From functional animation
to sprite-based display
(Expanded Version)

Conal Elliott
http://www.research.microsoft.com/conal

October 23, 1998

Technical Report
MSR-TR-98-28

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

A shorter version of this report will appear in the proceedings of First Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’99),
and will be (© Springer-Verlag.

From functional animation
to sprite-based display
(Expanded Version)

Conal Elliott
http://www.research.microsoft.com/ conal

October 23, 1998

Abstract

Functional animation encourages a highly modular programming style,
by supplying a set of arbitrarily composable functions for building up ani-
mations. In contrast, libraries for sprite-based display impose rigid struc-
ture, in order to allow acceleration by hardware and low level software.
This paper presents a method to bridge the gap between functional specifi-
cation and stateful, sprite-based presentation of animation. The method’s
correctness is proved informally by derivation from a simple non-effective
specification, exploiting algebraic properties of the animation data types
that are made explicit in the functional approach. We have implemented
this method in the Fran system, which is freely available.

1 Introduction

The functional approach to animation offers considerable flexibility and modu-
larity [1, 5]. Animations are first-class values—elements of a data type consisting
of a set of constants and combining operators. The data type allows great flex-
ibility in composing these basic building blocks into either directly useful or
attractive animations, or new building blocks, parameterized as desired. More-
over, animation is a polymorphic notion, applying to 2D images, 3D geometry,
and consituent types like colors, points, vectors, numbers, booleans, etc. Con-
sequently, there is not just one animation type, but a collection of types and
type constructors. In a well-designed set of data types, the type system imposes
just enough discipline to rule out nonsensical compositions (such as rotating by
the angle “purple”), without inhibiting the author’s creativity. In this way, the
data types are designed to serve the needs of the author (and readers) of an
animation.

From functional animation to sprite-based display

e A e e e e e

Qegg

e

- wre e e E W me

- oEmrw W erm e m-wm = -

rE m mrm m mom e mceom

@

L
@
@

L

e
@
e

L
@
®
@

L
e

L
e

Figure 1: repSpinner (-1) 0.5 charlotte 3

Lower level graphics presentation libraries are designed not for convenience of
a program’s author or readers, but rather for efficient execution on anticipated
hardware. Programs written directly on top of these libraries must adapt to
relatively inflexible representations and tend to be relatively non-modular.

To illustrate the convenience of functional animation, consider the animation
in Figure 1.! The function repSpinner repeatedly transforms an animation im,
stretching im by r, speeding it up by s, and putting two copies into circular

orbit.2

repSpinner ::
repSpinner r s
where
spinner im
where
orbit
path

im n

orbit ‘overf

Lftp://ftp.research.microsoft.com/pub/tr/tr-98-28/animations.htm
ning versions of this example and a few others.

(frames per second), but run in Fran at 60 fps.

2iterate f x produces the infinite list [x, £ x, £ (f x),

RealB -> RealB -> ImageB -> Int -> ImageB
iterate spinner im !! n

later 1 orbit

move path (faster r (stretch s im))
vector2Polar 0.5 (pik*time)

contains run-

Those versions were recorded at 20 fps

...], and 1!!'n extracts the

n-th element of the list 1. Their use together here results in applying spinner to im, n times.

path

Conal Elliott 3

@ motion = mot_1

scale=sc_1
page# =0

bitmap = charlotteBitmap

l

motion = mot_n
scale=sc_n
page# =0

path @ . nn

bitmap = charlotteBitmap

(a) Image hierarchy (b) Sprite list

Figure 2: Image hierarchies vs. sprite lists

In this example, time- and space-transforming functions (faster and stretch)

are applied to overlays of animations that contain more time- and space-transformed

animations (when n > 1), as shown in Figure 2(a). In contrast, sprite-based
subsystems impose rigid structuring on an animation. It must be a sequence of
implicitly overlaid “sprites”, where each sprite is the result of applying possibly
time-varying motion and scaling to a “flip-book” of bitmaps, as in Figure 2(b).
(In our example, the flip-book has only one page.) It is tedious and error-prone
for a programmer or artist to work with such restrictions, when the animated
objects of interest have natural hierarchical structure, as in repSpinner. The
required sprite motion and scaling vectors (mot_i and sc_i) are quite complex,
because each one is affected by a number of space- and time-transforms above
them in the original hierarchy.

This paper presents an algorithm to convert functional animations into a
“sprite normal form” amenable to a fast sprite-based presentation library. As
such, it bridges the gap between the high level flexibility desired for specifi-
cation of animations and the low level regularity imposed by the presentation

4 From functional animation to sprite-based display

library. This algorithm is used in the implementation of Fran (“Functional Re-
active Animation”) [5, 3, 4], which is written in the purely functional language
Haskell [8, 7] and runs in conjunction with a fast “temporal sprite engine,” im-
plemented in C++ and running in a separate thread. The sprite engine, which
is described in this paper, manages a list of sprites. While some sprites are
rendered on the fly, the sprite engine also supports fast flip-book animation.
Typically, Fran updates information maintained by the sprite engine ten times
per second, while the sprite engine interpolates motion, scaling, and indexing,
and updates the screen, all at sixty times per second.

In order to transform flexibly specified animations into the form required
by the sprite engine, we exploit several algebraic properties. In addition to
time- and space-transformation, Fran’s animation algebra supports cropping,
conditionals and reactivity, each requiring special care for conversion to sprite
normal form.

Fran is freely available, including the sprite engine, in full source code at

http://www.research.microsoft.com/conal/fran

2 Animation data types

Fran’s animation data types have been described elsewhere (e.g., [5], and for
reference [13]). The animation-level types other than animated images, sounds,
and 3D geometry come from applying the Behavior type constructor to these
static types, and lifting operations on the static types to operations on behav-
iors. Behaviors are functions of continuous time. As a convention, the behav-
ior types have synonyms made by adding a “B” to the static type name, e.g.,
“Transform2B” is a synonym for “Behavior Transform2”.

As an illustrative example, and because it is particularly relevant to the
sprite-based implementation of 2D animation, we will describe one such type
next.

