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ON DEFORMING CONFOLIATIONS

STEVEN J. ALTSCHULER AND LANI F. WU

Abstract. We introduce a parabolic deformation of one-forms on compact,
orientable, odd-dimensional manifolds. The flow produces contact forms from
the class of initial conditions called “conductive confoliations”.
We give applications of these techniques to new constructions of contact

forms on products of contact manifolds with surfaces. In particular, we produce
contact forms on the product of any three dimensional manifold with any
surface.

1. Introduction

1.1. Results. In this paper, manifolds are assumed to be smooth, compact, ori-
entable and endowed with a Riemannian metric. A one-form η is contact on a
2n+ 1 dimensional manifold if at every point η ∧ (dη)n �= 0. A global volume form
may be chosen to reformulate the (positive) contact condition as

� (η ∧ (dη)n) > 0.(1.1)

If η only satisfies the weaker inequality

� (η ∧ (dη)n) ≥ 0(1.2)

it is a so-called (positive) “confoliation” [6].
Deformations of confoliations were studied in [1], and later [6], only for the case of

3-dimensional manifolds. As in [1], we present a heat equation tailored to diffuse the
“positivity” of the form in the contact region throughout the rest of the manifold.
The transport mechanism for this heat equation is related to the two-form

τ = �
(
η ∧ (dη)n−1

)
.(1.3)

and conditions on this form are needed to ensure heat flow throughout the manifold.
Loosely speaking, we call a confoliation “conductive” (see §1.3) if every point on

M2n+1 can be connected to a point where η is contact by a curve whose tangent
vector is in the “range” of τ . The subset of smooth one-forms that are conductive
confoliations are denoted by Con

(
M2n+1

)
. Our main result is as follows.

Theorem 1.1. If η ∈ Con
(
M2n+1

)
then η is C∞ close to a contact form.

The analytical program to prove this result may be summarized as follows:
1. Define a diffusion equation on one-forms that preserves the confoliation con-
dition for all time;

The authors wish to thank David Blair for comments and helpful references, Michael Freedman
for encouragement, and John Sullivan for helping to set up a symbolic differential forms pack-
age [17]. Additionally, we wish to thank Yakov Eliashberg, Richard Hamilton, and Dan Strook
for their useful comments and insights.
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2. Prove a strong maximum principle so that under suitable conditions confo-
liations become contact; this is subtle as the transport mechanism for the
equation does not produce diffusion in all directions;

3. Characterize the class of so-called “conductive confoliations” that satisfy the
conditions necessary in step 2 for the maximum principle.

We use this flow to demonstrate new constructions of contact forms for certain
products of contact manifolds with surfaces. The following result resolves a case
left open by the work of Lutz [10]. 1

Theorem 1.2. Let Σ2 be any compact orientable surface, and M3 be any compact,
orientable 3-manifold. Then M3 × Σ2 is contact.

We next include an explicit construction of a conductive confoliation on S3+2p ×
Σ2. The construction of conductivity is more sophisticated than the one needed for
the previous result and is included as a case study. It is already established that
S3+2p × Σ2 is contact.
At the end of the paper, we indicate a number of additional applications. In

particular we extend the techniques to generalizations of contact forms. For exam-
ple, under analogous conductivity conditions, a 3-form η(3) on a 7-manifold may be
produced satisfying �

(
η(3) ∧ dη(3)

)
> 0.

A second generalization is deforming differential forms that have a notion of
non-integrability when paired with a background structure. For example, a pre-
condition for a manifold M2n+1 to be contact ([2]) is a 1-form η and a globally
defined 2-form Φ such that � (η ∧ Φn) > 0 everywhere. Again, under suitable
conductivity conditions, “intermediate” measurements of non-integrability such as
�

(
η ∧ dηk ∧ Φn−k

)
> 0 are constructed.

1.2. Comments. The existence of a contact form (or a confoliation) on a closed
compact manifold is a topological condition. There are known topological obstruc-
tions to the existence of contact forms. When contact forms do exist, it is well
known by the classical integrability theorem of Darboux that all contact forms of
the same dimension are locally equivalent.
In three dimensions, the topological obstructions to finding contact forms vanish.

It was shown by Martinet [12] that all three manifolds have contact forms. Work
by Gonzolo [9] in fact demonstrated the paralellization of every three manifold by
contact forms. In five dimension, existence results were obtained by Lutz [10] for the
case of tori bundles over three-manifolds, and in particular for the cross-product of
3-manifolds with two-dimensional tori. However, this approach relied on the special
structure of tori and did not extend to general surfaces. Results in this dimension
were also obtained by Thomas [15] for simply connected manifolds.
Many properties of contact and confoliation forms in low dimensions have since

been studied in depth (see [6]). In contrast, for higher dimensions, a general pro-
gram for even demonstrating the existence of confoliations and contact forms is
lacking. On many spaces where all known obstructions vanish, such as the cross-
product of a contact manifold with a surface, contact forms are conjectured to exist.
An indication of the remarkable difficulty encountered in this subject is that the
existence of contact forms, even on such spaces as the odd-dimensional tori, is an
open question.

