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A Flexible New Technique for Camera Calibration

Abstract

We propose a flexible new technique to easily calibrate a camera. It is well suited for use
without specialized knowledge of 3D geometry or computer vision. The technique only requires
the camera to observe a planar pattern shown at a few (at least two) different orientations. Either
the camera or the planar pattern can be freely moved. The motion need not be known. Radial lens
distortion is modeled. The proposed procedure consists of a closed-form solution, followed by a
nonlinear refinement based on the maximum likelihood criterion. Both computer simulation and
real data have been used to test the proposed technique, and very good results have been obtained.
Compared with classical techniques which use expensive equipment such as two or three orthog-
onal planes, the proposed technique is easy to use and flexible. It advances 3D computer vision
one step from laboratory environments to real world use.

Index Terms— Camera calibration, calibration from planes, 2D pattern, absolute conic, projective
mapping, lens distortion, closed-form solution, maximum likelihood estimation, flexible setup.

1 Motivations

Camera calibration is a necessary step in 3D computer vision in order to extract metric information
from 2D images. Much work has been done, starting in the photogrammetry community (see [2,
4] to cite a few), and more recently in computer vision ([9, 8, 23, 7, 26, 24, 17, 6] to cite a few).
We can classify those techniques roughly into two categories: photogrammetric calibration and self-
calibration.

Photogrammetric calibration. Camera calibration is performed by observing a calibration object
whose geometry in 3-D space is known with very good precision. Calibration can be done very
efficiently [5]. The calibration object usually consists of two or three planes orthogonal to each
other. Sometimes, a plane undergoing a precisely known translation is also used [23]. These
approaches require an expensive calibration apparatus, and an elaborate setup.

Self-calibration. Techniques in this category do not use any calibration object. Just by moving a
camera in a static scene, the rigidity of the scene provides in general two constraints [17, 15]
on the cameras’ internal parameters from one camera displacement by using image informa-
tion alone. Therefore, if images are taken by the same camera with fixed internal parameters,
correspondences between three images are sufficient to recover both the internal and external
parameters which allow us to reconstruct 3-D structure up to a similarity [16, 13]. While this ap-
proach is very flexible, it is not yet mature [1]. Because there are many parameters to estimate,
we cannot always obtain reliable results.

Other techniques exist: vanishing points for orthogonal directions [3, 14], and calibration from pure
rotation [11, 21].

Our current research is focused on a desktop vision system (DVS) since the potential for using
DVSs is large. Cameras are becoming cheap and ubiquitous. A DVS aims at the general public,
who are not experts in computer vision. A typical computer user will perform vision tasks only from
time to time, so will not be willing to invest money for expensive equipment. Therefore, flexibility,
robustness and low cost are important. The camera calibration technique described in this paper was
developed with these considerations in mind.
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The proposed technique only requires the camera to observe a planar pattern shown at a few (at
least two) different orientations. The pattern can be printed on a laser printer and attached to a “rea-
sonable” planar surface (e.g., a hard book cover). Either the camera or the planar pattern can be moved
by hand. The motion need not be known. The proposed approach lies between the photogrammet-
ric calibration and self-calibration, because we use 2D metric information rather than 3D or purely
implicit one. Both computer simulation and real data have been used to test the proposed technique,
and very good results have been obtained. Compared with classical techniques, the proposed tech-
nique is considerably more flexible. Compared with self-calibration, it gains considerable degree of
robustness. We believe the new technique advances 3D computer vision one step from laboratory
environments to the real world.

Note that Bill Triggs [22] recently developed a self-calibration technique from at least 5 views of
a planar scene. His technique is more flexible than ours, but has difficulty to initialize. Liebowitz and
Zisserman [14] described a technique of metric rectification for perspective images of planes using
metric information such as a known angle, two equal though unknown angles, and a known length
ratio. They also mentioned that calibration of the internal camera parameters is possible provided at
least three such rectified planes, although no experimental results were shown.

The paper is organized as follows. Section 2 describes the basic constraints from observing a
single plane. Section 3 describes the calibration procedure. We start with a closed-form solution,
followed by nonlinear optimization. Radial lens distortion is also modeled. Section 4 studies con-
figurations in which the proposed calibration technique fails. It is very easy to avoid such situations
in practice. Section 5 provides the experimental results. Both computer simulation and real data are
used to validate the proposed technique. In the Appendix, we provides a number of details, including
the techniques for estimating the homography between the model plane and its image.

2 Basic Equations

We examine the constraints on the camera’s intrinsic parameters provided by observing a single plane.
We start with the notation used in this paper.

