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Abstract. We consider bond percolation on the d-dimensional hypercubic lattice.
Assuming the existence of a single critical exponent, the exponent ρ describing the
decay rate of point-to-plane crossings at the critical point, we prove that hyperscaling
holds whenever critical rectangle crossing probabilities are uniformly bounded away
from 1.

1. Introduction

In this paper, we examine the relationship between boundedness of the critical
rectangle crossing probabilities and hyperscaling in percolation. Rectangle crossing
probabilites are fundamental quantities in percolation: differences in the scaling
of these probabilites can be used to distinguish the subcritical, supercritical and
critical regimes of the model. Moreover, as we will discuss, differences in the lim-
iting behavior of rectangle crossing probabilities in the critical regime appear to
distinguish systems which obey hyperscaling from those which do not.

Consider bond percolation on the hypercubic lattice Zd with bond occupation
density p. Let RL,M (p) denote the probability, at density p, that an L×M ×· · ·×M
rectangular box is crossed by a path of occupied bonds in the 1-direction. The box
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crossing probabilities we usually consider are of the form RL,kL(p), where k is some
positive integer, independent of L (we often take k = 3).

It has been known for some time that if k > 1,

RL,kL(p) ≤ O(L2d−2e−L/ξ) if p < pc,

1 − RL,kL(p) ≤ e−cσLd−1
if p > pc

(1.1)

where ξ = ξ(p) is the correlation length of the percolation model, i.e., the rate of
decay of the standard connectivity function, σ = σ(p) is the the surface tension of
the model, i.e., the rate of decay of a Wilson loop connectivity function [ACCFR83],
and c > 0 is a constant that depends on k and the dimension d. While the first
bound in (1.1) is an immediate consequence of the usual subadditivity argument for
the connectivity function, the second is less trivial, see [CC87] for a proof (related
results can be found in [Pis96]). For p < pc, the methods of [CC84] can be used to
complement the upper bound in (1.1) by a lower bound that allows to prove that
for all k > 0 fixed, we have

RL,kL(p) ∼ e−L/ξ if p < pc, (1.2)

that is, −(1/L) log RL,kL(p) → 1/ξ as L → ∞. In turn, the results of [CC87] give
the lower bound

1 − RL,M (p) ≥ e−σM (p)Ld−1
if p > pc, (1.3)

with a decay constant σM (p) that converges to the surface tension σ(p) as M → ∞.
The fact that RL,kL(p) ∼ e−L/ξ if p < pc motivated the definition of a finite-size

scaling correlation length in [CCF85], a concept which was further developed in
[Kes87]. It is also known [CC86] that, when p > pc, there are typically O(Ld−1)
disjoint, but not necessarily disconnected crossings of the rectangle. The change
in behavior (1.1) also motivated a numerical definition of a percolation threshold,
pc(L), see e.g. [AS92], Section 4.1, or [BW95], [BW97] and references therein.

Here we are interested in the critical behavior of the crossing probability, and
a closely related quantity, the expected number of crossings. For simplicity of
notation, let RL(p) = RL,3L(p) be the probability of an easy-way crossing of an
L × 3L × · · · × 3L box in Zd (that is, a crossing in the direction in which the box
is shortest), and let NL(p) be the expectation of the maximal number of disjoint
easy-way crossings in the box.

It is known (see Lemma 4.1 (v)) that

RL(pc) ≥ c1 > 0 in all d ≥ 2 (1.4)

uniformly in L, while
RL(pc) ≤ c2 < 1 in d = 2 (1.5)

uniformly in L. The behavior in (1.5) is expected to hold for all d < dc, but not for
d ≥ dc, where dc is the so-called upper critical dimension, above which the critical
exponents assume their mean-field values.
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Using the relation (see Lemma 4.2)

RL(p) ≤ NL(p) ≤
∞∑

m=1

[RL(p)]m , (1.6)

equations (1.4) and (1.5) give the rigorous results NL(pc) ≥ c1 > 0 in all d ≥ 2,
and NL(pc) ≤ c3 < ∞ in d = 2, uniformly in L. It has been argued [Con85] that
the latter behavior persists for all d < dc, i.e.

NL(pc) ≤ c3 < ∞ in all d < dc (1.7)

uniformly in L, but that

NL(pc) ∼ Ld−dc in all d > dc . (1.8)

The behavior NL(pc) ∼ Ld−dc has recently been rigorously established [Aiz97]
under a natural, but as yet unproven, assumption on the decay of the two-point
connectivity function at pc, which is presumably true above dc.

Returning to RL(p), as mentioned above, it is expected that

RL(pc) ≤ c2 < 1 in all d < dc (1.9)

uniformly in L, while (1.6) and (1.8) would require that

RL(pc) → 1 as L → ∞ in all d > dc . (1.10)

Here we are interested in a different aspect of the critical behavior: namely, the
relationship between the behavior of RL(pc) and hyperscaling. A hyperscaling
relation is a relationship among critical exponents that explicitly involves the spatial
dimension d. Hyperscaling relations are expected to hold up to, but not above, the
upper critical dimension. We will consider two explicit hyperscaling relations, which
we will specify below.

We will prove that

RL(pc) < 1 uniformly inL =⇒ hyperscaling (1.11)

(see Theorems 3.2 and 3.3 for a precise formulation). Actually, in the course of
proving this result, we will prove the stronger statement

NL(pc) ≤ c3 < ∞ uniformly inL =⇒ hyperscaling . (1.12)

This establishes half of the heuristic picture of Coniglio [Con85], who was the
first to relate uniform boundedness of NL(pc) to hyperscaling, and the behavior
NL(pc) ∼ Ld−dc to the breakdown of hyperscaling. In fact, our theorem requires
even less than is indicated in (1.12): rather than uniform boundedness of NL(pc),
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we need only that NL(pc) grows more slowly than any power of L, a distinction
which is presumably important in d = dc.

In order to specify the hyperscaling relations in (1.11) and (1.12), we define
several fundamental quantities in percolation. Let

τ(0, v; p) = Prp(0 ↔ v) (1.13)

be the probability that the origin is connected to v (the point-to-point connectivity
function), let

π̃n(p) = Prp{∃ v = (n, ·) such that0 ↔ v} (1.14)

be the probability that the origin is connected to a plane a distance n away (the
point-to-plane connectivity function), and let

Ps = Ps(p) = Prp(|C(0)| = s) (1.15)

be the probability that the cluster of the origin is of size s (the cluster size distri-
bution). At pc, it is believed that these quantities decay with the power laws:

sup
v:|v|∞≥n

τ(0, v; pc) ≈ 1
nd−2+η

, (1.16)

π̃n(pc) ≈ n−1/ρ , (1.17)

and
Ps(pc) ≈ s−(1+1/δ) , (1.18)

where ≈ means equality up to a slowly varying function (e.g. a logarithm), see
Section 2 for the precise definition. The hyperscaling relations referred to in (1.11)
and (1.12) are

dρ = δ + 1 (1.19)

and
2 − η = d

δ − 1
δ + 1

. (1.20)

The relation (1.19) is standard. Assuming usual scaling relations γ +2β = β(δ +1)
and γ = ν(2 − η) (see Section 2 for definitions of β, γ and ν), the relation (1.20) is
equivalent to the standard hyperscaling relation dν = γ + 2β.

The hyperscaling relations (1.19) and (1.20) will be proved in two steps. First,
assuming only the existence of the exponents, we will prove that

dρ ≥ δ + 1 and d − 2 + η ≥ 2/ρ. (1.21)

Then, using the uniform boundedness assumptions in (1.11) and (1.12), respectively,
we will prove equality in (1.21), and hence the hyperscaling relations (1.19) and
(1.20).
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The results of this paper came out of our attempt to understand the finite-
size scaling of the largest cluster in a finite box [BCKS97], see [CPS96] for an
announcement of our results. In fact, the main technical step in the proof of
the upper bound on dρ is Lemma 5.1 below, which bounds the expected size of
the largest cluster in a box of side length 6n in terms of ndπ3n(pc) and Nn(pc).
Assuming uniform boundedness of Nn(pc), this bound is then converted into a
bound on πn(pc) that implies the bound dρ ≤ δ + 1, see Proposition 5.2 and its
proof for details.

The organization of the paper is as follows: In Section 2, we give definitions and
notation. In Section 3, we give a precise statement of the results reviewed here,
as well as some additional results. The proofs are in Sections 4 – 7; see Section
3.6 for a detailed directory of the proofs. Sections 5 and 6 contain results which
may be of interest in their own right. Section 5 establishes scaling properties of
some of the fundamental quantities in percolation, and Section 6 has a general
moment estimate. Section 7 uses the results of Section 6 to prove an exponential
tail estimate for the subcritical cluster size distribution.
Acknowledgment: The authors wish to thank the the Forschungsinstitut of the
ETH in Zürich and the Institute for Advanced Study in Princeton for their hos-
pitality and partial support of the research in this paper. The authors are also
grateful for partial support from other sources: C.B. was supported by the Com-
mission of the European Union under the grant CHRX-CT93-0411, J.T.C. by NSF
grant DMS-9403842, and H.K. by an NSF grant to Cornell University.

2. Definitions and Background

Consider the hypercubic lattice Zd. Bond percolation on Zd is defined by choos-
ing each bond between adjacent sites of Zd to be occupied with probability p and
vacant with probability 1− p, independently of all other bonds. The corresponding
product measure on configurations of occupied and vacant bonds is denoted by
Prp, and expectation with respect to the measure Prp is denoted by Ep. A generic
configuration is denoted by ω. If S1, S2, S3 ⊂ Zd, we say that S1 is connected to S2
in S3, denoted by {S1 ↔ S2 in S3}, if there exists an occupied path with vertices in
S3 from some site of S1 to some site of S2. Maximal connected subsets of sites are
called (occupied) clusters. The occupied cluster (in the configuration ω) containing
the site x is denoted by C(x) = C(x;ω). The size of the cluster C, denoted by |C|, is
the number of sites in C. C∞ denotes the (unique) infinite cluster, i.e., the occupied
cluster with |C| = ∞. We also consider connected clusters CΛ(x) = CΛ(x;ω) in a
finite box Λ ⊂ Zd, defined as the set of all points y in Λ which are connected to x
by an occupied path with vertices in Λ. We say that C is a cluster in Λ, if C = CΛ(x)
for some x ∈ Λ. The origin in Zd is denoted by 0.

The cluster size distribution is characterized by

Ps = Ps(p) = Prp(|C(0)| = s) (2.1)

or alternatively by
P≥s = P≥s(p) = Prp(|C(0)| ≥ s) , (2.2)
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and the order parameter of the model is the percolation probability or infinite-cluster
density

P∞(p) = Prp(|C(0)| = ∞) . (2.3)

The critical probability is

pc = inf{p : P∞(p) > 0} . (2.4)

We consider several connectivity functions: the (point-to-point) connectivity func-
tion

τ(v, w; p) = Prp(v ↔ w) , (2.5)

the finite-cluster (point-to-point) connectivity function

τfin(v, w; p) = Prp(v ↔ w, |C(v)| < ∞) , (2.6)

the point-to-hyperplane connectivity function

π̃n(p) = Prp{∃ v = (n, ·) such that0 ↔ v} , (2.7)

and the point-to-box connectivity function

πn(p) = Prp{0 ↔ ∂Bn(0)} , (2.8)

where
Bn(v) = {w ∈ Zd : |v − w|∞ ≤ n} = [−n, n]d ∩ Zd (2.9)

with | · |∞ denoting the `∞-norm. Bn wil be short for Bn(0). Notice that πn(p)
and π̃n(p) are equivalent, in the sense that

π̃n(p) ≤ πn(p) ≤ 2dπ̃n(p) . (2.10)

We also consider the susceptibilities

χ(p) = Ep(|C(0)|) =
∑

v

τ(0, v; p) (2.11)

and

χfin(p) = Ep(|C(0)|, |C(0)| < ∞) =
∑

v

τfin(0, v; p) =
∑
s<∞

sPs(p) (2.12)

Finally, we introduce the quantity

s(n) = (2n)d πn(pc) . (2.13)

As we will see, s(n) is the order of magnitude of the size of the largest critical
clusters on scale n.
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Length scales in the model are naturally expressed in terms of the correlation
length ξ(p), defined by the limit

1/ξ(p) = − lim
|v|∞→∞

1
|v|∞ log τfin(0, v; p) (2.14)

taken with v along a coordinate axis. It is known that ξ(p) < ∞ for all p 6= pc and
ξ(p) → ∞ as p ↑ pc (see [Gri89], Theorem 5.49 and equation (5.57) for p < pc; for
p > pc the finiteness of the correlation length follows from [GM90]), but there is no
proof yet that ξ(p) → ∞ as p ↓ pc in dimension d > 2.