1We have been informed by Y. Eliashberg that M. Gromov has an unpublished approach [8]
using branched coverings over M3 × S2.
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There are several factors contributing to the difficulty of constructing contact
forms on manifolds of dimensions greater than three. Foremost among these is that
condition (1.1) places a non-linear condition on the antisymmetrized matrix of first
derivatives of η. This makes an approach of adding locally defined contact forms
together to form a global contact form difficult. Adding to the formidable com-
putational difficulty of constructing contact forms is the seemingly non-geometric
nature of the hyper-plane distribution of the tangent bundle defined by the null
space of η. In contrast to integrable distributions that define foliations, contact
distributions are “maximally twisted.” This makes contact distributions difficult
to visualize at scales larger than those given by Darboux.
Since progress in producing high dimensional contact forms has been difficult,

new approaches such as those presented in this paper may prove valuable for ap-
proaching the general problem of existence. Additionally, the techniques presented
in this paper may provide new examples of non-homotopically equivalent contact
forms.

1.3. Definitions. In this section we discuss the conditions needed for the class of
so-called “conductive confoliations.” Recall that these are forms suited for pertur-
bations by our heat equation techniques. Examples illustrating structures in this
section will be given in §1.4.
Let α ∈ Λ1

(
M2n+1

)
and g be a metric onM2n+1. Recall from (1.3) the two-form

τ = �
(
α ∧ (dα)n−1

)
.(1.4)

The “square” of τ is defined on two vector fields X and Y by

〈X,Y 〉a = 〈iXτ, iY τ〉g(1.5)

or, in local coordinates,

aij = τimτjng
mn.(1.6)

The vector space of degenerate directions of a is denoted by

Null(a) = {X| 〈X,Y 〉a = 0,∀Y }(1.7)

Null(a)⊥ is its orthogonal complement with respect to g. It may be easily seen
that Null(τ) = {X|iXτ = 0} = Null(a) and Null(τ)⊥ = Null(a)⊥. With this in
mind, we make the following definition.

Definition 1.3. A point p ∈ M2n+1 is accessible from q ∈ M2n+1 if there is a
smooth path x : [0, 1]→ M2n+1 from p to q with x′(s) ∈ Null(a)⊥ for all s.

We now define the class of confoliations amenable to perturbation by our heat
equation. These are confoliations that are able to conduct heat, i.e. “contactness”,
to all points of the manifold via paths in the range of a.

Definition 1.4. The space of conductive confoliations, Con
(
M2n+1

)
, is defined

to be the subset of α ∈ Λ1(M2n+1) such that
1. α is a confoliation: � (α ∧ (dα)n) ≥ 0;
2. every point is accessible from a contact point of α.

Note that at a point where Rank
(
dα|Null(α)

)
= 2n, α is contact. A computation

in coordinates given by Darboux’s theorem yields Rank(a) = 2n.
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At a point where Rank
(
dα|Null(α)

)
= 2n − 2 we choose an orthonormal frame

{Z,X1, · · · , X2n−2, Y1, Y2} with the properties
α(Z) �= 0, α(Xi) = α(Yj) = 0, dα(Yj , ·) = 0 ∀i, j.(1.8)

One may compute that τ(Z, ·) = 0, τ(Xi, ·) = 0 for all i, and τ(Y1, Y2) �= 0. Hence,
Null(a)⊥ = Span{Y1, Y2} = Null(dα) and Rank(a) = 2.
In contrast, if Rank

(
dα|Null(α)

)
< 2n − 2, then α ∧ (dα)n−1 = 0. Hence τ = 0

and Null(a)⊥ = {0}.
1.4. Examples. We now give examples that help illustrate concepts introduced in
the previous section.
Example 1. In 3-dimensions, the previous discussion indicates that Rank(a) = 2
whether α is contact or not. It is also the case that Null(a)⊥ = Null(α).
Example 2. Let R

5 be given with coordinates {z, x1, y1, x2, y2}, Euclidean metric,
and volume form dz ∧ dx1 ∧ dy1 ∧ dx2 ∧ dy2. The one-form α = dz + x1dy1 is a
confoliation. Using τ = dx2 ∧ dy2, it follows that Null(a) = span{ ∂

∂z ,
∂

∂x1
, ∂

∂y1
}.

Hence, 〈·, ·〉a is proportional to the Euclidean metric on the {x2, y2}-plane and
degenerate otherwise.
If α is contact, say α = dz+x1dy1+x2dy2, then the null space is one-dimensional

and given by Null(a) = span{ ∂
∂z + x1

∂
∂y1

+ x2
∂

∂y2
}. This is seen from the fact

τ = dx1 ∧ dy1 + dx2 ∧ dy2 − x1dx1 ∧ dz − x2dx2 ∧ dz.
Next, we construct an example of a confoliation that is not conductive. Let ψ =

ψ(x1, y1, z) be a smooth function such that ψ(x1, y1, z) > 0 for |x1|2+|y1|2+|z|2 < 1
and ψ(x1, y1, z) = 0 otherwise. Then for

α = dz + x1dy1 + ψ(x1, y1, z)x2dy2

one may compute

α ∧ dα2 = 2ψ(x1, y1, z)dz ∧ dx1 ∧ dy1 ∧ dx2 ∧ dy2.