2.1 Notation

A 2D point is denoted by m = [u, v]T . A 3D point is denoted by M = [X,Y, Z]T . We use x̃ to denote
the augmented vector by adding 1 as the last element: m̃ = [u, v, 1]T and M̃ = [X, Y, Z, 1]T . A camera
is modeled by the usual pinhole: the relationship between a 3D point M and its image projection m is
given by

sm̃ = A
[
R t

]
M̃ , (1)

where s is an arbitrary scale factor, (R, t), called the extrinsic parameters, is the rotation and trans-
lation which relates the world coordinate system to the camera coordinate system, and A, called the
camera intrinsic matrix, is given by

A =




α γ u0

0 β v0

0 0 1




with (u0, v0) the coordinates of the principal point, α and β the scale factors in image u and v axes,
and γ the parameter describing the skewness of the two image axes.

We use the abbreviation A−T for (A−1)T or (AT )−1.
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2.2 Homography between the model plane and its image

Without loss of generality, we assume the model plane is on Z = 0 of the world coordinate system.
Let’s denote the ith column of the rotation matrix R by ri. From (1), we have

s




u
v
1


 = A

[
r1 r2 r3 t

]



X
Y
0
1




= A
[
r1 r2 t

]



X
Y
1


 .

By abuse of notation, we still use M to denote a point on the model plane, but M = [X, Y ]T since Z is
always equal to 0. In turn, M̃ = [X, Y, 1]T . Therefore, a model point M and its image m is related by a
homography H:

sm̃ = HM̃ with H = A
[
r1 r2 t

]
. (2)

As is clear, the 3× 3 matrix H is defined up to a scale factor.

2.3 Constraints on the intrinsic parameters

Given an image of the model plane, an homography can be estimated (see Appendix A). Let’s denote
it by H =

[
h1 h2 h3

]
. From (2), we have

[
h1 h2 h3

]
= λA

[
r1 r2 t

]
,

where λ is an arbitrary scalar. Using the knowledge that r1 and r2 are orthonormal, we have

hT
1 A−TA−1h2 = 0 (3)

hT
1 A−TA−1h1 = hT

2 A−TA−1h2 . (4)

These are the two basic constraints on the intrinsic parameters, given one homography. Because a
homography has 8 degrees of freedom and there are 6 extrinsic parameters (3 for rotation and 3 for
translation), we can only obtain 2 constraints on the intrinsic parameters. Note that A−TA−1 actually
describes the image of the absolute conic [16]. In the next subsection, we will give an geometric
interpretation.

2.4 Geometric Interpretation

We are now relating (3) and (4) to the absolute conic.
It is not difficult to verify that the model plane, under our convention, is described in the camera

coordinate system by the following equation:
[

r3

rT
3 t

]T [
x
y
z
w

]
= 0 ,

where w = 0 for points at infinity and w = 1 othewise. This plane intersects the plane at infinity at a

line, and we can easily see that
[
r1

0

]
and

[
r2

0

]
are two particular points on that line. Any point on it
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is a linear combination of these two points, i.e.,

x∞ = a

[
r1

0

]
+ b

[
r2

0

]
=

[
ar1 + br2

0

]
.

Now, let’s compute the intersection of the above line with the absolute conic. By definition, the
point x∞, known as the circular point, satisfies: xT∞x∞ = 0, i.e.,

(ar1 + br2)T (ar1 + br2) = 0, or a2 + b2 = 0 .

The solution is b = ±ai, where i2 = −1. That is, the two intersection points are

x∞ = a

[
r1 ± ir2

0

]
.

Their projection in the image plane is then given, up to a scale factor, by

m̃∞ = A(r1 ± ir2) = h1 ± ih2 .

Point m̃∞ is on the image of the absolute conic, described by A−TA−1 [16]. This gives

(h1 ± ih2)TA−TA−1(h1 ± ih2) = 0 .

Requiring that both real and imaginary parts be zero yields (3) and (4).

3 Solving Camera Calibration

This section provides the details how to effectively solve the camera calibration problem. We start
with an analytical solution, followed by a nonlinear optimization technique based on the maximum
likelihood criterion. Finally, we take into account lens distortion, giving both analytical and nonlinear
solutions.

3.1 Closed-form solution

Let

B = A−TA−1 ≡



B11 B12 B13

B12 B22 B23

B13 B23 B33




=




1
α2 − γ

α2β
v0γ−u0β

α2β

− γ
α2β

γ2

α2β2 + 1
β2 −γ(v0γ−u0β)

α2β2 − v0
β2

v0γ−u0β
α2β

−γ(v0γ−u0β)
α2β2 − v0

β2
(v0γ−u0β)2

α2β2 + v2
0

β2 +1


 . (5)

Note that B is symmetric, defined by a 6D vector

b = [B11, B12, B22, B13, B23, B33]T . (6)

Let the ith column vector of H be hi = [hi1, hi2, hi3]T . Then, we have

hT
i Bhj = vT

ijb (7)
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with

vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2,

hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]T .