Alternatively, lengths may be expressed in terms of the finite-size scaling corre-
lation length L0(p, ε), introduced in [CCF85] for p < pc and in [CC87] for p > pc.
L0(p, ε) is defined in terms of the probablities

Rfin
L,M (p) = Prp{ ∃ a finite, occupied cluster C containing a bond-crossing of

[0, L] × [0, M ] · · · × [0, M ] in the 1-direction} . (2.15)

These are finite-cluster analogues of the crossing probability

RL,M (p) = Prp{ ∃ a occupied bond-crossing of [0, L] × [0, M ] · · · × [0, M ]

in the 1-direction} , (2.16)

discussed in the introduction.
By [CCGKS89], Theorem 5, and the fact that ξ(p) < ∞ for p 6= pc, the crossing

probability Rfin
L,3L(p) → 0 as L → ∞. For p 6= pc, the finite-size scaling length

L0(p) = L0(p, ε) = min{L ≥ 1 | Rfin
L,3L(p) ≤ ε} (2.17)

is therefore well defined and finite. In fact, we may use the bounds of Theorem 5
in [CCGKS89] to show that for each ε > 0 there are constants C1 = C1(d, ε) < ∞
and C2 = C2(d) < ∞, such that

L0(p, ε) − 1
ξ(p)

≤ C1 + C2 log
(
1 + ξ(p)

)
if p 6= pc . (2.18)

For p < pc, Rfin
L,3L(p) = RL,3L(p), and the finite-size scaling correlation length

L0(p) can be analyzed by the methods of [ACCFR83], [CC84], [CCF85], [CCFS86]
and [Kes87]. It then is straightforward to show that there exists a constant a(d) > 0
such that for ε < a(d), the scaling behavior of L0(p, ε) is independent of ε for p < pc,
in the sense that L0(p, ε1)/L0(p, ε2) is bounded away from 0 and infinity for any
two fixed values ε1, ε2 < a(d). This scaling behavior is also essentially the same as
that of the standard correlation length ξ(p). More specifically, for 0 < ε < a(d),
the bound (2.18) can be complemented by the lower bound1

L0(p, ε) ≥ C3ξ(p) if p < pc , (2.19)

1As for the upper bound (2.18), K. Alexander [Ale96] has recently shown that one can take
C2(d) = 0 if d = 2 and p < pc.
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for some constant C3 = C3(d, ε) > 0 that can be made arbitrary large by chosing
a(d) small enough; this follows for instance, with C3 = 1

2 log(A(d)/ε), from the
fact that τ(0, x; p) ≤ 2dR|x|,3|x| and (4.4) below. Hereafter we will assume that
ε < a(d); we usually suppress the ε-dependence in our notation.

Above pc, we expect that the definition (2.17) again coincides, say in the sense of
equation (2.18) and (2.19), with the standard correlation length ξ(p) above thresh-
old, but we are actually not able to prove an analogue to (2.19) for p > pc, except
for d = 2, where one can use a Harris ring construction [Har60] (see also [BCKS97])
in conjunction with the Russo-Seymour-Welsh Lemma ([Rus78], [SW78]). Assum-
ing that P∞(pc) = 0, it is known, however, (for any d ≥ 2) that L0(p) → ∞ as
p ↓ pc, see [CC87]. Note that our results do not depend on the validity of the bound
(2.19) above pc.

A quantity that is very much related to the crossing probability RL,M is the
expected number of crossing clusters,

NL,M (p) = Ep{NL,M} , (2.20)

where

NL,M := number of occupied clusters in [0, L] × [0, M ] × · · · × [0, M ]

that cross [0, L] × [0, M ] × · · · × [0, M ] in the 1-direction .
(2.21)

It is easy to see (cf. Section 4) that

RL,M (p) ≤ NL,M (p) ≤
∞∑

m=1

[RL,M (p)]m , (2.22)

which immediately implies that NL,3L(p) → 0 as L → ∞ if p < pc. For p > pc,
on the other hand, RL,3L(p) → 1 as L → ∞, so that lim infL→∞ NL,3L(p) ≥ 1.
Uniqueness of the infinite cluster therefore suggests that NL,3L(p) → 1 as L → ∞
for fixed p > pc. This is indeed the case, see Lemma 4.2.

At the critical point, finally, it is expected [Con85], [Arc87] that NL,3L(p) is
bounded uniformly in L if d is smaller than the so-called upper critical dimesion
dc, and grows like Ld−6 above dc, with logarithmic corrections for d = dc. Very
recently, Aizenman [Aiz97] has rigorously verified certain aspects of the expected
high-dimensional behavior under a strong but natural assumption on the behavior
of the connectivity function above dc.

We close this section with the definitions of some of the standard power laws
which are expected to characterize the scaling behavior of relevant quantities in
percolation, noting that the existence of these power laws has not yet been rigor-
ously established in low dimensions. We define G(n) ≈ nα to mean

G(n) = g(n)nα (2.23)
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where g(n) is a slowly varying function in the sense that for each ε > 0 one can
find constants n0 = n0(ε) < ∞ and C = C(ε) < ∞ such that for all m ≥ n ≥ n0

1
C(ε)

(m

n

)−ε

≤ g(m)
g(n)

≤ C(ε)
(m

n

)ε

. (2.24)

In a similar way, we use G(p) ≈ |p − pc|α to mean

G(p) = g(p)|p − pc|α , (2.25)

where g(p) is again a slowly varying function, this time in the sense that for each
ε > 0, there exist constants b = b(ε) > 0 and C = C(ε) < ∞ such that

1
C(ε)

(p′ − pc

p − pc

)−ε

≤ g(p′)
g(p)

≤ C(ε)
(p′ − pc

p − pc

)ε

(2.26)

if 0 < |p − pc| ≤ |p′ − pc| ≤ b and either both p and p′ lie below pc or both p
and p′ lie above pc. Note that these requirements are stronger than saying that
log G(n)/ log n → α and log G(p)/ log |p − pc| → α, respectively, but weaker than
saying that g(·) is slowly varying in the traditional sense.

At pc, the power laws of relevance to us are

πn(pc) ≈ n−1/ρ , (2.27)

P≥s(pc) ≈ s−1/δ , (2.28)

and

sup
x:|x|∞≥n

τ(0, x; pc) ≈ 1
nd−2+η

, (2.29)

where we have slightly deviated from the usual definition τ(0, x; pc) ≈ |x|−(d−2+η)
∞ .

For the approach to the critical point, the standard power laws are

ξ(p) ≈ |p − pc|−ν p < pc , (2.30)

χ(p) ≈ |p − pc|−γ p < pc , (2.31)

ξ(p) ≈ |p − pc|−ν′
p > pc , (2.32)

χ(p) ≈ |p − pc|−γ′
p > pc , (2.33)

and
P∞(p) ≈ |p − pc|β p > pc . (2.34)
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3. Statement of Results

Our main results are the hyperscaling equalities (1.19) and (1.20), which we
will prove under certain assumptions, namely the uniform boundedness of critical
crossing probabilities and the existence of the exponent ρ. However, before stating
our main results in a more precise form, we will state the corresponding hyperscaling
inequalities, which will be proved without any assumptions.

3.1. Hyperscaling Inequalities.

In order to prove the inequalities, we will use a slight modification of the quantity
s(m) introduced in (2.13), namely we will consider

s̃(n) =
1

πn(pc)

n∑
m=0

|∂Bm|π2
bm/2c(pc), (3.1)

where the boundary ∂Bm of the hypercube Bm is the set of all points in Zd that
have `∞ distance m from the origin. Note that

s̃(n) ≥ |Bn|πn(pc) ≥ s(n) (3.2)

by the monotonicity of πn(pc) in n.

Proposition 3.1. For all d ≥ 2,

sup
x:|x|∞|≥2n

τ(0, x; pc) ≤ [πn(pc)]2 (3.3)

and
P≥s̃(n)(pc) ≤ 2πn(pc). (3.4)

Corollary. Assume that the exponents ρ, η, and δ exist. Then

d − 2 + η ≥ 2/ρ. (3.5)

and
dρ ≥ δ + 1 (3.6)

Proof. The inequality (3.5) follows immediately from (3.3) and the definitions of
the exponents ρ and η. By Proposition 4.3 below, the existence of ρ implies that
1/ρ ≤ (d − 1)/2. Therefore, if ρ exists,

n∑
m=0

|∂Bm|π2
m(pc) ≈ nd−2/ρ (3.7)

and hence
s̃(n) ≈ s(n) ≈ nd−1/ρ. (3.8)

If δ also exists, this in turn implies

P≥s̃(n)(pc) ≈ s̃(n)−1/δ ≈ n−(d−1/ρ)/δ. (3.9)

Equation (3.4) therefore implies the inequality (3.6). �
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3.2. Hyperscaling in Terms of the Critical Exponents ρ, δ and η.

We begin by stating our main result in its simplest form, namely that uniform
boundedness of the critical crossing probabilities implies hyperscaling, provided the
exponent ρ exists. First, however, we must precisely define our notion of uniform
boundedness. We say that the critical crossing probabilities are uniformly bounded
if there exists a constant ε̃ > 0 such that

RL,3L(pc) ≤ 1 − ε̃ for all L ≥ 1 . (3.10)

Theorem 3.2. Assume that the critical exponent ρ exists in the sense2 of (2.27).
Then uniform boundedness (3.10) of the critical crossing probabilities implies that
the exponents δ and η exist (in the sense of (2.28) and (2.29)), with

dρ = δ + 1 (3.11)

and
2 − η = d

δ − 1
δ + 1

. (3.12)

Remarks:.
(i) Assuming the usual scaling relations γ + 2β = β(δ + 1) and γ = ν(2 − η), the

relation (3.12) is equivalent to the standard hyperscaling relation dν = γ + 2β.
(ii) In the course of proving Theorem 3.2, we will in fact prove the stronger

statement that uniform boundedness of NL,3L(pc), and the existence of ρ in the
sense of (2.27), imply the existence of δ and η in the sense of (2.28) and (2.29), and
imply (3.11) and (3.12). See Remark (ix). If the existence of all three exponents
is assumed, we can prove the even stronger statement that hyperscaling is valid as
long as NL,3L(pc) grows more slowly than any power in L, see Theorem 3.3 below.

Theorem 3.3. Assume that the critical exponents ρ, δ and η exist in the sense of
(2.27), (2.28) and (2.29). If NL,3L(pc) grows more slowly than any power L (i.e.,
if for all ε > 0 there exist a constant Cε < ∞ such that NL,3L(pc) ≤ CεL

ε), then
ρ, δ and η obey the hyperscaling relations (3.11) and (3.12).

3.3. An Axiomatic Approach to Hyperscaling.

In order to prove Theorem 3.2, we will first prove a similar theorem in terms
of upper and lower bounds on P≥s and τ , without assuming the existence of any
exponents. Given these bounds, we will then be able to show that the existence of
ρ implies the existence of δ and η, together with the hyperscaling relations (3.11)
and (3.12). We will also prove several additional results, which are needed in a
companion paper [BCKS97]. The axiomatic form of Theorem 3.2 is stated in this
subsection, and the additional results are given in the next subsection. In order to

2Recall that the symbol ≈ is defined as equality up to a slowly varying function, see (2.23)
and (2.24).
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state these results, we will need several assumptions. Two of them, Assumptions
(I) and (II) below, will be used to prove the axiomatic form of Theorem 3.2; these
two assumptions deal with behavior at pc only. The two additional Assumptions
(III) and (IV) below, will be used to prove the further results stated in Section 3.4.

