Capacity Model for Internet Transactions

Morgan Oslake, Hilal Al-Hilali, David Guimbellot

April 1999

Technical Report

MSR-TR-99-18

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052, USA

(Copyright 1999, Microsoft Corporation

TABLE OF CONTENTS

3Abstract

1 Outline
3
2 Introduction
3
2.1 Conventional Approach
3
2.2 Transaction Cost Analysis
4
3 Transaction Cost Analysis Methodology
4
3.1 Usage Profile
5
3.1.1 Site Profile
5
3.1.2 User Behavior
5
3.1.3 Performance Targets
6
3.2 Instrumentation of Probes
6
3.2.1 Windows NT Performance Monitor
7
3.3 Performance Measurement
7
3.3.1 System Configuration
7
3.3.2 Load Generation
9
3.4 Cost Equations
10
3.4.1 Resource Costs for each Transaction
10
3.4.2 Total Resource Costs
11
3.5 Model Verification
12
3.5.1 Verification Script
12
3.5.2 Load Generation
13
3.5.3 Comparison with TCA Estimates
13
4 Capacity Planning Using Transaction Cost Analysis
14
5 Transaction Cost Analysis Requirements
14
6 Conclusion
14
7 Further Work
14
8 Acknowledgements
14
9 References
14

Capacity Model for Internet Transactions

Morgan Oslake, Hilal Al-Hilali, David Guimbellot

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052, USA

April 1999
Abstract

The purpose of capacity planning for Internet services is to minimize the total dollar cost of ownership of the hosting platform in such a way which supports transaction throughput targets and ensures response times remain within acceptable bounds. Conventional solutions often attempt to cost Internet services through extrapolation of generic benchmark measurements. To satisfy this optimization objective more effectively, a methodology based on transaction cost analysis (TCA) is developed for estimating system capacity requirements.

Client transactions are simulated on the host server by a load generation tool which supports standard network protocols. By varying the client load a correspondence is made which relates transaction rate with resource utilization over the linear operating regime. A usage profile is defined which is intended to capture anticipated user behavior. This profile determines the throughput target and other important transaction parameters from which resource utilization and capacity requirements are then calculated.

1 Outline

Section 2 outlines a conventional solution to capacity planning and compares it against a methodology based on transaction cost analysis (TCA). Section 3 describes the methodology of TCA in detail including a discussion of the usage profile, instrumentation of probes, performance measurement, calculation of resource costs, and verification of the model. Section 4 summarizes the procedure to follow in order to perform capacity planning using the results from TCA. Section 5 lists the requirements to perform TCA and capacity planning. Finally, the paper ends with a conclusion in Section 6.

2 Introduction

2.1 Conventional Approach

Conventional approaches will often benchmark the maximum workload of some specific combination of services each with a particular usage profile on specific hardware. This process is incomplete and time consuming as it is not practical to iterate through all possible hardware, service, and usage profile permutations. A common response to this limitation is to determine these benchmarks for only a moderate number of representative deployment scenarios, and then attempt to estimate costs by extrapolating these benchmarks to fit each particular deployment scenario. This approach also increases the likelihood of over-provisioning hardware since these benchmarks are designed to capture only the maximum workload attainable.

2.2 Transaction Cost Analysis

TCA attempts to reduce the uncertainty inherent in this process by providing a framework for estimating each resource cost as a function of any usage profile, service mix, or hardware configuration. Hardware resources include, but are not necessarily limited to, CPU, cache, system bus, RAM, disk subsystem, and network. TCA also reduces the potential for over-provisioning hardware since the entire (linear) workload range is measured. Finally, unlike some code profiling techniques which only cost function calls, TCA captures all costs present during run-time such as operating system overhead.

Figure 1: Comparison between a conventional approach and TCA.

[image: image1.wmf]Server 1

Server 2

Time

Transaction

 begin

Transaction

 complete

Accumulated resource cost

C1

C2

Client

The methodology of TCA is applicable to any client-server system, but this paper will focus on its application to Internet services.

General references which focus on capacity planning and performance modeling can be found in [1][2]. Reference [3] focuses on capacity planning and performance modeling for the Internet in particular. Reference [4] focuses on capacity planning for Sun Solaris systems but offers helpful general insight as well.

3 Transaction Cost Analysis Methodology

TCA can be used to detect code bottlenecks and for capacity planning. In many cases, it is used for both purposes simultaneously allowing the last code iteration to have accompanying capacity information. This paper only discusses using TCA for capacity planning. For simplicity, the methodology presented here assumes that the service analyzed has no code bottleneck (and scales approximately linearly in implementation), and that the hardware bottleneck resides on the hardware running this service.