Therefore, the two fundamental constraints (3) and (4), from a given homography, can be rewritten as
2 homogeneous equations in b: [

vT
12

(v11 − v22)T

]
b = 0 . (8)

If n images of the model plane are observed, by stacking n such equations as (8) we have

Vb = 0 , (9)

where V is a 2n×6 matrix. If n ≥ 3, we will have in general a unique solution b defined up to a scale
factor. If n = 2, we can impose the skewless constraint γ = 0, i.e., [0, 1, 0, 0, 0, 0]b = 0, which is
added as an additional equation to (9). (If n = 1, we can only solve two camera intrinsic parameters,
e.g., α and β, assuming u0 and v0 are known (e.g., at the image center) and γ = 0, and that is indeed
what we did in [19] for head pose determination based on the fact that eyes and mouth are reasonably
coplanar.) The solution to (9) is well known as the eigenvector of VTV associated with the smallest
eigenvalue (equivalently, the right singular vector of V associated with the smallest singular value).

Once b is estimated, we can compute all camera intrinsic matrix A. See Appendix B for the
details.

Once A is known, the extrinsic parameters for each image is readily computed. From (2), we have

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r2

t = λA−1h3

with λ = 1/‖A−1h1‖ = 1/‖A−1h2‖. Of course, because of noise in data, the so-computed matrix
R = [r1, r2, r3] does not in general satisfy the properties of a rotation matrix. Appendix C describes
a method to estimate the best rotation matrix from a general 3× 3 matrix.

3.2 Maximum likelihood estimation

The above solution is obtained through minimizing an algebraic distance which is not physically
meaningful. We can refine it through maximum likelihood inference.

We are given n images of a model plane and there are m points on the model plane. Assume
that the image points are corrupted by independent and identically distributed noise. The maximum
likelihood estimate can be obtained by minimizing the following functional:

n∑

i=1

m∑

j=1

‖mij − m̂(A,Ri, ti, Mj)‖2 , (10)

where m̂(A,Ri, ti, Mj) is the projection of point Mj in image i, according to equation (2). A rotation
R is parameterized by a vector of 3 parameters, denoted by r, which is parallel to the rotation axis
and whose magnitude is equal to the rotation angle. R and r are related by the Rodrigues formula [5].
Minimizing (10) is a nonlinear minimization problem, which is solved with the Levenberg-Marquardt
Algorithm as implemented in Minpack [18]. It requires an initial guess of A, {Ri, ti|i = 1..n}
which can be obtained using the technique described in the previous subsection.
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3.3 Dealing with radial distortion

Up to now, we have not considered lens distortion of a camera. However, a desktop camera usually
exhibits significant lens distortion, especially radial distortion. In this section, we only consider the
first two terms of radial distortion. The reader is referred to [20, 2, 4, 26] for more elaborated models.
Based on the reports in the literature [2, 23, 25], it is likely that the distortion function is totally
dominated by the radial components, and especially dominated by the first term. It has also been
found that any more elaborated modeling not only would not help (negligible when compared with
sensor quantization), but also would cause numerical instability [23, 25].

Let (u, v) be the ideal (nonobservable distortion-free) pixel image coordinates, and (ŭ, v̆) the
corresponding real observed image coordinates. The ideal points are the projection of the model
points according to the pinhole model. Similarly, (x, y) and (x̆, y̆) are the ideal (distortion-free) and
real (distorted) normalized image coordinates. We have [2, 25]

x̆ = x + x[k1(x2 + y2) + k2(x2 + y2)2]

y̆ = y + y[k1(x2 + y2) + k2(x2 + y2)2] ,

where k1 and k2 are the coefficients of the radial distortion. The center of the radial distortion is the
same as the principal point. From∗ ŭ = u0 +αx̆+ γy̆ and v̆ = v0 +βy̆ and assuming γ = 0, we have

ŭ = u + (u− u0)[k1(x2 + y2) + k2(x2 + y2)2] (11)

v̆ = v + (v − v0)[k1(x2 + y2) + k2(x2 + y2)2] . (12)

Estimating Radial Distortion by Alternation. As the radial distortion is expected to be small, one
would expect to estimate the other five intrinsic parameters, using the technique described in Sect. 3.2,
reasonable well by simply ignoring distortion. One strategy is then to estimate k1 and k2 after having
estimated the other parameters, which will give us the ideal pixel coordinates (u, v). Then, from (11)
and (12), we have two equations for each point in each image:

[
(u−u0)(x2+y2) (u−u0)(x2+y2)2

(v−v0)(x2+y2) (v−v0)(x2+y2)2

] [
k1

k2

]
=

[
ŭ−u
v̆−v

]
.