Hence α is contact only in the region where ψ > 0. Outside this region, α =
dz + x1dy1 and it follows from comments at the beginning of this example that
non-contact points are not accessible from points in the contact region.
Example 3. We next look at a construction useful for constructing contact forms
in lower dimensions and examine why it fails to produce a conductive confoliation
in higher dimensions.
Let α be a contact form on M2n+1. Let (r, θ) be polar coordinates on a unit

2-dimensional ball B2. Then, for functions a(r) and b(r) we consider the family
one-form on M2n−1 × B2 defined by

η = a(r)α+ b(r)dθ.

This form is similar to the “propeller” contact one-form (see [16],[1],[6] for geometric
interpretations). One may compute

dη = a(r)dα+ a′(r)dr ∧ α+ b′(r)dr ∧ dθ

dηn+1 = an+1(r)dαn+1 + (n+ 1)ana′(r)dαn ∧ dr ∧ α

+ (n+ 1)anb′(r)dαn ∧ dr ∧ dθ

η ∧ (dη)n+1 = (n+ 1)an

∣∣∣∣a a′

b b′

∣∣∣∣α ∧ (dα)n ∧ dr ∧ dθ(1.9)



ON DEFORMING CONFOLIATIONS 5

X = (a(r),b(r))

X' = (a'(r),b'(r))

b

a

Figure 1. Propeller Curves

To look for conditions on a, b that give a sign to (1.9), we call out the following
interpretation of the determinant condition.

Definition 1.5 (Propeller curves). Viewing X(r) = (a(r), b(r)) as a curve in R
2

(see Figure(1)), we require

1. a = −1 and b = −r near r = 0,
2. a → 1 and a′, b, b′,→ 0 as r → 1,
3. X and X ′ are never collinear and X(r) �= (0, 0),
4. X rotates counter-clockwise, hence (ab′ − ba′) > 0 for r < 1.

It is easy to find curves satisfying these conditions. For such a curve, η is well
defined. For n even, η ∧ (dη)n+1 ≥ 0. However, for r0 such that a(r0) = 0, it is
easily seen that η ∧ (dη)n+1 and η ∧ (dη)n vanish and hence η /∈ Con

(
M2n+1

)
.

Example 4. Finally, we study two relevant degenerate quadratic forms. Let ψ(s)
be a smooth function that is positive for −1 < s < 1 and 0 elsewhere. In R

2 with
coordinates (x, y) define

a1 =
(
ψ(x) 0
0 1

)
a2 =

(
ψ(y) 0
0 1

)
.(1.10)

Points outside of R = (−1, 1) × R
1 are not accessible to points inside of R by

curves in the range of a1. This is essentially the situation in example 2 above. In
contrast, all points in R

2 are accessible to each other by curves in the range of a2
(see Figure(2)). This is the model of the quadratic forms a given by conductive
confoliations.

2. The Flow

Many of the computations in this section may be found in [1] for the special case
of three-dimensional manifolds.

2.1. Cross Term Energy. Let η = α+ εβ. Then we may expand

η ∧ (dη)n = α ∧ (dα)n + ε
(
β ∧ (dα)n + nα ∧ (dα)n−1 ∧ (dβ)

)
+O(ε2)(2.1)
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Null (a1)

x

y

Null (a2)

x

y

Figure 2. Degenerate Quadratic Forms

Definition 2.1. Let the first order cross terms be defined by the function

f(α, β) =
1
n
�

(
β ∧ (dα)n + nα ∧ (dα)n−1 ∧ (dβ)

)
.(2.2)

The normalization of 1/n is used for convenience in later equations.

The following is evident, and is justification for studying f more carefully.

Proposition 2.2. If � (α ∧ (dα)n) ≥ 0 and f(α, β) > 0 then ε may be chosen small
enough to make η contact.

Our problem then, may be neatly summarized by the task of making f > 0.
Note that f measures some of the first derivatives of β.Working by analogy with

the derivation of the standard heat equation ∂
∂tu = ∆u from E(u) =

∫ |∇u|2 dµ we
define the cross term energy of α and β by

E(α, β) =
∫

f2(α, β)dµ(2.3)

We take the first variation of the energy with respect to β treating α as a
constant. That is,

E′(α, β) =
d

du
E(α, β + uβ′)|u=0.(2.4)

We then integrate by parts.

n

2
E′(α, β) =

∫
f ·

(
β′ ∧ (dα)n + nα ∧ (dβ′) ∧ (dα)n−1

)
=

∫
β′ ∧ f(dα)n + nfα ∧ (dβ′) ∧ (dα)n−1

=
∫

β′ ∧ f(dαn)− nd(fα ∧ β ∧ (dα)n−1) + nd(fα) ∧ β′ ∧ (dα)n−1

=
∫
(n+ 1)β′ ∧ f(dα)n − nβ′ ∧ α ∧ (dα)n−1 ∧ df(2.5)

From 2.5 we see that a gradient descent for the energy is given by the variation

β′ = �
(
α ∧ (dα)n−1 ∧ df

) − n+ 1
n

f � (dα)n(2.6)
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2.2. The Evolution Equations. The deformation defined in (2.6) has a number
of interesting properties and deserves attention in its own right. However, this
article has the primary goal of turning confoliations into contact forms; for this
purpose it turns out that the zeroth-order term in f may be dropped. The reduced
evolution has the advantages of simplifying later computations.
The deformation of 2.6 is therefore motivation for the following definition.

