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Abstract

Animation is a temporally continuous phenomenon, but is typically

programmed in terms of a discrete sequence of changes. The use of dis-

creteness serves to accommodate the machine that is presenting an ani-

mation, rather than the person modeling an animation with the help of

a computer. Using a continuous model of time for animation allows for

natural speci�cation, avoiding some arti�cial details, but is di�cult to

implement with generality, robustness and e�ciency. This paper presents

and motivates continuous modeled animation, and sketches out a naive

functional implementation for it. An examination of some of the practical

problems with this implementation leads to several alternate represen-

tations, all of which have di�culties in themselves, some quite subtle.

We hope that the insights and techniques discussed in this paper lead to

still better representations, so that animation may be speci�ed in natural

terms without signi�cant loss of performance.1

1 Introduction

A functional approach to animation o�ers the possibility to make animations
much easier and more natural to express, by removing the need to direct the
details of presentation and allowing the programmer instead to say what an
animation is [1, 11]. Following the evolution of 3D graphics, we have termed
this approach \modeling", as opposed to \presentation" [8].

Given that we want to model animations, what notion of time should we
adopt? The �rst fundamental choice is discrete vs continuous, that is do we

1A shorter version of this report appears in the proceedings of PLILP/ALP '98, and is c

Springer-Verlag.
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2 Functional Implementations of Continuous Modeled Animation

think of time as moving forward in a (discrete) sequence of \clock ticks", or a
(continuous) 
ow?

A discrete model of time �ts more easily into popular computational con-
cepts, because modern computers operate in temporally discrete steps. More
speci�cally, animations are presented as a sequence of frames, delivered to the
user at a �nite rate.

On the other hand, a continuous model of time seems a more natural �t
with our human perception of time. Moreover, we have a rich heritage of math-
ematical, scienti�c, and engineering tools for understanding and describing the
basic animation concepts of motion, growth, etc, and these tools are based on
the continuous notion of time. These tools include polynomials, trigonometry,
and calculus, together with their applications to physical motion, governed by
Newton's law of motion and its applications to gravitational attraction, springs,
etc.

To clarify the bene�ts of continuous animation, note that an analogous
discrete-vs-continuous choice applies to the concept of an image. We may view
an image either discretely, as a �nite array of colors, or continuously, as an
assignment of colors to continuous 2D space. Again, the discrete model accom-
modates computers well, while the continuous model �ts better with our human
perception and hence our intuitions. One concrete bene�t of continuous images
is that they are in�nitely stretchable, or in other words, resolution-independent.
This 
exibility is one of the reasons for the popularity of vector graphics image
representations in software for graphic design. Another reason is that represen-
tations are often much more compact than their discrete counterparts. Both of
these advantages stem from the fact that vector graphics representations store
concise declarative speci�cations, such as piecewise-cubic curves, that serve to
outline parts of an image. These descriptions are then rendered in real time
to produce discrete bitmaps for display or printing. For text in particular, this
idea is called \scalable fonts", and was popularized by Postscript [17].

Just as continuous image models naturally give rise to spatial resolution-
independence and hence scalability, the continuous time model for animation
yields temporal resolution-independence and scalability. For instance, one can
stretch or squeeze a given animation to �t a desired duration.

Fran (Functional reactive animation) is a theory of animation, and imple-
mentation as a Haskell library, that is based on a continuous time model. As
such, it o�ers the possibility of allowing people to express animations in ways
that match their intuitive understandings and that leverage the wealth of math-
ematical tools at their disposal.

The cost of o�ering a continuous time model is a more challenging imple-
mentation problem, since continuous animation descriptions must be translated
into discrete lower-level software and hardware structures.2 In fact, we have

2The translation from continuous to discrete inevitably introduces error. Usually these
errors are negligible, but sometimes, as in some systems of di�erential equations or condition-
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implemented Fran many times, and have not yet achieved a satisfactory combi-
nation of generality, robustness and e�ciency. Several subtle di�culties became
apparent to us only through implementation and experimentation.

The purpose of this paper is to present the implementation techniques we
have explored, together with some insight into practical di�culties, and some
ideas for other possible techniques, in the hope of facilitating work leading to
still better representations.

Section 4 presents a few more implementation alternatives that we have
investigated, but have implemented only partially or not at all.

Previous papers on Fran have presented its vocabulary and semantics, its
role as an "embedded language", and examples of its use [11, 9, 8, 23]. This
paper gives only minimal treatment of these issues.

2 A User Perspective on Fran

Fran is a declarative animation library (or \embedded language") that embodies
the continuous time model of animation, and is implemented in Haskell [13].

2.1 Behaviors

For any type ty, the Fran type Behavior ty represents ty-valued animations,
i.e., functions from continuous time to ty. As an example, consider the following
de�nition of a real-valued animation, which has value 1 at time 0 and grows
quadratically:

type RealB = Behavior Double -- helpful synonym

growQuad :: RealB

growQuad = 1 + time ** 2

There is some notational magic going on here. We are using behavior-speci�c
overloadings of familiar numerical operators for addition and exponentiation,
and even numeric literals, using Haskell's type class mechanism. The types
used in this example are as follows:

1, 2 :: RealB

(+), (**) :: RealB -> RealB -> RealB

time :: RealB

Literals like 1 and 2 are implicitly converted into behaviors through application
of the polymorphic constantB function:

constantB :: a -> Behavior a

based events, errors can become signi�cant. These problems are inherent in applying com-
puters to simulate continuous phenomena, regardless of the programming paradigm.
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For any value x, the behavior constantB x has value x at every time.
The behavior versions of functions like + and **, as well as sin, log, etc.,

are all de�ned in terms of the non-behavior versions, by using lifting operations.

lift1 :: (a -> b) ->

Behavior a -> Behavior b

lift2 :: (a -> b -> c) ->

Behavior a -> Behavior b -> Behavior c

lift3 :: (a -> b -> c -> d) ->

Behavior a -> Behavior b -> Behavior c -> Behavior d

-- etc

Lifting is hidden inside of type class instances, with declarations like the follow-
ing:

instance Num a => Num (Behavior a) where

(+) = lift2 (+)