Given m points in n images, we can stack all equations together to obtain in total 2mn equations, or
in matrix form as Dk = d, where k = [k1, k2]T . The linear least-squares solution is given by

k = (DTD)−1DTd . (13)

Once k1 and k2 are estimated, one can refine the estimate of the other parameters by solving (10) with
m̂(A,Ri, ti, Mj) replaced by (11) and (12). We can alternate these two procedures until convergence.

Complete Maximum Likelihood Estimation. Experimentally, we found the convergence of the
above alternation technique is slow. A natural extension to (10) is then to estimate the complete set of
parameters by minimizing the following functional:

n∑

i=1

m∑

j=1

‖mij − m̆(A, k1, k2,Ri, ti, Mj)‖2 , (14)

∗A typo was reported by Johannes Koester [johannes.koester@uni-dortmund.de] via email on Aug. 13, 2008.
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where m̆(A, k1, k2,Ri, ti, Mj) is the projection of point Mj in image i according to equation (2),
followed by distortion according to (11) and (12). This is a nonlinear minimization problem, which
is solved with the Levenberg-Marquardt Algorithm as implemented in Minpack [18]. A rotation is
again parameterized by a 3-vector r, as in Sect. 3.2. An initial guess of A and {Ri, ti|i = 1..n} can
be obtained using the technique described in Sect. 3.1 or in Sect. 3.2. An initial guess of k1 and k2 can
be obtained with the technique described in the last paragraph, or simply by setting them to 0.

3.4 Summary

The recommended calibration procedure is as follows:

1. Print a pattern and attach it to a planar surface;
2. Take a few images of the model plane under different orientations by moving either the plane

or the camera;
3. Detect the feature points in the images;
4. Estimate the five intrinsic parameters and all the extrinsic parameters using the closed-form

solution as described in Sect. 3.1;
5. Estimate the coefficients of the radial distortion by solving the linear least-squares (13);
6. Refine all parameters by minimizing (14).

4 Degenerate Configurations

We study in this section configurations in which additional images do not provide more constraints on
the camera intrinsic parameters. Because (3) and (4) are derived from the properties of the rotation
matrix, if R2 is not independent of R1, then image 2 does not provide additional constraints. In
particular, if a plane undergoes a pure translation, then R2 = R1 and image 2 is not helpful for
camera calibration. In the following, we consider a more complex configuration.

Proposition 1. If the model plane at the second position is parallel to its first position, then the second
homography does not provide additional constraints.

Proof. Under our convention, R2 and R1 are related by a rotation around z-axis. That is,

R1




cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 = R2 ,

where θ is the angle of the relative rotation. We will use superscript (1) and (2) to denote vectors
related to image 1 and 2, respectively. It is clear that we have

h(2)
1 = λ(2)(Ar(1) cos θ + Ar(2) sin θ) =

λ(2)

λ(1)
(h(1)

1 cos θ + h(1)
2 sin θ)

h(2)
2 = λ(2)(−Ar(1) sin θ + Ar(2) cos θ) =

λ(2)

λ(1)
(−h(1)

1 sin θ + h(1)
2 cos θ) .

Then, the first constraint (3) from image 2 becomes:

h(2)
1

T
A−TA−1h(2)

2 =
λ(2)

λ(1)
[(cos2 θ− sin2 θ)(h(1)

1

T
A−TA−1h(1)

2 )

− cos θ sin θ(h(1)
1

T
A−TA−1h(1)

1 − h(1)
2

T
A−TA−1h(1)

2 )] ,
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which is a linear combination of the two constraints provided by H1. Similarly, we can show that the
second constraint from image 2 is also a linear combination of the two constraints provided by H1.
Therefore, we do not gain any constraint from H2.

The result is self-evident because parallel planes intersect with the plane at infinity at the same
circular points, and thus according to Sect. 2.4 they provide the same constraints.

In practice, it is very easy to avoid the degenerate configuration: we only need to change the
orientation of the model plane from one snapshot to another.

Although the proposed technique will not work if the model plane undergoes pure translation,
camera calibration is still possible if the translation is known. Please refer to Appendix D.

5 Experimental Results

The proposed algorithm has been tested on both computer simulated data and real data. The closed-
form solution involves finding a singular value decomposition of a small 2n × 6 matrix, where n is
the number of images. The nonlinear refinement within the Levenberg-Marquardt algorithm takes 3
to 5 iterations to converge.