3.1 Usage Profile

The effectiveness and flexibility of the capacity planning model depends critically on a careful assessment of the expected usage profile for each service. This profile consists of both individual and aggregated user behavior, and site profile information. Analysis of transaction logs of similar services provide a helpful starting point in defining this profile. Characteristics derived from this profile are then used to establish performance targets.

3.1.1 Site Profile

A representative site profile must be defined which specifies the services deployed, the number of concurrent users for each service, and the expected deployment configuration. This deployment configuration should specify the machines where each software component will reside.

Notation

Definition

i = 1,…,I

Services deployed
Ni

Number of users concurrently connected to service i at peak
Example

An Internet Service Provider may be interested in deploying a web hosting platform which supports browsing of subscriber web pages via the Internet. Suppose that this platform provides subscribers with an FTP service to control file transfer of their web pages to and from the host site.

The services required to support this scenario consist of web (HTTP), FTP, directory (e.g., LDAP), and database (e.g., SQL) services. The web and FTP services are configured on front end servers while the directory and database services may each reside on separate backend servers. In order to simplify subsequent discussion of this example we will suppose we are only interested in analyzing the web and FTP services which reside on the front end servers.

3.1.2 User Behavior

The behavior of any user will correspond to some sequence of client-side operations defined by some fundamental set of transactions. To simplify the analysis, only those transactions which in aggregate utilize hardware resources most significantly need be considered.

The expected user session time for each service, and number of each transaction performed per user during this session time must also be estimated. Additionally, any associated transaction parameters which significantly impact system performance should be identified such as file size for transactions which read, write, or transport data.

Notation

Definition
j = 1,…,J

Transactions

ti

User session time for service i
nij

Number of transactions j per user session for service i
Example

Continuing with the previous example, if we anticipate that of all possible FTP transactions only ‘delete’, ‘get’, ‘open’, and ‘put’ will generate the most significant load in aggregate, then only these transactions need be considered. In particular, FTP ‘open’ may stress a directory service such as LDAP and its database backend if the connection requires an authentication sequence; FTP ‘get’ and ‘put’ may stress disk I/O resources and saturate network capacity while FTP ‘delete’ may only stress disk I/O resources; etc. Similar deductions are made for HTTP ‘get’. Therefore, the fundamental transactions for this analysis consist of ‘delete’, ‘get’, ‘open’, and ‘put’ for FTP, and ‘get’ for HTTP.

Clearly, the size of files transferred or deleted using FTP, and the web page size requested using HTTP are important transaction parameters.

3.1.3 Performance Targets

The performance targets consist of the minimum required transaction throughput and maximum acceptable transaction latency. The minimum throughput (transaction rate) of transaction j for service i required to support this usage profile is given by

Tij = EQ

 EQ nij Ni / ti.

(1)

Example

Suppose that the total web page audience is 2 million users with 1.0% users concurrently browsing web pages at peak. Further, suppose the Internet site has 1 million web hosting subscribers and that 0.1% are concurrently using FTP at peak. Furthermore, if each web user performs 5 HTTP ‘get’ operations over 20 minutes, and each FTP user performs 3 FTP ‘put’ and 2 FTP ‘get’ operations together over 5 minutes, then using the notation we get

NHTTP = 20,000 concurrent users
NFTP = 1,000 concurrent users

tHTTP = 20 minutes

tFTP = 5 minutes

nHTTP,get = 5

nFTP,put = 3

nFTP,get = 2

so that

THTTP,get = 83 HTTP gets/sec
TFTP,put = 10.0 FTP puts/sec

TFTP,get = 6.7 FTP gets/sec.

Throughput targets for the other transactions are computed similarly.

3.2 Instrumentation of Probes

TCA requires correlating resource utilization with service run-time performance. Adequate instrumentation to enable measurement of resource utilization is often already built into the operating system, but metrics to measure the performance of service transaction characteristics must also be defined and then built into the probing apparatus. Figure 2 illustrates the intended purpose of these probes in the context of capacity planning and performance management.

[image: image2.wmf]Performance Monitor

Collect

 Measurements

Generate Load

Back End Servers

Front End Servers

Clients

HTTP, SMTP, etc

.

Figure 2: Instrumentation of probes for capacity planning and performance management.