Definition 2.3 (The contact flow). Let α(·), β(·, t) ∈ Λ1
(
M2n+1

)
where α is a

time-independent and β varies in time. We define the contact flow to be{
∂
∂tβ = �(α ∧ (dα)n−1 ∧ df)
β(·, 0) = α(·)(2.7)

where

f = �
1
n

(
β ∧ (dα)n + nα ∧ (dα)n−1 ∧ (dβ)

)
.(2.8)

Note that one may more generally write β(·, 0) = β0(·). In our case where
β0(·) = α(·) and α is a confoliation, the function f(·, 0) = n+1

n � (α ∧ (dα)n) and
will be non-negative by assumption.
It is important to study the induced evolution of f since, by Proposition 2.2, f

is the key to determining whether η = εα+ β can be made contact. The quadratic
form aij as defined in §1.3 is used to define a Laplacian-like second order operator

∆af = apq∇p∇qf(2.9)

where apq = gpigqjaij .

Proposition 2.4. The evolution of f may be written as

∂

∂t
f = ∆af +∇Xf(2.10)

where X = X(α,∇α) is a vector field depending only on α and its first derivatives.

Proof. From the definition of f and equation (2.7), one has

∂

∂t
f = �

1
n

(
∂

∂t
β ∧ (dα)n + nα ∧ (dα)n−1 ∧

(
d
∂

∂t
β

))

= �
(
α ∧ (dα)n−1 ∧

(
d�

(
α ∧ (dα)n−1 ∧ df

)))
(2.11)

+ �
1
n

(
�

(
α ∧ (dα)n−1 ∧ df

)
∧ (dα)n

)
(2.12)

Term (2.12) contributes only first derivatives of f while term (2.11) contributes
first and second derivatives. We leave it as an exercise to rewrite (2.11) in local
coordinates as

gijgpqgrsτip∇q (τjr∇sf) = ∆af + grs
(
gijgpqτip∇qτjr

) ∇sf(2.13)

The proof of existence of solutions follows the approach developed in §3 of [1].
Theorem 2.5. The contact flow defined by equations 2.7 has a unique, smooth
solution on M2n+1 × [0,∞).
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Proof. We start with the observation that the contact flow may be viewed as a
coupled system for the pair (β, f) defined jointly by equations (2.7) and (2.10) with
initial data (α, f(·, 0)) Now, the evolution of f given in equation (2.10) above is
decoupled from β and may be studied separately.
The second order operator on f is not strictly elliptic as a will not have full rank.

However, one can regularize the equation for f by artificially adding in a positive
multiple ε of the full Laplacian

∂

∂t
fε = ε∆fε +∆afε +∇Xfε(2.14)

By standard theory of parabolic equations, equation(2.14) has short time exis-
tence on a positive time interval.
As in Theorem 3.4 [1], the modified equation is used to obtain estimates inde-

pendent of ε on all derivatives of fε. We show below estimates on fε and its first
derivatives.
Using

∂

∂t
fε = ε∆fε + aij∇i∇jfε +Xi∇ifε

one may compute
∂

∂t
f2ε = ε

(
∆f2ε − 2|∇fε|2

)
+∆af

2
ε − 2aij∇ifε∇jfε +∇Xf2ε(2.15)

and the weak maximum principle implies max f2ε (t) ≤ max f2ε (0) for all time.
We then compute

∂

∂t
|∇fε|2 = ε

(
∆|∇fε|2 − 2|∇2fε|2 − 2gpqgrsRpr∇qfε∇sfε

)(2.16)

+ ∆a|∇fε|2 − 2aijgpq∇i∇pfε∇j∇qfε + 2gpq∇pa
ij∇i∇jfε∇qfε

+ 2aijgpqgrsRpijr∇qfε∇sfε +Xi∇i|∇fε|2 + 2gpq∇pX
i∇ifε∇qfε

The evolution of |∇fε|2 may be estimated as follows
∂

∂t
|∇fε|2 ≤ ε

(
∆|∇fε|2 + 2C|∇fε|2

)
(2.17)

+ ∆a|∇fε|2 +∇X |∇fε|2 + 2C|∇fε|2
for some constant C. To obtain this inequality, it is necessary to show that there
exists a constant C1 such that

gpq∇pa
ij∇i∇jfε∇qfε ≤ gpqaij∇i∇pfε∇j∇qfε + C1|∇fε|2.(2.18)

Using aij = girgjsgklτrkτsl and

∇pa
ij = girgjsgkl (∇pτrk) τsl + girgjsgklτrk (∇pτsl)

equation(2.18) results from an application of Cauchy’s inequality.
Now, letting Wε = |∇fε|2 + Cf2ε ,

∂

∂t
Wε ≤ ε∆Wε +∆aWε +∇XWε + CWε(2.19)

and the weak maximum principle implies

max |∇fε|2(t) ≤ maxWε(t) ≤ maxWε(0)eCt

for all time. Hence the first derivatives of fε are bounded independent of ε.
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The interested reader can consult [1] for similar computations of higher derivative
estimates.
A smooth solution to equation (2.10) for f may now be obtained as a limit of

solutions for fε as ε → 0. The solution for f yields a solution β to evolution (2.7).
The estimates above give a solution (β, f) exists for all time. The weak maximum
principle implies the solution for f , hence β, is unique. Thus condition (2.8) holds
true for all time.