5.1 Computer Simulations

The simulated camera has the following property: α = 1250, β = 900, γ = 1.09083 (equivalent to
89.95◦), u0 = 255, v0 = 255. The image resolution is 512 × 512. The model plane is a checker
pattern containing 10× 14 = 140 corner points (so we usually have more data in the v direction than
in the u direction). The size of pattern is 18cm×25cm. The orientation of the plane is represented
by a 3D vector r, which is parallel to the rotation axis and whose magnitude is equal to the rotation
angle. Its position is represented by a 3D vector t (unit in centimeters).

Performance w.r.t. the noise level. In this experiment, we use three planes with r1 = [20◦, 0, 0]T ,
t1 = [−9,−12.5, 500]T , r2 = [0, 20◦, 0]T , t2 = [−9,−12.5, 510]T , r3 = 1√

5
[−30◦,−30◦,−15◦]T ,

t3 = [−10.5,−12.5, 525]T . Gaussian noise with 0 mean and σ standard deviation is added to the
projected image points. The estimated camera parameters are then compared with the ground truth.
We measure the relative error for α and β, and absolute error for u0 and v0. We vary the noise level
from 0.1 pixels to 1.5 pixels. For each noise level, we perform 100 independent trials, and the results
shown are the average. As we can see from Fig. 1, errors increase linearly with the noise level. (The
error for γ is not shown, but has the same property.) For σ = 0.5 (which is larger than the normal
noise in practical calibration), the errors in α and β are less than 0.3%, and the errors in u0 and v0 are
around 1 pixel. The error in u0 is larger than that in v0. The main reason is that there are less data in
the u direction than in the v direction, as we said before.

Performance w.r.t. the number of planes. This experiment investigates the performance with re-
spect to the number of planes (more precisely, the number of images of the model plane). The orien-
tation and position of the model plane for the first three images are the same as in the last subsection.
From the fourth image, we first randomly choose a rotation axis in a uniform sphere, then apply a
rotation angle of 30◦. We vary the number of images from 2 to 16. For each number, 100 trials
of independent plane orientations (except for the first three) and independent noise with mean 0 and
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Figure 1: Errors vs. the noise level of the image points
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Figure 2: Errors vs. the number of images of the model plane

standard deviation 0.5 pixels are conducted. The average result is shown in Fig. 2. The errors decrease
when more images are used. From 2 to 3, the errors decrease significantly.

Performance w.r.t. the orientation of the model plane. This experiment examines the influence
of the orientation of the model plane with respect to the image plane. Three images are used. The
orientation of the plane is chosen as follows: the plane is initially parallel to the image plane; a rotation
axis is randomly chosen from a uniform sphere; the plane is then rotated around that axis with angle θ.
Gaussian noise with mean 0 and standard deviation 0.5 pixels is added to the projected image points.
We repeat this process 100 times and compute the average errors. The angle θ varies from 5◦ to 75◦,
and the result is shown in Fig. 3. When θ = 5◦, 40% of the trials failed because the planes are almost
parallel to each other (degenerate configuration), and the result shown has excluded those trials. Best
performance seems to be achieved with an angle around 45◦. Note that in practice, when the angle
increases, foreshortening makes the corner detection less precise, but this is not considered in this
experiment.

5.2 Real Data

The proposed technique is now routinely used in our vision group and also in the graphics group at
Microsoft Research. Here, we provide the result with one example.

The camera to be calibrated is an off-the-shelf PULNiX CCD camera with 6 mm lens. The image
resolution is 640×480. The model plane contains a pattern of 8× 8 squares, so there are 256 corners.
The size of the pattern is 17cm×17cm. It was printed with a high-quality printer and put on a glass.
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Figure 3: Errors vs. the angle of the model plane w.r.t. the image plane

Table 1: Results with real data of 2 through 5 images
nb 2 images 3 images 4 images 5 images

initial final σ initial final σ initial final σ initial final σ
α 825.59 830.47 4.74 917.65 830.80 2.06 876.62 831.81 1.56 877.16 832.50 1.41
β 825.26 830.24 4.85 920.53 830.69 2.10 876.22 831.82 1.55 876.80 832.53 1.38
γ 0 0 0 2.2956 0.1676 0.109 0.0658 0.2867 0.095 0.1752 0.2045 0.078
u0 295.79 307.03 1.37 277.09 305.77 1.45 301.31 304.53 0.86 301.04 303.96 0.71
v0 217.69 206.55 0.93 223.36 206.42 1.00 220.06 206.79 0.78 220.41 206.59 0.66
k1 0.161 −0.227 0.006 0.128 −0.229 0.006 0.145 −0.229 0.005 0.136 −0.228 0.003
k2 −1.955 0.194 0.032 −1.986 0.196 0.034 −2.089 0.195 0.028 −2.042 0.190 0.025

RMS 0.761 0.295 0.987 0.393 0.927 0.361 0.881 0.335

Five images of the plane under different orientations were taken, as shown in Fig. 4. We can observe a
significant lens distortion in the images. The corners were detected as the intersection of straight lines
fitted to each square.