2.1 Static 2D transforms

The Transform?2 type represents 2D geometric transformation on images, points,
or vectors. It also defines a type class Transformable2 containing types of 2D
transformable objects.

module Transform2 where

identity2 :: Transform2

translate2 :: Vector2 -> Transform2

rotate2 :: RealVal -> Transform2

uscale2 :: RealVal -> Transform2 -- only uniform scaling
compose2 :: Transform2 -> Transform2 -> Transform2
inverse2 :: Transform2 -> Transform2

class Tranformable2 a where

Conal Elliott 5

*%) :: Transform2 -> a -> a -- Applies a transform

instance Transformable2B Point2B
instance Transformable2B Vector2B

Intuitively, 2D transforms are mappings from 2D space to itself. Because
of the restricted vocabulary above, however, one can take advantage of widely
available low level rendering algorithms and hardware acceleration.

2.2 Behaviors

The type Behavior a represents time-varying values of type «, where time is
continuous (real-valued). See [5] for the semantics of behaviors, but we will
mention here a new formulation of formulation of the some of the primitives.

($*) :: Behavior (a -> b) -> Behavior a -> Behavior b
constantB :: a -> Behavior a
time :: Behavior Time

Semantically, these operators correspond to type-specialized versions of the clas-
sic SKI combinators.

-- Semantics
type Behavior a = Time -> a
type Time = RealVal

(fb $* xb) t = (fb t) (xb t) -- S
constantB x t = x -- K
time t=t -1

The name “$*” comes from the fact that it is the lifted version of function

application, whose Haskell infix operator is called “$”.
The lifting operators from [5] are

1ift0 :: a -> Behavior a
liftl :: (a => b) ->
Behavior a -> Behavior b
lift2 :: (a => b =-> ¢) =>
Behavior a -> Behavior b -> Behavior c
-- etc

and are defined simply in terms of constantB and “$*”, as follows. (Note that
semantically 1ift1 is the classic B combinator.)

1ift0 constantB
liftl £ bl 1ift0 £ $* bl
1ift2 £ bl b2 liftl £ bl $* b2
1ift3 £ bl b2 b3 = 1ift2 £ bl b2 $* b3
-- etc

Thus lifting promotes an n-ary function to an n-ary function. Semantically,
from the definitions above, it follows that

(liftn £ bl ... bn) t == f (bl t) ... (bn t)

6 From functional animation to sprite-based display

Efficient implementation of behaviors is a rather tricky matter and is dis-
cussed is a separate paper [2]. Briefly, the current representation of behaviors
is as a data structure that contains two aspects. The first is a structural rep-
resentation intended for analysis and optimization. The second is a sampling
representation, which is a lazy memo function [9] from time streams to value

streams.?
data Behavior a = Behavior (BStruct a) ([T] -> [al)

data BStruct a
= ConstantB a
| NoStructureB
| TimeTransB (Behavior a) (Behavior Time)
| UntilB (Behavior a) (Event (Behavior a))
deriving Show

It is not currently possible to capture the SKI structure in a Haskell datatype,
because doing so would require an existential type for S (i.e., “$*”), but fortu-
nately, existential types are in the process of being added to Haskell implemen-
tations. (Another trick is needed for I —i.e., time. While S is too polymorphic,
I is not polymorphic enough. The solution to this problem is to generalize the

constructor to be polymorphic, and then define the desired specialization.*)
In addition to behaviors, there are some other “behavior-like” types, de-

scribed by the following type class of “generalized behaviors”.’

class GBehavior bv where

untilB :: bv -> Event bv -> bv
timeTransform :: bv -> TimeB -> bv
condBUnOpt :: BoolB -> bv -> bv -> bv

These operations support reactivity, time transformation, and conditional be-
haviors, respectively. The last of these is an unoptimized conditional, from
which the optimized conditional is defined as follows.

condB :: GBehavior bv => BoolB -> bv -> bv -> bv

condB (Behavior (ConstantB True) _) imb _ = imb
condB (Behavior (ConstantB False) _) _ imb’ = imb’
condB ¢ imb imb’ = condBUnOpt ¢ imb imb’

Naturally, behaviors are in the GBehavior class.
instance GBehavior (Behavior a) where

condBUnOpt = 1ift3 (\ a b ¢ -> if a then b else c)

Most animated types are defined very simply, by lifting. For instance, here
is the type Transform2B of animated 2D transforms.

3The representation given here is somewhat simplified from the one used in Fran. See [2]
for details.

4My thanks to Alastair Reid and Mark Jones for pointing out this trick.

5By convention, the name of the lifted version of a type is formed by adding a “B” to the
end of the unlifted type’s name. Thus the types TimeB and BoolB mentioned in the GBehavior
type class refer to time- and boolean-valued behaviors respectively.

Conal Elliott 7

emptyImage :: ImageB -- transparent everywhere
solidImage :: ImageB -- solid color image
flipImage :: HFlipBook -> RealB -> ImageB -- flipbook-based
renderImage :: Renderer -> ImageB -- text, 2D & 3D geometry
soundImage :: SoundB -> ImageB -- embedded sound

over :: ImageB -> ImageB -> ImageB -- overlay

withColor :: ColorB -> ImageB -> ImageB -- colored image

crop :: RectB -> ImageB -> ImageB -- cropped image

x%) :: Transform2B -> ImageB -> ImageB -- apply 2D transform
untilB :: ImageB -> Event ImageB -> ImageB -- reactive
condB :: BoolB -> ImageB -> ImageB -> ImageB -- conditional
timeTransform :: ImageB -> TimeB -> ImageB

Figure 3: Abstract interface to the ImageB type

module Transform2B where
import qualified Transform2 as T

type Transform2B = Behavior T.Transform2

identity2 = 1iftO T.identity2
translate2 = 1iftl T.translate2
rotate2 = liftl T.rotate2
uscale2 = liftl T.uscale2
compose2 = lift2 T.compose2
inverse2 = liftl T.inverse2

class Transformable2B a where
(%) :: Transform2B -> a -> a

instance T.Transformable2 a => Transformable2B (Behavior a) where
(%) = 1ift2 (T.*%)

2.3 Image animation

The type ImageB represents image animations that are spatially and temporally
continuous and infinite. The primitives used in the construction of ImageB
values are shown in Figure 3.

The renderImage function is used for all of the various kind of synthetic
images, based on text, 2D geometry, 3D geometry, etc. The type Renderer
maps time-varying cropping rectangle, color, scale factor, rotation angle, and
time transform to a time-varying bitmap:

type Renderer = RectB -> Maybe ColorB -> RealB -> RealB

6The type Event a, for an arbitrary type a, represents a stream of time-stamped values of
type a, and is the basis of reactivity in behaviors.

8 From functional animation to sprite-based display

(crop rectB
mbWithColor mbColorB
stretch scaleB

turn angleB
(‘timeTransform‘ tt) $
RenderImage renderer)

R-C - - -2

surfaceIm (renderer rectB mbColorB scaleB angleB tt)

-- Possibly apply a color

mbWithColor :: Maybe ColorB -> ImageB -> ImageB
mbWithColor Nothing imB = imB

mbWithColor (Just c¢) imB = withColor c imB

-- The ImageB contained on a discrete image (for specification).
surfaceIm :: SurfaceULB -> ImageB

Figure 4: Property of a “renderer”

-> TimeB -> SurfaceULB

-- Bitmap plus upper-left corner location
data SurfaceUL = SurfaceUL HDDSurface Point2
type SurfaceULB = Behavior SurfaceUL

Displaying an animated image also plays the sounds it contains. Spatial
transformation has audible effect; the horizontal component of translation be-
comes left /right balance, and the scale becomes volume adjustment. Cropping
silences sounds outside of the crop region.

By definition, a renderer not only has the type above, but must also perform
cropping, coloring, scaling, rotation, and time transformation, according to its
given parameters, as expressed in Figure 4:7

A “flip book” is a sequence “pages”, each of which is a bitmap. There is also
a simple utility that loads a named file, makes a one-page flip-book and applies
flipImage: importBitmap :: String -> ImageB

For notational convenience, Fran also provides a few functions for directly
transforming ImageB values.

move :: Transformable2B bv => Vector2B -> bv -> bv
move dp thing = translate2 dp *J thing

stretch :: Transformable2B bv => RealB -> bv -> bv
stretch sc thing = uscale2 sc *} thing

"The “$” operator is an alternative notation for function application. Because it is right-
associative and has low syntactic precedence, it is sometimes used to eliminate cascading
parentheses. Also, an infix operator (here ‘timeTransform‘) with one argument but missing
the other denotes a function that takes the missing argument (here an ImageB value) and fills
it in.

Conal Elliott 9

turn :: Transformable2B bv => RealB -> bv -> bv
turn angle thing = rotate2 angle *J, thing

In the early implementations of Fran, ImageB was simply defined to be
Behavior Image, for a type Image of static images. This representation made
for a very simple implementation, but it has a fundamental problem: the image
structure of an ImageB value cannot be determined at the behavior level. It
must first be sampled with some time t to extract a static image, whose struc-
ture can then be examined. To display an animation then, one must repeatedly
sample it, and display the resulting static images. Consequently, the display
computation cannot build and maintain data structures and system resources
for parts of an animation. In particular, it cannot allocate one sprite for each
flipImage and renderImage, set them moving, and then update the motion
paths incrementally. That is, the implementation cannot take advantage of a
sprite engine.

It appears then that the modularity imposed by lifting requires an underlying
presentation library to work in “immediate mode” (draw this now), rather than
“retained mode” (build a model and repeatedly edit and redisplay it), to borrow
terms from 3D graphics programming. In designing Fran, however, we targeted
the upcoming generation of graphics accelerator cards, which we believe to be
increasingly oriented toward retained mode. The sprite-based Talisman archi-
tecture [16] was of special interest. It performs transformation and overlaying of
sprites with a-blending and high-quality anisotropic image filtering, without re-
quiring a screen-size frame buffer. In fact, we designed and implemented Fran’s
underlying sprite engine to be a reasonable approximation to a partial Talisman

interface, before real cards were available.

For reasons given above, the ImageB is not represented in terms of a static
Image type, but rather as a recursively defined data type, as shown in Figure 5.
The functions in Figure 3 are defined as simple optimizations of the ImageB
constructors from Figure 5. For instance, transforming the empty or solid image
has no effect;:

xf *% EmptyImage = EmptyImage
xf %), SolidImage = SolidImage

xf *% im TransformI xf im

Although a programmer would not be likely to transform empty or solid images
explicitly, such compositions arise at runtime due to modular programming
style, as well as some of the reactivity optimizations discussed in [2]. The other
ImageB operators are defined similarly. The constructors CondI, Untill, and
TimeTransI are used to define the overloaded functions condB, untilB, and
timeTransform that apply to sound, 3D geometry, and all behaviors, as well as
to image animations. The “*%” operator is overloaded to apply to several types,

as well.
Image animations are generalized behaviors:

10

From functional animation to sprite-based display

data ImageB

= EmptyImage -- transparent everywhere
| SolidImage -- solid color

| FlipImage HFlipBook RealB -- page # behavior

| RenderImage Renderer -- text, 2D & 3D geometry
| SoundI SoundB -- embedded sound

| Over ImageB ImageB -- overlay

| TransformI Transform2B ImageB -- 2D transformed

| WithColorI ColorB ImageB -- colored

| Cropl RectB ImageB -- cropped

| CondI BoolB ImageB ImageB -- conditional

| Untill ImageB (Event ImageB) -- reactivity

I

TimeTransI ImageB TimeB time transformed

Figure 5: Data type representing 2D image animations

instance GBehavior ImageB where
untilB = Untill
timeTransform = TimeTransI
condBUnOpt = CondI
2.4 Sound

Fran has a fairly simple type SoundB of “animated sounds.” Its building blocks
are similar to those of ImageB.

module SoundB where

silence :: SoundB

importWave :: String -> Bool -> SoundB -- file name, repeat?
mix :: SoundB -> SoundB -> SoundB

volume :: RealB -> SoundB -> SoundB

pitch :: RealB -> SoundB -> SoundB

pan :: RealB -> SoundB -> SoundB

Representation of SoundB via lifting is problematic both conceptually and
pragmatically. Conceptually, it is unclear what is a useful and implementable
notion of static sound. Pragmatically, as with ImageB, a lifting-based implemen-
tation would require an immediate mode presentation library, but the libraries
we know of, such as Microsoft’s DirectSound [12, 11] are retained mode. Direct-
Sound provides interfaces to allocate sound buffers in either main memory or
audio card memory, and direct the sound buffers to be mixed and played. The
client program can then optionally adjust the sound buffers’ volume, frequency,
and left/right balance attributes. A retained mode architecture is especially
desirable for sound, because it is difficult for an application program to keep
the hardware’s sound buffers filled and perform or direct mixing and output in