As before, our first assumption is the uniform boundedness of RL,3L at pc. The
second replaces the assumption that ρ exists, and can actually be proven from the
existence of ρ. The third, which will be used in only one theorem below, Theorem
3.6, is the assumption that uniform boundedness of RL,3L(p) continues to hold for
p > pc, as long as L ≤ L0(p). Finally, our fourth assumption is that πn(p) behaves
like πn(pc) as long as n ≤ L0(p). Since L0(p) depends on ε, see equation (2.17),
Assumptions (III) and (IV) implicitly involve the constant ε. We assume that they
are true for all nonzero ε < ε0, where ε0 = ε0(d) is a suitable constant. Our
assumptions are:
(I) There exists a constant ε̃ > 0 such that

RL,3L(pc) ≤ 1 − ε̃ for all L ≥ 1 . (3.13)

(II) There exist constants D1 > 0 and ρ1 > 2
d , such that

πm(pc)
πn(pc)

≥ D1

(m

n

)−1/ρ1

for all m ≥ n ≥ 1; (3.14)

(III) There exists a constant ε̃ > 0 such that

RL,3L(p) ≤ 1 − ε̃ if L ≤ L0(p) . (3.15)

(IV) There exist constants D2 > 0 and D3 < ∞ such that

D2 ≤ πn(p)
πn(pc)

≤ D3 if n ≤ L0(p); (3.16)

Remarks.
(iii) As noted above, Assumption (II) follows from the assumption that the exponent
ρ exists in the sense of (2.27). Indeed, by Proposition 4.3 below,

πn(pc) ≥ C1n
− d−1

2 , (3.17)

for some constant C1 = C1(d) > 0. The existence of the exponent ρ in the sense of
equation (2.27) therefore immediately implies the bound

1/ρ ≤ d − 1
2

. (3.18)

Using once more the assumption that ρ exists, we have that for all ε > 0 there is a
constant Cε > 0 such that

πm(pc)
πn(pc)

≥ Cε

(m

n

)ε−1/ρ

for all m ≥ n . (3.19)
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Equations (3.18) and (3.19) together imply Assumption (II) with, for example,
ρ1 = 2

d−1/2 .
(iv) By the rescaling inequalities of Lemma 4.1 (iii) below, Assumption (III) is
equivalent to the (formally weaker) assumption that there exist constants ε̄ > 0
and σ0 > 0 such that RL,3L(p) ≤ 1 − ε̄ if L ≤ σ0 L0(p).
(v) By Theorem 3.8 ii) below, Assumption (I) implies that πn(pc) → 0 as n → ∞,
and hence P∞(pc) = 0. Note that this implies in particular that L0(p) → ∞ as
p ↓ pc, see Section 2 above.
(vi) The fact that L0(p) below pc is defined in terms of the crossing probabilities
RL,3L(p) is used at several points in this paper. By contrast, our results above pc

depend only weakly on the precise definition of L0(p). Namely, our results remain
true as long as Assumptions (III) and (IV) hold for our definition of L0(p) above
pc.
(vii) In many lemmas and propositions below we can replace Assumption (I) by the
following weaker assumption:
(I*) NL,3L(pc) = Epc{NL,3L} is bounded in L.
Lemma 4.2 below shows that this assumption is implied by Assumption (I). We
explictly indicate below when (I) can be replaced by (I*).

The theorems in this and the following subsection describe various important
properties of the quantities πn, Ps, P≥s and χ. Throughout, the basic parameter p
is bounded away from 0 and 1, that is we restrict p to ζ0 ≤ p ≤ 1 − ζ0 for some
small strictly positive ζ0. No further mention of ζ0 will be made. Many constants
Ci appear in this paper. These are always finite and strictly positive, even when
this is not indicated. In different formulae the same symbol Ci may denote different
constants. All these constants depend on ε, d, ζ0 and the constants which appear
in Assumptions (I) – (IV). This dependence will not be indicated in our notation.

Theorem 3.4. Under Assumptions (I) and (II), there are constants Ci, 0 < Ci <
∞ such that

C1[πn(pc)]2 ≤ sup
x:|x|∞≥2n

τ(0, x; pc) ≤ [πn(pc)]2 (3.20)

and
C2πn(pc) ≤ P≥s(n)(pc) ≤ C3πn(pc) . (3.21)

Assumption (I) is not needed for the upper bound in (3.21), and neither Assumption
(I) nor Assumption (II) is needed for the upper bound in (3.20).

Note that the upper bound in (3.20) was already stated in (3.3). It is included
again here for completeness. The upper bound in (3.21) is reminiscent of (3.4),
but equation (3.4) concerns s̃(n), while the upper bound in (3.21) concerns s(n).
Assumption (II) is needed to get from s̃(n) to s(n).

We claim that Theorem 3.4 implies Theorem 3.2. To see this, we first recall
that the existence of ρ in the sense of (2.27) implies Assumption (II), see Remark
(iii) above. The assumptions of Theorem 3.2 therefore imply those of Theorem 3.4.
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But the bound (3.20), together with the existence of ρ, immediately implies the
existence of η, with

d − 2 + η =
2
ρ

. (3.22)

To see that (3.21) and the existence of ρ implies the existence of δ is slightly less
obvious, and will be shown in Section 3.5. Here, we will just show that (3.21) and
the existence of both ρ and δ implies (3.12). Indeed, assuming the existence of ρ
and δ, we get

P≥s(n)(pc) ≈ s(n)−1/δ ≈ n−(d−1/ρ)/δ, (3.23)

which together with (3.21) implies that

δ = dρ − 1. (3.24)

Solving (3.24) for ρ and inserting the result into (3.22), we obtain (3.11) and (3.12).
Modulo the proof of the existence of δ, given in Section 3.5 below, the proof of
Theorem 3.2 therefore reduces to that of Theorem 3.4.

Remarks.
(viii) In the course of proving Theorem 3.4, we will prove a bound on the finite-

size scaling of the largest cluster in a finite box. We use the notation W
(1)
B for the

size of the largest cluster in B and recall the definition (2.9) of Bn = Bn(0). Under
the assumptions of Theorem 3.4, we then prove that for p = pc, the expected size
of W

(1)
Bn

is bounded from below and above by (two different) constants times s(n),
see Remark (xii) following the proof of Proposition 5.2. Assuming the existence of
the exponent ρ in the sense of (2.27), this therefore implies that

Epc{W
(1)
Bn

} ≈ ndf where df = d − 1
ρ

. (3.25)

As in Proposition 3.1, an upper bound can be obtained without any assumptions.
Namely, we can show that

Epc{W
(1)
Bn

} ≤ 3s̃(n) , (3.26)

see Remark (xii).
(ix) As stated in Theorem 3.4, Assumption (I) is not used in the proof of the

upper bounds in (3.20) and (3.21). As can be seen from the proof of Proposition
5.2, it is further true that the lower bound in (3.21) remains valid if Assumption
(I) is replaced by (I*). Furthermore, the lower bound in (3.20) remains valid under
Assumption (I*) and (3.29) below. Since (3.29) is trivial if ρ is known to exist, it
follows that all conclusions of Theorem 3.4, and hence of Theorem 3.2, remain valid
under the hypotheses that Assumption (I*) holds and that ρ exists.

3.4. Additional Hyperscaling and Related Results.

In this subsection, we state several results of independent interest, some of which
are related to the proof of Theorem 3.4, and others of which are necessary for the
proofs in our companion paper [BCKS97] on finite-size scaling. The first gives a
scaling relation for the exponent γ.
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Theorem 3.5. Under Assumptions (I), (II) and (IV), there are constants Ci such
that

C1L0(p)d[πL0(p)(pc)]2 ≤ χ(p) ≤ C2L0(p)d[πL0(p)(pc)]2 if p < pc . (3.27)

Neither Assumption (I) nor Assumption (IV) is needed for the upper bound in
(3.27).

Remarks.
(x) Assume that the bound (3.27) holds and that L0(p) ≈ ξ(p) as p ↑ pc (which

seems quite reasonable in view of (2.18) and (2.19)). Then the existence of the
exponents ρ and ν implies the existence of γ, with γ = (d − 2/ρ)ν. Combined with
(3.22), this gives the scaling relation

γ = ν(2 − η) . (3.28)

(xi) Since Assumptions (I) and (IV) are not used in the proof of the upper
bound in (3.27), the following bound is true in all dimensions d ≥ 2, provided the
exponents ρ, ν and γ exist:

γ ≤ (d − 2/ρ)ν. . (3.29)

Next, we have a lower bound of the form (3.27) for χfin(p) above pc.

Theorem 3.6. Under Assumptions (I), (II) and (III), there is a constant C1 > 0
such that

χfin(p) ≥ C1L0(p)d[πL0(p)(pc)]2 if p > pc . (3.30)

The next theorem is a statement relating P≥s(n) at pc to P≥s(n) at p 6= pc,
provided n/L0(p) is small.

Theorem 3.7. Under Assumptions (I), (II) and (IV), there are constants Ci,
0 < Ci < ∞, and σ1, 0 < σ1 ≤ 1, such that

C1P≥s(n)(pc) ≤ P≥s(n)(p) ≤ C2P≥s(n)(pc) if n ≤ σ1L0(p) . (3.31)

The last two theorems give upper bounds on πn(p) and P≥s(n).

Theorem 3.8.
i) There exist constants Ci, 0 < Ci < ∞, such that

πn(p)
πL0(p)(p)

≤ C1e
−C2n/L0(p) if p < pc and n ≥ L0(p) . (3.32)

ii) Under Assumption (I), there exist constants 0 < C3 < ∞ and 0 < ρ2 < ∞ such
that

πm(pc)
πn(pc)

≤ C3

(m

n

)−1/ρ2

if m ≥ n . (3.33)
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Theorem 3.9. Under Assumption (II), there exist constants 0 < Ci < ∞ such
that

P≥xs(L0(p))(p)
πL0(p)(pc)

≤ C1e
−C2x if p < pc and x ≥ 1 . (3.34)

If, in addition, Assumptions (I) and (IV) are valid, then

P≥xs(L0(p))(p)
P≥s(σ1L0(p))(p)

≤ C3e
−C2x if p < pc and x ≥ 1 , (3.35)

where σ1 is the constant from Theorem 3.7.

3.5. The Existence of δ.

In this subsection, we prove that (3.33) and the existence of ρ imply the existence
of δ. To this end, we introduce for t ≥ 1, n∗ = n∗(t) := max{n | s(n) ≤ t}. This
is well defined because s(n) → ∞ as n → ∞, by Assumption (II). By definition we
then have

s(n∗) ≤ t ≤ s(n∗ + 1). (3.36)

Combining this with the monotonicity of P≥t and the bounds in (3.21) we get

C2pcπn∗(pc) ≤ C2πn∗+1(pc) ≤ P≥s(n∗+1)(pc) ≤ P≥t(pc) ≤ P≥s(n∗) ≤ C3πn∗(pc).
(3.37)

Assume now that
πn(pc) = g(n)n−1/ρ (3.38)

with g(·) satisfying (2.24). Let λ > [d − 1/ρ]−1. Then choose ε > 0 so small that
λ(d − 1/ρ − ε) ≥ 1 and C4 = C4(ε) so large that

1
C(ε)

(C4

2

)d−1/ρ−ε

≥ 2.

We claim that then for any 1 ≤ t1 ≤ t2, it holds that

n∗(t2)
n∗(t1)

≤ C4

( t2
t1

)λ

. (3.39)

To see this, write ni for n∗(ti) and let r = (t2/t1)λ ≥ 1, m ≥ C4rn1. Then

s(m) = md−1/ρg(m)

=
(

m

n1 + 1

)d−1/ρ
g(m)

g(n1 + 1)
(n1 + 1)d−1/ρg(n1 + 1)

≥ 1
C(ε)

(
m

n1 + 1

)d−1/ρ−ε

s(n1 + 1)

≥ 1
C(ε)

(
C4r

2

)d−1/ρ−ε

t1 (see (3.36))

=
1

C(ε)
(C4

2
)d−1/ρ−ε

( t2
t1

)λ(d−1/ρ−ε)
t1

≥ 2t2.
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Thus, we see that s(m) ≥ 2t2 for all m ≥ C4rn1, and therefore n2 ≤ C4rn1, as
claimed.

Next, let λ̃ < [d−1/ρ]−1, ε > 0 so small that λ̃(d−1/ρ−ε) ≤ 1, and C5 = C5(ε)
so small that

C(ε)Cd−1/ρ+ε
5 ≤ 1

2
.

Then one proves analogously to (3.39) that for 1 ≤ t1 ≤ t2,

n∗(t2)
n∗(t1)

≥ C5

( t2
t1

)λ̃

. (3.40)

It now follows from (3.37)-(3.40) and (2.24) that if we define h(·) by

P≥t(pc) = t−1/δh(t)

with ρ given by (3.24), then h(·) satisfies (2.24) with g replaced by h. Thus the
exponent δ exists and has the value given by (3.24), as claimed in the discussion
following the statement of Theorem 3.4.

3.6. Organization of the Proofs.

As explained after the statement of Theorem 3.4, the proof of Theorem 3.2
follows from Theorem 3.4 and the considerations of the previous subsection. The
proofs of the other results can be found in the next four sections.

In Section 4, we prove Theorem 3.8, Proposition 3.1 and the upper bounds in
Theorem 3.4. The proofs of the latter two are contained in the proof of Proposition
4.5. Most of the remaining statements are proven in Section 5: Proposition 5.2
implies the lower bound in (3.21), and, together with Proposition 4.5, completes
the proof of Theorem 3.7, while Proposition 5.3 implies the lower bound in (3.20),
thus completing the proof of Theorem 3.4. Theorems 3.5 and 3.6 are just the
statements of Proposition 5.4. Theorem 3.3 is proven at the end of Section 5. In
Section 6, we give a general moment estimate, which is then used in Section 7 to
prove Theorem 3.9.

It is worth noting that Theorem 3.9, the proof of which is rather complicated, is
not needed for our results on hyperscaling. We establish Theorem 3.9 in this paper
because its proof fits in with the others here, and we will need it for our companion
paper [BCKS97] on finite-size scaling.