We applied our calibration algorithm to the first 2, 3, 4 and all 5 images. The results are shown in
Table 1. For each configuration, three columns are given. The first column (initial) is the estima-
tion of the closed-form solution. The second column (final) is the maximum likelihood estimation
(MLE), and the third column (σ) is the estimated standard deviation, representing the uncertainty of
the final result. As is clear, the closed-form solution is reasonable, and the final estimates are very
consistent with each other whether we use 2, 3, 4 or 5 images. We also note that the uncertainty of
the final estimate decreases with the number of images. The last row of Table 1, indicated by RMS,
displays the root of mean squared distances, in pixels, between detected image points and projected
ones. The MLE improves considerably this measure.

The careful reader may remark the inconsistency for k1 and k2 between the closed-form solution
and the MLE. The reason is that for the closed-form solution, camera intrinsic parameters are esti-
mated assuming no distortion, and the predicted outer points lie closer to the image center than the
detected ones. The subsequent distortion estimation tries to spread the outer points and increase the
scale in order to reduce the distances, although the distortion shape (with positive k1, called pincush-
ion distortion) does not correspond to the real distortion (with negative k1, called barrel distortion).
The nonlinear refinement (MLE) finally recovers the correct distortion shape. The estimated distor-
tion parameters allow us to correct the distortion in the original images. Figure 5 displays the first
two such distortion-corrected images, which should be compared with the first two images shown in
Figure 4. We see clearly that the curved pattern in the original images is straightened.
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Figure 4: Five images of a model plane, together with the extracted corners (indicated by cross)
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Figure 5: First and second images after having corrected radial distortion

Table 2: Variation of the calibration results among all quadruples of images

quadruple (1234) (1235) (1245) (1345) (2345) mean deviation
α 831.81 832.09 837.53 829.69 833.14 832.85 2.90
β 831.82 832.10 837.53 829.91 833.11 832.90 2.84
γ 0.2867 0.1069 0.0611 0.1363 0.1096 0.1401 0.086
u0 304.53 304.32 304.57 303.95 303.53 304.18 0.44
v0 206.79 206.23 207.30 207.16 206.33 206.76 0.48
k1 −0.229 −0.228 −0.230 −0.227 −0.229 −0.229 0.001
k2 0.195 0.191 0.193 0.179 0.190 0.190 0.006

RMS 0.361 0.357 0.262 0.358 0.334 0.334 0.04

Variation of the calibration result. In Table 1, we have shown the calibration results with 2 through
5 images, and we have found that the results are very consistent with each other. In order to further
investigate the stability of the proposed algorithm, we have applied it to all combinations of 4 images
from the available 5 images. The results are shown in Table 2, where the third column (1235), for
example, displays the result with the quadruple of the first, second, third, and fifth image. The last
two columns display the mean and sample deviation of the five sets of results. The sample deviations
for all parameters are quite small, which implies that the proposed algorithm is quite stable. The value
of the skew parameter γ is not significant from 0, since the coefficient of variation, 0.086/0.1401 =
0.6, is large. Indeed, γ = 0.1401 with α = 832.85 corresponds to 89.99 degrees, very close to 90
degrees, for the angle between the two image axes. We have also computed the aspect ratio α/β for
each quadruple. The mean of the aspect ratio is equal to 0.99995 with sample deviation 0.00012. It is
therefore very close to 1, i.e., the pixels are square.

Application to image-based modeling. Two images of a tea tin (see Fig. 6) were taken by the same
camera as used above for calibration. Mainly two sides are visible. We manually picked 8 point
matches on each side, and the structure-from-motion software we developed ealier [27] was run on
these 16 point matches to build a partial model of the tea tin. The reconstructed model is in VRML, and
three rendered views are shown in Fig. 7. The reconstructed points on each side are indeed coplanar,
and we computed the angle between the two reconstructed planes which is 94.7◦. Although we do not
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Figure 6: Two images of a tea tin

Figure 7: Three rendered views of the reconstructed tea tin

have the ground truth, but the two sides of the tea tin are indeed almost orthogonal to each other.
All the real data and results are available from the following Web page:

http://research.microsoft.com/˜zhang/Calib/

5.3 Sensitivity with Respect to Model Imprecision

In the example described above, the 2D model pattern was printed on a paper with a high-quality
printer. Although it is significantly cheaper to make such a high-quality 2D pattern than the classical
calibration equipment, it is possible that there is some imprecision on the 2D model pattern if we print
it on a normal printer, or the pattern is not on a flat surface. This section investigates the sensitivity of
the proposed calibration technique with respect to model imprecision.

