe joint parameters is zero, and that Pi;j wi;j = 1.Unlike the constraint det(wi;j) = 0, the constraints generated by theimplicitization procedure for other Bayesian network models did not seemto exhibit such a clear syntactic structure.13
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Figure 2: Simple naive Bayes model.(* Naive Bayes model with a binary hidden variable and two observed variables each with threevaluesh = p(H=0)aij = p(a=j given h=i) except for j=2bij = p(b=j given h=i) except for j=2wij = p(a = i, b = j)*)Eliminate[w00 == h a00 b00 + (1-h) a10 b10,w01 == h a00 b01 + (1-h) a10 b11,w02 == h a00 (1-b00-b01) + (1-h) a10 (1-b10-b11),w10 == h a01 b00 + (1-h) a11 b10,w11 == h a01 b01 + (1-h) a11 b11,w12 == h a01 (1-b00-b01) + (1-h) a11 (1-b10-b11),w20 == h (1-a00-a01) b00 + (1-h) (1-a10-a11) b10,w21 == h (1-a00-a01) b01 + (1-h) (1-a10-a11) b11,w22 == h (1-a00-a01) (1-b00-b01) + (1-h) (1-a10-a11) (1-b10-b11),a00,a01,a10,a11,b00,b01,b10,b11,h]Table 1: Mathematica code for implicitization.14
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Figure 3: Latent factor model.
D


H


C
B
A
 Figure 4: The p-structure.4.4.2 Tetrad di�erence constraintsConsider the Gaussian Bayesian network given in Figure 3 where H is notobserved. We apply the implicitization procedure to the mapping from thenetwork parameters (i.e., conditional means, regression coe�cients, and con-ditional variances) to the observable parameters (i.e., means and covariancematrix of the multivariate Gaussian distribution). The results are the fol-lowing two constraints called tetrad di�erence constraints;cov(A;B)cov(C;D)� cov(A;C)cov(B;D) = 0cov(A;B)cov(C;D)� cov(A;D)cov(B;C) = 0:Spirtes et al. (1993) discuss this type of constraints and apply them to theproblem of model selection.4.4.3 The P-structureThe �nal Bayesian network we consider is given in Figure 4 where all vari-ables are binary except the hidden variable H which is ternary. For this ex-ample we map the network parameters to the observable conditional-spaceparameters (Section 3.2) using the ordering A < B < C < D.The results of implicitization on the mapping described above is a setof four constraints; two constraints for the independence between A and Cgiven B and two constraints that we call the Verma constraints. The Verma15



constraints are discussed in detail in (Spirtes et al., 1993). The Vermaconstraints are XB (P (BjA = 0)P (DjA = 0; B;C = 0)�P (BjA = 1)P (DjA = 1; B;C = 0)) = 0XB (P (BjA= 0)P (DjA = 0; B;C = 1)�P (BjA= 1)P (DjA = 1; B;C = 1)) = 0:We note that these constraints also hold when the edge b ! c is removedfrom the P -structure. The resulting structure is sometimes called the W -structure.4.5 Strati�ed Exponential FamiliesA strati�cation of a subset E of Rm is a �nite partition fAig of E such that(1) each Ai (called a stratum of E) is a smooth di-dimensional manifold inRm and (2) if Aj \ Ai 6= ;, then Aj � Ai and dj < di (frontier condition)where Ai is the closure of Ai in Rm. See Akbulut and King (1992) for amore general de�nition.A strati�cation is called semi-algebraic if every stratum is semi-algebraic.A strati�ed set is a set that has a strati�cation. The dimension of a strat-i�ed set is d1| the largest dimension of a stratum. A key theorem aboutsemi-algebraic sets is that each semi-algebraic set has a semi-algebraic strat-i�cation (Benedetti and Risler, 1990).We note that if E is a strati�ed set and f is a di�eomorphism, thenf(E) is also a strati�ed set. This proposition, that strati�cation is preservedunder a di�eomorphism f , is proven as follows. Let fAig be a strati�cationof A. We show that ff(Ai)g is a strati�cation of f(A). Clearly, ff(Ai)g isa partition of f(A). Due to Lemma 1, the image of a smooth manifold Aiunder a di�eomorphism f is a smooth manifold f(Ai) and so condition (1) ofthe de�nition of strati�ed sets is satis�ed. The frontier condition is satis�edbecause Ai � Ai implies f(Ai) � f(Ai) which, due to continuity of f , impliesf(Ai) � f(Ai) as needed for satisfying the frontier condition.We de�ne a strati�ed exponential family (SEF) of dimension n as asubfamily of an exponential family having a natural parameter space N oforder k if its parameter space N0 � N is a n-dimensional strati�ed set inRk. Note that SEFs are a proper superset of CEFs.An examination of all models considered in this paper reveals that N0de�ned by each of these models is a strati�ed set because it is a semi-algebraic set or di�eomorphic to one.16