(*) = lift2 (*)

negate = lift1 negate

abs = lift1 abs

fromInt n = constantB (fromInt n)

The �rst line says that for any \number type" a, the type of a-valued behaviors
is also a number type. The second line says that the behavior version of + is
the binary-lifted version of the unlifted + operation. (The de�nitions appear
self-referential, but are not. Overload resolution distinguishes the two di�er-
ent versions of \+".) The function fromInt is used to resolve literal integer
overloading. The reason for this de�nition, instead of the more obvious one in-
volving lift1, is that fromInt must still work on numbers, not number-valued
behaviors. This requirement is partly desirable, but is also partly due to the
restricted type of fromInt. In such cases, Fran provides additional de�nitions
with names formed by adding \B" or \*" to the unlifted version, such as the
following.

fromIntB :: Num a => Behavior Int -> Behavior a

fromIntB = lift1 fromInt

(==*) :: Eq a => Behavior a -> Behavior a -> Behavior Bool

(==*) = lift2 (==)

Because Behavior is a type constructor, we can apply it to any type. For
instance, when applied to a type Point2 of 2D static points, the result is the
type of motionsn in 2D space.

It is often quite natural to express behaviors in terms of time-varying veloc-
ities. For this reason, Fran supports integration over a variety of types, as long
as they implement vector space operations.
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integral :: VectorSpace v => Behavior v -> User -> Behavior v

Examples of vector space types are reals, 2D vectors, and 3D vectors. The \user"
argument to integral has two roles. One is to choose the integral's start time,
and the other is to assist choice of step-size in the numerical solution. If a
user u has start time t0, then integral b u is a behavior that at time t has

approximately the value
R t

t0
b(t0)dt0.

For modularity, it is useful to construct a behavior and then, separately,
transform it in time. Fran, therefore, has a time transformation operation.
Since a time transform remaps time, it is speci�ed as a time-valued behavior,
which semantically is a function from time to time.

timeTransform :: Behavior a -> Behavior Time -> Behavior a

The lifting operators can all be expressed in terms of a single operator:

($*) :: Behavior (a -> b) -> Behavior a -> Behavior b

The name \$*" comes from the fact that it is the lifted version of function
application, whose Haskell in�x operator is \$".

The lifting operators are de�ned simply in terms of constantB and \$*", as
follows.

lift0 = constantB

lift1 f b1 = lift0 f $* b1

lift2 f b1 b2 = lift1 f b1 $* b2

lift3 f b1 b2 b3 = lift2 f b1 b2 $* b3

-- etc

Note that the basic combinators \$*", constantB, time, and timeTransform
correspond semantically to type-specialized versions of the classic S, K, I, and
B combinators.

2.2 Events

Besides behaviors, the other principle notion in Fran is the event. For any type
ty, the Fran type Event ty is the type of ty-valued events, each of which is
semantically a time-sorted sequence of time/ty pairs, also refered to as \occur-
rences" of the event.

This paper is chie
y concerned with the implementation of continuous be-
haviors, rather than events (which are intrinsically discrete). We will informally
describe event operators as they arise.

2.3 Reactive Behaviors

While one can de�ne an in�nite set of behaviors using just the behavior combi-
nators given above, such behaviors are not very dynamic. Fran greatly enriches
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these behaviors by supporting reactivity, via the following primitive, which uses
behavior-valued events.

untilB :: Behavior a -> Event (Behavior a) -> Behavior a

Given behavior b and an event e, the behavior b `untilB` e acts like b until
e occurs, and then switches to acting like the behavior that accompanies the
event occurrence. Although untilB only needs the �rst occurrence of an event,
the other occurrences are used by some of the event combinators. This meaning
of events turned out to be more convenient than the one in [11], since it enables
higher level combinators for constructing reactive behaviors, as illustrated in [8].

3 Implementing Continuous Behaviors

We now turn to the main thrust of our paper, which is an exploration of how
to implement continuous behaviors.

Representation A: time-to-value functions. The semantics of behaviors
suggest a very simple representation:

newtype Behavior a = Behavior (Time -> a)

-- Sample a behavior "at" a given time

at :: Behavior a -> Time -> a

Behavior f `at` t = f t

This de�nition introduces both a new type constructor and a value constructor,
both called Behavior. (A simple type de�nition in Haskell would not have
allowed overloading.) Using this representation, it is easy to de�ne our simple
behavior combinators:

constantB x = Behavior (const x)

fb $* xb = Behavior (\ t -> (fb `at` t) (xb `at` t))

time = Behavior (\ t -> t)

timeTransform b tt = Behavior (at b . at tt)

To sample a behavior constructed by b `untilB` e at a time t, �rst check
whether the event e occurs before t.3 If so, sample the new behavior, b', that
is part of the event occurrence, and if not, sample b.

3By choosing before, rather than before or at, the sampling time t, animations may be self-
or mutually-reactive.
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b `untilB` e = Behavior sample

where

sample t = case (e `occ` t) of

Nothing -> b `at` t

Just b' -> b' `at` t

Here we presume a function occ, with the following signature, for checking for
an event occurrence before a given time.

occ :: Event a -> Time -> Maybe a

The reason we cannot represent events directly via their semantics, i.e., as
a list of occurrences (time/value pairs), is that untilB will often need to that
an event has no occurrence before a time t, before it is possible to know the
time of the �rst occurrence. An event is thus represented as a time-sorted list
of \possible occurrences", each of which consists of a time and a Maybe value.

newtype Event a = Event [(Time, Maybe a)]

The occ function simply searches a possible occurrence list looking for a genuine
occurrence before the given time.

A thorough description of Fran's implementation of events is outside the
scope of this paper, but here is one case:

-- The event e .|. e' corresponds to the union of occurrences

-- of e and e', listing e occurrences before e' occurrences

-- when simultaneous.

(.|.) :: Event a -> Event a -> Event a

Event possOccs .|. Event possOccs' =

Event (merge possOccs possOccs')

where

merge os@(p@(te, mb) : osRest) os'@(p'@(te', mb') : osRest')

| te <= te' = p : merge osRest os'

| otherwise = p' : merge os osRest'

merge [] os' = os'

merge os [] = os

3.1 The Problem of Non-Incremental Sampling

While Representation A given above is appealing in terms of simplicity, it has
a serious performance problem. It allows nothing to be remembered from one
sampling to another. In animation, however, behaviors are typically sampled at
a sequence of display times separated by small di�erences. For instance, given
an integral behavior, it is vital for e�ciency that intermediate results are carried
from one sampling to the next, so that only a small amount of extra work is
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required. Similarly, for a reactive behavior, i.e., one constructed with untilB,
it is important to make incremental progress in event detection.

Consider the implementation of untilB above, and suppose we want to sam-
ple a reactive behavior with times t1; t2; : : :. For every ti, sampling must consider
whether the event has occurred, and choose to sample the old behavior or the
new one. Moreover, it is frequently the case that the new behavior it itself reac-
tive, and so on, in an in�nite chain. In such a case, the time it takes to compute
each sample will increase without bound, which is clearly unacceptable. More-
over, consider what is involved in computing \e `occ` t" in untilB. There are
two possibilities: either event occurrences are being rediscovered, or they are
cached somehow. If they are rediscovered, then the cost of sampling increases
even more so with each sampling. If, however, they are cached, then the cache
itself becomes a large space leak. Together these problems cause what we call
a \space-time leak".

Representation B: residual behaviors. A crucial observation is that typi-
cally, the sampling times t1, t2, . . . , are monotonically increasing. If we assume
that this typical case holds, then we can remove the space-time leak.4 The idea
is to have sampling yield not only a value, but also a \residual behavior".

newtype Behavior a = Behavior (Time -> (a, Behavior a))

at :: Behavior a -> Time -> (a, Behavior a)

Behavior f `at` t = f t

The combinator implementations are not quite as simple as before, but still
reasonable. Constant behaviors always return the same pair:

constantB x = b

where

b = Behavior (const (x, b))

The time behavior is also simple.

time = Behavior (\ t -> (t, time))

The \$*" combinator samples its argument behaviors, applies one resulting
value to the other, and applies \$*" to the residual behaviors.

fb $* xb = Behavior sample

where sample t = (f x, fb' $* xb')

where (f, fb') = fb `at` t

(x, xb') = xb `at` t

Time transformation can be implemented much like \$*".

4Unfortunately, the cost of this assumption is a signi�cant restriction in the time transforms
that may be applied to reactive behaviors.
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timeTransform b tt = Behavior sample

where sample t = (x, timeTransform b' tt')

where (t', tt') = tt `at` t

(x , b' ) = b `at` t'

Time transformation can violate our monotonicity assumption for time streams,
if the time transform tt is not itself monotonic. It would be possible to check for
monotonic sampling dynamically, at least for reactive behaviors, though Fran
does not do so. Checking monotonicity \statically", i.e., when a timeTransform
or untilB behavior is constructed does not seem to be feasible.

The occ function, used for checking event occurrences, is changed in a way
much like behaviors, so that it now yields a residual event along with a possible
occurrence.

occ :: Event a -> Time -> (Maybe a, Event a)

Next, consider reactivity. Sampling a reactive behavior with a time that is
after the event's �rst occurrence, the newly constructed behavior (a) no longer
checks for the event occurrence, thus eliminating the time leak, and (b) no longer
holds onto the old behavior, thus eliminating the space leak.

b `untilB` e = Behavior sample

where

sample t =

case (e `occ` t) of

-- No occurrence before t; keep looking

(Nothing, eNext) -> let (x, bNext) = b `at` t in

(x, bNext `untilB` eNext)

-- Found it; sample new behavior

(Just bNew, _) -> bNew `at` t

Representation C: stream functions. An alternative solution to the prob-
lem of non-incremental sampling is to map time streams to value streams. We
will see in Section 3.2 that this representation has advantages over Representa-
tion B.

newtype Behavior a = Behavior ([Time] -> [a])

at :: Behavior a -> [Time] -> [a]

Behavior f `at` ts = f ts

Constant behaviors always return the same list containing an in�nite repetition
of a value:
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constantB x = Behavior (const (repeat x))

The \$*" combinator samples the function and argument behaviors, and ap-
plies resulting functions to corresponding arguments, using the binary mapping
functions zipWith.

fb $* xb =

Behavior (\ ts -> zipWith ($) (fb `at` ts) (xb `at` ts))

Time is the identity as it was in Representation A, but of a di�erent type:

time = Behavior (\ ts -> ts)

Reactivity is implemented by scanning through a list of possible event occur-
rences, while enumerating behavior samples. For convenience, assume a stream
sampler function for events:

occs :: Event a -> [Time] -> [Maybe a]

The implementation of untilB:

b `untilB` e =

Behavior (\ ts -> loop ts (b `at` ts) (e `occs` ts))

where

-- Non-occurrence. Emit first b sample and continue looking

loop (_:ts') (x:xs') (Nothing:mbOccs') =

x : loop ts' xs' mbOccs'

-- First event occurrence. Discard the rest of the b values

-- and possible event occurrences, and continue with the

-- new behavior

loop ts _ (Just bNew : _ ) = bNew `at` ts

A weakness of Representations B and C is that they cause a great deal of
construction with each sampling. For this reason, it is important to have a
garbage collector that deals very e�ciently with the rapid production of short-
lived structures, as in generational garbage collection. For instance, the Glasgow
Haskell Compiler [19] has such a collector.

3.2 The Problem of Redundant Sampling

Another serious problem with all the representations preceding is that they lead
to redundant sampling. As a simple example, consider the following behavior
that linearly interpolates between two numerical behaviors b1 and b2, according
to the interpolation parameter a, so that the resulting behavior is equal to b1

when a is zero and b2 when a is one.

interp :: RealB -> RealB -> RealB -> RealB

interp b1 b2 a = (1 - a) * b1 + a * b2
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The problem is that sampling the behavior generated by interp at some time
t ends up sampling a at t twice, due to the repeated use of a in the body of
interp. If a is a complex behavior the redundant sampling is costly. Worse
yet, composition of functions like interp multiplies the redundancy, as in the
following example.

doubleInterp :: RealB -> RealB -> RealB -> RealB -> RealB -> RealB

doubleInterp b1 b2 b3 b4 a = interp b1 b2 a'

where a' = interp b3 b4 a

When the result of doubleInterp is sampled with a time t, the behavior a'
will be sampled twice at t, which means a will be sampled four times, and
the interpolation work for a' done twice. If we were to cube the result of
doubleInterp, via the de�nition

cube :: Num a => a -> a

cube x = x * x * x

then sampling work would be multiplied by three, causing a to be evaluated
twelve times for each sample time t.

One approach to solving the problem of redundant sampling is applying lazy
memoization [16, 7], which may be supported with a function of the form type.

memo :: Eq a => (a -> b) -> (a -> b)

Semantically, memo is the identity. Operationally, the closure returned contains
a mutable \memo table".

Any of the three representations discussed so far may be memoized. For
instance, in Representation B one could simply memoize the constructed sam-
pling functions. By way of example, here is an appropriately modi�ed \$*".
The only change is that the created sample function is memoized.

fb $* xb = Behavior (memo sample)

where sample t = (f x, fb' $* xb')

where (f, fb') = fb `at` t

(x, xb') = xb `at` t

A drawback to this implementation is that the memoization overhead must be
paid for each sample time of each component behavior, and so slows down sam-
pling, rather than speeding it up, except in circumstances of extreme redundant
sampling.

A more e�cient alternative would to start with Representation C, so that
memoization works at the level of lists of times rather than individual times.
Rather than base memoization on the usual elementwise notion of list equality,
which would be particularly problematic because our time lists are in�nite,
it su�ces to use pointer equality on the list representations, as recommended
in [16].
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This is the representation used in the current version of Fran (1.11), except
that memo tables are managed explicitly, rather than through a higher-order
memo function. The reason for this exception is that memo tables need to be
\aged", as will explained below.

Our algebra of behaviors is related to, and in some ways inspired by, Backus'
language FP [3]. In FP, programs are always expressed at the function level,
with application to \object-level" values kept implicit. This property leads to re-
dundant applications of a function to the same argument, similar to the problem
discussed in this section. The Illinois Functional Programming Interpreter [20]
addressed this problem by using an \expression cache." For some recursive algo-
rithms, expression caching reduced the asymptotic running time. Normally this
caching had a more modest e�ect, speeding up some computations and slowing
down others.

3.3 The Problem of Space-Leaking Memo Tables

A subtle but important consideration for any use of memoization is garbage
collection. The memoized functions contain tables of domain and range val-
ues, and these tables typically grow without bound. When all references to a
memoized function are lost, the contents of its memo table are reclaimed, as de-
scribed in [7]. For example, consider the following behavior, which uses the cube
and interp functions de�ned above to stretch a given picture. (The Fran type
ImageB represents \image-valued behaviors", i.e., two-dimensional animations.)

anim1 :: ImageB

anim1 = stretch s1 pic

where

s1 = cube (interp 0.5 1.5 (cube time))

If anim1 is displayed, it will be sampled with a time list that depends on the
speed of the machine and the time-varying load from other processes. As long
as there is no reference to anim1 besides the one given to the display function,
the representations of anim1 and s1, including memo tables will be reclaimed.
The list cells in the time and value lists will also be eligible for reclamation in
an e�cient manner as animation display progresses.

Unfortunately, memory use is not always so well-behaved. One problematic
case is that in which the de�nition of anim1 is a top-level de�nition, also known
as a \CAF" (constant applicative form). In that case, in the current Haskell
implementations we know of, the behaviors will never be reclaimed.5

Another problematic situation for reclamation of memo tables arises when a
behavior is retained in order to be restarted, as in the following example, which

5An upcoming release of the Glasgow Haskell Compiler �xes this problem.
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makes a looping behavior out of s1, restarting every two seconds.6

anim2 :: ImageB

anim2 = stretch s2 pic

where

s1 = cube (interp 0.5 1.5 (cube time))

s2 = s1 `untilB` timeIs 2 -=> later 2 s2

Here we have used the later operator to shift s2 by two seconds. (Alternatively,
the semantics of untilB could do this kind of shifting automatically. Although
there are some technical di�culties, we intend to alter Fran in this way. The
implementation issue discussed below remains, however.) In this case, s1 cannot
released, because it will be used every two seconds to generate a new list of scale
values. For each memo table, an entry is added every two seconds, and the
evaluated size of each entry grows through lazy evaluation by a time, a scale,
and two cons cells every sample, e.g., 10 per second.

With su�cient cleverness it may be possible to reuse the same cache entry
each time s1 restarts. Such reuse would only be correct, however, if the su�x of
the sample time list following the event occurrence, shifted back by an amount
equal to the event time is equal to the original sample time list. This condition
would hold for example, if the original time list started at zero and contained
every 1/10 second, and the event occurred exactly at a multiple of 1/10 second.
If, however, the sampling time sequence contains any irregularity at any time
in the future, or if the event were something like timeIs pi, then there could
be no reuse. Both of these problematic situations are common in practice.

For these reasons, it seems necessary for memo tables to have special support
from the garbage collector, so that when there are no live pointers to an object
other than memo table keys, then the object gets reclaimed and the memo table
entries get deleted. This idea is described in [16] and has been in use in some
Smalltalk, Lisp and Scheme implementations for quite a while, but as far as we
know it has not yet been implemented in a Haskell run-time system. Some Fran
programs leak space for exactly this reason.

A more serious, and more subtle, problem with memoization comes from
Fran's afterE combinator. This combinator is essentially a dual to snapshot.
The two signatures are as follows:

snapshot :: Event a -> Behavior b -> Event (a, b)

afterE :: GBehavior bv => Event a -> bv -> Event (a, bv)

The idea of e `snapshot` b is to pair up the event data from each occurrence
of e with snapshots of b values at the corresponding occurrence time. Dually, e
`afterE` b gives access to the residual of b at each occurrence of e. Its purpose
is to be able to coordinate with a concurrently running behavior after an event

6The event \e -=> v" occurs whenever e occurs and has value v at each occurrence. Syn-
tactically, it binds more tightly than `untilB`.
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occurrence, but fortunately its use can often be hidden inside of other event
and behavior combinators. Because afterE need not actually sample, it can be
used with \generalized behaviors", a notions that subsumes the actual behavior
types.

Fran implements afterE in terms of the following more primitive \aging"
function:

afterTimes :: GBehavior bv => bv -> [Time] -> [bv]

The idea is to create a list of times corresponding not only to occurrences of
an event, but to closely spaced non-occurrences as well. This list is fed into
afterTimes, which then produces a stream of updated versions of its generalized
behavior argument. (Note: it may well be possible and desirable to hide afterE
beneath a set of more abstract combinators, but the implementation issues
remain.)

Now consider the interaction between afterTimes and memoization. Sup-
pose we have a behavior bv with a memo entry for the time stream t1; t2; : : :

and corresponding value stream x1; x2; : : :, and we have another time stream
t0
1
; t0

2
; : : : as an argument to afterTimes. How should we initialize the aged

behaviors' memo tables? If we use bv's memo table, we will have a space leak,
and, moreover, these entries are not likely to get cache hits. If, on the other
hand, we start with empty memo tables, we will end up repeating a lot of
work. A crucial observation is that these aged behaviors are often sampled with
aged sample time streams, i.e., su�xes of the time streams that have already
been used to sample bv itself. Rather than reusing or discarding memo tables in
their entirety, the current Fran implementation \ages" the tables, replacing each
time- and value-stream pair with corresponding stream su�xes. For instance,
if t2 < t0

1
� t3, then the �rst aged memo pair would be t3; t4; : : : and x3; x4; : : :.

Note that if we were to memoize Representation A or B instead of C, then
it would become trickier to use a garbage collector to trim the memo tables. If
the Time type is something like Float or Double (as in Fran's implementation),
then we could easily keep a time/sample pair alive in a memo table by accident.
If indeed these accidental retentions happen, a solution would be to introduce
a data type to wrap around the time values.

3.4 The Problem of Synchrony

Memoization solves the problem of redundant sampling, but only when the
di�erent uses of a behavior are sampled with exactly the same time streams.
There are, however, at least three situations in which we would want a behavior
to be sampled with di�erent time streams.

The �rst situation is the application of a time transformation. Consider the
following example.

b :: RealB
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b = b1 + timeTransform b1 (time / pi)

where

b1 = cube (interp 0.5 1.5 (cube time))

There is a second situation in which we might like to sample a behavior with
two di�erent rates, namely when di�erent degrees of precision are needed. As
an example, suppose we have an image im1 moving in a complex motion path
mot, with an overlaid, much smaller copy of itself:

im :: ImageB

im = stretch 0.1 im2 `over` im2

where

im2 = move mot im1

If we were sampling in order to stay within a error bound measured in 2D
distance, rather than temporal rate, then the �rst use of im2 would require less
accuracy from mot and im1 than the second use, because the spatial inaccuracies
are reduced by a factor of ten.

A third situation calling for variable sampling rate is detection of events
de�ned by boolean behaviors. As discussed in [11], interval analysis (IA) can be
used in a robust nand e�cient algorithm to detect occurrences of such events.
The sampling patterns are adaptive to the nature of the condition's constituent
behaviors.

In all of these cases, lack of synchrony disallows sharing of work between
di�erent sampling patterns. We do not have a solution to this problem. Note,
however, that the values used for display in between samplings are necessarily
approximate. (Fran uses a linearly interpolating engine [10].) As explored in
Section 4.4 , this observation suggests sharing of work among non-synchronous
sampling patterns.

3.5 Structural Optimizations

Fran's algebra of behaviors and events satis�es several algebraic properties that
are exploited for optimization. Roughly speaking, these identities fall into the
categories of \static" and \behavioral" properties.

By a \static" property, we mean one that is lifted to the level of behaviors
directly from a property on static values. Examples include the following iden-
tity and distributive properties on images, where over is the (associative but
not commutative) image overlay operation and *% applies a 2D transform to an
image.

emptyImage `over` im == im

im `over` emptyImage == im

xf *% (im1 `over` im2) == xf *% im1 `over` xf *% im2
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Another useful property is following one for condB, which is the lifted form
of if-then-else:

condB (constantB True ) b c == b

condB (constantB False) b c == c

By a \behavioral" property, we mean one that applies to behaviors over all
types. For example, when \$*" is applied to constant behaviors, the result is a
constant behavior, i.e.,

constantB f $* constantB x == constantB (f x)

As a consequence, a lifted n-ary function applied to n constant behaviors yields
a constant behavior.

Another useful property is distributivity of lifted functions over reactivity.
First consider a simple case.

lift1 f (b `untilB` e) == lift1 f b `untilB` e ==> lift1 f

The event e ==> h occurs when e occurs, and its occurrence values result from
applying the function h to the corresponding value from e. Syntactically, it
binds more tightly than `untilB`.

Here is an obvious candidate for the general case:

fb $* (xb `untilB` e) ==

fb $* xb `untilB` e ==> \ xb' ->

fb $* xb'

and similarly for the case that fb is reactive. If both argument behaviors are
reactive, then both rules may be applied sequentially (in either order). Similarly,
if in the �rst rule, xb itself is reactive, applying the rule will give rise to another
rule application as well.

There is, however, an operational problem with a rule like the one above,
namely that it holds onto the behavior fb while waiting for the event e to occur,
thus causing a space leak. Then when e �nally occurs, fb will get sampled start-
ing at the occurrence time. If fb has meanwhile undergone many transitions,
there may be a lot of catching up to do, which amounts to a \time leak". To �x
both of these problems, use afterE to give quick access to the residual of fb.

fb $* (xb `untilB` e) ==

fb $* xb `untilB` e `afterE` fb ==> \ (xb',fb') ->

fb' $* xb'

The identities above, while widely applicable, do not improve performance
by themselves. Their merit is that they often enable other optimizations. For
instance, consider the following animation:
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b :: RealB

b = (time `untilB` timeIs 5 -=> 0) + b2

Applying the $*/untilB identity yields the following:

time + b2 `untilB` (timeIs 5 -=> 0) `afterE` b2 ==>

\ (b1', b2') -> b1' + b2'

When the transition occurs at time 5, the new behavior will be 0 + b2', which
can be simpli�ed to b2'.

4 Future Work

Although we have explored several alternatives for representing continuous ani-
mation, there are many more worth trying. Below are a few that we have given
some preliminary thought to, but have implemented only partially or not at all.

4.1 Memo elimination

Consider again the examples from Section 3.2 that motivated memoization:

interp b1 b2 a = (1 - a) * b1 + a * b2

doubleInterp b1 b2 b3 b4 a = interp b1 b2 a'

where a' = interp b3 b4 a

cube b = b * b * b

If a behavior is represented as a function from either times or time lists then
the repeated occurrences of a in interp and b in cube will cause redundant
sampling, unless some kind of run-time memoization is used. Unfortunately,
the memoization has overhead even when it turns out not to be helpful, i.e.,
when a behavior is not used more than once. For example, the de�nition of
interp creates three unshareable behaviors, namely 1-a, (1-a)*b1, and a*b2,
and only one shareable behavior (the one returned). (The three \unshareable"
behaviors are in fact shareable indirectly, because of the containing shareable
behavior. However, the containing behavior's memoization ensures that the
contained behaviors are not redundantly sampled.)

In simple situations like interp, lack of shareability is apparent from the
souce code. Given Fran's nature as a Haskell library (or \embedded language" [8]),
however, we do not see how to exploit non-shareability to eliminate run-time
memoization overhead. Unfortunately, the problem is especially messy, because
the memoization cannot itself be implemented in pure Haskell, since it requires
(a) hidden mutable state (not showing through in an imperative monad), and
(b) pointer equality to preserve laziness.



18 Functional Implementations of Continuous Modeled Animation

4.2 Compile-Time Memoization

Just as non-shareability tends to be apparent in behavior source code, sharing
does as well. Considering again the de�nition of interp above, it is easy to
guess that a will be sampled redundantly. Could a Haskell compiler without
hardwired domain knowledge eliminate redundant sampling, thus eliminating
run-time overhead?

It seems possible for a domain-independent Haskell compiler to perform this
optimization by applying some simple, generally useful transformations. The
�rst step is to do some compile-time elimination of overloading, by specializ-
ing the de�nition of interp to the case of behavior arguments, e.g., using the
techniques in [18].7

interp :: Num c => Behavior c -> Behavior c -> Behavior c

-> Behavior c

interp b1 b2 a =

lift2 (+) (lift2 (*) (lift2 (-) (constantB 1) a)

b1)

(lift2 (*) a b2)

The next transformation is to unfold the de�nition of lift2, \$*", and
constantB . The details depend on the exact representation of behaviors. For
the sake of exposition, we will take Representation C from Section 3.1, based on
stream functions. Following the unfolding by a few pattern match eliminations,
would result in roughly the following:

interp b1 b2 a =

Behavior (\ ts ->

zipWith (+) (zipWith (*) (zipWith (-) (repeat 1) (a `at` ts))

(b1 `at` ts))

(zipWith (*) (a `at` ts) (b2 `at` ts)) )

The crucial aspect of this transformation is that it revealed the redundant
sampling of a over the time stream ts. The next transformation then is common-
subexpression elimination (which is somewhat tricky for lazy languages [6]).

interp b1 b2 a =

Behavior (\ ts ->

let as = a `at` ts in

zipWith (+) (zipWith (*) (zipWith (-) (repeat 1) as)

(b1 `at` ts))

(zipWith (*) as (b2 `at` ts)) )

7For simplicity, the derivation given assumes a somewhat di�erent de�nition of lift2 and
lift3, directly in terms of zipWith and zipWith3, respectively.
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Now the redundant sampling of a is gone, but another ine�ciency has shown
itself, namely the temporary creation and consumption of non-shareable inter-
mediate lists. At this point, we would like to perform deforestation [24] to get
something like the following.

interp b1 b2 a =

Behavior (\ ts ->

let b1s = b1 `at` ts

b2s = b2 `at` ts

as = a `at` ts

f b1 b2 a = (1 - a) * b1 + a * b2

in

zipWith3 f b1s b2s as

General deforestation is a di�cult optimization and is not present in compilers.
The Glasgow Haskell Compiler [19] performs a simpler version that works in
many cases [15], but not with functions like zipWith that consume two or more
lists synchronously. Since the list functions map, zipWith, zipWith3, etc., are
so commonplace in lazy functional programming, however, it seems reasonable
to embed su�cient expertise about them into a compiler.

Note how much this �nal form of interp resembles the original form. With
just a little more massaging, it becomes the following:

interp b1 b2 a =

Behavior (\ ts -> zipWith3 f (b1 `at` ts)

(b2 `at` ts)

(a `at` ts) )

where

f b1 b2 a = (1 - a) * b1 + a * b2

which is equivalent to a lift3'd version of the static version of interp:

interp = lift3 interpS

where

interpS b1 b2 a = (1 - a) * b1 + a * b2

This form could perhaps be arrived at by more direct means if a domain-
independent compiler could be extended with domain-speci�c optimizations. In
this case, the optimizations would involve various compositions of the lifting
functionals.

Could the technique of \compile-time memoization", as we have just out-
lined, eliminate all redundant sampling? It appears not, since it depends on
inlining de�nitions to see the repeated use of a behavior. In even moderately
complex animation programs, the repeated use of behaviors can be hidden in-
side of several layers of de�nition. Inlining de�nitions exhaustively would cause
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unacceptable code bloat.8 Perhaps the missing piece of the puzzle is some way
for the compiler to factor each de�nition into a composition of an outer part to
be inlined and an inner part to remain opaque. Ideally, the outer part would be
small, but contain the crucial aspect of sampling. In the example of interp, the
outer part might be all but the inner de�nition of f. (As always, the question
remains: how could a domain-independent compiler choose the right factoring?)

The interp example is a fairly easy one, since it involves behaviors con-
structed solely through lifting (including constantB, which is zero-ary lifting).
Reactivity and time transformation raise issues of their own.

4.3 Functions vs data structures

Arya did early work on temporally discrete modeled animation, representing
animations simply as lists [1, 2]. Incremental value construction may be done
as in our representation C. Moreover, a list representation does not have the
problem of redundant sampling, because almost all of the computation work
goes into the construction of the animation representation, rather than into
sampling.

To simplify comparison of Arya's discrete model to our continuous one, here
is how one would de�ne some of the behavior constructors.

type Behavior a = [a] -- possibly infinite lists

constantB = repeat -- repeat x = [x, x, x, ...]

lift1 = map

lift2 = zipWith -- map binary function over two lists

lift3 = zipWith3 -- map ternary function over three lists

-- etc

Time transformation is problematic. It would somehow have to estimate values
in between the samples in a pre-time-transformed value list. For applicable
types, one might try some form of interpolation, as in [2], but doing so is pure
invention.

With the list representation the logical per-sample work is trivial { just
extract and use the head and then continue with the tail. In contrast, the oper-
ational per-sample work is sometimes cheap and sometimes expensive; laziness
delays the actual computation of the list elements until its �rst consumption,
and other consumptions are virtually without cost.

In contrast with the list representation, in all of the continuous behavior
implementations described above, the value computations logically belong to
sampling, making sampling an expensive operation. Behavior construction, on
the other hand, is logically very cheap, just wrapping up some other behavior

8We thank Simon Peyton Jones for pointing out this problem.
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sampling functions in a new closure. Unfortunately, the caching done by a lazy
language implementation only bene�ts the very cheap construction operation,
but not the expensive sampling operation.

These observations about the operational di�erences between the list-based
representation for discrete behaviors and the function-based representations for
continuous behaviors suggest looking for a data structure for behaviors such
that the sampling operation cost is a small �xed amount, independent of the
complexity of a behavior's construction. Relative to the continuous behavior
representations above, we must shift work from sampling to construction. Be-
cause of laziness, one consumer of a behavior will drive the actual computation,
and the others will reap the bene�ts.

Important point: the sampling cost has to be really small, including a small
constant factor.

4.4 Interpolation and Restricted Sample Time Streams

The function-based representations explored in Section 3 try to support the
generation of sample values for arbitrary sample times. Of course, in general,
behaviors are not actually constant in between these sample times. In the early
implementations of Fran, however, as in most implementations of animation,
behavior values were shown as constant until new values were computed. In
the current implementation, behaviors are sampled at roughly ten times per
second and then interpolated by a fast, specialized engine, running in its own
thread [10]. The sprite engine performs image motion, stretching and composit-
ing (overlaying) at roughly video refresh rate, which is indistinguishable from
varying continuously. (Ideally, the rate would be exactly equal to the video
refresh rate. The sprite engine can easily achieve this rate with visually simple
animations, but not the desired regularity, due to operating system scheduling
and locking issues.)9

Since we can rely on interpolation to �ll in the gaps between computed
behavior samples, we may relax our demands on behavior sampling. Instead
of supporting arbitrary time streams, we might allow only a special class of
them. In particular, we might allow only the streams Sk containing all integer
multiples of 2k, for each integer k, i.e., Sk = fn2k jn 2 ZZg. The bene�t of such
a restriction is that it allows us to represent a behavior not as a function, but
as a data structure that contains all of the Sk. As pointed out in Section 4.3,
the mechanics of lazy evaluation then work to our advantage. Computation of
streams or portions of streams with no clients does not occur, while sharing
among the various clients of a stream or portion happens automatically.

Now consider the question of an e�cient representation of the set of value
streams. In order to choose a representation, we must know what operations

9In the current implementation of Fran, when a behavior has a large discontinuity, inter-
polation is visually disturbing. For this reason, discontinuities should be communicated to
the sprite engine explicitly so that it can be presented faithfully.
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will be performed on it and with what frequency. These operations would seem
to be the following, in order of decreasing frequency:

� interpolation between members of a single stream;

� extraction of successive members of a single stream;

� construction via lifted functions, time transformation, untilB, etc.; and

� shifting from one Sk to another, midway in enumeration.

One use of the last operation is that the frame rate at which an animation is
presented may have to adapt to changes in the animation's complexity, or to
changes in the load on a computer due to other processes. Another use comes
from time transformation. For example, an animation transformed for \slow-in,
slow-out" gets stretched near its middle, and so would need to be sampled at a
higher rate there than near its beginning and end.

An obvious representation for the set of sample streams is a bidirectionally
(doubly) in�nite list of bidirectionally in�nite lists. We would use doubly in�nite
lists because we need Sk for all integers k, both positive and negative, as well
as both positive and negative multiples of 2k.

type BiList a = ([a],[a]) -- bidirectionally infinite list

type Behavior a = BiList (BiList a)

(If Sk contains only the positive multiplies of 2k, then the inner BiList a may
be simpli�ed to [a].)

A problem with this representation is that it is awkward to shift from one
Sk to another, mid-stream. If we hold onto the other value lists from their
beginning, then when it becomes necessary to shift, there may be a large amount
of catching up to do, resulting in a space-time leak. Alternatively, one could
advance in all of the value streams simultaneously. However, lazy evaluation,
which is necessary since there are in�nitely many value streams, would postpone
their advancement, making the leak worse rather than better. Not only would
the streams be retained, but also the cascading advancement computations.

4.5 Interval Trees

Another representation for the multi-resolution behaviors introduced above is
an in�nite binary tree. Each node represents a single interval with a single value
and contains two subtrees with more re�ned approximations.

data ITree a =

ITree Time DTime -- Start time and duration

a -- value at start of interval

(ITree a) -- refinement for left half

(ITree a) -- refinement for right half
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There is, however, a lot of redundancy in this representation, since the start
times and durations of the subtrees are easily computed from those of the parent,
and the left subtree's start value is the same that of its parent. We can remove
all of this redundancy by moving the start time, duration and start value into a
non-recursive data type, and augmenting the recursive one with a value at the
interval's midpoint:

data ITree a = ITree Time DTime a (ITreeRec a)

data ITreeRec a =

ITreeRec (ITreeRec a) -- refinement for left half

a -- value at midpoint

(ITreeRec a) -- refinement for right half

Note that the ITreeRec type represents a behavior over a doubly-open inter-
val, but does not tell a behavior's value at either the start or end of its interval
(except in taking the limit of approaching midpoint values). The ITree type
adds a start value, and so represents a behavior over a left-closed, right-open
interval. An entire behavior, however, covers a left-closed, right-in�nite interval.
Fortunately, such an interval can be constructed by concatenating an in�nite
sequence of left-closed, right-open intervals, as long as (a) the start time of each
member of the sequence equals the end time of the previous member, and (b)
the endpoint sequence goes to in�nity in the limit (i.e., the series of durations.
This observation suggests a representation for behaviors:

-- Behavior as list of trees covering contiguous intervals.

newtype Behavior a = Behavior [ITree a]

There remains the criterion for dividing up the original semi-in�nite interval.
One possibility is a sequence of doubling durations, e.g., [0; 1), [1; 3), [3; 7),
[7; 15), : : :. The bene�t of this doubling approach is that it leads to a kind of
logarithmic search \outwards", just as the approach of halving �nite intervals
leads to logarithmic search \inwards".

There is some redundancy in valid behavior representations. Because each
ITree is followed by another, the durations of each may be computed by sub-
traction, and so may be removed:

data ITree a = ITree Time a (ITreeRec a)

Using interval analysis (IA) [22], one could choose an examination depth
based on required precision. By combining symbolic di�erentiation and IA, one
could then use second derivative bounds to determine error bounds on linear
interpolations, borrowing results from the theory of piecewise approximation of
curves [14].

The idea of multi-resolution representations based on binary trees has been
used for images in computer graphics. In particular, a \MIP map" is a sequence
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of copies of a discrete image, each half the width and height of the predecessor,
and stored in a clever manner for quick access [25]. In order to eliminate spatial
aliasing (masquerading of high frequencies as low ones), each copy is pre�ltered
at the time of its construction, so that simple linear interpolation su�ces for
high quality display. Because aliasing is a problem for time as well as space,
the same sort of �ltering may be worthwhile in the interval tree representations
discussed above. As far as we know, recursive representations like MIP maps
have not been extended to in�nitely large synthetic images. We intend to try
such a representation for Fran images in the future.

4.6 Non-Reactive Normal Forms

As discussed in Section 3.5, lifted functions distribute over untilB. Repeatedly
applying this distributivity property normalizes a reactive behavior to \non-
reactive head normal form", which is b `untilB` e, where b is nonreactive
(inserting the non-occuring event neverE if the behavior is non-reactive to begin
with). Once the event e occurs, producing a new behavior, we again head-
normalize it to get a new non-reactive behavior and another event.

This kind of normalization may be helpful, because it brings together larger
compositions of non-reactive behaviors, which are easier to analyze. In particu-
lar, as described in [11], we can compose interval versions of the lifted functions
making up the non-reactive head in order to perform e�cient and robust detec-
tion of predicate events.

As pointed out in Section 3.1, in order to get the sampling incrementality
we need, a good deal of behavior or list construction is done on each sam-
pling. With a head-normalized behavior, this per-sampling construction would
be unnecessary, since non-reactive behaviors can be sampled e�ciently without
incrementality.

We can take the idea of a non-reactive normal form even further. First note
that in a reactive behavior b1 `untilB` e1, only the �rst occurrence of the
event e1 is relevant to the behavior's meaning. That occurrence has a time t2
and a value, which in normal form is b2 `untilB` e2. Again, the only relevant
aspect of e2 is its �rst occurrence. Semantically, this list of event �rst occur-
rences constitutes an event in itself. This observation suggests another normal
form, namely switcher b e, where b is non-reactive and e is an event over
non-reactive behaviors. The Fran switcher function is currently implemented
recursively in terms of untilB, as follows.10

-- Assemble a behavior piecewise from an initial one and an event

switcher :: GBehavior bv => bv -> Event bv -> bv

switcher b0 e = b0 `untilB` withRestE e ==> uncurry switcher

10The event withRestE e occurs when e does, and its value is value from e, paired with the
residual of e. In the implementation of switcher, the new behavior and residual event are
then passed recursively to switcher.
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4.7 Constraint Propagation

Given non-reactive head normal form, we can then think of a reactive behavior
as piece of state (a \constraint variable") holding only non-reactive behaviors. In
this light, repeated head normalization is reminiscent of propagation of depen-
dencies (\uni-directional constraints"). Scholz and Bokowski's PIDGETS++
system [21] works in this way. The TBAG system combined multi-directional
constraint propagation with non-reactive behaviors [12]. The major di�erence
between the approaches, aside from uni- vs multi-directionality, is inversion of
control. In constraint propagation, changes are pushed toward constraint vari-
ables that depend on them (transitively). Head normalization, in contrast, pulls
changes. It is probably more e�cient to somehow use the push approach, or a
hybrid of the two approaches, in the implementation of reactive behaviors.

In general, a stateful representation of reactive behaviors might be consid-
erably more e�cient than the stateless representations we have implemented.
The main obstacle to pushing state chages is that behaviors must be time-
transformable, which means di�erent uses of the same behavior may require
di�erent states. A possible solution again comes from normalization. Time
transformation distributes over lifted functions and reactivity. (Integration is
more complex.) If there are enough of these distribution laws, then time trans-
formation can be normalized away.

4.8 Translation

Fran has enough similarity to Esterel [4] and Lustre [5] to consider translation.
Like Fran, these languages are based on a synchronous, deterministic model
of concurrency. Esterel is imperative while Lustre is functional. Both have
discrete notions of time, but it might be possible to translate a speci�cation of
concurrent behaviors into a parameterized speci�cation of the result of sampling
those behaviors over an arbitrary time stream (or snapshotting by an arbitrary
event).

5 Conclusions

Modern software and hardware technology are temporally discrete in nature
and so encourage discrete software models. In the context of animation, a con-
tinuous approach is more natural because it more closely re
ects the real-world
behaviors being modeled. In this paper, we have explored several functional im-
plementations of continuous animation and some problems that arise. Some of
these problems are rather subtle and became apparent only through costly trial
and error. We have also considered many more ideas, some of which may turn
out to be of practical value. We hope that their discussion here will motivate
further work in pursuit of the goals of e�ciently-executing, naturally-speci�ed
interactive animation.
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