3.2.1 Windows NT Performance Monitor

The Windows NT Performance Monitor is equipped with probes (called “counters”) which measure resource utilization and other system parameters as well as transaction flow, state, queue, and latency parameters for each service. Some Performance Monitor counters commonly collected during TCA (and also as part of regular performance monitoring) include:

· Windows NT System Counters

Processor utilization, context switching rate, processor and disk queue lengths, disk read and write rates, available memory bytes, memory allocated by process, cache hit ratios, network utilization, and network byte send and receive rates.

· Transaction Rate Counters
Transaction rates such as HTTP gets/sec, FTP puts/sec, and LDAP searches/sec.

· Service State, Queue and Latency Counters
Concurrent connections, service specific cache hit ratios (e.g., for LDAP and SQL transactions), and queue length and latency for each service component.

See reference [5] for more specific examples of Windows NT counters.

3.3 Performance Measurement

3.3.1 System Configuration

In order to leverage TCA measurements made with one hardware configuration into variable configuration contexts, it is advantageous to separate service components among servers as much as possible. In an uncached environment this enables better isolation of resource costs for each transaction as a function of each component servicing the transaction.

This notion is illustrated in Figure 3 which shows the propagation of a single transaction (e.g., LDAP ‘add’) between client and servers and its accumulated resource costs C1 on Server 1 (e.g., LDAP service running here) and C2 on Server 2 (e.g., SQL running here).

[image: image3.wmf]transaction rate

High context switching,

long queue, etc.

X

0

concurrent connections

transaction latency

resource utilization

Approximately

 linear

X

0

T

max

max

N

max

C

resource

Figure 3: Separating resource costs of service components by server.

In this example, if all the components servicing this transaction reside on a single server for a particular deployment, then these separate costs may be added together as C1+C2 in order to roughly estimate the integrated cost. Of course, certain performance properties will change in this case. For example, certain costs will disappear such as the CPU overhead for managing the network connection. On the other hand, other costs may increase such as disk I/O since the capacity for caching transaction requests is diminished (which reduces throughput), and so on. When caching plays a particularly important role, variable configurations should be separately analyzed.

As illustrated in Figure 4, the load generation clients and performance monitoring tools should reside on machines other than the servers under analysis in order to minimize interference with these servers.

[image: image4.wmf]usage profile

resource utilization

0

X

X

X

A

B

C

1

measured

estimated

X

Figure 4: Hardware configuration for performance analysis.

The service configuration should be deployed with the highest performance hardware available. This helps to ensure that resource requirements based on measurements on higher performance hardware will scale down at worst linearly to lower performance hardware. The converse is not necessarily true, however.

For example, multi-processor scaling is often sub-linear in which case total CPU costs on say a 4-way SMP server may be greater than on a 2-way SMP server under the same load (due to additional context switching and bus management overhead). Suppose CPU costs are measured on a 500 MHz 4-way SMP server and the actual deployment hardware consists of a 300 MHz 2-way SMP server. If all other hardware characteristics remain unchanged, then CPU requirements should increase by no more than a factor of 3.3 = (500 MHz / 300 MHz) * (4 processors / 2 processors).

3.3.2 Load Generation

Load generation scripts must be written to simulate each transaction separately and have the form:

do transaction
sleep rand timeInterval

The sleep is intended to reduce load on the client queue and timeInterval should be chosen randomly [6] over a representative range of the client-server transaction latencies. The load must be distributed among enough clients to prevent any single client from becoming its own bottleneck.

Before each run, the system should be cold booted to flush caches and otherwise restore the system to a consistent state for data collection consistency. Furthermore, each run should continue for at least long enough to reach run-time “steady-state”. This state is reached when, for example, initial transient (start-up) costs are absorbed, network connections are established, caches are populated as appropriate, and periodic behavior is fully captured. The measurements collected for each run should be time averaged over the length of the run in “steady-state”.

In addition to collecting measurements of resource utilization and throughput, counters which help to isolate points of contention in the system should the monitored. These include queue lengths, context switching, out of memory paging, network utilization, and latencies. In particular:

· On multiple disk RAID arrays, the average disk queue length per array should not exceed the number physical disks per array.

· On most Ethernet networks (IEEE 802.3 LAN standard) the shared network throughput begins to decline when network utilization exceeds approximately 50-60%. This is a statistical result which is a function of the 1-persistent CSMA/CD (Carrier Sense Multi-Access/Collision Detection) protocol [7]. In practice, this optimal utilization rate may be higher, particularly when operating in full-duplex.