4.Preliminaries

We start with a lemma which follows easily from the methods of [ACCFR83]:

Lemma 4.1. Let d ≥ 2. Then there exists a constant 1 ≤ C(d) < ∞ such that
i) For all p and for all L ≥ 1

RL,6L(p) ≤ 1 − (
1 − RL,3L(p)

)C(d)
. (4.1)
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ii) For all p and all M and L with 1 ≤ L ≤ M ≤ 2L

RM,3M (p) ≤ 1 − (
1 − RL,3L(p)

)C(d) ≤ C(d)RL,3L(p) . (4.2)

iii) For all p and all L ≥ 1

R2L,6L(p) ≤
[
1 − (

1 − RL,3L(p)
)C(d)

]2
≤ C(d)2

[
RL,3L(p)

]2
. (4.3)

iv) For p < pc, ε < A(d) := C(d)−2 and L ≥ L0(p; ε)

RL,3L(p) ≤
( ε

A(d)

)L/2L0(p;ε)
. (4.4)

v) For all L ≥ 1
RL,3L(pc) ≥ A(d) . (4.5)

Proof. Let FL,M be the event that in the box [0, L] × [0, M ] · · · × [0, M ], there is
no crossing in the 1-direction. As shown in [ACCFR83], the event FL,6L can be
guaranteed by patching together a finite number of translations and rotations of
the event FL,3L. This gives

1 − RL,6L(p) = Prp{FL,6L} ≥ (
Prp{FL,3L})C(d) =

(
1 − RL,3L(p)

)C(d) ; (4.6)

see [ACCFR83] for details. (4.2) follows from (4.1) and the fact that RI,J(p) is
increasing in J and decreasing in I. (4.3) follows from (4.1) and the fact that
R2L,M (p) ≤ [

RL,M (p)
]2. In order to obtain (4.4), one first uses the bound (4.2)

(and the fact that C(d) ≤ 1/A(d)) to obtain

RL,3L(p) ≤ 1
A(d)

R2kL0(p;ε),2k3L0(p;ε)(p),

where k is chosen in such a way that 2kL0(p; ε) ≤ L < 2k+1L0(p; ε). Iterating the
bound (4.3), one then gets (4.4). Statement v) finally follows from the bound (4.3)
and the fact that ξ(p) diverges as p ↑ pc. Indeed, assume that (4.5) fails for some
L1 ≥ 1. Then Rn,3n(pc) decays exponentially in n by (4.3) and the argument for
(4.4) with L0 replaced by L1. As a consequence πn(pc) decays exponentially in n,
which in turn implies exponential decay of τ(0, x; pc), in contradiction with the fact
that ξ(p) diverges as p ↑ pc. �

The next lemma gives a relation between the crossing probabilities RL,M (p) and
the expected number of crossing clusters NL,M (p).
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Lemma 4.2.
i) For all d ≥ 2 and all p

RL,M (p) ≤ NL,M (p) ≤
∞∑

m=1

[RL,M (p)]m . (4.7)

ii) For all d ≥ 2, as L → ∞,

NL,3L(p) →
{

0 if p < pc

1 if p > pc.
(4.8)

Proof.
i) The lower bound on NL,M (p) is obvious. We are therefore left with the upper

bound. Recall the definition (2.21) of NL,M , and define ÑL,M to be the number of
disjoint crossings of [0, L] × [0, M ] × · · · × [0, M ] in the 1-direction. Then

NL,M (p) = Ep{NL,M} ≤ Ep{ÑL,M} =
∞∑

m=1

Prp{ÑL,M ≥ m} . (4.9)

By the van den Berg-Kesten inequality [BK85],

Prp{ÑL,M ≥ m} ≤ [Prp{ÑL,M ≥ 1}]m .

Since Prp{ÑL,M ≥ 1} = RL,M (p), this implies the upper bound in (4.7).
ii) For p < pc, the bound in (4.8) follows from (4.4) and the upper bound in (4.7).

For p > pc, we use that the probability of NL,3L ≥ 2 goes to zero exponentially in
L if p > pc by [KZ90], see also [Aiz97]. Since NL,3L ≤ (3L + 1)d−1, this implies
that lim supNL,3L(p) ≤ 1 as L → ∞. The lemma now follows from the fact that
RL,3L(p) → 1 as L → ∞ for all p > pc (see (1.1)). �

Proof of Theorem 3.8.
We start with the proof of ii). By Assumption (I), the probability 1 − R2n,6n

that there is no occupied crossing in the 1-direction of the block

[n, 3n] × [−3n, 3n]d−1 (4.10)

is at least ε̃. The cube B3n is the union of Bn and the block in (4.10) plus 2d − 1
more blocks congruent to the block in (4.10). Let Fn be the event that none of
these 2d blocks congruent to (4.10) has an occupied crossing in the short direction.
By the Harris–FKG inequality and Assumption (I), the probability (at pc) of Fn is
at least ε̃2d. If Fn occurs, then ∂B(n) is not connected to ∂B(3n). Moreover Fn is
independent of the event {0 ↔ ∂B(n)}. It follows that for all n

π3n(pc) ≤ πn(pc)[1 − Prpc{Fn}] ≤ πn(pc)[1 − ε̃2d]. (4.11)
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By iteration
π3jn(pc) ≤ πn(pc)[1 − ε̃2d]j .

Since πm is decreasing in m, (3.33) follows.
In order to prove i), let us assume for the moment that n ≥ 3L0(p), Then, as in

the proof of (4.11),

πn(p)
πL0(p)

≤ 1 − [1 − Rn−L0(p),2n(p)]2d ≤ 2dRn−L0(p),2n(p)

≤ 2dRn−L0(p),3(n−L0(p))(p) , (4.12)

where we used the monotonicity of RL,M (p) in M in the last step. By the rescaling
bound (4.4), Rn−L0(p),3(n−L0(p))(p) decays exponentially in (n − L0(p))/L0(p), so
that we obtain the existence of a constant C2 > 0 such that

πn(p)
πL0(p)

≤ 2d e−C2n/L0(p) if p < pc and n ≥ 3L0(p) . (4.13)

For L0(p) ≤ n < 3L0(p) we use the monotonicity of πn(p) in n to conclude the
proof. �

The next proposition gives the lower bound (3.17).

Proposition 4.3. For d ≥ 2 there is a constant C1 = C1(d) > 0 such that

πn(pc) ≥ C1

( 1
n

) d−1
2

, n ≥ 1 . (4.14)

Proof. To prove (4.14) one can simply copy the argument from [BK85], Corollary
3.15. This argument shows that

R2n,6n(pc) ≤
∑

0≤x2,...,xd≤6n

[πn(pc)]2.

(4.14) follows immediately from this and the fact that RL,3L(pc) is bounded away
from 0 (see for instance Theorem 5.1 in [Kes82] or statement v) of Lemma 4.1
above). �

Lemma 4.4. If Assumption (II) holds, then for β > 1/ρ1 − 1 (and a fortiori for
β > d/2 − 1 = (d − 2)/2) there exist constants C1 = C(β, d) and C2 = C2(d) such
that for all L ≥ 1

L∑
m=0

(m + 1)βπm(pc) ≤ C1L
β+1πL(pc), (4.15)

and
L∑

m=0

(m + 1)d−1π2
m(pc) ≤ C2L

dπ2
L(pc), (4.16)
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Proof. By Assumption (II) and the fact that

π0(pc)
πL(pc)

=
1

πL(pc)
≤ O(1)

π1(pc)
πL(pc)

,

we have

L∑
m=0

(m + 1)βπm(pc) = πL(pc)
L∑

m=0

(m + 1)β πm(pc)
πL(pc)

≤ C3πL(pc)
L∑

m=0

(m + 1)β

(
L

m + 1

)1/ρ1

= C3L
1/ρ1πL(pc)

L∑
m=0

(m + 1)β−1/ρ1 ≤ C1πL(pc)Lβ+1 ,

which proves (4.15). The proof of (4.16) is almost the same (recall that ρ1 in
Assumption (II) is assumed strictly larger than 2/d). �

The last proposition in this Section gives an upper bound on P≥s(n)(p), which
implies in particular the upper bound in (3.21). The proof of the proposition also
gives the proof of the Proposition 3.1 and the upper bound in (3.20).

Proposition 4.5. Under Assumptions (II) and (IV), there exists a constant 0 <
C3 < ∞ such that

P≥s(n)(p) ≤ C3πn(pc) if n ≤ L0(p) . (4.17)

If p ≤ pc, (4.17) remains true for all n < ∞, and Assumption (IV) is not needed.

Proof. First, we claim that for n ≤ 1
2 |x − y|∞ and all p

τ(x, y; p) ≤ [πn(p)]2 . (4.18)

Indeed, for n ≤ 1
2 |x − y|∞, the event {x ↔ y} is contained in the intersection

of the two events {x ↔ ∂Bn(x)} and {y ↔ ∂Bn(y)}. Since these two events
are independent, and each have the probability πn(p), the bound (4.18) follows.
Note that this proves the upper bounds in (3.3) and (3.20) in Proposition 3.1 and
Theorem 3.4, respectively.

For any s > 0 and any p ∈ [0, 1],

Prp{|C(0)| ≥ s and C(0) * Bn} ≤ Prp{0 ↔ ∂Bn} = πn(p) (4.19)
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and

Prp{|C(0)| ≥ s and C(0) ⊂ Bn}
≤ Prp{|C(0) ∩ Bn| ≥ s}
≤ 1

s
Ep{|C(0) ∩ Bn|}

=
1
s

∑
x∈Bn

τ(0, x; p)

≤ 1
s

∑
x∈Bn

[
πb|x|/2c(p)

]2

=
1
s

n∑
m=0

|∂Bm| [πbm/2c(p)
]2

,

where we have used the bound (4.18) in the second to last step. As a consequence

P≥s(p) ≤ πn(p) +
1
s

n∑
m=0

|∂Bm| [πbm/2c(p)
]2

. (4.20)

The inequality (4.20) proves both the remaining statement of Proposition 3.1 and
the statement of Proposition 4.5. Indeed, choosing p = pc and s = s̃(n), it gives the
bound (3.4). If instead we choose s = s(n) and n ≤ L0(p), we can use Assumption
(IV) and Lemma 4.4 to obtain (4.17). If p ≤ pc, Assumption (IV) can be replaced
by the monotonicity of πm(p) in p. �

5. Some Important Scaling Properties

In this section we derive a number of scaling properties of the functions πn, P≥s,
τ and χ. To this end, we will first prove a lower bound on the expectation of the
largest cluster in a finite box of the form Bn = Bn(0), see (2.9). We need some
notation. For a finite box Λ ⊂ Zd, we denote the connected component of x in
C(x)∩Λ by CΛ(x) = CΛ(x;ω); this is therefore the collection of all points which are
connected to x by an occupied path in Λ. C(1)

Λ , C(2)
Λ , · · · C(k)

Λ denote the occupied
clusters in Λ, ordered from largest to smallest size, with lexicographic order between
clusters of the same size. W

(i)
Λ = |C(i)

Λ | denotes the size of the ith largest cluster
in Λ. For an arbitrary event A, I[A] denotes the indicator function of the event A,
and for an arbitrary subset Λ ⊂ Zd, ∂Λ denotes the set of all points in Λ that have
a nearest neighbor y ∈ Λc = Zd \ Λ.

Lemma 5.1. Under Assumption (II), there exists a strictly positive constant C1
such that

Ep{W
(1)
B3n

} ≥ C1
s(3n)

Epc(N2n,6n)
, (5.1)
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provided p ≥ pc. If Assumption (IV) holds as well, then

Ep{W
(1)
B3n

} ≥ C1
s(3n)

Ep(N2n,6n)
(5.2)

for all p < pc and all n ≤ L0(p)/3.

Proof. By monotonicity in p we may assume p ≤ pc. Without loss of generality we
further assume that n ≥ 2. Let

m = bn

2
c ,

implying that that n − 1 ≤ 2m ≤ n. Let Br be the cube Br(0) = [−r, r]d, let An

be the annulus
An = {x ∈ B3n | max

i=1,...,d
|xi| ≥ n} ,

and let

M(n) = number of clusters in An which connect ∂Bn to ∂B3n.

For m ≤ k ≤ 3n, define

V (m, k) = number of sites in Bm connected by an occupied path to ∂Bk .

Assume for a moment that M(n) < r for some integer r. Then the V (m, 3n)
vertices in Bm which are connected to ∂B3n must be connected to one of the at most
r − 1 occupied clusters connecting ∂Bn to ∂B3n, so that these vertices decompose
into at most r − 1 clusters in B3n. At least one of these components must have size
≥ V (m, 3n)/(r − 1) so that

W
(1)
B3n

≥ 1
r − 1

V (m, 3n) if M(n) < r . (5.3)

As a consequence,

Ep{W
(1)
B3n

} ≥ 1
r − 1

Ep

{
V (m, 3n)I[M(n) < r]

}
≥ 1

r − 1

[
Ep

{
V (m, 3n)

} − Ep

{
V (m, 3n)I[M(n) ≥ r]

}]
(5.4)

Using the Assumption (IV) in the case p < pc, we bound

Ep{V (m, 3n)} ≥
∑

v∈Bm

π̃3n(p) ≥ |Bm|π3n(p)
2d

(see (2.10))

≥ |Bm|D2
π3n(pc)

2d
. (5.5)
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On the other hand, we have

Ep

{
V (m, 3n)I[M(n) ≥ r]

} ≤ Ep{V (m, n)I[M(n) ≥ r]}
= Ep{V (m, n)}Prp{M(n) ≥ r}

≤ |Bm|πm(p)
Ep{M(n)}

r

≤ |Bm|πm(pc)
Ep{M(n)}

r
. (5.6)

Next we claim that
Ep{M(n)} ≤ 2dEp{N2n,6n} . (5.7)

Indeed, let S
(±i)
n = {x ∈ An | ±xi ≥ n} , and let N (±i)

2n,6n be the number of occupied

clusters in S
(±i)
n that cross S

(±i)
n in the i’th direction, i = 1, . . . , d. Consider a

cluster CAn in An that connects ∂Bn to ∂B3n. Then, by the arguments leading to
the proof of (4.11), each such cluster contains a path that crosses at least one of
the 2d slabs S

(±i)
n , i = 1, . . . , d. As a consequence,

M(n) ≤
d∑

i=1

(
N (+i)

2n,6n + N (−i)
2n,6n

)
, (5.8)

which in turn implies (5.7). Using finally Assumption (II) together with the fact
that 3n/m ≤ 9 to bound πm(pc) by a constant times π3n(pc), we obtain the bound

Ep

{
V (m, 3n)I[M(n) ≥ r]

} ≤ C2|Bm|π3n(pc)
Ep{N2n,6n}

r
(5.9)

where C2 < ∞ is a constant that depends only on the dimension d and the constants
in Assumption (II).

Combining the bounds (5.4), (5.5), and (5.9), we get

Ep{W
(1)
B3n

} ≥ 1
r − 1

|Bm|π3n(pc)
[
D2

2d
− C2

Ep{N2n,6n}
r

]
.

Choosing

r = 1 + b4dC2

D2
Ep{N2n,6n}c

we finally get

Ep{W
(1)
B3n

} ≥ (D2)2

(4d)2C2
|Bm|π3n(pc)

1
Ep{N2n,6n} . (5.10)

Since we took 2m + 1 ≥ n, and hence |Bm|π3n(pc) ≥ 6−ds(3n), (5.10) proves the
Lemma. �

We next prove a lower bound on P≥s(n)(p). Together with Proposition 4.5, this
shows that P≥s(n)(p) is comparable to πn(pc) for n ≤ some multiple of L0(p),
implying in particular Theorem 3.7.
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Proposition 5.2. Under the Assumptions (I), (II) and (IV), there exist constants
C4 and σ1, with 0 < C4 < ∞ and 0 < σ1 ≤ 1, such that

P≥s(n)(p) ≥ C4πn(pc) if n ≤ σ1L0(p) . (5.11)

If p = pc, Assumption (IV) is not needed, and Assumption (I) can be replaced by
Assumption (I*).

Proof. We prove the proposition under Assumptions (I), (II) and (IV), and leave it
to the reader to check that Assumption (IV) is not used in the proof of the result
at pc. The fact that, for p = pc, Assumption (I) can be replaced by (I*) is obvious
from the proof below.

In order to prove the lower bound on P≥s(n)(p), we will need a relation between
the distribution of W

(1)
Λ and P≥s. To this end, we use the fact that, for an arbitrary

positive s,

Ep{W
(1)
Λ } ≤ s + Ep{W

(1)
Λ I[W (1)

Λ ≥ s]}
≤ s +

∑
i≥1

Ep{W
(i)
Λ I[W (i)

Λ ≥ s]}

= s +
∑
v∈Λ

Prp{|CΛ(v)| ≥ s}

≤ s +
∑
v∈Λ

Prp{|C(v)| ≥ s}

= s + |Λ|P≥s(p) . (5.12)

Taking s = 1
2Ep{W

(1)
Λ }, this gives

P≥ 1
2Ep{W

(1)
Λ }(p) ≥ 1

|Λ|
∑
v∈Λ

Prp

{
|CΛ(v)| ≥ 1

2
Ep{W

(1)
Λ }

}
≥ 1

2|Λ|Ep{W
(1)
Λ } . (5.13)

Next, we use Lemma 4.2 and the monotonicity of RL,M (p) in p to conclude that
Assumption (I) implies that

Ep{N2n,6n} ≤ C2 for all p ≤ pc . (5.14)

Combining the fact that Ep{W
(1)
Bn

} is monotone increasing in n with Lemma 5.1,
equation (5.14) and the fact that πn(pc) is monotone decreasing in n, we get the
existence of a strictly positive constant C̃1 such that

Ep{W
(1)
Bn

} ≥ Ep{W
(1)
B3b n

3 c
} ≥ C1

C2
s(3bn

3
c) ≥ C̃1s(n) if n ≤ L0(p) , (5.15)

and hence, see (5.13),

P≥ 1
2 C̃1s(n)

(p) ≥ P≥ 1
2Ep{W

(1)
Bn

}(p) ≥ C̃1
s(n)
2|Bn| ≥ C3πn(pc) if n ≤ L0(p) , (5.16)
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where C3 is a strictly positive constant. Now, for given n, let k = d( 1
2D1C̃1)−2/de

and m = kn, where D1 is the constant of Assumption (II). Then

s(m)
s(n)

≥ D1

(m

n

)d/2
≥ 2

C̃1
(5.17)

and hence

P≥s(n)(p) ≥ P≥ 1
2 C̃1s(m)

(p) ≥ C3πm(pc) (by (5.16))

≥ C3D1

(m

n

)−d/2
πn(pc) ≥ C4πn(pc), (5.18)

provided m ≤ L0(p). Thus (5.18) and hence (5.11) will hold for n ≤ σ1L0(p), for
some suitable σ1 > 0. �
Remark (xii). Combined with Proposition 4.5, Proposition 5.2 proves both Theo-
rem 3.7 and the “hyperscaling” relation (1.19b). In the course of this proof, we
have actually shown that for p = pc, the expected size of W

(1)
Bn

is bounded from
below and above by (two different) constants times s(n), provided Assumptions (I)
and (II) hold. Indeed, combining equations (5.15), (5.12) with s = s(n), and (4.17),
we get the existence of constants 0 < C̃i < ∞ such that

C̃1s(n) ≤ Epc{W
(1)
Bn

} ≤ C̃2s(n) . (5.19)

Bounds of this form and extensions thereof are studied in great detail in [BCKS97].
Note that Assumption (I) is not needed for the upper bound in (5.19), so that the
“hyperscaling inequality”

df ≤ d − 1/ρ (5.20)

is valid under the sole assumption that ρ exists (see (3.25) for the definition of df ).
Indeed, if we are willing to replace s(n) in (5.19) by s̃(n), then the upper bound
holds without any assumption, see (3.26). To see this, we use (5.12) with s = s̃(n),
followed by (3.4) and (3.2).

Proposition 5.3. Under Assumptions (I), (II) and (IV), there are constants 0 <
α < 1 and 0 < C1 < ∞ such that

∑
x∈Bn(0)

τ(0, x; p) ≥ C1n
d[πn(pc)]2 if n ≤ L0(p) (5.21)

and ∑
x∈Bbαnc(0)

τ(0, x; p) ≤ C1

2
nd[πn(pc)]2 if n ≤ L0(p) . (5.22)

As in Proposition 5.2, if p = pc, Assumption (IV) is not needed.
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Corollary. Under Assumptions (I) and (II) the lower bound in (3.20) holds.

Proof of Corollary. We take p = pc and subtract (5.22) from (5.21) to obtain

(2n + 1)d sup
bαnc<|x|≤n

τ(0, x; pc) ≥
∑

x∈Bn\Bbαnc

τ(0, x; pc) ≥ nd[πn(pc)]2
C1

2
.

Using Assumption (II), we get

sup
x≥bαnc

τ(0, x; pc) ≥ C1

2
D2

1α
2/ρ1 [πbαnc(pc)]2.

Now just replace bαnc by n. �

Proof of Proposition 5.3. We again prove the proposition under Assumptions (I),
(II) and (IV), and leave it to the reader to check that Assumption (IV) is not needed
at pc.

In order to prove (5.21), we may assume without loss of generality that p ≤ pc.
For Bn = Bn(0), and m ≤ σ1n, where σ1 is the constant of Proposition 5.2, we
then bound

∑
x∈Bn(0)

τ(0, x; p) = Ep{|C(0) ∩ Bn|}

≥ s(m)Prp{|C(0) ∩ Bn| ≥ s(m)}
≥ s(m)Prp{|C(0)| ≥ s(m),0 6↔ ∂Bn}
≥ s(m) (Prp{|C(0)| ≥ s(m)} − πn(p))

≥ s(m) (Prp{|C(0)| ≥ s(m)} − πn(pc))

= s(m)
(
P≥s(m)(p) − πn(pc)

)
≥ s(m) (C4πm(pc) − πn(pc)) , (5.23)

where C4 is the constant of Proposition 5.2. Appealing to Theorem 3.8 ii) and the
monotonicity of πn(p) in n, we therefore obtain the existence of a constant k1 ≥ 1
with 1

σ1
≤ k1 < ∞, such that

∑
x∈Bn(0)

τ(0, x; p) ≥ s(m)
C4

2
πm(pc) ≥ C4

2
md[πn(pc)]2 (5.24)

if mk1 ≤ n and n ≤ L0(p). Choosing m = bn/k1c, we then obtain (5.21).
The bound (5.22) is immediate from (4.18), Assumption (IV), Lemma 4.4 and

Assumption (II). �
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Proposition 5.4. Under Assumption (II), there exists a constant C1 < ∞ such
that

χ(p) ≤ C1L0(p)d[πL0(p)(pc)]2 if p < pc . (5.25)

Under Assumptions (I), (II) and (IV), there exists a constant C2 > 0 such that

χ(p) ≥ C2L0(p)d[πL0(p)(pc)]2 if p < pc. (5.26)

Under Assumptions (I), (II) and (III), there exists a constant C3 > 0 such that

χfin(p) ≥ C3L0(p)d[πL0(p)(pc)]2 if p > pc. (5.27)

Proof. First let p < pc. Rewriting χ(p) as

χ(p) =
∑
x∈Zd

τ(0, x; p) , (5.28)

we use (4.18) and (3.32) to estimate∑
x∈Zd:

|x|≥2L0(p)

τ(0, x; p) ≤ C3L0(p)d[πL0(p)(p)]2 ≤ C3L0(p)d[πL0(p)(pc)]2 , (5.29)

and the bounds (4.18) and (4.16) to estimate∑
x∈Zd:

|x|≤2L0(p)

τ(0, x; p) ≤
∑

x∈Zd:
|x|≤2L0(p)

τ(0, x; pc) ≤ C4L0(p)d[πL0(p)(pc)]2 . (5.30)

Combining (5.28), (5.29) and (5.30) we get (5.25). With σ1 as in Proposition 5.2,
the bound (5.26), on the other hand, follows from

χ(p) ≥ s(bσ1L0(p)c)P≥s(bσ1L0(p)c)(p) ≥ C6s(bσ1L0(p)c)πbσ1L0(p)c(pc) (see (5.11)),
(5.31)

and the fact that πn is decreasing in n.
Now take p > pc. Analogously to (5.31) we have for any n and C7 ≥ 0

χfin(p) ≥ Ep

{
|CBn(0)|I[∂Bn 6↔ ∂B3n]

}
= Ep

{
|CBn(0)|

}
Prp{∂Bn 6↔ ∂B3n}

≥ C7s(L0(p))Prp{|CBn(0)| ≥ C7s(L0(p))}Prp{∂Bn 6↔ ∂B3n} .
(5.32)

Using Assumption (III), in the same way as we used Assumption (I) in the proof
of (4.11), we now have for n ≤ 1

2L0(p)

Prp{∂Bn 6↔ ∂B3n} ≥ ε̃2d. (5.33)
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Finally, as we basically saw already in (5.13), (5.15) and (5.16), under Assumptions
(I) and (II),

C3πr(pc) ≤ 1
|Br|

∑
v∈Br

Ppc

{
|CBr

(v)| ≥ 1
2 C̃1s(r)

}

≤ sup
v∈Br

Pp

{
|CBr (v)| ≥ 1

2 C̃1s(r)
}

, r ≥ 1 .

Therefore, if we take C̃1 and C3 as in (5.15) and (5.16), then for some w0 = w0(r) ∈
Br, we have

Prp

{
|CBr (w0)| ≥ 1

2 C̃1s(r)
}

≥ C3πr(pc) . (5.34)

Finally, we take r = bn/2c for n = b 1
2L0(p)c. Then for w0 ∈ Br, Br − w0 ⊂ B2r ⊂

Bn, so that |CBn(0)| is stochastically larger than |CBr (w0) − w0| = |CBr (w0)|. If we
now take C7 > 0 so small that C7s(n) ≤ 1

2 C̃1s(r), then we find

Prp

{
|CBn(0)| ≥ C7s(n)

}
≥ Prp

{
|CBn(0)| ≥ 1

2 C̃1s(r)
}

≥ Prp

{
|CBr (w0)| ≥ 1

2 C̃1s(r)
}

≥ C3πr(pc) ≥ C3πL0(p)(pc). (5.35)

The inequality (5.27) follows by combining (5.32), (5.33) and (5.35). �

We close this section with the

Proof of Theorem 3.3.
Assume that ρ exists. By Proposition 4.3, this implies Assumption (II) and

the bound 1/ρ ≤ d−1
2 — see Remark (iii) in Section 3. Assuming furthermore

that Epc(NL,3L) grows more slowly than any power of L, the bound (5.1) and the
existence of ρ then imply that for each ε > 0 there exists a constant C1(ε) such
that

Epc{W
(1)
B3n

} ≥ 2C1(ε)nd−1/ρ−ε . (5.36)

Note that the bound 1/ρ ≤ d−1
2 implies that for all sufficiently small ε the right

hand side of (5.36) is monotone increasing in n. Combining (5.36) with the bound
(5.13), we get the existence of a constant C̃1(ε) > 0 such that

P≥C1(ε)nd−1/ρ−ε(pc) ≥ C1(ε)
nd−1/ρ−ε

(6n + 1)d
≥ C̃1(ε)n−1/ρ−ε . (5.37)

Assuming finally the existence of δ in the sense of (2.28), this shows that for all
ε̃ > 0

1
δ

(
d − 1

ρ

)
≤ 1

ρ
+ ε̃ , (5.38)

which implies δ ≥ dρ − 1. Combined with the bound (3.5), this proves the hyper-
scaling relation (3.11).
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In order to prove (3.12), we first note that, by (5.23), for all n, m ≥ 1,

∑
x∈Bn(0)

τ(0, x; pc) ≥ s(m)
(
P≥s(m)(pc) − πn(pc)

)
. (5.39)

It is now easy to see that for all ε̃ > 0 there is a constant C3(ε̃) < ∞ such that

∑
x∈Bn(0)

τ(0, x; pc) ≥ C3(ε̃)nd−2/ρ−ε̃ . (5.40)

Indeed, this follows immediately from (5.39), the existence of ρ and δ, and the
just proven relation dρ = δ + 1, by choosing m = n1−ε, with ε = ε(ε̃) sufficiently
small. The existence of η, on the other hand, implies the existence of a constant
C4(ε̃) < ∞ such that

τ(0, x; pc) ≤ C4(ε̃)|x|2−d−η+ε̃ . (5.41)

We claim that (5.40) and (5.41) imply that d − 2 + η ≤ 2/ρ. Indeed, assume that
d − 2 + η > 2/ρ. Then d − 2 + η ≥ 2/ρ + 3ε̃ for all sufficiently small ε̃. As a
consequence,

τ(0, x; pc) ≤ C4(ε̃)|x|−2/ρ−2ε̃ . (5.42)

Since 2/ρ ≤ d−1, this implies that for all sufficiently small ε̃ there exists a constant
C̃4 = C̃4(d, ε) < ∞ such that

∑
x∈Bn(0)

τ(0, x; pc) ≤ C̃4n
d−2/ρ−2ε̃ , (5.43)

in contradiction with (5.40). We thus have shown that d − 2 + η ≤ 2/ρ. Combined
with (3.5), this completes the proof of (3.12). �

6. A General Moment Estimate

In this section we prove a fundamental moment estimate and an exponential
tail estimate for cluster sizes. In order to prove these estimates, we first bound
the moments of the number of vertices in a large cube Λ which are connected to
the boundary of a cube which is twice as large. We then show how the tail and
moments of the largest cluster in Λ can be bounded in terms of such quantities. For
d = 2 a faster way to obtain such estimates was given in [Ngu88], but his method
does not seem usable when d > 2. While our results can be easily stated in terms of
the cubes Bn introduced in Section 2, it turns out to be more conveniant to express
them in terms of the cubes

Λn = {x ∈ Zd | −n ≤ xi < n for i = 1, . . . , n} . (6.1)
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Lemma 6.1. Define

V (L) := number of sites in ΛL connected to ∂Λ2L. (6.2)

Under Assumption (II) there are constants Ci such that for all integers k ≥ 1,

Ep

{
V k(L)

} ≤ C1k!
(
C2L

dπL(pc)
)k

if p ≤ pc and L ≥ 1 . (6.3)

Consequently, for 0 ≤ t < [C2L
dπL(pc)]−1,

Ep

{
exp(tV (L))

} ≤ C1[1 − tC2L
dπL(pc)]−1 if p ≤ pc and L ≥ 1 . (6.4)

When Assumptions (II) and (IV) hold, then (6.3) and (6.4) remain valid for p > pc

and L ≤ L0(p).

Proof. We write Λ for ΛL and Λ̃ for Λ2L. Now

Ep

{
V k(L)

}
=

∑
v1,...,vk∈Λ

Prp{vi ↔ ∂Λ̃, 1 ≤ i ≤ k}. (6.5)

Fix v1, . . . , vk ∈ Λ and define

d(i, j) = |vi − vj |∞ if 1 ≤ i, j ≤ k.

Also define for 1 ≤ i ≤ k

n(i) = min{b1
4
d(i, j)c : 1 ≤ j ≤ k, j 6= i}.

This n(i) is essentially 1/4 times the distance from vi to the nearest point. We then
define the cubes

G(i) =
d∏

r=1

[vi,r − n(i), vi,r + n(i)] = Bn(i)(vi) (see (2.9)),

where vi,r denotes the r-th coordinate of vi. If the points v1, . . . , vk are pairwise
distinct, these cubes are disjoint, because for some r

|vi,r − vj,r| = |vi − vj |∞ ≥ 4[n(i) ∨ n(j)] > n(i) + n(j).

Also, for any j
4n(i) ≤ d(i, j) ≤ 2L, (6.6)

so that
G(i) ⊂ Λ̃ \ ∂Λ̃, 1 ≤ i ≤ k.
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Consequently, if vi ↔ ∂Λ̃, then vi is connected to a point outside G(i), and therefore
vi ↔ ∂G(i). It follows that

Prp{vi ↔ ∂Λ̃, 1 ≤ i ≤ k} ≤ Prp{vi ↔ ∂G(i), 1 ≤ i ≤ k}

=
k∏

i=1

Prp{vi ↔ ∂G(i)} (because the G(i) are disjoint)

=
k∏

i=1

πn(i)(p) ≤ Ck
3

k∏
i=1

πn(i)(pc). (6.7)

provided the points v1, . . . , vk are pairwise distinct. Here C3 is some finite constant
which may be taken equal to 1 when p ≤ pc (by obvious monotonicity in p), and
may be taken equal to D3 when p > pc, L ≤ L0(p), by Assumption (IV) (recall
(6.6)). Note that (6.7) remains true if some of the vi’s coincide, since in this case
the corresponding n(i)’s are zero, so that πn(i)(p) = 1 = πn(i)(p)si if the point vi

appears si ≥ 2 times.
In order to sum over the points v1, . . . , vk, we assign to each set of points

v1, . . . , vk certain labeled, rooted trees T1, . . . , Tτ . We then first sum over all
v1, . . . , vk keeping the set of trees T1, . . . , Tτ fixed, and then sum over the trees
T1, . . . , Tτ . To this end, we inductively choose subsets Ir of {1, . . . , k}, and labeled
rooted trees Tr on Ir. The vertices of Tr, will be denoted by i

(r)
j , and i

(r)
1 will be

the root. The edges or bonds of Tr will be denoted by b
(r)
j . These trees will be

chosen such that the following properties hold:
i) If ` is a child of j (so that (j, `) is a bond in Tr), then n(`) = b 1

4d(`, j)c.
ii) There exists a child i

(r)
2 ∈ Ir of i

(r)
1 in Tr such that n(i(r)2 ) = n(i(r)1 ).

iii) {1, . . . , k} is the disjoint union of I1, . . . , Iτ .
To obtain these trees we slightly vary the construction in [Kes86] pp. 389-390.

Assume that I1, . . . , Ir−1 and T1, . . . , Tr−1 have already been chosen and set Jr−1 =
∪1≤s≤r−1Is (J0 = ∅). Assume that these sets have been chosen so that I1, . . . , Ir−1
are disjoint and such that

for all i /∈ Jr−1, and j ∈ Jr−1, b1
4
d(i, j)c > n(i). (6.8)

For r = 1 these properties are vacuous. In the first step, we choose i
(r)
1 , i

(r)
2 /∈ Jr−1

so that
n(i(r)1 ) = min{n(i) : i /∈ Jr−1}. (6.9)

and
n(i(r)2 ) = b1

4
d(i(r)1 , i

(r)
2 )c = n(i(r)1 ). (6.10)

Such a choice is always possible, since by definition n(i(r)1 ) = b 1
4d(i(r)1 , j)c for some

j ∈ {1, . . . , k}, which, by (6.8), necessarily must lie in {1, . . . , k} \ Jr−1. We also
set b

(r)
1 = (i(r)1 , i

(r)
2 ).
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Assume next that the vertices i
(r)
1 , . . . , i

(r)
t have been chosen so that they are

distinct and are all outside Jr−1, and that the bonds b
(r)
1 , . . . , b

(r)
t−1 have been chosen

so that they form a tree on i
(r)
1 , . . . , i

(r)
t obeying the condition i) above. We then

check whether there exists a pair (`, j) so that

` /∈ Jr−1 ∪ {i
(r)
1 , . . . , i

(r)
t }, j ∈ {i(r)1 , . . . , i

(r)
t } (6.11)

and
n(`) = b1

4
|v` − vj |∞c. (6.12)

If no such pair exists then we stop and take Tr as the tree on

Ir = {i
(r)
1 , . . . , i

(r)
t }

which has bonds b
(r)
1 , . . . , b

(r)
t−1. If there is a pair (`, j) which satisfies (6.11) and

(6.12), then we set i
(r)
t+1 = ` and add the bond b

(r)
t = (j, i(r)t+1). In other words, ` is

added as a child of j. We then repeat this process with t replaced by t+1 and search
for i

(r)
t+2 and b

(r)
t+1, and so on, until for some u no further (`, j) satisfying (6.11) and

(6.12) with t replaced by u can be found. Then we take Ir = {i
(r)
1 , . . . , i

(r)
u } (here u

depends on r but we usually do not indicate this dependence explicitly). The fact
that there does not exist a further ` which satisfies (6.11) and (6.12) means that
(6.8) now also holds with r − 1 replaced by r. Also, by construction (see (6.11)),
Ir is disjoint from Jr−1 = ∪r−1

1 Is, and Ir and Tr obey conditions i) and ii) above.
After Ir has been chosen we go on to choose Ir+1 and Tr+1 etc., until the whole
index set {1, . . . , k} has been exhausted. Let us assume that that happens with Iτ ,
so that

Jτ = ∪τ
s=1Is = {1, . . . , k},

which is just condition iii).
To estimate (6.5) we must next sum the right hand side of (6.7) over all possible

choices for v1, . . . , vk. Rewriting

k∏
i=1

πn(i)(pc) =
τ∏

r=1

∏
s

π
n(i(r)

s )(pc), (6.13)

we first sum
∏

s π(n(i(r)s )) over all choices of v(i(r)s ), 1 ≤ s ≤ u, while Ir =
{i

(r)
1 , . . . , i

(r)
u } and Tr are held fixed. (For typographical convenience we sometimes

write π(n) instead of πn(pc) and v(i) instead of vi). To do so, let us bound in how
many ways v(i(r)1 ), . . . , v(i(r)u ) can be chosen when we keep Tr and n(i(r)1 ), . . . , n(i(r)u )
fixed. For v(i(r)1 ) we merely use the restriction that v(i(r)1 ) ∈ Λ. This allows at most
(2L)d possible choices for v(i(r)1 ). Since all other points ` ∈ Ir have a parent j ∈ Tr,
which by i) implies that b 1

4 |v(`) − v(j)|∞c = n(`), the points v(`) ∈ Λ for ` 6= i
(r)
1

have to be chosen at distance 4n(`) + θ for some 0 ≤ θ ≤ 3 from the point v(j),
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where j is the parent of ` in Tr. This allows at most C4[n(`) + 1]d−1 choices for
v(`). Altogether, for fixed Ir, Tr and n(i(r)j ), there are at most

(2L)d
u∏

s=2

{C4[n(i(r)s ) + 1]d−1} (6.14)

choices for v(i(r)1 ), . . . , v(i(r)u ).
We now let also the n(i(r)s ) vary in accordance with the conditions i) through iii),

keeping merely the set Ir and the tree Tr with root i
(r)
1 fixed. Recalling in particular

the condition ii), we then bound the sum of
∏u

s=1 π(n(i(r)s )) over all possible choices
of v(i(r)1 ), . . . , v(i(r)u ) by

(2L)dCu−1
4

∑
m(1),m(2),...,m(u)

∃i6=1:m(i)=m(1)

πm(1)(pc)
u∏

s=2

[(m(s) + 1)d−1πm(s)(pc)]

≤ (2L)dCu−1
4 (u − 1)

2L∑
m(1)=0

(m(1) + 1)d−1π2
m(1)(pc)

×
u∏

s=3

2L∑
m(s)=0

(m(s) + 1)d−1πm(s)(pc)

≤ (2L)d(2C4)u−1(C5L)d(u−1)πu
L(pc) (by Lemma 4.4)

≤ C6(2C4C
d
5 )u−1(LdπL(pc))u ≤ [C7L

dπL(pc)]u. (6.15)

By Cayley’s formula, the number of labeled trees Tr on Ir is equal to uu−2 (see
Theorem 2.1 in [Moo70]). Furthermore, there are u different choices for the root
i
(r)
1 ∈ Ir, and u · uu−2 ≤ u!eu. The bound (6.15) therefore shows that the sum

of the right hand side of (6.7) over all choices of v1, . . . , vk consistent with a given
collection I1, . . . , Iτ of sizes u1, . . . , uτ with

τ∑
1

ur = k, (6.16)

is at most

[C7eL
dπL(pc)]k

τ∏
r=1

ur! . (6.17)

Finally, to prove (6.3), we must sum this estimate over all possible partitions
of {1, . . . , k} into disjoint nonempty sets I1, ..., Iτ . To this end, we first note that
the sum of

∏τ
r=1 ur! over partitions into (unordered) sets is equal to the number of

partitions of {1, . . . , k} into (ordered) sequences I1, ..., Iτ . The number of such par-
titions, in turn, is bounded by 2k−1k!. Indeed, any such partition can be obtained



CROSSING PROBABILITIES AND HYPERSCALING 35

by first ordering {1, . . . , k} in one of k! possible ways, say as {iσ(1), . . . , iσ(k)}, and
then putting τ “separation marks” between some of the pairs iσ(j), iσ(j+1) of succes-
sive indices (with τ some integer ≥ 0). The ordered set Is will then be the sequence
of integers iσ(j) between the (s − 1)-th and the s-th separation mark. Since there
are at most 2k−1 ways to choose the locations of the separation marks, this proves
our claim. It then follows that the sum of (6.7) over all possible choices of v1, . . . , vk

is at most
2k−1k![C7eL

dπL(pc)]k,

which proves (6.3). (6.4) is immediate from (6.3). �

When trying to bound the distribution of W
(1)
Λn

we may assume that n is a power
of 2, since we can always replace n by the smallest power of 2 which exceeds n; this
can only increase W

(1)
Λn

. For the time being we therefore take

n = 2k,

and for some ` with 0 ≤ ` ≤ k we subdivide Λn into the (2k−`)d disjoint subcubes

D(j) = D`(j) :=
d∏

i=1

[ji2`+1, (ji + 1)2`+1), −2k−`−1 ≤ ji < 2k−`−1, 1 ≤ i ≤ d.

(6.18)
Here j = (j1, . . . , jd). Each of these subcubes is congruent to Λ2` . Now for a cluster
C in Λn define

U` = U`(C) = {j : C ∩ D`(j) 6= ∅} (6.19)

(this is the collection of (indices of) the blocks D`(j) which contain a point of C).
Also define

diam(C) = max
v,w∈C

|v − w|∞. (6.20)

Now if
diam(C) > 2`+2, (6.21)

then any v ∈ C ∩ D`(j) is connected in C ⊂ Λn to some vertex outside

d∏
i=1

[ji2`+1 − 2`, (ji + 1)2`+1 + 2`)

and hence also to

∂
d∏

i=1

[ji2`+1 − 2`, (ji + 1)2`+1 + 2`).

Consequently, if

V (2`, j) := number of vertices in D`(j) connected to

∂
d∏

i=1

[ji2`+1 − 2`, (ji + 1)2`+1 + 2`), (6.22)
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then (6.21) implies
|C ∩ D`(j)| ≤ V (2`, j).

and
|C| ≤

∑
j∈U`(C)

V (2`, j). (6.23)

Note that each of the random variables V (2`, j) has the same distribution as the
V (2`) of (6.2). Moreover a collection of the random variables V (2`, j), j ∈ Γ, is
independent if |j′ − j′′|∞ > 1 for all j′, j′′ ∈ Γ, j′ 6= j′′. In particular, if Γ is any
subset of Zd, and if we set for ηi = 0, 1 for 1 ≤ i ≤ d,

Γ(η) = {j ∈ Γ : ji ≡ ηi(mod 2)}, (6.24)

then the random variables
{V (2`, j) : j ∈ Γ(η)}

are i.i.d. (for each choice of η). This independence property quickly leads to the
following lemma, which, roughly speaking, gives an exponential bound for the tail
of [s(2`)|U`(C)|]−1|C|.
Lemma 6.2. If Assumption (II) holds and p ≤ pc, or if Assumptions (II) and
(IV) hold, p > pc and 1 ≤ 2` ≤ L0(p), then there exist constants Ci such that

Prp

{
∃ C ⊂ Λn which satisfies (6.21) and |C| ≥ xs(2`) but |U`(C)| ≤ r

}
≤ C1

( n

2`

)d

Cr
2e−C3x, x ≥ 0, r ≥ 1, n ≥ 1. (6.25)

Proof. If n ≤ 2`, then any C ⊂ Λn has diam(C) ≤ 2n ≤ 2`+1 and the probability in
the left hand side of (6.25) is zero. We may therefore assume that n ≥ 2`. In fact
we may, and shall restrict ourselves to n = 2k for some k ≥ `.

Note now that if C is a cluster in Λn, then U`(C) is a connected subset of

Zd ∩
d∏

i=1

[−2k−`−1, 2k−`−1).

Therefore, by (6.23), the probability in the left hand side of (6.25) is at most

∑
Γ

Prp{
∑
j∈Γ

V (2`, j) ≥ xs(2`)}, (6.26)

where the sum is over all connected sets Γ ⊂ ∏
[−2k−`−1, 2k−`−1) with |Γ| ≤ r.

Now, with Γ(η) as in (6.24), Γ is the disjoint union of 2d sets Γ(η), so that for fixed
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Γ and all 0 ≤ t < [C2s(2`)]−1 ,

Prp{
∑
j∈Γ

V (2`, j)} ≥ xs(2`)}

≤
∑

η

Prp{
∑

j∈Γ(η)

V (2`, j) ≥ 2−dxs(2`)}

≤
∑

η

exp[−t2−dxs(2`)]Ep exp
[
t

∑
j∈Γ(η)

V (2`, j)
]

≤ 2d exp[−t2−dxs(2`)]
[

C1

1 − tC2s(2`)

]|Γ|
(by (6.4)). (6.27)

We now take t = [2C2s(2`)]−1. Then the right hand side of (6.27) is at most

2d exp[−t2−dxs(2`)][2C1]|Γ| ≤ 2d exp[−2−d−1x/C2][2C1]r.

We substitute this estimate into (6.26). We further use the fact that the number
of connected subsets of Zd of size ≤ r which contain a given vertex is at most Cr

3
for some constant C3 = C3(d) (see for instance [Kes82], equation (5.22)). Thus the
number of permissible choices for Γ is at most

2d(k−`)Cr
3 ,

and the probability in the left hand side of (6.25) is at most

2d(k−`+1)Cr
3 exp[−2−d−1x/C2][2C1]r,

so that (6.25) follows. �
We are ready to prove the principal result of this section.

Proposition 6.3.
i) Under Assumption (II) there exist constants Ci such that for all p ≤ pc, x ≥ 0
and n ≤ L0(p),

Prp

{
W

(1)
Λn

≥ xs(n)
}

≤ C1e
−C2x. (6.28)

If Assumptions (II) and (IV) hold, then (6.28) remains valid for p > pc (and
n ≤ L0(p), x ≥ 0) as well.

ii) Under Assumption (II) there exist constants Ci such that for all p < pc, n ≥
L0(p) and x ≥ 0,

Prp

{
W

(1)
Λn

≥ xs(L0(p))
}

≤ C1

(
n

L0(p)

)d

e−C2x. (6.29)

In particular, for y > d/C2 and any sequence of densities pn with L0(pn)/n → 0,

Prpn

{
W

(1)
Λn

≥ ys(L0(pn)) log
(

n

L0(pn)

)}
→ 0 (6.30)
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as n → ∞.

iii) Under Assumptions (II) and (IV) there exist constants Ci such that for all
p > pc, n ≥ L0(p) and x ≥ 0,

Prp

{
W

(1)
Λn

≥ xs(L0(p))
}

≤ C1

(
n

L0(p)

)d

exp
[

− C2x + C3

(
n

L0(p)

)d ]
. (6.31)

Proof. There is nothing to prove if x < 1, so that we shall assume that x ≥ 1. In a
similar way, we may assume without loss of generality that xs(n ∧ L0(p)) is large
enough to guaranty that |C| ≥ xs(n∧L0(p)) implies that diam(C) > 2`+2 for ` = 0.
Therefore, by a decomposition according to the diameter of the largest cluster in
Λn,

Prp

{
W

(1)
Λn

≥ xs(n ∧ L0(p))
}

≤
∑

`≥0:2`≤L0(p)

Prp{∃ cluster C in Λn with

2`+2 < diam(C) ≤ 2`+3 and |C| ≥ xs(n ∧ L0(p))}
+ Prp{∃ cluster C in Λn with

diam(C) > 4L0(p) and |C| ≥ xs(n ∧ L0(p))}. (6.32)

We first estimate the sum in the right hand side. If

2`+2 < diam(C) ≤ 2`+3

and C ∩ D`(j) 6= ∅ for some j, then C is contained in

⋃
|p−j|∞≤4

D`(p),

and by (6.23)
|C| ≤

∑
|p−j|∞≤4

V (2`,p).

In particular, |U`| ≤ 9d and by Lemma 6.2 with r = 9d,

Prp{∃ cluster C in Λn with 2`+2 < diam(C) ≤ 2`+3 and |C| ≥ xs(n ∧ L0(p))}

≤ C2

( n

2`

)d

exp
[

− C3x
s(n ∧ L0(p))

s(2`)

]
. (6.33)

Now let us first consider the case of part i). Then n ≤ L0(p) and as in the
beginning of the proof of Lemma 6.2 we can restrict the sum in the right hand side
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of (6.32) to ` with 2` ≤ n, and also the last term in (6.32) vanishes. Therefore the
right hand side of (6.32) is at most∑

2`≤n

Prp{∃ cluster C in Λn with

2`+2 < diam(C) ≤ 2`+3 and |C| ≥ xs(n)}

≤
∑
2`≤n

C2

( n

2`

)d

exp
[

− C3x
s(n)
s(2`)

]
. (6.34)

By Assumption (II),
s(n)
s(2`)

≥ D1

( n

2`

)d/2
, (6.35)

so that the right hand side of (6.32) is bounded by

∑
2`≤n

C2

( n

2`

)d

exp
[

− C4x
( n

2`

)d/2 ]
≤ C5e

−C6x.

This proves part (i).
For parts (ii) and (iii) we have n ∧ L0(p) = L0(p). Making the obvious changes

in (6.34) we find that the sum in the right hand side of (6.32) is bounded by

∑
2`≤L0(p)

C2

( n

2`

)d

exp
[

− C4x

(
L0(p)

2`

)d/2 ]

≤ C5

(
n

L0(p)

)d

exp[−C6x]. (6.36)

This estimate holds for any p. However, the last term in the right hand side of
(6.32) has to be treated somewhat differently in the cases p ≤ pc and p > pc. Let
us first consider the latter case, that is, the case of part (iii). We now define `0 by

2`0+2 ≤ L0(p) < 2`0+3. (6.37)

Then any cluster C with diam(C) > L0(p) satisfies (6.21) with ` replaced by `0. If
also C ⊂ Λn, with n = 2k, then by definition,

U`0(C) ⊂ [−n2−`0−1, n2−`0−1)

and hence
|U`0(C)| ≤ (

n2−`0
)d

.