The following is a straightforward application of the weak maximum principle to
the evolution equation for f (2.10). As desired, a flow that preserves the confoliation
condition has been produced.

Proposition 2.6. If f(·, 0) ≥ 0, then f(·, t) ≥ 0 for all t ≥ 0.
The strong maximum principle was developed in [3] for the case of constant

rank degenerate elliptic operators and later by [14] for a general class of degenerate
parabolic operators. For convenience, we present a special case of the result in §4
of [14] as needed for our perturbation of conductive confoliations to contact forms.
Let L be an operator on M2n+1 × [0,∞) of the form

L = ∇i

(
aij∇j

)
+ bi∇i − ∂

∂t
(2.20)

such that a and b are smooth and aij ≥ 0. For a point x0 ∈ M2n+1 define A(x0)
to be the closure of points (x(t), t) in M2n+1 × [0,∞) where x(t) : [0, t] → M2n+1

is a smooth path satisfying x(0) = x0 and, for all t ≥ 0, x′(t) + b(t) = w(t)
where wi = aijvj for some v. Essentially, A(x0) contains points in M2n+1 × [0,∞)
reachable from (x0, 0) by graphs of curves whose spatial tangent vectors are in the
range of a plus the drift term b.

Theorem 2.7. [14] Let u be a solution on M2n+1 × [0, T ) to L(u) ≤ 0 such that
u ≥ 0 at t = 0. If u(x0, 0) > 0 then u(x, t) > 0 for all (x, t) ∈ A(x0).

We encourage the reader to think about the diffusion properties L in the case
where a is the degenerate form given by either a1 or a2 in §1.4, example 4.
The operator for f given in equation (2.10) may be written in the form of equa-

tion (2.20). We are now ready to show that conductive confoliations may perturbed
to contact forms by the contact flow.

Theorem 2.8. If α ∈ Con
(
M2n+1

)
then α is C∞ close to a contact form.

Proof. The definition of conductive confoliations (1.3) requires that every point be
accessible by a curve whose tangent is in the range of a. To apply the strong maxi-
mum principle stated above, we need consider curves that additionally incorporate
the first order drift term b.
For a confoliation, if p is accessible from some point q where f(q, 0) > 0, then

there exists a smooth path from q to p satisfying x′ = w where wi = aijvj for a
covector field v on M2n+1. However, by choosing k large enough, one may find a
path y(t) satisfying y′(s)+ b(s) = k ·w(s) connecting q′ to p where q′ is some point
near q and f(q′, 0) > 0 (see Figure (3)).
Since every point on a conductive confoliation is accessible from a point where

the intial conditions are positive, it follows from the strong maximum principle that
conductive confoliations instantly become contact under the contact flow.
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p

q
q'

f>0

i
i

w
dt

dx
   =

j
iji vaw   =

ii
i

wb
dt

dy
k      =+

Figure 3. Accessible Points

3. New Constructions of Contact Forms

In this section, we give applications of the contact flow to new constructions
of contact forms. An interesting question is whether a contact manifold crossed
with a surface is contact. A general answer to this is unknown. As mentioned
in the introduction, the question of existence even in the case of such standard
spaces as the odd-dimensional tori of dimension > 5 is open. Case studies of
product manifolds can provide insight for existence of contact forms on more general
manifolds.
In [10], Lutz gave a construction for constructing contact forms on torus bundles

over manifolds that can be described as fibered knots. The contact forms produced
are invariant under the group action of the tori on the total space. For dimension
5 his techniques yielded contact forms on every T 2 fiber bundle over a 3-manifold.
In particular, Lutz produced forms on M3 × T 2 and gave the first known contact
form on the torus T 5. The constructions in [10] make specific use the fact that
the fibers are tori and the techniques do not carry over to more general types of
product manifolds.
Below, we extend Lutz’s results to all surface cross-products in dimension 5. We

do this by producing a very simple conductive confoliation and then deforming it
to a contact form.

Theorem 3.1. Let Σ2 be any compact, orientable surface, and M3 be any compact,
orientable 3-manifold. Then M3 × Σ2 is contact.

Proof. Let {ψ1, ψ2, ψ3} be a frame of one-forms on M3 such that ψ1 is contact. In
fact, by work of Gonzalo [9], the frame may be chosen so that ψ2 and ψ3 are also
contact, but these extra conditions are unnecessary for our construction.
Let (x1, x2) represent coordinates on a ball B2 ⊂ Σ2. Define

α = a(x1, x2)ψ1 + b(x1, x2)ψ2 + c(x1, x2)ψ3.(3.1)

Then

dα =a(x1, x2)dψ1 + da(x1, x2) ∧ ψ1 + b(x1, x2)dψ2 + db(x1, x2) ∧ ψ2(3.2)

+c(x1, x2)dψ3 + dc(x1, x2) ∧ ψ3.
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X(1) = (1,0,0)

X(r) = (a(r),b(r),c(r))

r

b

a

c

B2

Figure 4. Propeller Surface

Since α∧dα∧dα needs to contain dx∧dy to be a non-zero multiple of the volume
form, no terms arising from dα in the collection {dψ1, dψ2, dψ3} can contribute to
the final wedge product.
Hence,

α ∧ dα ∧ dα = 2∆ψ1 ∧ ψ2 ∧ ψ3 ∧ dx1 ∧ dx2

where the subscripts on a, b, c indicate derivatives with respect to ∂
∂xi

and

∆ =

∣∣∣∣∣∣
a a1 a2
b b1 b2
c c1 c2

∣∣∣∣∣∣(3.3)

The vector X = (a, b, c) defines a map X : B2 → R
3 that extends to all of Σ2.

Similar to the case of propeller curves (1.5), a geometric interpretation of ∆ �= 0 is
that X is never contained in the tangent plane to its image. “Propeller surfaces”
are maps X that have “spherical” images, take the origin O ∈ B2 to (−1, 0, 0), and
are constant (a, b, c) = (1, 0, 0) outside of B2 ⊂ Σ2. An illustration of a propeller
surface is given in figure (4)
More explicitly, we see this by choosing a rotationally symmetric map. If (x1, x2)

are polar coordinates (r, θ), then for functions (u(r), v(r)) we may rewrite the con-
ditions 

a(r, θ)
b(r, θ)
c(r, θ)


 =


 u(r)
v(r) sin θ
v(r) cos θ




and

α ∧ dα ∧ dα = −v

∣∣∣∣u u′

v v′

∣∣∣∣ · ψ1 ∧ ψ2 ∧ ψ3 ∧ dr ∧ dθ.(3.4)

Choose a product metric on M3 × Σ2. For convenience we choose

µ = −ψ1 ∧ ψ2 ∧ ψ3 ∧ dx1 ∧ dx2

to be the volume form on M3 ×Σ2. A propeller curve (u(r), v(r)) in R
2, defined by

conditions (1.5), makes α well defined at the origin, a non-negative multiple of the
volume form, and a positive multiple of the volume form on the interior ofM3×B2.
Therefore α satisfies the confoliation condition in (1.4).
Outside M3 × B2 one has α = ψ1 and Null(a)⊥ = TΣ2. Thus diffusion for the

evolution equation will occur along the surface Σ and the conductivity condition of
(1.4) is satisfied.
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As mentioned in the introduction, the next result, namely that S3+2p × Σ2

is contact, is already known. The interest in the case study below is that the
construction of the confoliation is explicit, high dimensional, and uses more than
one propeller to make the form conductive.

Theorem 3.2. Let Σ2 be any compact, orientable surface then S3+2p ×Σ2 is con-
tact.

Proof. Let m = 2 + p and

h : S2m−1 × Σ2 ↪→ R
2m × Σ2

be the standard embedding of the sphere into Euclidean space and the identity on
the other components. Let (ξ1, · · · , ξ2m) be Cartesian coordinates on R

2m.
Let

{
B2

i

}m

i=1 be disjoint balls in Σ
2. Below, we will construct non-intersecting

propellers {Pi}m
i=1 over each space S2m−1 × B2

i . Each Pi is constructed by a
different identification of R2m with R

4×R
2p given by the 2m coordinate re-labelings

(ξ2i−1, ξ2i, · · · , ξ2m−1, ξ2m, ξ1, ξ2 · · · , ξ2i−2).
Other than the relabeling of the coordinates, the Pi are constructed identically.

So, below we will give a generic construction given any such coordinate identifica-
tion.
We now begin the construction of a propeller on

S3+2p × B2 ⊂ R
4 × R

2p × B2

and for convenience we further distinguish the coordinates on the Euclidean factor
by

(y, z) = (y1, · · · , y4, z1, · · · , z2p)

As in the previous theorem, denote the coordinates on a ball B2 ⊂ Σ2 by (x1, x2).
We also introduce the notation

Vy = dy1 ∧ · · · ∧ dy4

ry =
√

y21 + · · ·+ y24

νy = rydry =
4∑

i=1

yidyi(3.5)

and similarly define Vz and νz. Let

ν = νy + νz

r =
√

r2y + r2z

Finally, let VΣ be the volume form on Σ2.
Define the following forms

ψ1 = y1dy2 − y2dy1 + y3dy4 − y4dy3

ψ2 = y1dy3 − y3dy1 + y4dy2 − y2dy4

ψ3 = y1dy4 − y4dy1 + y2dy3 − y3dy2(3.6)
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finite length
paths along

surface

B1 B2 B3

 S3+2p+k x Mk

 S2

contact
region

����

P1 P2 P3

Figure 5. Multiple propellers create a conductive confoliation

and

α1 = a(x1, x2)ψ1 + b(x1, x2)ψ2 + c(x1, x2)ψ3

α2 =
p∑

i=1

(z2i−1dz2i − z2idz2i−1)

α = α1 + α2.(3.7)

Though h�α is properly the one-form of interest, it is computationally most
convienent to check the conductivity conditions in R

4+2p × Σ2. The user may
verify that for any form λ on R

4+2p × Σ2

h�λ = i∂r (ν ∧ λ) |r=1

where i∂r
denotes interior product with respect to the radial vector in R

4+2p.
The formulas

(dα2)p = 2p (p!) · Vz

α2 ∧ νz ∧ (dα2)
p−1 = −2p−1(p − 1)!r2z · Vz

α1 ∧ νy ∧ (da ∧ ψ1 + db ∧ ψ2 + dc ∧ ψ3)
2 = 2r4y∆ · VΣ ∧ Vy

(adψ1 + bdψ2 + cdψ3) ∧ (da ∧ ψ1 + db ∧ ψ2 + dc ∧ ψ3)
2 = −4r2y∆ · VΣ ∧ Vy(3.8)

are useful for deriving

2−(p+1)

p!
�

(
ν ∧ α ∧ (dα)2+p

)
= −r2yr

2∆(3.9)

where ∆ is as defined in equation (3.3).
We choose the propeller surface X = (a, b, c) as in the previous theorem so that

∆ > 0 in B2 and (a, b, c) = (1, 0, 0) outside the ball. In fact, we can also ask that
a2 + b2 + c2 > 0. Hence, α is contact over B2 as long as ry �= 0.
We now check for conductivity at points where α is not contact. Either the point

is contained in a propeller region or it is not. Two such points are shown in Figure
(5). We first show that any point in a propeller for which α is not contact has the
property that Null(a)⊥ = TΣ2 and hence diffusion will take place along the surface
direction. Next, we show that points outside the propellers also diffuse along the
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surface directions. Finally, we demonstrate that α is actually conductive in that
every point is finite distance from a positive heat source, i.e. a contact region.
Frist, in the region where ry = 0, one has r2z = 1, ν = νz, α = α2 but dα =

dα1 + dα2, and (dα1)
2 = 8

(
a2 + b2 + c2

) · Vy. One may verify that in this region

ν ∧ α ∧ (dα)p+1 =
(
p+ 1
2

)
(α2 ∧ νz) ∧ (dα1)

2 ∧ (dα2)
p−1(3.10)

hence from identities (3.8)

2−(p+1)

(p+ 1)!
�

(
ν ∧ α ∧ (dα)p+1

)
= − (

a2 + b2 + c2
) · VΣ2(3.11)

Equation (3.11) implies, for ry = 0 inside the propeller, that Null(a)⊥ = TΣ2.
Hence diffusion occurs along the surface direction.
Next, outside the propellers α = ψ1 + α2 and one may compute

�
(
h�

(
α ∧ (dα)p+1

))
= 2p+1 (p+ 1)! · VΣ2(3.12)

That is, α is a contact form for S3+2p (see also [10]). Hence Null(a)⊥ = TΣ2 and
diffusion occurs along the surface direction.
Finally, now that we have seen that heat diffuses along the surface directions,

we must demonstrate that there is actually some heat source that can be reached.
This is readily seen as follows. For any point (p, x) ∈ S2m−1 × Σ2 where p =
(p1, · · · , p2m) ∈ S2m−1 ⊂ R

2m there is at least one coordinate function p2i−1 or
p2i that is nonzero. For this i, by our construction of Pi, α(p, x′) is contact for all
x′ ∈ B2

i . Therefore α is conductive.

There are a number of different initial conditions that offer varying degrees of
symmetry. As an example, for S4p−1 ×Σ2 only one propeller of the following type
is necessary to provide a conductive confoliation. For coordinates (y1, · · · , y4p) ∈
S4p−1 ⊂ R

4p let

ψ1 =
p−1∑
i=0

(y4i+1dy4i+2 − y4i+2dy4i+1 + y4i+3dy4i+4 − y4i+4dy4i+3)

ψ2 =
p−1∑
i=0

(y4i+1dy4i+3 − y4i+3dy4i+1 + y4i+4dy4i+2 − y4i+2dy4i+4)

ψ3 =
p−1∑
i=0

(y4i+1dy4i+4 − y4i+4dy4i+1 + y4i+2dy4i+3 − y4i+3dy4i+2)

and let X(x1, x2) = (a(x1, x2), b(x1, x2), c(x1, x2)) be a propeller surface.
For h : S4p−1 × Σ2 ↪→ R

4p × Σ2,

α = h� (a(x1, x2)ψ1 + b(x1, x2)ψ2 + c(x1, x2)ψ3) .(3.13)

One may compute inside the propeller that

�
(
α ∧ (dα)2p

)
= (2p − 2)! (4(a2 + b2 + c2)

)p−1
∆ > 0(3.14)

where ∆ is as defined earlier.
Since ψ1 is contact on S4p−1, α is a conducting confoliation on S4p−1 × Σ2.
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4. Other Applications

In this section, we describe a number of new applications of the program outlined
above. First, we introduce a notion of integrability for higher degree forms.
On M2n+1, let j, k,m be non-negative integers such that n = (k+1)(j+m)+k,

α ∈ Λ2k+1(M2n+1) and Φ ∈ Λ2k+2(M2n+1). Define the function

�
(
α ∧ dαj ∧ Φm

) ∈ Λ0(M2n+1).(4.1)

Note that 4.1 agrees with the notion of non-integrability 1.1 for contact forms
when k = 0 and m = 0.
Note also that we ask for α to be odd degree. This is because an even degree form

α2k has d(α2k ∧ α2k) = 2α2k ∧ dα2k and Stokes theorem implies
∫
α2k ∧ dα2k = 0.

So there can be no contact-like notion of positivity.
As with before, if �

(
α ∧ dαj ∧ Φm

) ≥ 0, one can attempt to construct a new
(2k + 1)-form η = α + εβ such that equation (4.1) is strictly positive. As in §2.1,
we expand the cross terms

η ∧ dηj ∧ Φm = α ∧ dαj ∧ Φm(4.2)

+ ε
(
β ∧ dαj ∧ Φm + jα ∧ dαj−1 ∧ dβ ∧ Φm

)
+O(ε2)

Again, defining

f =
1
j
�

(
β ∧ dαj ∧ Φm + jα ∧ dαj−1 ∧ dβ ∧ Φm

)
(4.3)

it is clear that if �
(
α ∧ dαj ∧ Φm

) ≥ 0 and f > 0, then for ε small enough one can
obtain �

(
α ∧ dαj ∧ Φm

)
> 0.

So the more general “non-integrability” flow is as follows.

Definition 4.1. Let α(·), β(·, t) ∈ Λ2k+1
(
M2n+1

)
and Φ(·) ∈ Λ2k+2 where α and

Φ are time-independent and β varies in time. The general non-integrability flow is{
∂
∂tβ = �(α ∧ dαj−1 ∧ Φm ∧ df)
β(·, 0) = β0(·)

(4.4)

Most importantly, this produces a nice evolution for f. As before, we define the
k-form

τ = �(α ∧ dαj−1 ∧ Φm)(4.5)

and define the “metric”

〈X,Y 〉a = 〈iXτ, iY τ〉(4.6)

where the inner product < ·, · > on the right hand side is the one induced by g on
k − 1-forms. As before, we say that a point p is accessible from another point q if
there is a curve x(s) connecting the two with x′(s) in the range of a.
Then, it may be computed that the evolution of f is given by

∂

∂t
f = ∆af +∇Xf(4.7)

where ∆a is defined as in the previous section and X = X(α,∇α,Φ,∇Φ) is a vector
field depending only on α,Φ and their first covariant derivatives.
As with the confoliation case, a maximum principle may be applied to the evo-

lution of f yielding the general result.
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Theorem 4.2. Let j, k,m be non-negative integers such that n = (k+1)(j+m)+
k. Note that for α ∈ Λ2k+1

(
M2n+1

)
and Φ ∈ Λ2k+2

(
M2n+1

)
the wedge-product

�
(
α ∧ dαj ∧ Φm

) ∈ Λ0
(
M2n+1

)
. If α and Ω satisfy

1. �
(
α ∧ dαj ∧ Φm

) ≥ 0;
2. every point p is accessible from a point q satisfying �

(
α ∧ dαj ∧ Φm

)
(q) > 0;

then α is C∞ close to a (2k + 1)-form η such that �
(
η ∧ dηj ∧ Φm

)
> 0.

We now give some examples designed to be representative and illustrative of some
of the phenomena discussed above. All manifolds will be assumed to be compact
and orientable.
Example 1. If M2k+1 has a conductive confoliation one-form λ and N2k has sym-
plectic form ω then define the 3-form α = λ∧ω. Then α satisfies the two conditions
of theorem 4.2 and is C∞ close to a 3-form η satisfying η ∧ (dη)k > 0.
Example 2. let M2n+1 be an almost contact manifold. That is, M2n+1 has a
1-form α and a 2-form Φ such that � (α ∧ Φn) > 0. If, for some k, α additionally
satisfies �

(
η ∧ dηk ∧ Φn−k

) ≥ 0 and condition 2 of theorem 4.2, then α may be
perturbed to one with a strict inequality. This is interesting because it offers a
range of non-integrability between foliation and contact forms.
Example 3. For the product manifold M2k−1 ×N2k there is (2k − 1)-form η such
that � (η ∧ dη) > 0. This is an example of a generalization of contact forms on
3-manifolds to higher dimensions.
To see this, one may construct initial conditions similar to those in example (5)

of §1 and in the proof of theorem 3.1. Let µ be a volume form for M . In a ball B
centered around a point inN , make the volume form r2k−1dr∧ν where r is the radial
coordinate and ν is a volume form on the sphere S2n−1. For α = a(r)µM + b(r)ν
one has

α ∧ dα = det
∣∣∣∣a ar

b br

∣∣∣∣µ ∧ dr ∧ ν

As with the previous propeller constructions, choose a propeller curve X(r) =
(a(r), b(r)) such that b(r) behaves as r2k+1 near r = 0. Therefore, α ∧ dα > 0 for
r < 1 and α ∧ dα = 0 elsewhere. It is easy to check that α satisfies the condition
for heat conduction outside M × B and the result follows.
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