5.3.1 Random noise in the model points

We conducted this experiment on the same real data as in the last subsection. All five real images were
used. To simulate model imprecision, we added Gaussian noise with zero mean to the corners of each
square in the model. The standard deviation of the added noise varies from 1% to 15% of the side
of each square, which is equal to 1.27cm (more precisely, 0.5inches). 15% corresponds to a standard
deviation of 2mm, and people may not want to use such a poor model. For each noise level, 100
trials were conducted, and average errors (deviations from the results obtained with the true model as
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Figure 8: Sensitivity of camera calibration with respect to Gaussian noise in the model points
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Figure 9: Sensitivity of camera calibration with respect to systematic spherical non-planarity

shown in Table 1) were calculated, and are depicted in Fig. 8. Obviously, all errors increase with the
level of noise added to the model points. The pixel scale factors (α and β) remain very stable: the
error is less than 0.02%. The coordinates of the principal point are quite stable: the errors are about
20 pixels for the noise level 15%. The estimated radial distortion coefficient k1 becomes less useful,
and the second term k2 (not shown) is even less than k1.

In our current formulation, we assume that the exact position of the points in the model plane is
known. If the model points are only known within certain precision, we can reformulate the problem,
and we could expect smaller errors than reported here.

5.3.2 Systematic non-planarity of the model pattern

In this section, we consider systematic non-planarity of the model pattern, e.g., when a printed pattern
is attached to a soft book cover. We used the same configuration as in Sect. 5.1. The model plane
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Figure 10: Sensitivity of camera calibration with respect to systematic cylindrical non-planarity

was distorted in two systematic ways to simulate the non-planarity: spherical and cylindrical. With
spherical distortion, points away from the center of the pattern are displaced in z according to z =
p
√

x2 + y2, where p indicates the non-planarity (the model points are coplanar when p = 0). The
displacement is symmetric around the center. With Cylindrical distortion, points are displaced in z
according to z = px. Again, p indicates the non-planarity. This simulates bending of the model
pattern around the vertical axis. Four images of the model pattern were used: the first is parallel to
the image plane; the second is rotated from the first around the horizontal axis by 30 degrees; the
third is rotated from the first around the vertical axis by 30 degrees; the fourth is rotated from the first
around the diagonal axis by 30 degrees. Although model points are not coplanar, they were treated as
coplanar, and the proposed calibration technique was applied. Gaussian noise with standard deviation
0.5 pixels was added to the image points, and 100 independent trials were conducted. The average
calibration errors of the 100 trials are shown in Fig. 9 for spherical non-planarity and in Fig. 10 for
cylindrical non-planarity. The horizontal axis indicates the increase in the non-planarity, which is
measured as the ratio of the maximum z displacement to the size of the pattern. Therefore, 10% of
non-planarity is equivalent to maximum 2.5cm of displacement in z, which does not likely happen in
practice. Several observations can be made:

• Systematic non-planarity of the model has more effect on the calibration precision than random
errors in the positions as described in the last subsection;

• Aspect ratio is very stable (0.4% of error for 10% of non-planarity);
• Systematic cylindrical non-planarity is worse than systematic spherical non-planarity, espe-

cially for the coordinates of the principal point (u0, v0). The reason is that cylindrical non-
planarity is only symmetric in one axis. That is also why the error in u0 is much larger than in
v0 in our simulation;

• The result seems still usable in practice if there is only a few percents (say, less than 3%) of
systematic non-planarity.

The error in (u0, v0) has been found by many researchers to have little effect in 3D reconstruction.
As pointed out by Triggs in [22], the absolute error in (u0, v0) is not geometrically meaningful. He
proposes to measure the relative error with respect to the focal length, i.e., ∆u0/α and ∆v0/α. This
is equivalent to measuring the angle between the true optical axis and the estimated one. Then, for
10% of cylindrical non-planarity (see Fig. 10), the relative error for u0 is 7.6%, comparable with those
of α and β.