For performance considerations specific to Microsoft Windows NT see reference [5].

The user load (concurrent connections) should start small and increase incrementally up to Nmax at which point the transaction throughput begins to decrease from its maximum at Tmax. This decrease in throughput is due factors such as high rates of context switching, long queues, and out of memory paging, and often corresponds to the point at which transaction latency becomes nonlinear. These relationships are depicted in Figure 5. Each circle and the “X” represent a run and are points at which data is collected during the load generation. Cmaxresource denotes the maximum resource capacity.

[image: image5.wmf]Hardware

Operating System

Services

State, Queue, and

Latency Probes

Transaction Rate

Probes

Resource Utilization

Workload

Characterization

Performance

Observation

Capacity Planning and Performance Management

System Probes

Figure 5: Performance measurement over the linear operating regime. Generating load beyond maximum throughput corresponds to point at which latency becomes nonlinear.

3.4 Cost Equations

3.4.1 Resource Costs for each Transaction

Each measured transaction rate Tij corresponds to some measured utilization of each resource denoted by Cijresource. These data point pairs are interpolated over the linear operating regime to construct an analytic relationship which expresses this resource utilization as a function of transaction rate. This relationship is shown in Figure 6.

Notation

Definition
Cij resource

Resource cost of transaction j for service i
CijCPU

CPU cycles consumed (MHz)

Cij reads

Number of disk reads/sec

Cijwrites

Number of disk writes/sec
Cij RAM

RAM consumed (MB)

Cij network

Network bandwidth consumed (Mb/sec)

For example, CijCPU(Tij ; other) denotes the number of CPU cycles consumed by transaction j for service i with transaction rate Tij where other is a place holder for other transaction parameters, e.g., file size for HTTP ‘get’, etc.

Figure 6: Cost equations constructed by interpolation of resource costs as a function of throughput (transaction rate).

[image: image6.wmf]Select representative

hardware platform

Extrapolate to particular

hardware and usage profile

Build benchmark table

Simulate user load with

specific

 usage profile to

characterize performance

Calculate resource cost as

function of usage profile

Interpolate resource costs

over this regime

Simulate load over linear

operating regime to cost

each

transaction

Select highest end hardware

platform

Conventional Approach

Transaction Cost Analysis

Strictly speaking, Cijresource is defined over the transaction rate range 0 (Tij (Tijmax, but if Tij > Tijmax then the equation for Cij resource may still be applied with the interpretation that hardware will need to be scaled up linearly. In this case, it is especially important that the TCA assumptions listed at the beginning of Section 3 be satisfied for this interpretation to be valid.

3.4.2 Total Resource Costs

It is assumed that resource utilization adds linearly in a mixed environment in which multiple services are running and multiple transactions are being processed by each service. The total cost for each resource and for all transactions is then given by

Ctotal resource = (​​​​​i=1I (​​​​​j=1J Cij resource(Tij ; other)

(2)

For performance reasons and in order to account for unexpected surges in resource utilization it is advantageous to operate each resource at less than full capacity. A threshold factor for each resource is introduced to reflect this caution in the provisioning of resources. This factor represents the percentage of resource capacity which should not be exceeded.
Notation

Definition
0 < (CPU < 1

CPU utilization threshold factor

0 < (reads < 1

Disk read rate threshold factor

0 < (writes < 1

Disk write rate threshold factor

0 < (network < 1

Network utilization threshold factor

Therefore, the total number processors required to support this transaction mix without exceeding the CPU utilization threshold is given by

CtotalCPU / ((CPU CmaxCPU)

(3)

where CmaxCPU denotes the peak clock speed per processor. (CPU is typically chosen between 60% and 80%.

Similarly, the total number of spindles required is given by

Ctotal reads / ((reads Cmaxreads) + Ctotalwrites / ((writes Cmaxwrite)
(4)

where Cmaxreads and Cmaxwrites denote the maximum number of disk reads/sec and disk writes/sec per spindle, respectively. Similar equations can be deduced for the other hardware resources.

It should be noted that the disk subsystem must be calibrated to determine Cmaxreads and Cmaxwrites. The disk calibration process performs a large number of uncached reads and writes to the disk to determine the maximum number of reads and writes the disk array can support. In hardware, Cmaxreads and Cmaxwrites are most strongly a function of disk seek time and rotational latency.

In light of the 1-persistent CSMA/CD protocol, network is often set between 50% and 60% on Ethernet networks.