5 Asymptotic Model SelectionAn important application of the classi�cation of graphical models and theimplicitation procedure described in the previous sections is model selection.In fact, the work described in this and previous sections is part of an on-going project with David Heckerman of identifying and extending results onasymptotic model selection for directed graphical models with and withouthidden variables (e.g., Geiger et al., 1996). In this section we review asymp-totic model selection, place our results in this context, and discuss futurework.A Bayesian approach to model selection is to compute the probabilitythat the data is generated by a given model via integration over all pos-sible parameter values with which the model is compatible and to select amodel that maximizes this probability. We call this probability the marginallikelihood. Although, in principle, this Bayesian approach is appealing, inpractice, it is often impossible to evaluate the integral, even by samplingtechniques, when the number of parameters is large. When the datasetconsists of many cases, asymptotic results for approximating the marginallikelihood are useful.Schwarz (1978) considered the problem of evaluating the marginal like-lihood when a model is an a�ne subspace of the natural parameter space ofan exponential family. He derived an asymptotic formula for the marginallikelihood, P (DatajModel) = L(�̂)N � d=2 logN + Op(1), where L is thelikelihood, �̂ is the maximum likelihood estimator, d is the dimension of thea�ne subspace, and N is the sample size. This formula has become knownas the Bayesian Information Criteria (BIC). Its plausibility has also beenargued using the minimum description length (MDL) principle. We notethat Schwarz's original proof applies to the undirected graphical models dis-cussed in Section 2.2 because these models de�ne a linear subspace of thenatural parameter space.In this section we discuss a wider context in which BIC can be justi�ed asan asymptotic Bayesian procedure for selecting models from an exponentialfamily. First, we summarize Haughton's (1988) results for model selectionwhen a model is a smooth manifold (not necessarily a�ne) of the naturalparameter space of an exponential family. Then we discuss how to use con-straints and Haughton's results for model selection. Finally, we highlight thedi�erence between CEFs and SEFs and discuss future research directions.5.1 Model selection among CEFsHaughton (1988) established, under some regularity assumptions, amongother results, that BIC is an Op(1) asymptotic approximation of the17



marginal likelihood for curved exponential families. The main regularity as-sumption of her work, and of Schwarz's work, is that the prior distributionexpressed in a local coordinate system near the maximum likelihood solutionis bounded and bounded away from zero. Other regularity assumptions areused to insure that with su�cient data, a unique model is selected with highprobability. When these assumptions are acceptable, Haughton's results onmodel selection apply to all graphical models discussed in Section 3 sincethese graphical models have been shown to be curved exponential families.In particular these results on model selection apply to Bayesian networkswith several families of local distributions including decision trees and leakynoisy-or distributions for which a closed-form formula for the marginal like-lihood is not known.5.2 Model selection using constraintsGraphical models with hidden variables can entail independence and non-independence constraints on the distribution of the observable variables.Since these constraints vary from one model to another they can be used todistinguish between models. Moreover, since these constraints are over theobservable variables, their �t to data can be measured directly with statis-tical tests. In this section we discuss how to use the constraints producedby implicitization for model selection. We concentrate on two examples;the tetrad di�erence constraints (Section 4.4.2) for which classical statis-tical techniques have been established, and the constraints implied by theP-structure (Section 4.4.3) for which we adapt BIC.Gaussian Bayesian networks with hidden variables entail tetrad di�er-ence constraints. A classical test of the tetrad di�erence is provided by aWishart (1928) signi�cance test. Bollen and Ting (1993) have used these andsimilar distribution free tests for evaluating the quality of hidden variablemodels. Spirtes has provided a graphical characterization and a method forcalculating tetrad di�erence constraints from Gaussian Bayesian networkswith hidden variables (see, Spirtes et al., 1993). By calculating the set oftetrad di�erence constraints that are implied by each of a set of compet-ing structures and using the Wishart signi�cance test one can select modelsfrom the set of competing structures. A procedure based on this character-ization and the Wishart test is implemented in Tetrad II (Scheines, Spirtes,Glymour, and Meek, 1994).Consider now the situation where we are interested in distinguishing be-tween the P-structure in Figure 4, denoted by m1, and the structure m2 inFigure 5; perhaps we are interested in whether or not B is a direct cause ofD. Note that the two structures cannot be distinguished by independencefacts alone since they have the same entailed independence facts on the ob-18
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Figure 5: An alternative structure.served variables. The model m2 is a curved exponential family (Section 3.2),however, m1 may not be a CEF (it remains an open question to prove thatthe P-structure is a CEF when H is ternary) and so applying BIC has notyet been justi�ed.As an alternative, we consider the variety de�ned by the constraints overthe observable variables implied by m1. Since the Jacobian matrix of thisvariety has no algebraic singularities, and due to Theorem 1, we concludethat the set of distributions satisfying these four constraints de�ne a curvedexponential family which we denote by m̂1. Note that the set of distributionsparameterized by m̂1 is a superset of the distributions parameterized bym1.Since both m̂1 and m2 are curved exponential families we can use BICto select between these two models. However, since m1 � m̂1, we can onlyde�nitively reject m1 in favor of m2. If the selection criterion favors m̂1there would be some evidence in favor of m1.5.3 Model selection among SEFsThe di�culty in comparing models m1 and m2 in the previous section andthe appeal to a super model m̂1 highlights two research questions that needto be addressed. First, whether the graphical models described in Section 4are CEFs, and second, whether BIC is a valid asymptotic Bayesian rule forselecting models from a strati�ed exponential family.We believe that many models described in Section 4 are not CEFs. Inparticular, with David Heckerman and Henry King, we have examined theNaive Bayesian model with binary observable variables and we believe thatthis model is not a CEF. Our experience in analyzing whether or not a para-metrically de�ned graphical model is a curved exponential family suggeststhat the assumption that models describe smooth manifolds is di�cult tojustify. It is clear, however, that this assumption simpli�es many claims be-cause it guarantees the existence of a well-de�ned tangent space associatedwith each point in the parameter space.A question arises, then, whether BIC is valid as an asymptotic proce-19
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