Conal Elliott 11

a timely enough fashion to avoid buffer overflow or underflow, both of which
have easily discernible effects. A lazy functional program would have particu-
lar difficulty because of unpredictable interruptions due to garbage collection
and evaluation of postponed computations. DirectSound creates a few highest-

priority threads that feed buffers and adjust registers in the sound hardware.
The representation of SoundB is as a recursive data type.

data SoundB = SilentS
| BufferS HDSBuffer Bool -- for importWave
| MixS SoundB SoundB
| VolumeS RealB SoundB
| PanS RealB SoundB
| PitchS RealB SoundB
| UntilS SoundB (Event SoundB)
| TimeTransS SoundB TimeB
deriving Show

Animated sounds are generalized behaviors as well. Conditional is imple-
mented by mixing two sounds with applied volumes that silence one or the

other, depending on the boolean behavior.?

instance GBehavior SoundB where
untilB = UntilS
timeTransform = TimeTransS
condBUnOpt ¢ snd snd’ =
volume v snd ‘mix‘¢ volume v’ snd’

where
v =condB c 10
vi=1-v

2.5 3D animation

Many 3D graphics presentations libraries also have a retained-mode structure,
e.g., Silicon Graphics’ Inventor [15] and Performer [14], and Microsoft’s Di-
rect3DRM [6, 11]. Fran uses Direct3DRM to display its type GeometryB of
animated 3D geometry. Its structure is much like ImageB and SoundB.

3 A temporal sprite engine

The primary purpose of the sprite engine is to scale, move, and overlay a se-
quence of images, and to do so at a very high and regular rate.” Because anima-

8With a-blending for transparency, an analogous implementation of conditional image
animations would be possible. Alternatively, one could use stretch. Fran does not use this
technique, because scaling an image moves all of its features closer to or further from the
origin, and due to the sprite engine’s automatic linear interpolation this motion is visible for
1/10 second. Fast a-blending would fix this problem.

91deally redisplay is done exactly at the video refresh rate and occurs during the video
blank interval. We cannot attain this ideal, due to lack of real-time operating system support,
and because the video card hardware interface does not generate interrupts to signal the
beginning of the video blank interval. However, in practice we do fairly well.

12 From functional animation to sprite-based display

tions may involve arbitrarily complex behaviors, and because garbage collection
and lazy evaluation cause unpredictable delays, we could not meet this goal if
the window refresh were implemented in Haskell or even invoked by a Haskell
program. For these reasons, the sprite engine is implemented in C++, does no
memory allocation, and runs in its own thread.

3.1 Sprites and sprite trees

The sprite engine maintains an ordered collection of sprites, represented via a
C++ class hierarchy. The classes representing individual sprites are as follows.

e FlipSprite has a bitmap that is selected from a “flip book” object. Each
flip book contains a pointer to a bitmap (a DirectDraw surface [12, 11])
stored in video memory, and information describing a rectangular array
of images contained somewhere within the bitmap. This array is taken to
be a linear sequence of consecutive “pages”. Flip books and the bitmap
images to which they refer are immutable and may be shared among any
number of flip sprites. The current page number, spatial transform, and
cropping rectangle are all stored in the unshared sprites rather than the
shared flip book.

e RenderedSprite has its own drawing surface and a method for replacing
the surface with a new one. This sprite is used for all “rendered” images,
such as text, 2D geometry, and camera-viewed 3D geometry.

e SolidSpriteis a uniformly colored sprite, cropped but not spatially trans-
formed.

e SoundSprite is an embedded sound, and is neither cropped nor trans-
formed. It contains a DirectSound “duplicate” sound buffer and volume,
frequency, and left /right balance attributes. A duplicate buffer is a Direct-
Sound object that contains a pointer to (typically immutable) shareable
sound data, plus its own unshared attributes for volume, frequency, and
left /right balance.

A displayed animation could be represented by a list of individual sprites, in
back-to-front order, so that upper (later) sprites are painted over lower (earlier)
sprites. This representation is the simplest for display, but is awkward for
editing. When an event occurs in an animation, an animated object may be
introduced, removed, or replaced. Since the appearance of such an object may
contain any number of sprites, the event may introduce, remove, or replace a
whole contiguous subsequence of sprites. The sprite engine makes it easy and
fast to edit the sprite list at a conceptual level by using a list of sprite trees rather
than a list of individual sprites. The internal nodes of these trees correspond
exactly to the points of structural (as opposed to parametric) mutability of
the animation being displayed. (For Fran’s use, the points of mutability are

Conal Elliott 13

generated from the reactivity construct “untilB”.) Correspondingly, there is
a SpriteTree subclass SpriteGroup that contains a list of sprite trees and
supports a method to replace the list, in its entirety, with another one. The
sprite engine requires that there be no structure sharing, so the old list and all
of its elements are recursively deallocated. Lack of sharing also allows direct
linking of sprite trees. Each sprite tree contains a next pointer.

For conditional animations, such as generated by Fran’s “condB”, there is
a SpriteTree subclass CondSpriteTree, which contains an externally mutable
boolean and two sprite tree lists.

The sprite engine expects its sprite trees to be updated less often that they
are redisplayed. For example, Fran tries to sample behaviors at roughly ten
times per second, but the sprite engine redisplays at 60 times per second.
Between updates, the sprite engine performs linear interpolation of all sprite
attributes, which are are actually represented as linear functions rather than
constant values. For smoothness, updates must then be given for times in the
future, so that the a new linear path may be set from the current time and
value to the given one. These linear behaviors form a compromise between ar-
bitrary behaviors, which have unpredictable sampling requirements, and mere
constant, values, which fail to provide smooth motion. Other possibile compro-
mises include quadratic and cubic curves, for which fast incremental sampling
algorithms may be used.

The main loop of the sprite engine is then to traverse its sprite tree list
recursively and in depth-first, back-to-front order. Each image sprite in turn is
told to paint itself, and in doing so samples its attributes’ linear functions and
then does a very fast video memory “blit” (copy). Sound sprites are “painted”
by updating the DirectSound buffer attributes. Updating is double buffered to
avoid visible image tearing. Thus the blitting is done to a “back buffer”, which
is a video memory surface being the same size as the display window. When all
of the sprites have been painted, the back buffer is blitted to the front (visible)
buffer. Given a modern video card with adequate video RAM and hardware
stretching, these operations are extremely fast.

3.2 Interpretation of sprite trees

The goal of ImageB display is first to “spritify”, i.e., convert an abstract ImageB
value to a initial list of sprite trees, and then update the trees iteratively. Con-
currently, the sprite engine traverses and displays the sprite trees. Although the
sprite trees are really implemented in C++, for the purpose of exposition, we
will express them here in as the Haskell type definitions in Figure 6.

In order to define “correct” conversion, we need an interpretation of sprite
tree lists. We specify this interpretation by mapping sprite tree lists to ImageB
values. Note that this mapping is hypothetical, serving to (a) specify what the
sprite engine does, and (b) justify our implementation in Section 4 of the reverse
mapping, i.e., from ImageB values to [SpriteTree].

14 From functional animation to sprite-based display

data SpriteTree =

SoundSprite RealB -- volume adjust
RealB -- left/right pan
RealB -- pitch adjust
Bool -- whether to auto-repeat
SoundBuffer
| RenderedSprite Vector2B -- translation vector
SurfaceULB
| SolidSprite RectB -- cropping region
ColorB -- solid color
| FlipSprite RectB -- cropping region
Vector2B -- translation vector
RealB -- scale factor
HF1ipBook
RealB -- page number

UntilT [SpriteTree] (Event [SpriteTree])
| CondT BoolB [SpriteTree]l [SpriteTreel]

Figure 6: Sprite trees as Haskell types

Note that [SpriteTree] type almost fits the GBehavior style, but not quite.
Instead, it matches the sprite engine’s data structure.

The interpretation functions are given in Figure 7. The function treesIm is
the main interpretation function, and says that a list of sprite trees represents
an overlay of the images represented by the member trees, in reverse order. This
reversal reflects the fact that the sprite tree lists are in back-to-front order so
that the sprite engine can paint the sprite trees in list order. Later (upper)
sprite trees are then painted over earlier (lower) sprite trees. The first four
clauses of the treeIm function interpret individual sprites. Note the rigidity of
order of applied operations imposed by the sprite constructors, as contrasted
with the flexibility afforded by the ImageB type (Figure 3). It is exactly because
of this difference that, while interpretation of sprite tree lists is straightforward,
generation is not.

The UntilT case says that a reactive sprite tree represents a reactive image
animation. This animation is initially the one represented by the initial sprite
tree list. When the event occurs, yielding a new sprite tree list, the animation
switches to the one represented by these new trees.'® The conditional case is
similar.

10The event e ==> treesIm occurs whenever e does. At each occurrence, the function
treesIm is applied to the the event data from e. Thus the event combinator “==>" is a map
on events.

Conal Elliott 15

treesIm :: [SpriteTree] -> ImageB
treesIm [] = emptyImage
treesIm (bot : above) = treesIm above ‘over‘ treelm bot

treeIm (RenderedSprite motionB surfaceB) =
move motionB (surfaceIm surfaceB)

treeIm (SolidSprite rectB colorB) =
crop rectB (withColor colorB solidImage)

treeIm (FlipSprite rectB motionB scaleB book pageB) =
crop rectB $
move motionB $
stretch scaleB $
flipImage book pageB

treeIm (SoundSprite volB panB pitchB soundB) =
volume volB $
pan panB $
pitch pitchB $
soundImage soundB

treeIm (trees ‘UntilT‘ e) =
treesIm trees ‘untilB‘ (e ==> treesIm)

treeIm (CondT c trees trees’) =
condB ¢ (treesIm trees) (treesIm trees’)

Figure 7: Interpreting sprite trees

16 From functional animation to sprite-based display

4 From abstract animations to sprite trees

The interpretation of sprite tree lists as image animations given above helps to
specify the reverse process, which we must implement in order to use the sprite
engine to display animations: The spritify algorithm takes sprite trees to
overlay, a cropping rectangle, optional color, a space- and a time-transformation,
all applied to the given ImageB while spritifying. (Recall mbWithColor from

Section 2.3.)

spritify :: [SpriteTree] -> RectB -> Maybe ColorB -> Transform2B
-> TimeB -> ImageB -> [SpriteTreel
treesIm (spritify above rectB mbColorB xfB tt imB) ==
treesIm above ‘over®
(crop rectB $
mbWithColor mbColorB $
(x£B *%) $
(‘timeTransform tt) $
imB)

The algorithm works by recursive traversal of ImageB values, accumulating
operations that are found out of order. To get the algorithm started, Fran
has just an ImageB, imB, and a cropping rectangle, windowRectB, based on the
display window’s size (which may vary with time), and so invokes spritify as
spritify [] windowRectB Nothing identity2 time imB, where identity2
is the identity 2D transform, and time serves as the identity time transform.

Our claim that the algorithm given below satisfies this specification may
be proved by induction on the ImageB representation. Rather than give the
algorithm first and then the proof, however, we instead derive the algorithm
from the specification so that it is correct by construction. We will rely on
many simple algebraic properties of our data types. These properties may be
proved from semantic models of the data types, but we leave this matter to a
future paper. Meanwhile they may be taken as axioms.

4.1 Solid images

Solid images are unaffected by space- or time- transformations, and are of a
default color, as expressed by the following properties:

xfB *J SolidImage == SolidImage
SolidImage ‘timeTransform‘ tt == SolidImage
withColor defaultColor SolidImage == SolidImage
These facts simplify the specification of spritify:
treesIm (spritify above rectB mbColorB xfB tt SolidImage) ==
treesIm above ‘over’

crop rectB (withColor (chooseColorB mbColorB) SolidImage)

where

Conal Elliott 17

chooseColorB :: Maybe ColorB -> ColorB
chooseColorB Nothing = defaultColor
chooseColorB (Just c) = ¢

Now considering the interpretation of SolidSprite and the definition of
treesIm given in Figure 7, the specification simplifies further:

treesIm (spritify above rectB mbColorB xfB tt SolidImage) ==
treesIm (SolidSprite rectB (chooseColorB mbColorB) : above)

This final simplification then directly justifies the SolidImage case in the
spritify algorithm.

spritify above rectB mbColorB xfB tt SolidImage =
SolidSprite rectB (chooseColorB mbColorB) : above

4.2 Rendered images

Because of their spatially continuous nature, ImageB values may be thought of
as being constructed bottom-up, whereas their implementation via spritify
is top-down. For instance given “stretch 10 circle”, we would not want to
render a circle to a (discrete) bitmap and then stretch the bitmap, because
the resulting quality would be poor. Similarly, for “stretch 0.1 circle”, it
would be wasteful to render and then shrink. Instead, scaling transforms are
postponed and incorporated into the rendering, which can then be done at an
appropriate resolution. Similarly, rotation is an expensive operation on bitmaps,

but can generally be moved into rendering.
For this reason, we want to factor the transform behavior into translation,
scale, and rotation. Fran’s factorTransform2 function does just this:

xfB == translate motionB ‘compose2‘
uscale scaleB ‘compose2f
rotate angleB

where

(motionB, scaleB, angleB) = factorTransform2 xfB

Moreover, the meaning of transform composition is function composition.
(xfB ‘compose2‘ xfB’) *J thing == xfB *J, (xfB’ *J, thing)
Factoring the spatial transform and turning transform composition into func-
tion composition, our specification becomes the following.

treesIm (spritify above rectB mbColorB xfB tt
(RenderImage renderer)) ==
treesIm above ‘overf
(crop rectB
mbWithColor colorB
move motionB
stretch scaleB
turn angleB
(‘timeTransform‘ tt)
RenderImage renderer)
where
(motionB, scaleB, angleB) = factorTransform2 xfB

R-c R -C - - - -1

18 From functional animation to sprite-based display

Next, since renderers do not perform motion, we must extract the move from
within applications of withColor and crop. Coloring commutes with spatial
transformation:

withColor ¢ (xfb *% imb) == xfb *J (withColor c imb)

Cropping is trickier, requiring that the cropping rectangle be inversely trans-
formed:

crop rectB (xfb *J imb) == xfb %}, crop (inverse2 xfb *J, rectB) imb

For example, doubling the size of an image and then cropping with a rectangle

it is equivalent to cropping with a half-size rectangle and then doubling in size.
The definition of a renderer in Section 2.3 then leads to the following rule
for spritifying rendered images.!*

spritify above rectB mbColorB xfB tt (RenderImage renderer) ==
RenderedSprite motionB
(renderer (move (-motionB) rectB)
mbColorB scaleB angleB tt)
: above
where
(motionB, scaleB, angleB) = factorTransform2 xfB

4.3 Flip-book animation

An analysis similar to the one for SolidImage above applies to flip book ani-
mation. Fran imposes two restrictions on flip-book animations (and the special
case of constant bitmaps). They may not be colored or rotated. Simplifying the
spritify specification under these assumptions yields the following.

treesIm (spritify above rectB Nothing xfB tt
(FlipImage book pageB)) ==
treesIm above ‘overf
(crop rectB
mbWithColor Nothing
move motionB
stretch scaleB
turn (constantB 0)
(‘timeTransform‘ tt) $
FlipImage book pageB)
where
(motionB, scaleB, constantB 0) = factorTransform2 xfB

R-cR - - - -

We can then simplify further, using the following facts.

mbWithColor Nothing imb == imb
turn (constantB 0) imb == imb

(flipImage book pageB) ‘timeTransform‘ tt ==
flipImage book (pageB ‘timeTransform‘ tt)

' The cropping and scaling behaviors should really be added to the RenderImage constructor
and have the sprite engine use them, even though these operations are already performed
during rendering. The reason is that the sprite engine can apply them incrementally at a
much higher rate, for smoothness.

Conal Elliott 19

After applying these properties, the specification matches the interpretation
of FlipSprite, and we get the following rule for flipImage.

spritify above rectB _ xfB tt (FlipImage book pageB) =
FlipSprite rectB motionB scaleB
book (pageB ‘timeTransform‘ tt)
: above
where
(motionB, scaleB, _) = factorTransform2 xfB

4.4 The empty image

The empty image is trivially spritified, because (a) time transformation, space
transformation, coloring, and cropping all map the empty image to itself, and
(b) the empty image is the identity for over.

spritify above _ _ _ _ EmptyImage = above

4.5 Overlays

The treatment of overlays follows from the distribution of time transformation,
space transformation, coloring, and cropping over the over operation, plus the
associativity of over.

spritify above rectB mbColor xfB tt (top ‘Over‘ bot) =
spritify (spritify above rectB mbColor xfB tt top)
rectB mbColor xfB tt bot

4.6 Time transformation

Spritifying a time transformed animation is relatively simple because of the
following composition property.

(imb ‘timeTransform‘ tt’) ‘timeTransform‘ tt ==
imb ‘timeTransform‘ (tt’ ‘timeTransform‘ tt) ==

Thus:

spritify above rectB mbColor xfB tt (TimeTransI imb tt’) =
spritify above rectB mbColor xfB (tt’ ‘timeTransform‘ tt) imb

4.7 Space transformation
Time transformation distributes over space transformation:

(xfB *% imb) ‘timeTransform‘ tt ==
(xfB ‘timeTransform‘ tt) *J) (imb ‘timeTransform‘ tt)

Space transforms compose:
xfB *% (xfB’ x% imB) == (xfB ‘compose2‘ xfB’) *J imB
The rule for TransformI then follows easily.

spritify above rectB mbColor xfB tt (xfB’ ‘TransformI‘ imb) =
spritify above rectB mbColor
(xfB ‘compose2‘ (xfB’ ‘timeTransform‘ tt)) tt imb

20 From functional animation to sprite-based display

4.8 Coloring

The treatment of withColor follows from the following commutativity-like prop-
erties and combination rule.'?

(withColor c¢ imb) ‘timeTransform‘ tt ==
withColor (c ‘timeTransform‘ tt) (imb ‘timeTransform‘ tt)

xf *J withColor ¢ imb == withColor c¢ (xf *% imb)

withColor c¢ (withColor ¢’ imb) == withColor ¢ imb
Then

spritify above rectB mbColor xfB tt (WithColorI color’ imb) =
spritify above rectB mbColor’’ xfB tt imb

where
mbColor’’ = mbColor ++ Just (color’ ‘timeTransform‘ tt)

The Haskell operation “++” on Maybe is defined as follows.

Nothing ++ mb mb
Just x ++ = Just x

4.9 Cropping

Cropping works very much like space transformation and coloring, justified by
analogous properties.

(crop rectB imb) ‘timeTransform‘ tt ==
crop (rectB ‘timeTransform‘ tt) (imb ‘timeTransform‘ tt)

xf %}, crop rectB imb == crop (xf *), rectB) (xf *J, imb)

crop rectB (crop rectB’ imb) ==
crop (rectB ‘intersectRect‘ rectB’) imb

Then

spritify above rectB mbColor xfB tt (Cropl rectB’ imb) =
spritify above rectB’’ mbColor xfB tt imb

where
rectB’’ = (rectB ‘intersectRect’) §$
(xfB *%) $
(‘timeTransform‘ tt) $
rectB’

12Note that in the case of nested colorings, the outer ones win, in contrast to many graphics
libraries. The reason is that our informal model of coloring is to simply paint over what is
already present. The conventional, innermost-wins policy is simpler to implement, but has
arguably more complex semantics.

Conal Elliott 21

4.10 Conditional animation

Time- and space-transformation, coloring, and cropping, all distribute over con-
ditionals:

(condB boolB thenB elseB) ‘timeTransform‘ tt
== condB (boolB ‘timeTransform‘ tt)
(thenB ‘timeTransform‘ tt)
(elseB ‘timeTransform‘ tt)

xf *% (condB boolB thenB elseB)
== condB boolB (xf #*J, thenB) (xf *), elseB)

withColor c¢ (condB boolB thenB elseB)
== condB boolB (withColor c thenB) (withColor c elseB)

crop rectB (condB boolB thenB elseB)
== condB boolB (crop rectB thenB) (crop rectB elseB)

The rule then follows:

spritify above rectB mbColor xfB tt (CondI c imb imb’) =
CondT (¢ ‘timeTransform‘ tt)
(spritify [] rectB mbColor xfB tt imb)
(spritify [] rectB mbColor xfB tt imb)
: above

Note that we spritify imb and imb’ with an empty above list, and then place
the whole conditional sprite tree under the given above sprites. Alternatively,
one might spritify imb and imb’ each with the given above list, and make a
singleton CondT sprite tree list. We chose the implementation above because it
preserves the invariant that sprite tree structure is never shared (Section 3.1).

4.11 Reactive animation

Reactive animations are spritified in much the same way as conditional anima-
tions, justified by analogous properties. The rule:

spritify above rectB mbColor xfB tt (imb ‘UntilI‘ e) =
UntilT (spritify [] rectB mbColor xfB tt imb)
(e ‘afterE‘ (rectB, mbColor, xfB, tt) ==>
\ (imb’, (rectB’, mbColor’, xfB’, tt’)) ->
spritify [] rectB’ mbColor’ xfB’ tt’ imb’)
: above

The afterE combinator gives access to the “residual”, or “aged” version, of a
value of a GBehavior type upon the occurrence of an event. Using the unaged
behaviors instead would cause a time-space leak, since the behaviors would be
held onto from their beginning while waiting for the event to occur. See [2] for
details.

22 From functional animation to sprite-based display

4.12 Embedded sound

Image-embedded sounds are spritified by generating a collection of sound sprites.
In Fran, the pan (left/right balance), and the volume are influenced by the
spatial transform being applied. If the sound’s location is outside of the cropping
rectangle then it is silenced. (The operator “.+"” is point/vector addition.

spritify above rectB _ xfB tt (SoundI sound) =
spritifySoundB above vol pan pitch tt sound
where
(motion, scale, _) = factorTransform2 xfB
-- Pan based on x coordinate. The 7.0 is empirical.
pan = 7.0 * fst (vector2XYCoords motion)
-- Volume is based on scale, possibly silenced by cropping
vol = ifB (rectContains rectB (origin2 .+" motion))
(abs scale) 0

pitch =1

The new sound conversion function spritifySoundB is specified and imple-
mented much like spritifying image animations. The specification:

spritifySoundB :: [SpriteTree] -> RealB -> RealB -> RealB
-> TimeB -> SoundB -> [SpriteTreel

treesIm (spritifySoundB above volB panB pitchB tt sound) ==
treesIm above ‘overf
soundImage (
volume volB
pan panB
pitch pitchB
(‘timeTransform‘ tt)
sound)

$
$
$
$

The implementation, given in Figure 8, is somewhat simpler than that of
spritify, because of the independence of the operations for adjusting pan,
volume, and pitch.

4.13 State and concurrent updating

The spritifying algorithm above is idealized in that it constructs immutable
sprite tree lists containing Fran behaviors. In fact, the sprite engine’s data struc-
tures are mutable, both parametrically and structurally, and only accomodate
linear behaviors. The actual implementation of spritify and spritifySound
creates the mutable sprite trees with initial values for position, scale, pitch,
etc., and then iteratively updates these attributes, while the sprite engine runs
concurrently. For simplicity of implementation, every active sprite is managed
by its own Haskell thread, using the Concurrent Haskell primitives [10]. Each
such thread is fueled by a request channel, with each request saying either to
continue or to quit, and puts status messages into a response channel. Each
sprite thread iteratively samples the appropriate behaviors (slightly into the
future) and invokes an update method on the sprite object. In response, the
sprite engine charts a new linear course for each attribute.

Conal Elliott

spritifySoundB above SilentS = above

spritifySoundB above volB panB pitchB tt (BufferS buff repeat)
SoundSprite volB panB pitchB repeat buff : above

spritifySoundB above volB panB pitchB tt (sound ‘MixS‘ sound’)
spritifySoundB above’ volB panB pitchB tt sound’

where
above’ = spritifySoundB above volB panB pitchB tt sound

spritifySoundB above volB panB pitchB tt (sound ‘TimeTransS‘ tt’) =
spritifySoundB above volB panB pitchB (tt’ ‘timeTransform‘ tt)
sound

spritifySoundB above volB panB pitchB tt (VolumeS v sound) =
spritifySoundB above (volB * v ‘timeTransform‘ tt)
panB pitchB tt sound

spritifySoundB above volB panB pitchB tt (PanS p sound) =
spritifySoundB above volB
(panB + timeTransform p tt)
pitchB tt sound

spritifySoundB above volB panB pitchB tt (PitchS p sound) =
spritifySoundB above volB panB
(pitchB * p ‘timeTransform‘ tt)
tt sound

spritifySoundB above volB panB pitchB tt (sound ‘UntilS‘ e) =
UntilT (spritifySoundB [] volB panB pitchB tt sound)
(e ‘afterE‘ (volB, panB, pitchB, tt) ==>
\ (sound’, (volB’, panB’, pitchB’, tt’)) ->
spritifySoundB [] volB’ panB’ pitchB’ tt’ sound’)
: above

Figure 8: Spritifying SoundB values

24 From functional animation to sprite-based display

spritify :: SpriteTree -> RectB -> Maybe ColorB
-> Transform2B -> ImageB -> Maybe TimeB
-> [Time] -> MVar Bool -> MVar Bool -> I0 SpriteTree

spritify above rectB mbColorB xfB tt SolidImage
ts requestV replyV = do
sprite <- newMonochromeSprite above
let update “(t:ts’)
“(RectLLUR (Point2XY 1lx 1ly) (Point2XY urx ury) : rects’)
“(ColorRGB r g b : colors’) = do
continue <- takeMVar requestV
if continue then do
updateMonochromeSprite sprite t 1llx lly urx ury r g b
putMVar replyV True
update ts’ rects’ colors’
else
putMVar replyV False
forkIO $ update ts (rectB ‘ats‘ ts) (chooseColorB mbColorB ‘ats‘ ts)
return (toSpriteTree sprite)

Figure 9: spritify case with concurrent updating

For example, Figure 9 is a slightly simplified implementation of the SolidImage
case. A monochrome sprite is allocated in the sprite engine, chaining to the
sprite trees given as “above”. The time stream ts is used to sample the crop-
ping rectangle and color, using ats (which is memoized as described in [2]). The
resulting sample values are used to interactively update the sprite attributes, as
long as the request channel requestV says to continue. The iteration is placed
in a new Haskell thread via forkIO.

The handling of a reactive image animation, imb ‘untilB‘ e, is somewhat
tricky. The initial animation imb is spritified, starting any number of threads.
(OverI-based animations lead to multiple threads.) The resulting sprite tree list
is wrapped up in a SpriteGroup object (corresponding to the UntilT construc-
tor above). One more thread runs to watch for event occurrences and causes
the update work corresponding to imb to continue until the first occurrence of
the event e, and then to stop. At that point, a new animation is available and is
spritified, generating a new sprite tree list, which is then passed to a method on
the SpriteGroup object that recursively deletes its old list and installs the new
one. The number of running threads thus varies in response to events. Because
every thread has accompanying overhead for controlling its work, a useful future
optimization would be to create many fewer threads.

Conal Elliott 25

5 Conclusions

The implementation techniques described in this paper bridge the gap between
functional animation and retained-mode display. Functional animation serves
the needs of composability, while retained-mode promotes efficient use of hard-
ware resources. A recurring theme in this work is the application of algebraic
properties of our animation data types, in order to normalize animations to
the relatively restrictive form imposed by retained-mode presentation libraries.
An area of future work is to develop rigorous semantic models for these data
types. The models would form the interface between the informal mental mod-
els taught to and used by the everyday animation programmer and the correct
and efficient implementation of the animation library itself. This semantic ori-
entation has driven our work from the start, but some work remains to make it
complete and precise.

References

avi Arya. unctional animation starter-kit. Journal of Functional Pro-
1] Kavi A Af ional ani i kit. J I of Fi jonal P
gramming, 4(1):1-18, January 1994.

[2] Conal Elliott. Functional implementations of continuous modeled anima-
tion. To appear in PLILP/ALP ’98. http://www.research.microsoft.-
com/conal/papers/plilpalp98/short.ps.

[3] Conal Elliott. Modeling interactive 3D and multimedia animation
with an embedded language. In The Conference on Domain-Specific
Languages, pages 285-296, Santa Barbara, California, October 1997.
USENIX. WWW version at http://www.research.microsoft.com/-
“conal/papers/ds197/ds197 .html.

[4] Conal Elliott. Composing reactive animations. Dr. Dobb’s Journal,
July 1998. Extended version with animations at http://www.research.-
microsoft.com/conal/fran/{tutorial.htm,tutorialArticle.zip}.

[5] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceed-
ings of the 1997 ACM SIGPLAN International Conference on Functional
Programming, pages 263-273, Amsterdam, The Netherlands, 9-11 June
1997.

[6] Rob Glidden. Graphics Programming With Direct3D : Techniques and Con-
cepts. Addison-Wesley, 1996.

[7] Paul Hudak and Joseph Fasel. A gentle introduction to Haskell. SIG-
PLAN Notices, 27(5), May 1992. See http://haskell.org/tutorial/-
index.html for latest version.

26 From functional animation to sprite-based display

[8] Paul Hudak, Simon L. Peyton Jones, and (editors) Philip Wadler. Re-
port on the programming language Haskell, A non-strict purely func-
tional language (Version 1.2). SIGPLAN Notices, Mar, 1992. See
http://haskell.org/report/index.html for latest version.

[9] J. Hughes. Lazy memo functions. In J. P. Jouannaud, editor, Functional
Programming Languages and Computer Architecture, volume 201 of LNCS,
pages 129-146. Springer Verlag, September 1985.

[10] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent
Haskell. In Conference Record of POPL ’96: The 23'4 ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 295—
308, St. Petersburg Beach, Florida, 21-24 January 1996.

[11] Microsoft. DirectX home page. http://www.research.microsoft.com/~-
directx.

[12] Microsoft and Peter Donnelly. Inside DirectX. Microsoft Press, 1998.

[13] John Peterson, Conal Elliott, and Gary Shu Ling. Fran user’s man-
ual, Revised February, 1998. http://www.research.microsoft.com/-
“conal/Fran/UsersMan.htm.

[14] John Rohlf and James Helman. IRIS performer: A high performance mul-
tiprocessing toolkit for real-time 3D graphics. In Andrew Glassner, editor,
Proceedings of SIGGRAPH 94 (Orlando, Florida, July 2/-29, 1994), pages
381-395, July 1994.

[15] Paul S. Strauss and Rikk Carey. An object-oriented 3D graphics toolkit.
Computer Graphics, 26(2):341-349, July 1992.

[16] Jay Torborg and Jim Kajiya. Talisman: Commodity real-time 3D graphics
for the PC. In SIGGRAPH 96 Conference Proceedings, pages 353—-364,
August 1996. held in New Orleans, Louisiana, 04-09 August 1996.