3.5 Model Verification
The actual deployment scenario will consist of a mixed transaction environment as defined by the usage profile. The purpose of verification is to simulate this deployment scenario in order to (1) confirm that transactions do not negatively interfere with each other, and (2) verify that the resource costs estimated from the cost equations in Section 3.4 accurately reflect the actual costs measured.

3.5.1 Verification Script

The usage profile is translated into a verification script for each protocol. (There is nothing in principal to prevent creating a single verification script to invoke all protocols, but our tools do not presently support this.)

For a single protocol with multiple transactions, this script logic can be written in pseudo-code as:

count (0

while (count < ti)
{

 if (count mod (ti / ni1) = 0) do transaction 1
 …

 if (count mod (ti / niJ) = 0) do transaction J
 sleep sleepIncrement
 count (count + sleepIncrement
}

sleep rand smallNumber
Here sleepIncrement = gcd(ti / ni1 ,…, tj / niJ) where gcd denotes the greatest common divisor and ti / nij is the length of time which must elapse between initiating each transaction j using protocol i. For each transaction j, this script initiates the correct number of transactions nij uniformly over the length of the service session time ti as defined by the usage profile. The statement sleep rand smallNumber is included to randomize [6] the transaction arrival distribution.
3.5.2 Load Generation

The load generation process is the same as in Section 3.3.2 except that only one run is made for each usage profile simulated. During this run the number of concurrent connections per service should approximately equal the number concurrent users using that service as defined by the usage profile. Each load generator instance runs a single script (such as given in Section 3.5.1) representing the behavior of multiple users using one service. Multiple instances are run to generate the correct aggregate user load.

3.5.3 Comparison with TCA Estimates

For each usage profile simulated, measurements of resource utilization are compared against the utilization estimates calculated using the cost equations from Section 3.4. The difference between the measured costs and estimated total costs should be small according to the required confidence interval. This notion is depicted in Figure 7.
[image: image7.wmf]resource utilization

transaction rate

X

0

max

T

max

C

resource

i, j

C

resource

i, j

Figure 7: Error between cost equation estimates and simulation measurements for three different usage profiles A, B, and C.

Example

The usage profile from the example in Section 3.1 indicates that the required throughput for web page requests is 83 HTTP gets/sec and so on for the FTP transactions. The resource costs are then calculated using the equations developed in Section 3.4.

In particular, suppose for the HTTP and FTP servers that we calculate the total CPU costs CtotalCPU = 2,000 MHz. Further suppose that the deployment will occur with 400 MHz processor servers and the requirement is to run these servers at less than 70% utilization. Then CmaxCPU = 400 MHz and (CPU = 70% so that the total number of processors required is 2,000 MHz / (0.7 * 400 MHz) = 7.1. In this case, two quad processor servers will support the required load. Similar estimates are made for the other resources.

For verification, the system is then deployed with two quad-processor servers (as indicated by these calculations) and the appropriate load is generated using the verification scripts. This load should generate 20,000 concurrent HTTP connections and 1,000 concurrent FTP connections as indicated by the usage profile example. Suppose we measure an average of 85 HTTP gets/sec, 10 FTP puts/sec, 7 FTP gets/sec, and an average CPU utilization of 1,900 MHz. Then our throughput requirements are satisfied and our CPU utilization estimates are in error by 5%.

4 Capacity Planning Using Transaction Cost Analysis

Once TCA has been performed it can be applied to capacity planning using the following procedure:

1. Define the usage profile and calculate throughput targets using Equation 1.

2. Calculate the total resource costs using Equation 2.

3. Calculate the capacity requirements using Equations 3 and 4 and similar equations for the other resources.

5 Transaction Cost Analysis Requirements

The requirements for performing TCA and capacity planning include:

· Usage profile

· Instrumentation

· Performance monitoring tool

· Load generation tool which supports all network protocols invoked by the services under analysis

· Usage profile scripts compatible with load generation tool

· Configuration tool

6 Conclusion

This capacity model based on TCA has been successfully applied to estimate hardware deployment requirements for Microsoft Commercial Internet System, Microsoft Site Server and Microsoft Exchange products.

7 Further Work

· Characterization of nonlinear regime

· Automatic bottleneck detection [9]

· Automated process for data collection and analysis

8 Acknowledgements

The authors, Perry Clarke, and David Howell have all been developers of TCA methodology at Microsoft. The authors, Perry Clarke, David Howell, Mike Glass, David Laughinghouse, and Luping Liang have applied TCA to Microsoft client-server products.