16



6 Conclusion

In this paper, we have developed a flexible new technique to easily calibrate a camera. The technique
only requires the camera to observe a planar pattern from a few (at least two) different orientations.
We can move either the camera or the planar pattern. The motion does not need to be known. Radial
lens distortion is modeled. The proposed procedure consists of a closed-form solution, followed by a
nonlinear refinement based on maximum likelihood criterion. Both computer simulation and real data
have been used to test the proposed technique, and very good results have been obtained. Compared
with classical techniques which use expensive equipment such as two or three orthogonal planes, the
proposed technique gains considerable flexibility.
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A Estimation of the Homography Between the Model Plane and its Im-
age

There are many ways to estimate the homography between the model plane and its image. Here,
we present a technique based on maximum likelihood criterion. Let Mi and mi be the model and
image points, respectively. Ideally, they should satisfy (2). In practice, they don’t because of noise
in the extracted image points. Let’s assume that mi is corrupted by Gaussian noise with mean 0 and
covariance matrix Λmi . Then, the maximum likelihood estimation of H is obtained by minimizing
the following functional ∑

i

(mi − m̂i)TΛ−1
mi

(mi − m̂i) ,

where m̂i =
1

h̄T
3 Mi

[
h̄T

1 Mi

h̄T
2 Mi

]
with h̄i, the ith row of H.

In practice, we simply assume Λmi = σ2I for all i. This is reasonable if points are extracted indepen-
dently with the same procedure. In this case, the above problem becomes a nonlinear least-squares
one, i.e., minH

∑
i ‖mi − m̂i‖2. The nonlinear minimization is conducted with the Levenberg-

Marquardt Algorithm as implemented in Minpack [18]. This requires an initial guess, which can
be obtained as follows.

Let x = [h̄T
1 , h̄T

2 , h̄T
3 ]T . Then equation (2) can be rewritten as

[
M̃T 0T −uM̃T

0T M̃T −vM̃T

]
x = 0 .

When we are given n points, we have n above equations, which can be written in matrix equation as
Lx = 0, where L is a 2n× 9 matrix. As x is defined up to a scale factor, the solution is well known
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to be the right singular vector of L associated with the smallest singular value (or equivalently, the
eigenvector of LTL associated with the smallest eigenvalue).

In L, some elements are constant 1, some are in pixels, some are in world coordinates, and some
are multiplication of both. This makes L poorly conditioned numerically. Much better results can be
obtained by performing a simple data normalization, such as the one proposed in [12], prior to running
the above procedure.

B Extraction of the Intrinsic Parameters from Matrix B

Matrix B, as described in Sect. 3.1, is estimated up to a scale factor, i.e., , B = λA−TA with λ an
arbitrary scale. Without difficulty†, we can uniquely extract the intrinsic parameters from matrix B.

v0 = (B12B13 −B11B23)/(B11B22 −B2
12)

λ = B33 − [B2
13 + v0(B12B13 −B11B23)]/B11

α =
√

λ/B11

β =
√

λB11/(B11B22 −B2
12)

γ = −B12α
2β/λ

u0 = γv0/β −B13α
2/λ .

C Approximating a 3× 3 matrix by a Rotation Matrix

The problem considered in this section is to solve the best rotation matrix R to approximate a given
3× 3 matrix Q. Here, “best” is in the sense of the smallest Frobenius norm of the difference R−Q.
That is, we are solving the following problem:

min
R
‖R−Q‖2

F subject to RTR = I . (15)

Since

‖R−Q‖2
F = trace((R−Q)T (R−Q))

= 3 + trace(QTQ)− 2trace(RTQ) ,

problem (15) is equivalent to the one of maximizing trace(RTQ).
Let the singular value decomposition of Q be USVT , where S = diag (σ1, σ2, σ3). If we define

an orthogonal matrix Z by Z = VTRTU, then

trace(RTQ) = trace(RTUSVT ) = trace(VTRTUS)

= trace(ZS) =
3∑

i=1

ziiσi ≤
3∑

i=1

σi .

It is clear that the maximum is achieved by setting R = UVT because then Z = I. This gives the
solution to (15).

An excellent reference on matrix computations is the one by Golub and van Loan [10].
†A typo was reported in formula u0 by Jiyong Ma [mailto:jiyong@cslr.Colorado.EDU] via an email on April 18, 2002.
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D Camera Calibration Under Known Pure Translation

As said in Sect. 4, if the model plane undergoes a pure translation, the technique proposed in this
paper will not work. However, camera calibration is possible if the translation is known like the setup
in Tsai’s technique [23]. From (2), we have t = αA−1h3, where α = 1/‖A−1h1‖. The translation
between two positions i and j is then given by

t(ij) = t(i) − t(j) = A−1(α(i)h(i)
3 − α(j)h(j)

3 ) .

(Note that although both H(i) and H(j) are estimated up to their own scale factors, they can be rescaled
up to a single common scale factor using the fact that it is a pure translation.) If only the translation
direction is known, we get two constraints on A. If we know additionally the translation magnitude,
then we have another constraint on A. Full calibration is then possible from two planes.
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