We therefore can bound the last term in (6.32) by (6.25) with `0 for ` and

r =
(
n2−`0

)d
.
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(6.31) follows easily from (6.32), (6.36) and this last bound.
We now turn to the estimate of the last term in (6.32) in the case of part (ii),

that is when p < pc. In that case we again take `0 as in (6.37), and for a constant
C7 to be determined below, bound the last term in (6.32) by

Prp{∃ cluster C in Λn with |U`0(C)| > C7x}
+ Prp{∃ cluster C in Λn with diam(C) > 2`0+2,

|U`0(C)| ≤ C7x, and |C| ≥ xs(L0(p)}. (6.38)

If ε is sufficiently small, then there exist constants C8 = C8(ε, d) and C9 = C9(ε, d)
so that the first probability in (6.38) is at most

C8

(
n

L0(p)

)d

exp(−C9C7x). (6.39)

This is proven by a renormalized block argument which is given in detail in the
proof of Theorem 5.1 in [Kes82]. It is based on the fact that if a cluster C contains
a point in D`0(j) as well as a point outside

d∏
i=1

[(ji − 4)2`0+1, (ji + 8)2`0+1),

then C contains a crossing in the short direction of one 2d blocks congruent to

[0, 3L0(p)] × · · · [0, 3L0(p)] × [0, L0(p)] × [0, 3L0(p)] × · · · [0, 3L0(p)] (6.40)

which surround the cube

d∏
i=1

[ji2`0+1, ji2`0+1 + L0(p)].

This is so because

d∏
i=1

[ji2`0+1 − L0(p), ji2`0+1 + 2L0(p)] \
d∏

i=1

(ji2`0+1, ji2`0+1 + L0(p))

is the union of 2d such blocks,

D`0(j) ⊂
d∏

i=1

[ji2`0+1, ji2`0+1 + L0(p)],

and

d∏
i=1

[ji2`0+1 − L0(p), ji2`0+1 + 2L0(p)] ⊂
d∏

i=1

[(ji − 4)2`0+1, (ji + 8)2`0+1).
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By the definition (2.17) and the fact that Rfin
L,3L(p) = RL,3L(p) if p < pc the

probability that there exists an occupied crossing in the short direction of a block
(6.40) is

RL0(p),3L0(p) ≤ ε. (6.41)
One can now use (6.41) and a Peierls argument to obtain (6.39). The factor(

n

L0(p)

)d

in (6.39) arises because there are (n2−`0)d blocks D`0(j) in Λn which C can intersect.
Once one has (6.39), one uses (6.25) to estimate the second probability in (6.38).

Together one finds that the last term in (6.32) is at most

C10

(
n

L0(p)

)d [
C8 exp(−C9C7x) + CC7x

2 e−C3x
]
. (6.42)

If we choose
C7 =

C3

C9 + log C2
,

then this bound is at most C11[n/L0(p)]d exp(−C12x) with

C12 =
C9C3

C9 + log C2
.

(6.29) is immediate from (6.32), (6.36) and (6.42). �
Remark (xiii):. The estimates (6.33) and (6.35) also show that under Assumption
(II) we have for p ≤ pc, x ≥ 0, 0 < y ≤ 1, 1 ∨ 4/y ≤ n ≤ L0(p) ,

Prp{∃ cluster C ⊂ Λn with diam(C) ≤ yn but |C| ≥ xs(n)}
≤ C1y

−d exp[−C3xy−d/2].
(6.43)

Indeed, (6.33) holds for p ≤ pc under Assumption (II) only, since it relies only on
Lemma 6.2. Note also that we may assume xy−d/2 ≥ 1, because otherwise (6.43)
is trivial for large enough C1. Therefore, by (6.33) and (6.35)

Prp{∃ cluster C ⊂ Λn with diam(C) ≤ yn but |C| ≥ xs(n)}
≤

∑
`:2`≤yn

Prp{∃ cluster C ⊂ Λn with 2`+2 < diam(C) ≤ 2`+3 but |C| ≥ xs(n)}

≤
∑

`:2`≤yn

C2

( n

2`

)d

exp
[

− C3x
s(n)
s(2`)

]
(recall n ≤ L0(p))

≤
∑

`:2`≤yn

C2

( n

2`

)d

exp
[

− C3xD1

( n

2`

)d/2]

≤
∑
j≥0

C2

(2
y

)d

2jd exp[−C4xy−d/22jd/2]

≤ C1y
−d exp[−C5xy−d/2].
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7. Exponential Decay of P≥s(p)

In this section we prove Theorem 3.9. We note that (3.35) is an immediate
consequence of (3.34) and the bound (5.11) from Proposition 5.2. We therefore
only need to prove (3.34) and we turn to this now.

Clearly, for any 0 < α ≤ 1,

P≥xs(L0(p))(p) ≤ Prp

{
|C(0) ∩ ΛbαL0(p)c| ≥ x

2
s(L0(p))

}
+ Prp

{
|C(0) ∩ Λc

bαL0(p)c| ≥ x

2
s(L0(p))

}
. (7.1)

In order to bound the first term, we introduce the “rings” or annuli

R` := B2`+1 \ B2` = [−2`+1, 2`+1]d \ [−2`, 2`]d.

Then, |C(0) ∩ ΛbαL0(p)c| ≥ x
2 s(L0(p)) implies

x

2
s(L0(p)) ≤ |C(0) ∩ ΛbαL0(p)c| ≤ 5d +

∑
`:2≤2`≤αL0(p)

|C(0) ∩ R`| . (7.2)

On the other hand, define k by 2k ≤ L0(p) < 2k+1 and let

β = 2d+2C2
log 2
ρ1D1

+ 1, (7.3)

where C2 is the same constant as in (6.4). Then, by virtue of (5.17),

β
∑

`:2≤2`≤αL0(p)

(k − `)s(2`)

≤ β
s(bαL0(p)c)

D1

∑
`≤k+1−log(1/α)/ log 2

(k − `)
(

2`

bαL0(p)c
)d/2

≤ βC6
s(bαL0(p)c)

D1

[
1 +

log(1/α)
log 2

]
, (7.4)

where C6 is a constant which depends only on the dimension d. Choosing α suffi-
ciently small, n0 = n0(α) sufficiently large, and p in such a way that L0(p) ≥ n0,
we therefore get

β
∑

`:2≤2`≤αL0(p)

(k − `)s(2`) < s(L0(p)) − 2(5d) (7.5)

and hence (for x ≥ 1)

βx

2

∑
`:2≤2`≤αL0(p)

(k − `)s(2`) <
x

2
s(L0(p)) − 5d. (7.6)
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We fix 0 < α < 1/2 and n0 so that this holds for all p with L0(p) ≥ n0. It then
follows from (7.2) and (7.6) that if L0(p) ≥ n0, there must be a smallest ` with

2 ≤ 2` ≤ αL0(p) and |C(0) ∩ R`| >
βx

2
(k − `)s(2`).

Therefore,

Prp

{
|C(0) ∩ ΛbαL0(p)c| ≥ x

2
s(L0(p))

}
≤

∑
`:2≤2`≤αL0(p)

Prp

{
|C(0) ∩ R`| >

βx

2
(k − `)s(2`)

}
. (7.7)

But |C(0) ∩ R`| > βx
2 (k − `)s(2`) implies |C(0) ∩ R`| > 0 and hence

0 ↔ ∂B(2`−1), (7.8)

and, in the notation of (6.18) and (6.22),

βx

2
(k − `)s(2`) < |C(0) ∩ R`|

≤ number of vertices in R` connected to ∂B2`−1

≤
∑

D`−1(j)∩R` 6=∅
[ number of vertices in D`−1(j) connected to ∂B2`−1 ]

≤
∑

D`−1(j)∩R` 6=∅
V (2`−1, j). (7.9)

The event in (7.8) and the sum in the right hand side of (7.9) are independent.
Therefore

Prp

{
|C(0) ∩ R`| >

βx

2
(k − `)s(2`)

}
≤ Prp{0 ↔ ∂B2`−1}Prp

{ ∑
D`−1(j)∩R` 6=∅

V (2`−1, j) >
βx

2
(k − `)s(2`)

}
.

(7.10)

The number of j for which D`−1(j) ∩ R` 6= ∅ is bounded by some constant C7,
uniformly in `. As in (6.27) we therefore obtain

Prp

{ ∑
D`−1(j)∩R` 6=∅

V (2`−1, j) >
βx

2
(k − `)s(2`)

}

≤ 2d exp
[ − t2−d βx

2
(k − `)s(2`)

] [
C1

1 − tC2s(2`−1)

]C7

, t ≥ 0.
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We take t = [2C2s(2`−1)]−1 to obtain

Prp

{ ∑
D`−1(j)∩R` 6=∅

V (2`−1, j) >
βx

2
(k − `)s(2`)

}
≤ C8 exp

[ − βD1x

2d+2C2
(k − `)

]
,

(7.11)
for all ` ≥ 1, because s(2`)/s(2`−1) ≥ D1, by virtue of Assumption (II). Substitution
of (7.11) into (7.10) and use of the monotonicity of πn(p) in p to bound π2`−1(p) in
terms of π2`−1(pc) gives for ` ≥ 1

Prp

{
|C(0) ∩ R`| >

βx

2
(k − `)s(2`)

}
≤ C8π2`−1(pc) exp

[ − βD1x

2d+2C2
(k − `)

]
≤ C8

D1
πL0(p)(pc)

(
L0(p)
2`−1

)1/ρ1

exp
[ − βD1x

2d+2C2
(k − `)

]
. (7.12)

In view of (7.7), the definitions of β and k, and the fact that α < 1/2, x ≥ 1, this
gives

Prp

{
|C(0) ∩ ΛbαL0(p)c| ≥ x

2
s(L0(p))

}

≤ C8

D1
πL0(p)(pc)

∑
`:2≤2`≤αL0(p)

(
L0(p)
2`−1

)1/ρ1

exp
[ − βD1x

2d+2C2
(k − `)

]
≤ C9πL0(p)(pc) exp[−C10x]. (7.13)

Next, define `1 by 2`1 ≤ bαL0(p)/4c < 2`1+1. (Thus |k − `1 − log(4/α)/ log 2| ≤ 2.)
Then, as in (7.8), (7.9), the event |C(0)∩Λc

bαL0(p)c| ≥ x
2 s(L0(p)) is contained in the

intersection of

{0 ↔ ∂BbαL0(p)/4c}

and ∑
D`1 (j)∩C(0)∩Λc

bαL0(p)c 6=∅
V (2`1 , j) ≥ x

2
s(L0(p)). (7.14)

Analogously to (6.19) we now define

Ũ` = Ũ`,αL0(p) = {j : D`(j) ↔ ∂ΛbαL0(p)/4c, D`(j) ∩ Λc
bαL0(p)c 6= ∅}.

Then ∑
D`1 (j)∩C(0)∩Λc

bαL0(p)c 6=∅
V (2`1 , j) ≤

∑
j∈Ũ`1

V (2`1 , j),



CROSSING PROBABILITIES AND HYPERSCALING 45

so that for any C7 > 0

Prp

{
|C(0) ∩ Λc

bαL0(p)c| ≥ x

2
s(L0(p))

}
≤ Prp

{
0 ↔ ∂BbαL0(p)/4c,

∑
j∈Ũ`1

V (2`1 , j) ≥ x

2
s(L0(p))

}

= πbαL0(p)/4c(p)Prp

{ ∑
j∈Ũ`1

V (2`1 , j) ≥ x

2
s(L0(p))

}

≤ πbαL0(p)/4c(p)Prp{|Ũ`1 | ≥ C7x}
+ πbαL0(p)/4c(p) sup

Γ
Prp

{∑
j∈Γ

V (2`1 , j) ≥ x

2
s(L0(p))

}
.

(7.15)

Here Γ runs over all subsets of Zd with |Γ| < C7x. Exactly the same method as
used to estimate (6.38) when p < pc can now be used to show that

Prp{|Ũ`1 | ≥ C7x} + sup
Γ

Prp

{∑
j∈Γ

V (2`1 , j) ≥ x

2
s(L0(p))

}
≤ C4 exp[−C5x]. (7.16)

For L0(p) ≥ n0, the lemma now follows from (7.13), (7.15) and (7.16). On
the other hand, for L0(p) ≤ n0, p is bounded away from pc, and the proof of the
lemma just reduces to the proof of the well known fact (see [Gri89], Ch. 3 for ref-
erences) that for p < pc the size distribution P≥s(p) decays exponentially in s with
some strictly positive decay constant (rather than a decay constant proportional to
1/s(L0(p))). �
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