9 References

[1] Raj Jain, The Art of Computer Systems Performance Analysis Techniques for Experimental Design, Measurement, Simulation, and Modeling, John Wiley & Sons, 1991.
[2] Daniel Menasce, Virgilio Almeida, and Larry Dowdy, Capacity Planning and Performance Modeling (From Mainframes to Client-Server Systems), Prentice Hall, 1994.

[3] Daniel Menasce and Virgilio Almeida, Capacity Planning for Web Performance: Metrics, Models, and Methods, Prentice Hall, 1998.

[4] Brian Wong, Configuration and Capacity Planning for Solaris Servers, Prentice Hall, February 1997.

[5] Microsoft Windows NT Resource Kit, Microsoft Press, 1996.

[6] Jim Gray, The Benchmark Handbook for Database and Transaction Processing Systems, Morgan Kaufman Publishers, 1991.

[7] Andrew Tanebaum, Computer Networks, Prentice Hall, 1995.
[8] David Watts, M.S. Krishna, et al., Netfinity Performance Tuning with Windows NT 4.0, International Technical Support Organization, IBM Corporation, October 1998.

[9] Russ Blake and Jack Breese, “Automatic Bottleneck Detection”, Microsoft Technical Report MSR-TR-95-10, Microsoft Corporation, October 1995.

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

� EMBED Visio.Drawing.5 ���

PAGE
2

[image: image8.wmf]transaction rate

High context switching,

long queue, etc.

X

0

concurrent connections

transaction latency

resource utilization

Approximately

 linear

X

0

T

max

max

N

max

C

resource

[image: image9.wmf]resource utilization

transaction rate

X

0

max

T

max

C

resource

i, j

C

resource

i, j

[image: image10.wmf]Hardware

Operating System

Services

State, Queue, and

Latency Probes

Transaction Rate

Probes

Resource Utilization

Workload

Characterization

Performance

Observation

Capacity Planning and Performance Management

System Probes

[image: image11.wmf]usage profile

resource utilization

0

X

X

X

A

B

C

1

measured

estimated

X

[image: image12.wmf]Server 1

Server 2

Time

Transaction

 begin

Transaction

 complete

Accumulated resource cost

C1

C2

Client

[image: image13.wmf]Performance Monitor

Collect

 Measurements

Generate Load

Back End Servers

Front End Servers

Clients

HTTP, SMTP, etc

.

[image: image14.wmf]Select representative

hardware platform

Extrapolate to particular

hardware and usage profile

Build benchmark table

Simulate user load with

specific

 usage profile to

characterize performance

Calculate resource cost as

function of usage profile

Interpolate resource costs

over this regime

Simulate load over linear

operating regime to cost

each

transaction

Select highest end hardware

platform

Conventional Approach

Transaction Cost Analysis

_984405279.vsd
�

Collect
 Measurements�

Generate Load�

�

�

�

Performance Monitor�

Back End Servers�

�

Front End Servers�

Clients�

HTTP, SMTP, etc.�

�

_984571823.vsd
0�

transaction latency�

transaction rate�

resource utilization�

High context switching,
long queue, etc.�

Approximately
 linear�

0�

X�

X�

concurrent connections�

T�

max�

max�

N�

max�

C�

resource�

_1011706344.vsd
Hardware�

Operating System�

Services�

State, Queue, and Latency Probes�

Transaction Rate Probes�

Resource Utilization�

Workload Characterization�

Performance Observation�

Capacity Planning and Performance Management�

System Probes
�

_984410565.vsd
Select representative hardware platform�

Extrapolate to particular hardware and usage profile�

Build benchmark table�

Simulate user load with specific usage profile to characterize performance�

Calculate resource cost as function of usage profile�

Interpolate resource costs over this regime�

Simulate load over linear operating regime to cost each transaction�

Select highest end hardware platform�

Conventional Approach�

Transaction Cost Analysis�

_984473698.vsd
0�

X�

resource utilization�

transaction rate�

max�

T�

i, j�

resource�

max�

C�

i, j�

C�

resource�

_984405077.vsd
Server 1 �

Server 2�

Time�

Transaction
 begin�

Transaction
 complete�

Accumulated resource cost�

C1�

C2�

Client�

_984404750.vsd
usage profile�

A�

resource utilization�

B�

C�

1�

measured�

estimated�

0�

X�

X�

X�

X�

