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Abstract

We address the mechanism design problem of supply chain formation—the problem of ne-
gotiation mechanisms to coordinate the buying and selling of goods in multiple markets
across a supply chain. Because effective negotiation strategies can be difficult to design
for supply chains, we focus on incentive compatible auctions, in which the agents’ dom-
inant strategy is to simply report their private information truthfully. Unfortunately, with
two-sided negotiation, characteristic of supply chains, it is impossible to simultaneously
achieve perfect efficiency, budget balance, and individual rationality with incentive com-
patibility. To resolve this problem we introduce auctions that explicitly discard profitable
trades, thus giving up perfect efficiency to maintain budget balance, incentive compatibility
and individual rationality. We use a novel payment rule based on Vickrey-Clarke-Groves
payments, but adapted to our allocation rule. The first auction we present is incentive com-
patible when each agent desires only a single bundle of goods, the auction correctly knows
all agents’ bundles of interest, but the monetary valuations are private to the agents. We
introduce extensions to maintain incentive compatibility when the auction does not know
the agents’ bundles of interest. We establish a good worst case bound on efficiency when
the bundles of interest are known, which also applies in some cases when the bundles are
not known. Our auctions produce higher efficiency for a broader class of supply chains than
any other incentive compatible, individually rational, and budget-balanced auction we are
aware of.

Key words: auction, supply chain formation, mechanism design, combinatorial exchange,
incentive compatible, budget balance

Email addresses: mosheb@cs.huji.ac.il (Moshe Babaioff), wwalsh1@us.ibm.com
(William E. Walsh).

Preprint submitted to Elsevier Science 2 January 2004



1 Introduction

Supply chain formation is the problem of determining the production and exchange
relationships across a supply chain. Whereas typical research in supply chain man-
agement focuses on optimizing production and delivery in a fixed supply chain
structure, we are concerned with ad hoc establishment of supply chain relationships
in response to varying needs, costs, and resource availability. These individual re-
lationships cannot be established in isolation because a functioning supply chain
requires a complete sequence of production through the supply chain. As business
relationships become ever more flexible and dynamic, there is an increasing need to
automate this supply chain formation process. Automated supply chain formation
is being recognized as an important research challenge [1,2], and was the subject
of the 2003 Trading Agent Competition [3].

Because procurement and supply contracts in a supply chain can involve signifi-
cant production commitments and large monetary exchanges, it is important for an
agent to negotiate effectively on behalf of a business. However, strategic analysis
can be very complex when agents must negotiate contracts for outputs and multi-
ple inputs simultaneously across a supply chain. Fortunately, careful design of the
negotiation mechanism can simplify the agents’ strategic problem enormously. We
can effectively engineer away the agents’ strategic problem by designing an auc-
tion to be incentive compatible (IC), in which case an agent’s dominant strategy
is to simply report its private information truthfully. Other properties are also im-
portant in a business setting. An auction should be individually rational (IR), that
is no agent would pay more than its valuation for the goods it receives. The auc-
tion should be budget balanced (BB) (the auction does not lose money), else there
would typically be little incentive to run the auction. Additionally, it is desirable
that the auction be efficient (maximize total agent value) to ensure that all gains
from trade are realized.

To date, there has been relatively little mechanism design work that meets the needs
of automated supply chain formation. To address the problem of individual ratio-
nality, much recent effort has focused on combinatorial auctions [4] which, by al-
lowing agents to place indivisible bids for bundles of goods, ensure that agents
do not buy partial bundles of no value. Much of this work has been on one-sided
auctions. To address the two-sided negotiation necessary in a supply chain, Walsh
et al. [5] analyzed an IR and budget-balanced auction that avoids negotiation mis-
coordination by allowing combinatorial bids across the supply chain. They found
the strategic analysis challenging, and were able to derive Bayes-Nash equilibria for
only restricted network topologies [6]. In contrast, the well-known Vickrey-Clarke-
Groves (VCG) auction [7–9] (also called the Generalized Vickrey Auction [10]) is
incentive compatible and efficient, but not BB with the two-sided bidding needed in
a supply chain. Myerson and Satterthwaite showed that, in two-sided negotiation, it
is, unfortunately, impossible to simultaneously achieve perfect efficiency, BB, and
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IR from an IC mechanism [11]. In response to this impossibility, Parkes et al. [12]
explored double auction rules that minimize agents’ incentives to misreport their
values, but maintains BB and high (but not perfect) efficiency.

We exploit the fact that, despite the impossibility theorem, it is possible to attain
incentive compatibility with any two of the three desirable properties (efficiency,
individual rationality, budget balance) in an auction for supply chain formation. To
ensure IC, IR and BB, we develop auctions that produce inefficient allocations by
design. If this approach seems misguided, we note that the Myerson-Satterthwaite
theorem actually states more strongly that the three properties cannot be obtained
even in Bayes-Nash equilibrium. Thus, since efficiency loss is inevitable in sup-
ply chain formation (assuming BB and IR), we focus on simplifying the agents’
strategic problem by ensuring IC. Still, it is important that we do not ignore effi-
ciency altogether, for a highly inefficient auction would likely be unacceptable for
business negotiations. Indeed, a trivial way to get IC, IR, and BB is to perform no
allocation, which is clearly unacceptable. Babaioff and Nisan [13] presented a novel
approach to obtaining IC, BB, and IR and high efficiency in linear supply chains by
structuring auctions in terms of production markets, rather than directly as goods
exchanges. This allowed them to use a variant of McAfee’s double auction [14] to
obtain the properties.

In this paper, we extend ideas from Babaioff and Nisan’s approach to introduce
auctions that are incentive compatible, budget balanced, and individually rational
for a broader class of supply chain formation problems. Our auctions use a novel
Vickrey Trade Reduction pricing scheme, analogous to the classic VCG pricing, but
giving BB with the Trade Reduction allocation our auctions produce. We provide
good worst case bounds on efficiency when the auction knows the agents’ bundles
of interest, and in some cases when it does not. Our auctions produces higher effi-
ciency for a broader class of supply chains than any other IR, IC, and BB auction
we are aware of.

In Section 2 we describe our model of the supply chain formation problem. In Sec-
tion 3 we present the rules for the basic Trade Reduction auction. In Section 4 we
discuss the computational issues. Although computing the auction is NP-hard, we
describe an algorithm for computing the auction in polynomial time, given con-
straints on the consumer preference structure. We also present a distributed imple-
mentation of the algorithm. In Section 5 we show that, in the case when the auction
correctly knows all agents’ bundles of interest, but the monetary valuations are pri-
vate to the agents, the auction is incentive compatible, individually rational, budget
balanced, and has a good competitive ratio for allocative efficiency. In Section 6 we
introduce extensions to maintain incentive compatibility when the auction does not
know the agents’ bundles of interest. We conclude and suggest avenues for future
work in Section 7.
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2 Supply Chain Formation Problem

In this section we describe the supply chain formation problem. First we describe
our model of agent preferences, then we define allocations in a supply chain. Our
goal in the next section is then to define a rule that chooses an allocation in a way
that supports desirable economic properties. We are concerned with the one-time
problem of computing the allocation. Readers interested in managing the dynamics
of existing supply chains may refer to Kjenstad [15] for an extensive review.

2.1 Supply Chain Model

Before describing the formal details, we illustrate a supply chain with a stylized
example in a small lemonade industry, as shown in Figure 1. The figure shows in a
supply chain graph how the lemon juice and lemonade can be manufactured from
lemons and sugar by agents in the supply chain. In the figure, an oval indicates
a good in the supply chain. A box indicates a market, which is a set of agents
who desire exactly the same set of input and output goods. The arrows indicate
the input/output relationships between the agents and the goods. The goods are
traded in discrete quantities, and with each good we indicate its discretization. For
each market, the quantity of inputs needed by one agent are indicated next to the
respective arrows. We assume that an agent can provide one unit (at the appropriate
discretization) of its output good but may require multiple units of an input good.
Borrowing a term from Lehmann et al. [16], we say the agents are single minded
to identify the property that each agent has a single bundle of input and output
goods that is of interest to that agent. This can often be a reasonable assumption,
for companies typically have an established way to produce a product.
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Fig. 1. An example supply chain graph in the lemonade industry.

An agent with an output is a producer, and an agent with only inputs is a con-
sumer. For instance, a lemonade manufacturer (a producer) requires 1kg of sugar
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and 0.5 gallons of juice to produce one gallon of lemonade, and a lemonade con-
sumer wishes to buy 1 gallon of lemonade. A consumer obtains a monetary value
from acquiring its bundle of interest, and a producer incurs a monetary cost from
producing a good. The values and costs of the individual agents are indicated in a
list adjacent to each market (observe that values are sorted from highest to lowest
and costs are sorted from lowest to highest).

The formal model we describe subsumes the linear supply chain model described
by Babaioff and Nisan [13] but is subsumed by the model described by Walsh and
Wellman [2].

Formally, we have a set A of agents and a set G of goods, with agents indicated
by integers in [1, . . . , |A|] and goods indicated by integers in [1, . . . , |G|]. A bun-
dle q = (q1, . . . , q|G|) indicates the quantity qg of each good g exchanged by an
agent. Positive quantity indicates acquisition of a good (input), and negative quan-
tity indicates provision of a good (output). We restrict our attention to quantities
qg ∈ {−1,0}∪Z+. In other words, we consider agents that can require multiple
units of an input, but produce at most one unit of an output. We further restrict our
attention to single output agents that supply at most a single unit of a single good.
That is qg = −1 for at most one good g. When comparing quantities in bundles of
goods, we assert q̃ ≥ q when q̃g ≥ qg for all g, and assert q̃ > q when q̃ ≥ q and
q̃k > qk for some good k.

Agent i has a valuation function Vi that assigns a value to any bundle q, and Vi(q)∈
{−∞,Z}. Agent i obtains utility Ui(q, M) = Vi(q)−M, for exchanging bundle q
and paying M monetary units. We assume that the agents are rational and try to
maximize their utility over all possible outcomes. We refer to Vi(q) as agent i’s
value for the bundle of goods q, and we denote the vector of all agents’ valuation
functions by V = (V1, . . . ,V|A|). We interpret negative values as costs (e.g., cost
of production, or opportunity cost of providing a good). We assume the valuation
functions are normalized at Vi(0) = 0 and the value is weakly monotonic 1 in the
quantity of goods, that is Vi(q̃i)≥Vi(q) for all q̃i such that q̃i > q. When Vi(q)=−∞,
we say that the bundle q is infeasible for agent i, and when Vi(q) ∈ Z we say the
bundle is feasible for the agent.

Agents are single minded in that each agent i has a unique bundle of interest q̆i

that it tries to obtain. The composition of a bundle of interest and an agent’s valu-
ation thereof, depend on the class of the agent, as we detail below. We assume for
all agents i that Vi(q̆i) ∈ Z. For convenience, we subsequently denote Vi(q̆i) as v̆i.
We denote as v̆ the vector of agents’ values and denote as q̆ the vector of agents’
bundles of interest. The market K(i) of agent i is the set of agents with exactly the
same bundle of interest, formally defined as K(i) = { j | q̆j = q̆i}.

1 Weak monotonicity is equivalent to free disposal for agents.
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There are two classes of agents, defined by further constraints on agents’ bundles
of interest and values. A consumer i obtains non-negative value (v̆i ≥ 0) for acquir-
ing all goods in its bundle of interest (q̆i > 0), but cannot produce any good. The
consumer’s value Vi(q) for bundle q is such that:

• If q≥ q̆i, then Vi(q) = v̆i (single minded and weakly monotonic).
• Else, if qk < 0 for some good k, then Vi(q) = −∞ (a consumer cannot feasibly

produce any good).
• Otherwise Vi(q) = 0 (a consumer has zero value for any feasible bundle not con-

taining its bundle of interest).

A producer i can produce a single unit of a single output from a specific (possibly
empty) set of inputs, while incurring a cost: v̆i ≤ 0 and q̆g

i = −1 for exactly one
good g. A producer cannot feasibly produce its output without all inputs, nor can it
feasibly produce any other output. The producer’s value Vi(q) for bundle q is such
that:

• If qg = q̆g
i = −1 and q ≥ q̆i, then Vi(q) = v̆i (single minded and weakly mono-

tonic).
• Else, if qg = q̆g

i =−1 and qk < q̆k
i where q̆k

i > 0 for some good k, then Vi(q)=−∞
(a producer needs all inputs to feasibly produce its output).

• Else, if qk < 0 where q̆k
i ≥ 0 for some good k, then Vi(q) = −∞ (a producer can

feasibly produce only one good).
• Otherwise Vi(q) = 0 (q ≥ 0 and a producer has zero cost if it does not produce

any good).

We denote by CM the set of consumer markets and PM the set of producer markets.

Finally, we consider only supply chains with unique manufacturing technologies
(UMT) property, in which there is only one market that produces any good. For-
mally, this means that if two producers have the same output, then they also have
the same bundle of interest. Note that, although a good can be made in only one
way, there can be multiple producers in any market, and multiple markets that re-
quire the good as an input. As we will show, UMT is necessary to ensure budget
balance and our efficiency competitive ratio in our auction. However, the auction is
incentive compatible and individually rational without the UMT restriction.

The relationship between markets and goods can be represented as a supply chain
graph, as illustrated in Figure 1 and described above. We assume that any graph is
directed acyclic, but can have undirected cycles. The market structure defines the
supply chain topology.

Definition 1 (supply chain topology) A supply chain topology is a set of markets.
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2.2 Allocations

Given a set of agents, we want to determine the production and exchange of goods
that constructs a supply chain. An allocation q specifies how much of each good is
bought and sold by each agent. Let the allocation of good g to agent i be qg

i , with
qg

i > 0 meaning that i buys |qg
i | units of g, and qg

i < 0 meaning that i sells |qg
i | units

of g in the allocation. Allocation q is feasible if and only if each agent is feasible
and each good is in material balance, that is ∑i∈A qg

i = 0 for each good g.

Throughout this paper, we will consider only allocations that give an agent either
all or none of its bundle of interest. Since each agent has one bundle of interest, it
will be convenient to identify an allocation q by the set of agents A′ that receive
their bundle in the allocation: A′ =

⋃

i∈A|qi 6= /0 i. We refer to the agents that receive
their bundle of interest as the winning agents. The trade size Tm(A′) in market m of
allocation A′ is the number of agents in A′∩m. We say that there is trade in market
m in the allocation A′, if the trade size in market m is positive.

The value V(A′) of an allocation A′ is the sum the agent values in A′: V(A′) ≡
∑ j∈A′ v̆ j. The value of an allocation A′ excluding the value of agent i is V−i(A′)≡
∑ j∈A′, j 6=i v̆ j. In the auction below, the true values are not known, so the allocation
values are computed with respect to the values reported in the agents’ bids. When
it is necessary to specify the values explicitly, we denote the value of allocation A′

with respect to specific values v as Vv(A′). An allocation Ă is efficient (optimal) if
it is feasible and maximizes the value over all feasible allocations. The efficiency
of allocation A′ is V(A′)

V(Ă)
.

The efficient allocationĂ for the supply chain graph shown in Figure 1 has value
$7.90, and contains the agents whose costs and values are specified above the solid
line in each market. The reader can verify that all goods are in material balance and
that each agent in Ă receives its bundle of interest. For instance, each of the two
lemonade manufacturers in Ă require 1kg of sugar to produce its output, and there
are four sugar makers in Ă to provide the 2kg required in total. Similarly, there are
two lemonade consumers to buy each of the 1 gallons of lemonade produced by the
lemonade manufacturers.

3 Trade Reduction Auction

Here we present the rules for the Trade Reduction (TR) auction. The rules consist of
an allocation rule, defined in Section 3.1 and a payment rule, defined in Section 3.2.
We include some observations on the payment rule in Section 3.3.
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3.1 Trade Reduction Auction Allocation

The auction is one-shot and sealed-bid. Each agent reports a bundle of interest qi

and a value vi, either of which may not be truthful. The auction then computes an
allocation, which assigns, for each agent, either its reported bundle of interest or the
zero bundle. It also computes payments to be made by each agent. The auction is
a centralized mechanism that uses Trade Reduction rules in a manner based on an
auction introduced by Babaioff and Nisan [13], but for a more general supply chain
model. Conceptually, the auction first computes an optimal allocation, based on the
reported values, and uses this to compute a TR allocation and the agents payments.
To ensure incentive compatibility and budget balance, the auction removes some
beneficial trades from the optimal allocation.

We define the bid-optimal allocation A∗(v), as the feasible allocation that maxi-
mizes the sum of values with respect to the reported bids v (in the case that the
reported bids are the true values, the bid-optimal allocation is efficient).

Definition 2 (Trade Reduction allocation) The Trade Reduction allocation
ATR(v) is a feasible, bid-optimal allocation but constrained to have strictly fewer
winners than the bid-optimal allocation A∗(v) in each market with non-zero trade.

We say that the agents in A∗(v) but not in ATR(v) are reduced. (We explicitly in-
clude the bid valuations because it will be necessary to refer to different sets of
bid valuations for computing the payments and proving incentive compatibility.
When the actual set of bids is unambiguous or irrelevant, we simply denote the
bid-optimal and TR allocation by A∗ and ATR, respectively.)

In the definition, we implicitly assume that there is exactly one bid-optimal allo-
cation and exactly one Trade Reduction allocation that satisfy the equations. In
general, we need a rule to break ties between multiple bid-optimal and TR alloca-
tions. It can be shown that the auction is not incentive compatible if we break ties
between alternate bid-optimal allocations in favor of the one that gives the maxi-
mum bid-value TR allocation. However, we maintain IC if we break ties randomly,
independent of reported valuations. We show how to do so in a computationally
efficient way in Section 4.

If the true values shown in Figure 1 are reported to the auction, then V(A∗(v)) =
V(Ă) = $7.90 and A∗(v) contains all agents with values and costs above the solid
lines. All agents above the dashed lines are in the Trade Reduction allocation
ATR(v) and V(ATR(v)) = $4.70, giving an efficiency of 0.59. The TR rules require
that we remove at least one agent from A∗(v) for each market (all markets have
winners), hence we reduce one agent from each of the following markets: juice
consumers, lemonade manufacturers, and lemonade consumers. Since one agent is
removed from the juice consumers and lemonade manufacturers markets, we have
to remove two agents from the juice squeezer market to maintain material balance
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of the juice good. Because each juice squeezer require 2kg of lemons, but each
lemon picker provides only 1kg of lemons, we must remove four agents from the
lemon pickers market to maintain material balance of the lemon good. Similarly,
we must remove two agents from the sugar markers market to maintain material
balance of the sugar good.

An equivalent, and perhaps more illuminating way of defining the Trade Reduction
allocation is described below. We begin with an important definition.

Definition 3 (procurement set) A procurement set S{A′} in allocation A′ is a set
of agents constituting a non-empty feasible allocation that contains no other non-
empty feasible allocation.

For example, in Figure 1, the following constitutes one procurement set: the juice
consumer bidding $2.90, the juice squeezer bidding $0.25 and the two lemon pick-
ers bidding $0.50 and $0.55. Note that since a producer can produce exactly one
unit of one good, any procurement set has exactly one consumer. Clearly, any non-
empty feasible allocation can be partitioned into procurement sets. In Figure 1, the
reduced agents (indicated by bids between the solid and dashed lines) can be parti-
tioned to two procurement sets, one including the reduced juice consumer and one
including the reduced lemonade consumer.

The following lemma provides an alternate view of the Trade Reduction allocation.
As we show in Section 4.2, it also allows us to construct an efficient algorithm for
computing the TR allocation from the bid-optimal allocation.

Lemma 4 The Trade Reduction allocation ATR can be obtained from the bid-
optimal allocation A∗ by reducing a disjoint set of procurement sets as follows.
For each consumer market m with trade in A∗, reduce exactly one procurement set
containing one consumer in m. In each market, the agents reduced must have no
higher value than the agents in ATR.

Proof. The lemma directly follows from Lemma 39. Note that Lemma 39 relies on
the unique manufacturing technologies property. 2

Corollary 5 (to Lemma 4) Given A∗, the number of agents in each market in ATR

is uniquely defined and the number of agents reduced from each market is uniquely
defined.

3.2 Trade Reduction Auction Payments

Here we describe a new payment scheme to obtain incentive compatibility in our
model. Losing agents pay zero. Each winning agent i pays the Vickrey Trade Re-
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duction (VTR) value VTRi(v). We first present several definitions necessary to de-
scribe the VTR values of the agents.

We denote as v≡ (vi,v−i) the vector of values reported by all agents, where v−i is
the vector of values reported by all agents except i. Let A∗(v) be the bid-optimal
allocation with respect to v, and A∗(v−i) be the bid-optimal allocation with respect
to v−i.

The Vickrey-Clark-Groves (VCG) payment from agent i with respect to the bids v
is defined as

VCGi(v)≡ V(A∗(v−i))−V−i(A
∗(v)) (1)

Intuitively, VCGi(v) is the “harm” done by agent i to the other agents by bidding
vi. Observe that VCGi(v) ≤ vi and that VCGi(v) = 0 if i is not in a bid-optimal
allocation. Consider agent A1 in Figure 2. If it bids as shown in the figure, it is not
in the bid-optimal allocation and VCGi(v) = 0. If instead it bids $100, then A1 is
in the bid-optimal allocation and VCGA1 = 29−9 = 20. Observe that i would be in
the bid-optimal allocation if it bids any value above $20.

As mentioned above, VCG payments are not budget balanced for supply chains,
but we can extend the VCG idea to obtain BB payments in the Trade Reduction
auction. We have done this with our new Vickrey Trade Reduction payment rule.
The VTR payment rule is a normalized rule, so losing agents pay zero. Below we
define the payment from a winning agent.

Definition 6 (Vickrey Trade Reduction (VTR) payment) The Vickrey Trade Re-
duction payment from a winning agent i ∈ ATR, with respect to the bids v, is:

VTRi(v)≡ V(ATR(VCGi(v),v−i))−V−i(A
TR(v)) (2)

where ATR(VCGi(v),v−i) is the TR allocation obtained when the bid of i is replaced
by VCGi(v).

The values are computed with respect to the bids used to compute the TR alloca-
tions. If i∈ ATR(v) and tie breaking is necessary, we use the ATR(VCGi(v),v−i) and
ATR(v) allocations containing i in the VTR computation. Consider A1 in Figure 2.
If it bids as shown in the figure, it is does not win and VTRi(v) = 0. If instead it bids
$100, then A1 wins and VTRi(v) = 25− 5 = 20. In fact, if i bids any value above
$20 it would win and pay $20.

3.3 Observations on the Payment Rule

The VTR payment scheme is a generalization of the payment scheme Babaioff
and Nisan used in their supply chain formation auction [13]. Here, we refer to
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Fig. 2. Agent A1 does not win the Trade Reduction auction if it reports its true value of
$13.00. It would win and pay $20.00 if it reports any value above $20.00.

the payments in their auction as the price bounding values (PBVs). The price
bounding value PBV i for i is the value reported by its price bounding agent, that
is vPBAi . The price bounding agent PBAi(v) for winning agent i and bids v is
argmax j∈(A∗(v)\ATR(v))∩K(i) v j, that is the reduced agent with the highest bid in i’s
market. By Lemma 17 and Lemma 19, PBAi(v) is independent of i’s bid when it
wins, so we denote PBAi = PBAi(v). We use the term “price bounding agent” be-
cause i pays at least PBV i (Lemma 40) in our auction. As we show in Lemma 41,
PBV payments are budget balanced, which means our auction is BB since i pays
at least PBV i. So, in effect, the price bounding agents serve as “cutoff points” to
ensure that the payments from all agents above these points constitute BB.

Babaioff and Nisan’s auction computes the Trade Reduction allocation (in a compu-
tationally efficient, distributed fashion for linear supply chains) and requires agent
i to pay PBV i. In Figure 1, the values reported by price-bounding agents are just
below the dashed lines and circumscribed by ovals. Although PBV i payments give
incentive compatibility for linear supply chains, they do not give IC in our more
general model, as demonstrated in Figure 2. If agent A1 bids $13.00, as indicated,
it does not win because it is not in the bid-optimal allocation. A1 has an incentive to
bid any value above $20.00 because then it would win but pay only PBVA1 = $7.00.

We note that VTRi(v) = PBV i for linear supply chains, hence our auction is equiv-
alent to Babaioff and Nisan’s auction when applied to linear supply chains.

The Vickrey Trade Reduction payment of any winning agent can be calculated from
the VCG payment and the Price Bounding Value as follows. 2

Lemma 7 VTRi(v) = max{PBV i,VCGi(v)} for any agent i ∈ ATR.

Proof. By Lemma 20, the Vickrey Trade Reduction Payment for agent i∈ATR is the
critical value for i to be in the Trade Reduction allocation. That is, if i bids above
VTRi(v) then it wins the auction and if it bids below VTRi(v) it loses. Since there
can be only one critical value for i, to prove the present lemma it is sufficient to
show that max{PBV i,VCGi(v)} is also the critical value for i.

2 We thank Zuo-Jun Shen for this observation.
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If i bids below VCGi(v) it loses the auction, because by Lemma 18 it is not in the
bid-optimal allocation A∗(v), and therefore not in the Trade Reduction allocation.

If, on the other hand, i bids above VCGi(v), then no matter how high it bids, by
Lemma 17, the bid-optimal allocation is the same. Assume then that i bids above
VCGi(v). By Corollary 5, the number of reduced agents in i’s market is uniquely
defined for the bid-optimal allocation. This means that as long as agent i bids more
than PBV i, i will not be reduced. If i bids below PBV i then it will be replaced by
the price bounding agent in its market, and it will loses the auction.

We have shown that i is not in the bid-optimal allocation if it bids below VCGi(v)
but is in the bid-optimal allocation if it bids above VCGi(v). We have also shown
that, given that i is in the bid-optimal allocation, i is in the Trade Reduction allo-
cation if it bids above PBV i, but not in the TR allocation if it bids below PBV i.
Therefore, we have shown that max{PBV i,VCGi(v)} is the critical value for i to
win the auction, and the lemma is proven. 2

Note that this Lemma relies on the unique manufacturing technologies property
because its proof relies on Corollary 5, which also relies on the property.

4 Computing the Trade Reduction Auction

In this section we consider the computational aspects of the Trade Reduction auc-
tion. Computing the Trade Reduction auction requires computation of the Trade
Reduction allocation and the Vickrey Trade Reduction payment for each agent.
We show that the general problems of computing the bid-optimal and TR alloca-
tions are NP-hard. We show that given the bid-optimal allocation, we can find the
TR allocation in polynomial time, so given the VCG allocation and payments, we
can calculate the Trade Reduction allocation and payments in polynomial time. We
also show that if the number of consumer markets is bounded by a constant, we
can calculate the auction efficiently. Finally we show that the TR auction can be
implemented as a protocol on a distributed markets infrastructure. We note that
the computationally efficient algorithms rely crucially on Lemma 4, which in turn
relies on the unique manufacturing technologies property.

Before continuing, recall that, when computing the bid-optimal and Trade Reduc-
tion allocation, the auction must break ties randomly between alternate optimal
allocations, independent of reported valuations. An obvious, but very computation-
ally inefficient algorithm for this tie breaking would be to enumerate all optimal
allocations and randomly choose one. We adopt a more computationally efficient
method which slightly changes the agents’ bids in a preprocessing stage. First, we
require that all valuations be reported to the auction as integers. The auction ran-
domly maps the integers [1, . . . , |A|] to agents, one-to-one. The value 2−i is added
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to the reported value of an agent assigned to the number i. To see that this modifi-

cation to the bids gives us a unique, optimal allocation, observe that ∑|A|i=1 2−i < 1,
hence any allocation computed is optimal with respect to the bids as they are sub-
mitted. Observe also that for any two disjoint sets of positive integers N and M,
we have ∑i∈N 2−i 6= ∑ j∈M 2− j, hence exactly one allocation is bid-optimal with re-
spect to the modified bids. Similarly, this procedure obtains a unique, random TR
allocation. Note that we do not include the 2−i components in the agent payments.

4.1 Computational Complexity

To prove NP-hardness, we present a reduction transformation from the winner de-
termination problem for the Combinatorial Auction with Single-Minded agents. We
refer to this problem as CASM. In an instance of CASM there is a seller with a set G
of heterogeneous goods, one item for each good. Each buyer i has a unique bundle
of interest qi with reported value vi ≥ 0 (the value of any bundle not containing qi is
zero). The winner determination problem is the problem of assigning the goods to
the buyers such that the sum of the buyers reported values is maximized. Lehmann
at el. [16] showed that CASM is NP-hard.

Theorem 8 Computing the bid-optimal allocation in a supply chain is NP-hard.

Proof. We prove the theorem by a polynomial reduction transformation from CASM.
The seller is transformed to G producers, each producing a single item of a unique
good with zero cost. Each buyer is transformed to a consumer with bundle of inter-
est qi and reported value vi. Clearly, this reduction can be done in polynomial time.
Also, it is clear that A∗ is an optimal allocation for this supply chain if and only if
it is a solution to CASM. Thus, an algorithm for computing the optimal allocation
in supply chain can be used to solve CASM, hence our problem is at least as hard as
CASM. 2

Although we defined the Trade Reduction allocation in terms of the optimal allo-
cation, it is possible that the TR allocation could be computed without computing
the optimal allocation first. Nevertheless, we can show directly that computing the
TR allocation is NP-hard.

Theorem 9 Computing the Trade Reduction allocation in a supply chain is NP-
hard.

Proof. We prove the theorem by a polynomial reduction transformation from CASM.
The transformation is similar to the one described in Theorem 8, but it has addi-
tional fictive consumers, as well as producers that produces their inputs. Let B be
the set of buyers for an instance of CASM and let L = ∑i∈B vi + 1. Observe that L
is higher then the value of any allocation. Each buyer is transformed to a consumer
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with bundle of interest qi and value vi. For each consumer market with bundle qi,
we add another (fictive) bid with value L. For each good g ∈ G let ng be the total
number of items of good g that are demanded by the fictive agents. For each good
g we add ng +1 sellers of the good g with zero cost. Clearly, this reduction can be
done in polynomial time.

An optimal allocation for this supply chain must include all fictive agents, since all
of them can be in the bid-optimal allocation A∗ and each has a value greater than
all the real consumers together. With goods assigned to all the fictive agents, one
item of each good is left to be allocated to the real consumers. These remaining
goods should be assigned to maximize the total value of the real consumers, hence
the allocation A′ to the real consumers is a solution to the instance of CASM. How-
ever, since we are actually computing the Trade Reduction allocation ATR, and not
necessarily A∗, we show how to recover A′ from ATR in polynomial time.

From Lemma 4, ATR corresponds to A∗, except without the lowest price consumer
in A∗ in each consumer market with trade. Observe also that there can be at most
two agents in any consumer market in A∗: one fictive consumer and possibly one
real consumer. We conclude that a real consumer is in A′ if and only if a fictive
consumer in the same market is in ATR. Thus, an algorithm for computing a Trade
Reduction allocation in supply chain can be used to solve CASM, hence our problem
is at least as hard as CASM. 2

Despite these intractability results, we show in the next section that there are cases
(e.g. when the number of consumer markets is constant) in which the auction can
be calculated in time polynomial in the number of agents.

4.2 Algorithms

One approach to computing the bid-optimal and Trade Reduction allocations is
to apply advanced integer programming (IP) techniques from operations research
(e.g., by using commercial software such as CPLEX). It is straightforward to en-
code the problem of computing the bid-optimal allocation as an IP. For each agent
i we have a variable ei ∈ {0,1} which indicates whether i receives its bundle of
interest in the chosen bid-optimal allocation. The IP is then

maximize ∑
i∈A

viei

such that ∑
i∈A

qg
i ei = 0, for each good g. (3)

The second line in Eq.(3) constrains the goods to be in material balance. Agent
feasibility is ensured because agents receive either their entire bundle of interest or
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nothing at all.

Based on our first definition of the Trade Reduction allocation, it would appear
natural to use another integer program to compute the TR allocation, given the bid-
optimal allocation. Instead, we describe a polynomial-time algorithm to compute
the TR allocation ATR from the bid-optimal allocation A∗ by removing the reduced
agents as described in Lemma 4. Procedure Trade-Reduction(A∗) (Figure 3)
implements the algorithm by computing the trade size Tm(ATR) for each market m
in ATR. Procedure Producer-Market-Trade-Sizes (Figure 4) actually computes
and returns the trade sizes for the producers in reverse topological order (ordered
from the consumers). Its argument {tm}m∈CM is a configuration, which specifies,
for each consumer market m, the trade size in m. When the trade size Tm(ATR) is
computed for market m, the Tm(ATR) highest value agents are included in ATR. In
the procedures, we denote as Ig the set of markets that desire good g as an input.
Recall that we denote as q̆g

n the number of items of good g desired by each agent in
market n, so q̆g

n · tn is the total number of items of good g desired by all agents in
market n.

Theorem 10 Procedure Trade-Reduction(A∗) computes the Trade Reduction
allocation ATR from A∗ in time polynomial in the number of agents |A|.

Proof. Since the supply chain graph is acyclic, we can order the markets in a topo-
logical order. By an inductive argument on the market in reverse topological order,
the number of winners in each market producing good g equals the number of
items required by the markets consuming g. Therefore the allocation is feasible.
The procedure sets the trade size in each consumer market with trade to the maxi-
mal possible trade size (one less than the trade in the bid-optimal allocation). From
Lemma 4 we know that these trade sizes maximize efficiency under the feasibil-
ity constraint, while ensuring that at least one agent is reduced from any market
with positive trade in A∗. The procedure then maximizes efficiency by picking the
highest value agent in each market, according to the trade sizes.

The procedure runs in polynomial time in |A|, since sorting the agents in markets
(to choose the highest value agents) can be performed in time O(|A| lg |A|) and the
rest of the procedure operations can all be performed in total time O(|A|). 2

From the above theorem and Lemma 7 it is clear that if we can calculate the VCG
mechanism (allocation and payments) then from the VCG allocation and payments
we can calculate the Trade Reduction allocation and payments in time polynomial
in the number of agents.

Observation 11 The Trade Reduction mechanism can be calculated from the VCG
mechanism in time polynomial in the number of agents.
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Trade-Reduction(A∗)
FOR EACH market m, Set Tm(ATR)← 0.
FOR EACH consumer market m ∈ CM

IF Tm(A∗) > 0 THEN set Tm(ATR)← Tm(A∗)−1.
{Tm(ATR)}m∈PM← Producer-Market-Trade-Sizes({Tm(ATR)}m∈CM).
ATR← /0.
FOR EACH market m, add the Tm(ATR) highest value agents to ATR.
RETURN ATR.

Fig. 3. Procedure Trade-Reduction.

Producer-Market-Trade-Sizes({tm}m∈CM)

For each producer market m ∈ PM producing good g, in reverse
topological order

For each market n in Ig, set tm← tm + q̆g
n · tn.

RETURN {tm}m∈PM.

Fig. 4. Procedure Producer-Market-Trade-Sizes.

Still, because computing the bid-optimal allocation is NP-hard, the Trade Reduc-
tion auction remains NP-hard in general. Andersson et al. [17] show that the com-
mercial integer programming software CPLEX can be an effective method for com-
puting the allocation for a combinatorial auction specified as an integer program,
and can be faster and more expedient than special purpose algorithms. However,
for our auction we can exploit the structure of a unique manufacturing technolo-
gies supply chain to compute the bid-optimal and the Trade Reduction allocations
in polynomial time, if certain constraints hold on the structure of consumer prefer-
ences. Denote as Nmax the maximal number of consumers in any consumer market.

Theorem 12 If there are constants c,k such that Nmax
|CM| ≤ c|A|k then the Trade

Reduction auction is polynomial-time computable in |A|.

Proof. For brevity, we present only the proof concept. For any given configuration,
we can apply procedure Producer-Market-Trade-Sizes on the configuration
and calculate the size of trade in every market in a feasible allocation with this
configuration (this can be done time polynomial in |A|). Given the trade sizes, we
simply pick the highest value agents in each market, which can clearly be done
in time polynomial in |A|. Thus, for a fixed configuration, we can find the highest
value feasible allocation in time polynomial in |A|.

The number of configurations is at most Nmax
|CM|, which is polynomial in |A|

by the assumption that Nmax
|CM| ≤ c|A|k. Therefore, finding the optimal alloca-

tion can be done by enumerating all configurations and picking the highest value
feasible allocation in time polynomial in |A|. Given the bid-optimal allocation,
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we can then compute the Trade Reduction allocation in polynomial time using
the Trade-Reduction procedure, as described above. Finally, because calculating
payments requires computing a polynomial number of optimal and TR allocations,
these calculations are also polynomial-time computable in |A|. 2

Note that Nmax ≤ |A|, therefore if the number of consumer markets is bounded by
some (fixed) constant k, then Nmax

|CM| ≤ |A|k and by the theorem the algorithm is
polynomial-time computable in |A|. So we have the following corollary.

Corollary 13 For the family of supply chains with the number of consumer mar-
kets bounded by a fixed constant, the Trade Reduction auction is polynomial-time
computable in |A|.

Also note that if the maximal number of consumers in a market Nmax is bounded
by a constant k1, and there is a constant k2 such that |CM| ≤ k2log|A| (the number

consumer market is logarithmic in the number of agents) then Nmax
|CM|≤ kk2log|A|

1 ≤

kk2
1 |A|

log|k1| and the algorithm is polynomial-time computable in |A|.

For some supply chains it is quite reasonable to assume that each good is manufac-
tured from at least two units of its input goods. In this case the number of agents in
a procurement set grows exponentially with the depth of the supply chain. In such
supply chains, the maximal number of consumers in a market that can feasibly be
in an allocation is indeed significantly smaller then the total number of agents, and
we can reasonably expect the assumptions of Theorem 12 to hold.

4.3 Distributed Implementation

The Trade Reduction auction algorithm described in Theorem 12 can also be im-
plemented as a distributed protocol between markets, generalizing the protocol pre-
sented in Babaioff and Nisan [13] (for a general overview of distributed algorithmic
mechanism design, we refer the reader to Feigenbaum and Shenker [18]). Again,
for a fixed number of consumer markets for example, this protocol will run in time
polynomial in the number of agents.

Each agent communicates with a mediator representing its market. Each market
communicates with its input and output markets, and consumer markets also com-
municate with a single coordinator. The mediators and coordinator are assumed to
be obedient and run the protocol as specified (only the agents are strategic).

The protocol works as follows. Each consumer first sends its bid to its respective
mediator. When a consumer mediator receives all bids from its consumers, it sends
the number of bids in that market to the coordinator. When the coordinator receives
the numbers of bids from each consumer mediator, it enumerates all configurations,
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each specifying the trade size for each consumer market. Then, for each configu-
ration, it sends the respective trade size to each consumer mediator. Recall that we
denote the set of markets that desire good g as an input by Ig. When a mediator
receives the number of units it needs to produce for each market in Ig (a consumer
mediator treats the coordinator as demanding a virtual output from it) it performs
Market-Trade-Size-Propagate (Figure 5). This procedure sums the number of
output items demanded to determine the number of winners in the market m. It then
propagates to each input market of m the number of input units needed by m from
that input market. In the following, we denote by ϒm the set of markets that produce
input goods used by market m.

Market-Trade-Size-Propagate()

WHEN q̆g
n · tn is received from each market n in Ig, Set tm← ∑n∈Ig

q̆g
n · tn.

IF m has no input
THEN perform Market-Value-Propagate().

ELSE BEGIN

FOR EACH market n ∈ ϒm producing good k, send q̆k
m · tm to n.

WHEN a value Vn is received from each market n ∈ ϒn

Perform Market-Value-Propagate().
END

Fig. 5. Procedure Market-Trade-Size-Propagate executed by the mediator for market
m with output good g.

When the trade sizes are computed, producers with no inputs initiate
Market-Value-Propagate (Figure 6) propagates back to the coordinator the total
value of the agents that will trade. The coordinator receives all the values from the
consumer markets and sum them to find the total value of the allocation.

Market-Value-Propagate()

Set Vm← the sum of the bid values of the tm highest agents in m.
FOR EACH market n ∈ ϒm, Set Vm←Vm +Vn.
Send Vm to one arbitrary market in Ig and send 0 to all other markets in Ig.

Fig. 6. Procedure Market-Value-Propagate executed by the mediator for market m with
output good g.

The entire protocol described above is performed for each configuration, and the
coordinator chooses the configuration with the highest value. Then, to determine
the Trade Reduction allocation, the coordinator subtracts one from the optimal
trade size for each consumer market and sends these trade sizes to the consumer
mediators. The same protocol then computes the TR allocation in one round.

By the same argument as in Theorem 12 and from the above protocol we conclude
the following observation.
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Observation 14 If there are constants c,k such that Nmax
|CM| ≤ c|A|k then the auc-

tion can be implemented as a distributed protocol with running time polynomial in
|A|.

5 Auction Properties With the Known Single-Minded Model

We first consider the properties of the Trade Reduction auction for a known single-
minded model of agent utility. We say “known” because we assume that it is com-
mon knowledge that the auction correctly knows the bundle of interest of all agents,
but an agents’ monetary valuation for its bundle of interest is private and indepen-
dent of other agents’ values. The “known” assumption can be plausible in estab-
lished industries where production technologies are well known.

Under this model, we call the auction KSM-TR (Known Single-Minded Trade Re-
duction). Because the auction knows the bundles of interest, each agent only reports
its valuation vi, which may or may not be its true value v̆i, to the auction. Under the
KSM model, an auction is incentive compatible (IC) if and only if each agent has
the incentive to report its true valuation for its desired bundle.

In this section we show certain desirable economic properties of the KSM-TR auc-
tion. First, we show that the auction is incentive compatible, individually rational,
and budget balanced. Then, we show that it has a good competitive ratio for effi-
ciency. Finally, we enumerate the properties that do and do not hold if we relax the
unique manufacturing technologies constraint.

5.1 Incentive Compatibility, Individual Rationality, and Budget Balance

The main theorem we prove for the KSM-TR mechanism is:

Theorem 15 The KSM-TR auction produces a feasible allocation, and is incentive
compatible in dominant strategies, individually rational, and budget balanced.

Proof. The auction produces a feasible allocation by definition. Incentive compat-
ibility is proven in Lemma 22, individual rationality is proven in Lemma 21, and
budget balance is proven in Lemma 41. 2

Lemma 16 To prove incentive compatibility of the KSM-TR auction, we can as-
sume, without loss of generality, that there is one bid-optimal and one possible
Trade Reduction allocation for any set of bids.

Proof. To prove the lemma, we use the concept of a randomized mechanism, that
is a probability distribution over a family of deterministic mechanisms, as intro-
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duced by Nisan and Ronen [19]. Recall we can implement the KSM-TR auction by
assigning unique integers to all the agents, which in turn uniquely specifies which
bid-optimal and TR allocation will be chosen from the alternates with the same bid
value. Then every possible assignment of integers specifies a deterministic mech-
anism, and the probability distribution over integer assignments is a randomized
mechanism.

Nisan and Ronen showed that if each deterministic mechanism is incentive compat-
ible, then the randomized mechanism is incentive compatible. Thus, we need only
show that every deterministic instance of KSM-TR is incentive compatible. But
showing this is equivalent to proving incentive compatibility under the assumption
that the bid-optimal and TR allocations are unique for any given set of bids. 2

With Lemma 16, we assume in the sequel that there is a single bid-optimal alloca-
tion and single TR allocation with respect to any set of reported values.

In the following, we denote by v1 the set of reported values when i bids v1
i , that is

v1 = (v1
i ,v−i). Similarly v2 = (v2

i ,v−i).

Lemma 17 If i ∈ A∗(v1) and i ∈ A∗(v2) for some agent i, then VCGi(v1) =
VCGi(v2) and A∗(v2) = A∗(v1).

Proof. That VCGi(v1) = VCGi(v2) follows directly from the well-known fact that
VCG payments are incentive compatible when agents receive the bid-optimal allo-
cation (if VCGi(v1) 6= VCGi(v2) then i could manipulate its payment by changing
its bid, in which case VCG payments would not be incentive compatible). It follows
then that A∗(v2) = A∗(v1) because there is only one optimal allocation. 2

Denote as A∗i the optimal allocation containing i. When such an allocation exists,
we define VCGi = V(A∗(v−i))−V−i(A∗i ). (A∗i is uniquely defined by Lemma 17.)

Lemma 18 If there exists a feasible allocation containing i, agent i is in A∗(v) if
vi > VCGi and i is not in A∗(v) if vi < VCGi.

Proof. If vi > VCGi then vi > VCGi = V(A∗(v−i))−V−i(A∗i ), giving us V(A∗(v)) =
vi + V−i(A∗i ) > V(A∗(v−i)). Thus A∗i must be optimal, hence i ∈ A∗(v) when vi >
VCGi. If vi < VCGi then vi < V(A∗(v−i))−V−i(A∗i ). Thus A∗i is not optimal, hence
i /∈ A∗(v) when vi < VCGi. 2

Lemma 19 If i ∈ ATR(v1) and i ∈ ATR(v2) for some agent i, then VTRi(v1) =
VTRi(v2) and ATR(v1) = ATR(v2).

Proof. Assume, wlog, that v2
i > v1

i . By Lemma 17, VCGi = VCGi(v1) = VCGi(v2),
hence V(ATR(VCGi(v1),v−i)) = V(ATR(VCGi(v2),v−i)). It remains to show that
V−i(ATR(v2)) = V−i(ATR(v1)), to prove VTRi(v1) = VTRi(v2).
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Since i is in the TR allocation, it is also in the bid optimal allocation. So by
Lemma 18, A∗(v2) = A∗(v1), hence both TR allocations are chosen from the same
bid optimal allocation. Then, since ATR(v1) clearly satisfies all the auction con-
straints when i bids v2

i , and since ATR(v2) is the optimal TR allocation when i bids
v2

i

V(ATR(v2))≥ Vv2
(ATR(v1)) = V(ATR(v1))− v1

i + v2
i .

Subtracting v2
i from both sides, we have V−i(ATR(v2)) ≥ V−i(ATR(v1)). Now we

need to show that V−i(ATR(v2))≤ V−i(ATR(v1)).

Assume, contrary to which we wish to prove, that V−i(ATR(v2)) > V−i(ATR(v1)).
If ATR(v2) satisfies all the auction constraints when i bids v1i then since ATR(v1) is
optimal with respect to v1

V(ATR(v1))≥ Vv1
(ATR(v2)) = V(ATR(v2))− v2

i + v1
i .

Subtracting v1
i from both sides gives us V−i(ATR(v1)) ≥ V−i(ATR(v2)) which is a

contradiction. If, on the other hand, ATR(v2) does not satisfy all the auction con-
straints, then the only constraint that could be violated is that v j > v1

i , where j is the
price bounding agent in K(i)∪ATR(v2). Consider allocation A′ = (ATR(v2)\{i})∪
{ j}. A′ satisfies all the auction constraints when i bids v1i . So

V(ATR(v1))≥ Vv1
(A′) = V(ATR(v2))− v2

i + v j

> V(ATR(v2))− v2
i + v1

i .

Subtracting v1
i from both sides gives us V−i(ATR(v1))≥ V−i(ATR(v2)), contradict-

ing our assumption. Thus V−i(ATR(v2)) = V−i(ATR(v1)), giving us VTRi(v1) =
VTRi(v2). Also, since there is only one TR allocation, we have ATR(v1) = ATR(v2).
2

Denote as ATR
i the optimal TR allocation containing agent i. When such an alloca-

tion exists, we define VTRi = V(ATR(vVCGi))−V−i(ATR
i ). (VTRi is uniquely defined

by Lemma 19.)

Lemma 20 If there exists a feasible TR allocation containing i, agent i wins the
TR auction if vi > VTRi, and loses the TR auction if vi < VTRi.

Proof. First, we establish that VTRi ≥ VCGi. Assume, to the contrary, that VTRi <
VCGi, then V(ATR(vVCGi))−V−i(ATR

i ) < VCGi. Thus V(ATR(vVCGi)) < V−i(ATR
i )+

VCGi. Because ATR(vVCGi) is optimal when i bids VCGi, we have V(ATR(vVCGi))≥
V−i(ATR

i )+VCGi, which is a contradiction.

Now, we prove that if vi > VTRi then i ∈ ATR(v). By the above, vi > VTRi ≥ VCGi,
so i ∈ A∗(v) by Lemma 18. Then, since vi > VTRi = V(ATR(vVCGi))−V−i(ATR

i )
it follows that V(ATR

i ) > V(ATR(vVCGi)). Assume, contrary to which we wish to
prove, that i loses the auction, giving us V(ATR

i ) ≤ V(ATR(v)). Since vi > VCGi, i
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must also lose with bid VCGi, hence V(ATR(v)) = V(ATR(vVCGi)). It follows that
V(ATR

i )≤ V(ATR(vVCGi)), which is a contradiction.

Finally, we prove that if vi < VTRi then i /∈ATR(v). By Lemma 18, if vi < VCGi then
i /∈A∗(v) and therefore i /∈ATR(v). Now, consider the case where VCGi≤ vi < VTRi.
Assume, contrary to which we wish to prove, that i ∈ ATR(v). Then ATR(v) =
ATR

i , hence vi < VTRi = V(ATR(vVCGi))−V−i(ATR
i ), giving us vi + V−i(ATR

i ) <
V(ATR(vVCGi)). Also, since VCGi≤ vi, we have V(ATR(vVCGi))≤V(ATR(v)). There-
fore

V(ATR(v)) = vi +V−i(A
TR
i ) < V(ATR(vVCGi))≤ V(ATR(v))

which is a contradiction. 2

Lemma 21 The KSM-TR auction is individually rational.

Proof. We must prove that an agent receives non-negative utility from bidding truth-
fully. If i loses, it pays zero and has zero utility. If i wins by bidding truthfully, then
by Lemma 20, v̆i ≥ VTRi, hence its utility is v̆i−Pi = v̆i−VTRi ≥ 0 2

Lemma 22 The KSM-TR auction is incentive compatible in dominant strategies.

Proof. Consider the case in which agent i wins the auction by bidding its true value.
If i bids untruthfully and loses, then it gets zero utility, which by Lemma 21 can-
not be better than its utility with a truthful bid. If i bids untruthfully and wins the
auction, then by Lemma 19 its payment, and hence it’s utility remains the same.

Now consider the case in which i loses the auction by bidding truthfully. Its utility is
zero and v̆i≤ VTRi by Lemma 20. If i bids untruthfully and loses, its utility remains
zero. If i bids untruthfully and wins, its utility is v̆i−Pi = v̆i−VTRi ≤ 0.

In both cases, we have shown that an agent cannot improve its utility by bidding
truthfully, thus proving the lemma. 2

5.2 Efficiency Analysis

We have established that Known Single-Minded Trade Reduction is incentive com-
patible, individually rational, and budget balanced, but we also want acceptable
efficiency. In this section, we establish a good worst-case bound on the efficiency
of the auction. This bound is such that, as the minimum number of trades in any
consumer market grows in a fixed topology with the property, the Trade Reduction
allocation converges to perfect efficiency.

Definition 23 (Efficiency of an auction) The efficiency EffAUC(v̆) of an auction
AUC producing allocation AAUC in equilibrium, for agents with valuations v̆ is the
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efficiency of AAUC. If the auction can produce alternate allocations due to random-
ization, then the efficiency is the minimum over all possible allocations.

Because our auction is incentive compatible, efficiency is measured with respect to
an allocation produced by truthful bidding.

Definition 24 (Efficiency competitive ratio) An efficiency competitive ratio func-
tion of auction AUC is a function RatioAUC(v̆) such that EffAUC(v̆)≥ RatioAUC(v̆)
for any vector of valuations v̆.

Because KSM-TR generates only positive-value allocations, the efficiency is al-
ways in the range [0, 1], hence we establish a competitive ratio in this range also.
The closer the competitive ratio is to one, the more efficient the auction.

We denote by CM∗ the set of consumer markets with non zero trade size in Ă.

Theorem 25 The following function is an efficiency competitive ratio function for
the KSM-TR auction:

RatioKSM−TR(v̆) = min
m∈CM∗

Tm(Ă)−1

Tm(Ă)

if Ă 6= /0 and

RatioKSM−TR(v̆) = 1

if Ă = /0.

Proof concept. Here we present the basic intuition for the theorem. Refer to Ap-
pendix A for the full proof. Consider a simple supply chain with one consumer
market wanting a single unit of a single good from one producer market. The Trade
Reduction allocation reduces the lowest value buyer and seller, that is, the lowest
value procurement set. If the trade size in the optimal allocation is n > 0, then the
trade size in the TR allocation is n− 1. The efficiency is the lowest when all pro-
curement sets (seller-buyer pairs) have the same value, in which case the efficiency
is (n−1)/n.

More generally, in a supply chain with unique manufacturing technologies property,
any two consumers of the same market belong to the same topology of procurement
sets. That is, the same number of the same goods need to be produced for each
consumer. Again, the lowest value procurement set is reduced in each consumer
market. The consumer market m with the lowest trade size has the largest fraction
of agents reduced. If the procurement sets of m also constitute most of the value
in A∗, then the greatest value will be lost here and this reduction would dictate
the efficiency loss. So, the guaranteed efficiency is the minimal over all consumer
markets, of the ratio between the trade size in the TR allocation and the trade size
in the optimal allocation. 2
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Note that Theorem 25 gives a worst case bound which holds for any valuations
of the agents, therefore it holds for any distribution of valuations. The bound is
dependent only on the number of trades in the optimal allocation.

Recall that the efficiency of ATR for Figure 1 is 0.59. In this supply chain, there are
two trades in each consumer market in Ă, giving us RatioKSM-TR(v̆) = 1/2, which
is indeed less than the actual efficiency.

Typically, our auction achieves higher efficiency than the competitive ratio. The
efficiency can be significantly higher when there is a large difference between the
value of the agents in the auction allocation and the value of the agents reduced
(recall that the low-valued agents are reduced). For instance, consider a supply
chain with two markets: a producer market m1 with no inputs and an output desired
by consumers in market m2. If Tm2(Ă) = 2, then RatioKSM-TR(v̆) = 1/2. But if both
producers in m1 have a value of 0, c1 is the highest-value consumer, and c2 is the
second-highest-value consumer in m2, then EffKSM-TR(v̆) = v̆c1/(v̆c1 + v̆c2). Clearly
then, EffKSM-TR(v̆)→ 1 as v̆c1/v̆c2 →∞.

Nevertheless, the competitive ratio is a tight worst-case bound, in the following
sense. Given an optimal allocation, there exists a set of bids supporting the alloca-
tion that give efficiency arbitrarily close to the competitive ratio.

Theorem 26 Let Ă be the efficient allocation for agents A and some set of values.
Then for any ε > 0, there exists a vector of values v̆ for agents A with the same
optimal allocation that gives the bound

EffKSM-TR(v̆)≤ RatioKSM-TR(v̆)+ ε.

Proof. Let m̄ = argminm∈CM∗(Tm(Ă)− 1)/Tm(Ă). Intuitively we can see the theo-
rem is true when the value of the consumers in m̄ is much higher than in all other
consumer markets, making the consumers in m̄ dominate the efficiency. More for-
mally, we can construct the desired v̆ as follows.

• All consumers not in Ă have zero value.
• All producers not in Ă have a cost of 1 (any cost that is larger then the value of

the above consumers will do).
• All producers in Ă have zero value.
• For all consumers c ∈CM∗ \ m̄ we set v̆c← 1.
• For all consumers c ∈ m̄ we set v̆c← w for some value w to be defined (i.e., all

such consumers have the same value).

Note that any agent that was not in Ă, is not in the efficient allocation with the
new vector of values v̆, and any agent in Ă remains in the efficient allocation. By
Lemma 4, exactly one consumer need to be reduced from each market in CM∗

in order to satisfy all the conditions of the KSM-TR mechanism. Therefore the
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efficiency is:

EffKSM-TR(v̆) =
(T m̄(Ă)−1)w+∑m∈CM∗\ m̄(Tm(Ă)−1)

T m̄(Ă)w+∑m∈CM∗\ m̄Tm(Ă)

Hence,

lim
w→∞

EffKSM-TR(v̆) =
T m̄(Ă)−1

T m̄(Ă)
= RatioKSM-TR(v̆)

The theorem follows immediately. 2

The Myseron-Satterthwaite impossibility theorem [11] (discussed in Section 1)
holds, in particular, for the case of a single producer with no inputs wishing to
sell one good to a single consumer. In this case, the impossibility theorem implies
that no trade can occur if we want budget balance, individual rationality, and in-
centive compatibility. With this in mind, and using reasoning similar to that in the
proof of Theorem 26, we can conclude that, when any consumer market has only
one consumer in the efficient allocation, no auction can have better than a zero ef-
ficiency competitive ratio. Thus, KSM-TR gives the best possible competitive ratio
in this case.

5.3 Economic Properties without the Unique Manufacturing Technologies Con-
straint

The Trade Reduction auction allocation and payments rules can be applied even
when the unique manufacturing technologies property does not hold. However, the
alternate definition of the auction allocation described in Lemma 4 requires the
unique manufacturing technologies (UMT) property. Additionally, the character-
ization of the VTR payments in Lemma 7 does not hold when the UMT prop-
erty does not hold. Figure 7 shows an example for which this is the case. For any
agent winning i in market SM, PBV i = −$13.00 and VCGi(v) = −$16.00, but
VTRi =−$4.00 6=−$13.00 = max{PBV i,VCGi(v)}.
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Fig. 7. A supply chain for which VTRi(v) 6= max{PBV i,VCGi(v)} (i.e., Lemma 7 does not
hold because the unique manufacturing technologies property does not hold).
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We proved NP-hardness for computing the auction for supply chains with the UMT
property. The auction is then necessarily NP-hard when the UMT property does
not hold. Unfortunately, because Lemma 4 (and hence Corollary 5) depends on the
UMT property, the centralized and decentralized polynomial (given constraints on
the consumers) algorithms cannot be used for non-UMT supply chains.

The auction is incentive compatible and individually rational for non-UMT supply
chains because the proofs do not depend on the UMT property. However, the Trade
Reduction auction is not budget balanced if the UMT property does not hold, as
shown in Figure 8 (a variation of Figure 7). There, VTR = PBV for all agents, and
it is easy to see that the total payment is 34−3 ·13 < 0.

Observation 27 The Trade Reduction auction is incentive compatible and individ-
ually rational, but not necessarily budget balanced, if the unique manufacturing
technologies property does not hold.

It is possible to regain budget balance by adding an explicit budget balance con-
straint to the TR auction, but this at the expense of incentive compatibility.
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Fig. 8. A supply chain without the unique manufacturing technologies property and for
which Trade Reduction auction is not budget balanced.

The competitive ratio for Theorem 25 does not hold when the UMT property does
not hold. Consider a topology with two markets that supply the same good g. Mar-
ket 1 has one agent that can produce g with a low cost L from some zero cost good
k, and Market 2 has two agents that can each produce g with a high cost H. There
are three agents, each with value H + 1 in a consumer market that desire g. In the
efficient allocation, all three items will be traded and the value of the efficient al-
location is 3∗ (H +1)− (L+2∗H) = (H−L+3). In the TR allocation one agent
in each market will be reduced and the allocation value is H + 1−H = 1. The ef-
ficiency is then 1/(H−L + 3), which can be arbitrarily close to zero as H grows.
This violates the efficiency ratio of 2/3 from the theorem for this non-UMT supply
chain.
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6 Auctions for the Unknown Single-Minded Model

In many situations it may not be reasonable to assume that an auction knows the
bundle of interest of the agents. Now we consider the case where both an agent’s
bundle of interest and monetary valuation are private and independent of other
agents. With this model, which we call the Unknown Single-Minded (USM) model,
the auctions must elicit the bundle of interest information from the agents. An auc-
tion is incentive compatible in dominant strategies if and only if each agent has
the incentive to report its bundle of interest, and its valuation thereof, truthfully,
regardless of what the other agents report. For the USM model, we sometimes need
to use a weaker solution concept. An auction is ex post Nash incentive compatible
if and only if each agent has the incentive to report its bundle of interest, and its
valuation thereof, truthfully, given that all other agents also do so (independent of
the distribution of the values of the other agents).

6.1 USM-TR Auction Mechanisms

Consider the Trade Reduction auction under the USM model, in which each agent
i reports a value vi and bundle of interest qi, either of which may not be true. Un-
fortunately, the auction is not generally incentive compatible because, due to weak
monotonicity of preferences, an agent may be able to gain by (untruthfully) report-
ing a bundle that contains its bundle of interest. For instance, consider the case in
which we have some consumer a with q̆g

a = 1 for good g only, and we have another
consumer b with the same bundle of interest except that q̆k

b = 1 for some good k
such that q̆k

a = 0. Assume that a is the only agent in its true market. If a bids truth-
fully, it gets reduced if it is in the optimal allocation, hence gets zero utility. Assume
further that v̆a > v̆b. Then if b is winning in its own market, a would win by report-
ing the bundle qa = q̆b with value Va(q̆b) to the auction. Since Va(q̆a) = Va(q̆b),
agent a would obtain a higher utility by misreporting its bundle of interest than by
reporting truthfully.

Since agents cannot obtain positive value by bidding untruthfully for smaller bun-
dles, it appears that agents’ incentive to untruthfully bid for larger bundles is the
root cause of lack of incentive compatibility for the TR auction under the USM
model. We formalize a variant of this notion by introducing a new class of auc-
tions based on the Trade Reduction auction. In the next sections we present specific
auctions from this class that remove the incentive for agents to untruthfully bid for
larger bundles, giving incentive compatibility.

A USM-TR auction accepts bids from all agents, then applies a publicly known
conversion function F to the bundles reported in the bids, to get a converted bundle
for each agent. The auction then applies the Trade Reduction auction rules on the
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converted bundles with the submitted values. The i’s output of F is the converted
bundle for agent i and is denoted by Fi(qi,q−i). The first argument qi is the bundle
reported by i and the second argument q−i is the vector of bundles reported by all
agents other than i. Because we do not want F to discriminate between agents, we
require that Fi(q,q−i) = Fj(q,q− j) when q−i equals q− j as sets of bundles (without
considering the order of the bundles). For any agent i and for any q−i, F must also
satisfy the following conditions for any bundle qi:

(1) qi ≤ Fi(qi,q−i).
(2) The original and converted bundles have the same output: for any good g,

Fi(qi,q−i)
g =−1 if and only if qg

i =−1.

Note that the above conditions allow a function that converts to bundles with a null
good ḡ that is not produced by any producer. This allows us to effectively remove
the bid because an agent can never win a bundle containing ḡ. We use this notion
in the next two sections.

Also note that any agent i has the same valuations for its desired bundle and for
the converted bundle of its desired bundle, that is Vi(q̆i) = Vi(Fi(q̆i,q−i)). Since the
Trade Reduction auction is individually rational, it follows that a USM-TR auction
is individually rational.

An agent has no incentive to misreport its output good, that is, it has no incentive
to report an output not in its true bundle or interest or to not report an output that is
in its true bundle of interest.

Lemma 28 In a USM-TR auction, for any q−i, and any reported values v, an agent
receives non-positive utility by misreporting its output good.

Proof. Recall that a consumer cannot feasibly produce any goods, a producer cannot
feasibly produce any good other than other than its true output, and infeasibility
results in negative utility, regardless of the payment. Thus, since F does not change
the output reported by any agent, no agent will have positive utility if it reports an
output that is not its true output. It remains to prove that no producer has positive
utility if it misrepresents itself as a consumer (by reporting no output). This is true
since a producer has non positive value for obtaining any goods, and a USM-TR
auction will not give it a positive payment unless it provides an output good (since
this is true for to Trade Reduction auction applied on the converted bids). Thus, any
agent receives non-positive utility by misreporting its output good. 2

With the above lemma, we can assume that consumers will not misrepresent them-
selves as producers, and producers will not misrepresent themselves as consumers
or as having any output good other than specified in their bundles of interest.

An agent has an incentive to report only bundles that convert to a bundle that con-
tains its bundle of interest.
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Lemma 29 In a USM-TR auction, for any agent i, any q−i and any reported values
v, if i does not report qi such that Fi(qi,q−i)≥ q̆i then i receives non-positive utility.

Proof. First we consider consumers. By Lemma 28 we can assume that a consumer
bids for a consumer’s bundle, and the USM-TR rules specify that the bundle re-
mains a consumer’s bundle after applying the conversion function. By definition,
consumer i receives positive value only for bundles q such that q≥ q̆i, and the Trade
Reduction auction never gives a consumer positive payment, hence the lemma holds
for consumers.

Now, consider a producer. If it is not the case that Fi(qi,q−i)≥ q̆i, then it reports out-
puts it cannot produce, or it does not report all of the input units it needs to produce
its true output. In the former case, it receives non-positive utility by Lemma 28,
and in the latter case, it cannot be feasible, hence it receives non-positive utility, no
mater how high is the payment it receives. Thus the lemma holds for producers. 2

Now we can show that an agent has no incentive to misreport its value.

Lemma 30 In a USM-TR auction, for any agent i, any q−i, any v−i, and any re-
ported bundle qi with the same output as q̆i such that q̆i ≤ Fi(qi,q−i), i cannot
improve its utility by misreporting its value.

Proof. If qi has the properties required by the lemma, we have Vi(q̆i) =Vi(Fi(qi,q−i)).
Thus, once qi is fixed, the incentive compatibility in dominant strategies of the
Trade Reduction auction implies that i’s best strategy is to report its value truth-
fully, regardless of q−i and v−i. 2

With this and the preceding lemmas, we need only care about misrepresentations
that result in a agent receiving a bundle that contains the agent’s bundle of interest
and has the same output. We now present the main theorems of this section.

Theorem 31 A USM-TR auction is incentive compatible in dominant strategies if
and only if, for any agent i, any q−i and any v−i, i has no incentive to report any
bundle qi with the same output as q̆i, such that qi 6= q̆i and q̆i ≤ Fi(qi,q−i).

Proof. Case if: Since q̆i ≤ Fi(q̆i,q−i) and since F does not change the reported
output, we have Vi(q̆i) = Vi(Fi(q̆i,q−i)). Thus, since the Trade Reduction auction
is individually rational, i receives non-negative utility from reporting its bundle of
interest and value truthfully.

By Lemma 29, i has non-positive utility if it is not the case that q̆i ≤ Fi(qi,q−i).
So i can obtain positive utility only if q̆i ≤ Fi(qi,q−i). By Lemma 28, i has non-
positive utility only if it reports its output truthfully. Hence, by Lemma 30, i would
report its value truthfully. Then, the auction is incentive compatible in dominant
strategies if any agent i has no incentive to report qi 6= q̆i with its true output, such
that q̆i ≤ Fi(qi,q−i).
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Case only if: With Lemmas 28–30, the misrepresentation stated in this Theorem is
the only possible way an agent could improve its utility. Thus the “only if” case is
true by definition of incentive compatibility. 2

Theorem 32 A USM-TR auction is ex post Nash incentive compatible if and only
if, for any agent i, any q̆, and any v̆, i has no incentive to report any bundle qi with
the same output as q̆i, such that qi 6= q̆i and q̆i ≤ Fi(qi,q−i), when all other agents
report truthfully.

Proof. The proof is similar to the proof of Theorem 31. 2

6.2 Ex Post Nash Incentive Compatibility by Removing Bids

Consider a particular USM-TR auction we call the USM-TR-RB (for USM-TR
Remove Bigger) auction, with the conversion function F defined as follows:

(1) For any producer i we have Fi(qi,q−i) = qi.
(2) For any consumer i, if there exists an agent j such that qi > q j, then Fi(qi,q−i) =

qi∪ ḡ (the bid is removed), otherwise Fi(qi,q−i) = qi.

At first glance it might appear that, because consumer bundle qi is removed when
qi > q j for another consumer j, the auction satisfies Theorem 32 for consumers.
However, if j reports qi instead of q j, and there is no other reported bundle qk such
that qi > qk, then no qi bundles get removed. We can guarantee that all such qi bids
get removed if there exists a reported bundle qk other than q j such that qi > qk. If
this holds, then the auction satisfies Theorem 32.

Theorem 33 The USM-TR-RB auction is ex post Nash incentive compatible, if,
for any consumer j, if there is a consumer i such that q̆i > q̆ j then there exists a
consumer k such that q̆i > q̆k.

Proof. We show that the conditions of Theorem 32 hold for all agents. The auction
does not change the producers’ reported bundles. If a producer reports its bundle of
interest untruthfully, but with the same output, while all other agents report truth-
fully, the unique manufacturing technologies property ensures that the producer
will be the only agent in its market and will lose the auction. Hence, Theorem 32
implies ex post Nash incentive compatibility for producers.

Now, consider consumer j as in the theorem, and assume that all other agents bid
truthfully but j bids such that q j > q̆ j. If there is no consumer i such that q j = q̆i,
then j will be the only agent in its reported market and will lose the auction. If, on
the other hand, there is such a consumer i, and also a consumer k such that q̆i > q̆k,
then the bid of j (and also i) will be removed. In either case Theorem 32 implies ex
post Nash incentive compatibility for consumers and the theorem is proven. 2

30



Note that the condition of the theorem above always holds if there are at least two
agents in each market. Also note that a consumer would be forced out of the auction
if another consumer has a strictly smaller bundle of interest. This could happen even
if the forced-out consumer has a very high value, potentially causing the efficiency
to be very low. In fact, the efficiency can be arbitrarily close to zero, hence, in
general, we can give no positive competitive ratio for efficiency. However, if there
are no consumers i and j such that q̆i > q̆ j, then Theorem 33 holds and there is a
good competitive ratio for efficiency.

Observation 34 If there are no consumers i and j such that q̆i > q̆ j, then the USM-
TR-RB auction is ex post Nash incentive compatible and the efficiency competitive
ratio from Theorem 25 holds for the USM-TR-RB auction.

6.3 Dominant Strategies Incentive Compatibility by Merging Markets

We can ensure incentive compatibility in dominant strategies by merging markets,
rather than removing bids. The USM-TR-Merge auction is a USM-TR auction with
a conversion function F that sets the converted bundle for agent i to have the max-
imum number of inputs of any reported bundle with the same output as reported
by i. Formally, for agent i, each good g such that qg

i > 0, and with Oi being the
set of agents with the same output as i, Fi(qi,q−i) = max j∈Oi qg

j . Observe that all
producers with the same reported output are merged into a single market and all
consumers are merged into a single market.

Theorem 35 The USM-TR-Merge auction is incentive compatible in dominant
strategies.

Proof. We show that for any consumer i and any bids from the other agents, i cannot
improve its utility by reporting a bundle qi 6= q̆i such that q̆i ≤ Fi(qi,q−i). This will
establish the conditions of Theorem 31 for consumers. A similar argument holds
for producers with the same output, proving the theorem.

For any such bundle qi from i, the partition of agents into markets is the same as if
i bid truthfully. For any such bundle giving Fi(q̆i,q−i) = Fi(qi,q−i) the converted
bundles for all agents will be exactly the same as if i bid truthfully, hence i cannot
improve its utility by reporting qi instead of q̆i in this case.

For any bundle qi giving Fi(q̆i,q−i) < Fi(qi,q−i) the partition of the agents into
markets is the same and the bundles for all producer markets are the same as if i bid
truthfully. However, the market containing all the consumers requires more inputs.
The value to i for winning is the same as if it bid truthfully, but we will show that
its payment can only increase, which means the utility of i cannot increase. By
Lemma 20, if i wins, its payment is the minimal bid value necessary to be in the
Trade Reduction allocation. Since Fi(q̆i,q−i) < Fi(qi,q−i), more inputs are needed
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for each consumer when i bids qi. Since the additional inputs incur additional non-
negative cost for each consumer, and the ordering of the consumers in their market
(by reported value) does not change, the minimal value for i to win is at least as
high with report qi as with q̆i. So we conclude that its payment is at least as high
with report qi as with q̆i. 2

Recall that, by the unique manufacturing technologies property assumption, at most
one market can produce any good. Thus, since producers bid truthfully in USM-TR-
Merge, no markets of producers will actually be merged. Still, although no producer
markets are actually merged, the merging rule is still necessary to ensure incentive
compatibility in dominant strategies for the producers.

In general, it is ambiguous whether the USM-TR-Merge auction would give higher
or lower efficiency than the Trade Reduction auction for agents with privately
known bundles and values, with agents reporting truthfully. If all true consumer
markets contain only one consumer, then there would be no trade without merg-
ing, hence merging could not make the allocation worse and might improve it. But
if consumer markets contain multiple consumers, then merging markets could in-
crease the costs of an allocation, giving it a lower value than without merging. In
fact, efficiency could be arbitrarily close to zero, hence we can establish no positive
competitive ratio for efficiency.

With an additional assumption on the consumers’ bundle of interest, we can avoid
merging consumers markets and ensure high efficiency. We say that the supply
chain has the k-Input Consumers property, if for some fixed integer k (publicly
known), each consumer desires exactly k units of all goods in total. That is, for any
consumer i, ∑g∈G q̆g

i = k. If for some fixed k, the k-input consumers property holds,
we can gain incentive compatibility without merging any consumer markets. In the
USM-TR-Merge-kIC (USM-TR-Merge k-Input Consumers) auction, Fi is defined
for producers as in USM-TR-Merge. No consumer markets are merges, but the
auction rejects all consumer bids for other than k units in total. Formally, for each
consumer i, if ∑g q̆g

i = k then Fi(qi,q−i) = q̆i, otherwise Fi(qi,q−i) = q̆i ∪ ḡ (the
bid is removed). With the k-input consumers property, no consumer can feasibly
misrepresent itself as any other consumer.

Observation 36 When the k-Input Consumers property holds, the USM-TR-Merge-
kIC auction is incentive compatible in dominant strategies.

Proof. We show that the conditions of Theorem 31 hold. The conditions hold for
producers by the same argument as in the proof of Theorem 35. The conditions
hold for consumers since any agent that misreports its bundle of interest is removed,
and never improves its utility. Thus the USM-TR-Merge-kIC auction is incentive
compatible in dominant strategies. 2
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Since no merging is actually performed, and no agent is removed when the agents
bid truthfully, so our competitive ratio bound holds for the USM-TR-Merge-kIC
auction.

Observation 37 When the k-Input Consumers property holds, the efficiency com-
petitive ratio from Theorem 25 holds for the USM-TR-Merge-kIC auction.

7 Discussion and Future Work

We have presented auctions for supply chain formation that are incentive compat-
ible, individually rational, and budget balanced. We are not aware of any other
auctions with these properties and with comparably high efficiency for as broad a
class of supply chain topologies we consider. Nevertheless, we believe there may
be further opportunities for improving efficiency of the Trade Reduction auction
while maintaining the properties. Our current approach relies on the existence of
multiple agents with the same bundles of interest to obtain high efficiency. We hope
to find methods for lessening the dependence. It is also our hope that further study
will provide insights into obtaining incentive compatibility and budget balance with
higher efficiency in the unknown single minded model.

We are also interested in developing auctions for a broader class of agent utility
functions, namely without the single minded restriction. For instance, OR prefer-
ences allow an agent to specify that it would accept one or more bundles specified
in a set of bundles, with a different value for each bundle, and it values the set of
bundles it receives as the sum of the values of the bundles. XOR preferences al-
low an agent to specify that it wants exactly one bundle from a specified set, with
a different value for each bundle, and it values the set of bundles as the maximal
value of any bundle it receives. These extensions would allow agents (companies)
to express, for instance, different values/costs for different quantities and alternate
production technologies. Consider the following obvious variant of our auction to
allow OR or XOR bids. We change the auction to allow agents to place OR or XOR
bids, and include the OR and XOR constraints in the auction. We also change the
VTRi payments so that i’s payment does not depend on its own bids. With these
changes, an agent can manipulate the allocation in its favor by changing one of its
bids, thus violating incentive compatibility. Consider the case in Figure 2 where
the true preferences of A1 contain XOR components $13 in market CM1 and $35
in market CM3. If A1 bids truthfully, it will win none of its bids. If instead, A1 bids
less than $28 in the CM3 market, it will win one unit of the good in market CM1 and
pay less than $13, giving it a positive utility. We get the same phenomenon if the
bid is OR instead or XOR. In either case, the auction is not incentive compatible.

Future work should include more realistic features of supply chains into our basic
model, including multiple unit production, time-based preferences (e.g., deadlines
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and production lead time) and non-commodity multi attribute goods. We expect to
be faced with interesting mechanism design challenges in adapting the auction to
an extended model while maintaining desirable economic properties.

In a supply chain, agents may not wish to reveal their full valuations outright in the
single-shot auction we developed. Indeed, if agents are not single minded, it could
be infeasible for agents to communicate their entire preferences. To address this
problem, iterative combinatorial auctions have been studied by others [20] [21].
Extending these results to a supply chain model might increase the viability of
auctions for real-world supply chains [22].
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A Proofs

We prove Theorem 25 in this appendix. Before doing so, we present a number of
definitions and lemmas necessary for the proof.

We denote by S{A′}(m) the number of agents in market m in the procurement set
S{A′} and denote by Markets(S{A′}) the set of markets m∈M such that S{A′}(m) 6=
0. We denote by V (S{A′}) the sum of valuations of all agents in procurement set
S{A′}, so V (S{A′}) = ∑i∈S{A′} vi.
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Definition 38 (procurement set topology) Two procurement sets S{A′}1, S{A′}2

of the allocation A′ are of the same procurement set topology S, if for every market
m, S{A′}1(m) = S{A′}2(m). In this case we write S{A′}1,S{A′}2 ∈ S. We say that
procurement set topology S is in the allocation A′ if there exist a procurement set
S{A′} of the topology S in A′. We denote as Ŝ(A′) the set of all procurement set
topologies S that are in A′.

We denote as ŜT the set of all procurement set topologies that are possible with
supply chain topology T .

We note that procurement sets topologies are independent of the actual allocation,
given the topology of the supply chain. For a fixed supply chain topology, the set of
procurement set topologies that are possible in that supply chain topology is fixed.

For any procurement set topology S∈ ŜT, we denote as S(m) the number of winners
in market m in any procurement set of topology S. S(m) is well defined. Since a
procurement set topology is minimal, there is exactly one consumer market m for
which S(m) > 0. For that market S(m) = 1, and we call m the consumer market of
the procurement set topology S.

For any procurement set topology S ∈ ŜT, let N∗(S) be the maximal number of
disjoint procurement sets with the same topology S in the optimal allocation Ă. For
any procurement set topology S ∈ Ŝ(Ă), we have N∗(S) > 0, and for any topology
S /∈ Ŝ(Ă) we have N∗(S) = 0. Similarly, let NT R(S) be the maximal number of dis-
joint procurement sets with the same topology S in the Trade Reduction allocation.

For any market m we define Tm(Ă) to be the number of winning agents (trade size)
in market m in the efficient allocationĂ, and Rm(ATR) to be the number of reduced
agents in market m (winning agents in Ă that are losers in the Trade Reduction
allocation in market m). The size of trade in market m in the Trade Reduction
allocation is therefore Tm(ATR) = Tm(Ă)−Rm(ATR).

We denote as CM∗ the set of consumer markets with non zero trade size in the
efficient allocation.

Lemma 39 Let v̆ be any vector of agent values. Let Ŝ(Ă) be the set of procurement
set topologies in the efficient allocation Ă for v̆. Then:

(1) For any consumer market m ∈ CM∗, there is only one procurement set topol-
ogy in Ŝ(Ă) for which m is the consumer market. So we can mark the consumer
markets by mi and the procurement set topologies by Si for i = 1, . . . , |CM∗|.

(2) For each procurement set topology Si, N∗(Si) = NTR(Si)+1.
(3) For each procurement set topology Si and its consumer market mi, N∗(Si) =

Tmi(Ă) and NTR(Si) = Tmi(A
TR) = Tmi(Ă)−1.

(4) For each market m, the trade sizes in market m in the optimal and TR alloca-
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tions are:

Tm(Ă) =
|CM∗|

∑
i=1

Si(m)Tmi(Ă) and Tm(ATR) =
|CM∗|

∑
i=1

Si(m)(Tmi(Ă)−1)

(5) The allocations Ă and ATR can be partitioned to procurement sets in the fol-
lowing way.

Ă =

|CM∗|
⋃

i=1

N∗(Si)
⋃

j=1

Si
j and ATR =

|CM∗|
⋃

i=1

N∗(Si)−1
⋃

j=1

Si
j

where Si
j is the j procurement set of topology Si,

⋃|CM∗|
i=1 Si

N∗(Si)
are the reduced

agents and V (Si
N∗(Si)

)≤V (Si
j) for all j = 1, . . . ,N∗(Si).

Proof.

Proof of (1). The unique manufacturing technologies property of the supply chain
causes that there is only one procurement set topology that has an agent in market
m as we show below. The proof is by induction on the markets in reverse topo-
logical order. If a procurement set topology has one agent in consumer market m,
it uniquely defines the number of goods that are needed to satisfy this agent, and
since a single market produces each good, it uniquely sets the number of winners
in each of those markets. This can be continued till the number of agents in each
market is uniquely specified, hence there is only one procurement set topology for
which m is the consumer market. Hence we have proven (1).

Proof of (2). Let S ∈ Ŝ(Ă) be the unique procurement set topology of any consumer
market m ∈ CM∗. We now show that N∗(S) = NTR(S) + 1. From the above we
conclude that in order to reduce one agent in market m and maintain feasibility, a
procurement set of topology S must be reduced in the Trade Reduction allocation,
therefore N∗(S)≥ NTR(S)+1.

It remains to prove that N∗(S)≤ NTR(S)+1. Assume that this is not true, then for
some S ∈ Ŝ(Ă), N∗(S) > NTR(S)+ 1, or equivalently N∗(S) ≥ NTR(S)+ 2. This
means that at least two procurement sets of the same topology S are reduced. Below
we show that for any procurement set S of topology S ∈ Ŝ(Ă), we have V (S) > 0.
Since V (S) > 0 for any such procurement set S, we can add one of the reduced
procurement sets of topology S and increase the value of the allocation while en-
suring that every market with trade has at least one reduced agent. This is true since
we still have one procurement set of topology S reduced and both procurement
sets share the same set of markets. Thus, we can add one of the reduced procure-
ment sets while maintaining the constraints on a TR allocation, contradicting the re-
quirement that KSM-TR maximizes the allocation value, subject to the constraints.
Therefore the assumption is not true, and we have proven that N∗(S)≤ NTR(S)+1
and therefore N∗(S) = NTR(S)+1 and we have proven (2).
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We now show that for any procurement set S of topology S∈ Ŝ(Ă), we have V (S) >
0 from the point of view of the KSM-TR auction. To see this, assume to the contrary
that V (S) < 0. Then, by removing this procurement set we increase the efficient
allocation value, which is a contradiction. The auction never observes V (S) = 0
because it adds the 2−i values to the integral bids (as described in Section 4), hence
no subset of agents can have value exactly zero.

Proof of (3). Any procurement set topology S contains a single agent in its con-
sumer market m, and by feasibility of the allocation, all inputs to each of the con-
sumers must be manufactured, therefore N∗(S) = Tm(Ă) and NT R(S) = Tm(ATR).
Since we have shown that N∗(S) = NTR(S)+1, then NT R(S) = N∗(S)−1 = Tm(Ă)−
1 = Tm(ATR) and we have proven (3).

Proof of (4). The trade size Tm(Ă) for each market m is as stated in the lemma from
the following observation. Feasibility of the allocation Ă dictates that if the trade
size in each consumer market mi is Tmi(Ă), then for each market m a set of agents
of size Si(m)Tmi(Ă) must be in the allocation (and these sets must be disjoint since
each producer manufacturers a single item of one good). The trade size in market m
is the sum of these quantities over all consumer markets. A similar argument works
for the TR trade sizes. We have proven (4).

Proof of (5). From all the above we conclude that

Ă =

|CM∗|
⋃

i=1

N∗(Si)
⋃

j=1

Si
j and ATR =

|CM∗|
⋃

i=1

N∗(Si)−1
⋃

j=1

Si
j

where Si
j is the j procurement set of topology Si.

⋃|CM∗|
i=1 Si

N∗(Si)
are the reduced

agents and V (Si
N∗(Si)

) ≤ V (Si
j) for all j = 1, . . . ,N∗(Si). This is since the reduced

agents are the lowest value agents in each market, so any reduced procurement set
has a lower value (as sum of the agents value) then any procurement set of the same
topology which is in the optimal allocation. We have seen that one procurement set
of each consumer market must be reduced, and therefore all the reduced agents can
be partitioned to one procurement set of each consumer market. We have proven
(5). 2

Lemma 40 For any winning agent i, VTRi ≥ PBV i.

Proof. Assume, to the contrary, that VTRi < PBV i. If i bids any value vi such that
VTRi < vi, then i wins the auction by Lemma 20. In particular, i wins if it bids
VTRi < vi < PBV i. But by the definition of PBVi, vi ≥ PBV i, which is a contradic-
tion. 2

Lemma 41 Let v̆ be any vector of agent values. The KSM-TR allocation for v̆ with
KSM-TR payments is budget balanced.
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Proof. We denote by V (Si
j) the sum of valuations of all agents in procurement set

Si
j, and by P(Si

j) the sum of payments from all those agents. We denote by Pay(ATR)
the sum of payments of all agents in the Trade Reduction allocation.

We must show that Pay(ATR) ≥ 0 to prove that ATR with KSM-TR payments is
budget-balanced. By Lemma 39 the Trade Reduction allocation is

ATR =

|CM∗|
⋃

i=1

N∗(Si)−1
⋃

j=1

Si
j

therefore Pay(ATR)= ∑|CM∗|
i=1 ∑N∗(Si)−1

j=1 P(Si
j). So it is sufficient to show that P(Si

j)≥

0 for i = 1, . . . , |CM∗| and j = 1, . . . ,N∗(Si)−1, to prove the lemma.

We can build a one-to-one mapping of agents from procurement set Si
j to agents

from procurement set Si
N∗(Si)

, since both procurement sets are of the same topology
and have the same number of agents in each market.

Since Si
N∗(Si)

is in the efficient allocation, it must be that V (Si
N∗(Si)

) ≥ 0, else it
could be removed from the efficient allocation to get a better allocation, which is a
contradiction.

By Lemma 40 the payment Pk from each agent k in Si
j is at least as high as the

PBVk. This agent has the highest value of all reduced agents in k’s market. In par-
ticular PBVk is higher then the valuation of the agent that agent k is mapped to in
Si

N∗(Si)
. Hence, by summing over all agents in the procurement set, we conclude

that P(Si
j)≥ ∑k∈Si

j
PBVk ≥V (Si

N∗(Si)
)≥ 0, which is what we wanted to prove. 2

We need some additional definitions to carry on with our proofs.

Definition 42 (allocation partition) An allocation partition PA′ of a feasible allo-
cation A′ is a partition PA′

1 ,PA′
2 , . . . ,PA′

k of the agents in A′. The size of the partition
is k. For any set PA′

i , the value, V (PA′
i ), of the set is ∑i∈PA′

i
v̆i

We call an allocation AFTR a feasible reduction allocation if it satisfies all con-
straints for a Trade Reduction allocation, except that it possibly does not maximize
value.

Definition 43 (good partition pair) Given vector of agent values v̆, with efficient
allocation Ă and a feasible reduction allocation AFTR, we say that the allocations
have a good partition pair P∗,Ptr if there exists a partition P∗ for the efficient
allocation Ă of size k, and a partition Ptr for a feasible reduction allocation AFTR

of size k, such that for any i = 1, . . . ,k:
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• V (P∗i )≥V (Ptr
i )≥ 0.

•
V (Ptr

i )
V (P∗i ) ≥minS∈Ŝ(Ă)

NT R(S)
N∗(S) .

For valuations with a good partition pair we can bound the efficiency of KSM-TR
in the following way:

Lemma 44 Given vector of agent values v̆, with non-empty efficient allocation Ă
which has a good partition pair P∗,Ptr, we have:

Eff KSM−TR(v̆) =
V (ATR)

V (Ă)
≥ min

S∈Ŝ(Ă)

NT R(S)

N∗(S)

Proof. Let the good partition pair P∗,Ptr have size k. Since P∗ is a partition of the
efficient allocation, V (Ă) = ∑k

i=1 V (P∗i ), and since Ptr is a partition of a feasible
reduction allocation, V (ATR)≥V (AFTR) = ∑k

i=1 V (Ptr
i ). Therefore

Eff KSM−TR(v̆) =
V (ATR)

V (Ă)
≥

∑k
i=1V (Ptr

i )

∑k
i=1 V (P∗i )

.

Since P∗,Ptr is a good partition pair, for every i = 1, . . . ,k it is true that V (P∗i ) ≥
V (Ptr

i )≥ 0. Therefore, we can apply Lemma 45 to get

Eff KSM−TR(v̆)≥
∑k

i=1V (Ptr
i )

∑k
i=1V (P∗i )

≥
k

min
i=1

V (Ptr
i )

V (P∗i )

Since P∗,Ptr is a good partition pair, for every i = 1, . . . ,k it is true that V (Ptr
i )

V (P∗i ) ≥

minS∈Ŝ(Ă)
NT R(S)
N∗(S) , therefore

Eff KSM−TR(v̆)≥
k

min
i=1

V (Ptr
i )

V (P∗i )
≥

k
min
i=1

(

min
S∈Ŝ(Ă)

NTR(S)

N∗(S)

)

= min
S∈Ŝ(Ă)

NTR(S)

N∗(S)

2

Lemma 45 For any set of indexes m and pairs Rm and Om such that 0≤ Rm ≤ Om

it is true that
∑m Rm

∑m Om
≥min

m

(

Rm

Om

)
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Proof. Let k be the index of elements that minimize the ratio Rm
Om

. For every m
Rm
Om
≥ Rk

Ok
, therefore for every m, Ok ∗Rm ≥ Rk ∗Om. Summing over m we get Ok ∗

(∑m Rm)≥ Rk ∗ (∑m Om). Hence, ∑m Rm
∑m Om

≥ Rk
Ok

= minm
Rm
Om

, which is what we wanted
to prove. 2

From Lemma 44 we conclude that, if the efficient allocation has a good partition
pair and there is no procurement set topology with a single procurement set of this
topology in the efficient allocation, then we get a competitive ratio of at least 1/2.

Lemma 46 Let v̆ be any vector of agents values with efficient allocation Ă. Ă has
a good partition pair.

Proof. By Lemma 39 the efficient allocation is constructed from procurement set
topologies Si for i = 1, . . . , |CM∗| such that

Ă =

|CM∗|
⋃

i=1

N∗(Si)
⋃

j=1

Si
j and ATR =

|CM∗|
⋃

i=1

N∗(Si)−1
⋃

j=1

Si
j

where Si
j is the j procurement set of topology Si, and Si

N∗(Si)
is the lowest valua-

tion agents of all agents in procurement sets of topology Si. Observe that there are
NT R(Si) = N∗(Si)− 1 procurement sets of the i topology in the Trade Reduction
allocation ATR.

Let P∗i =
⋃N∗(Si)

j=1 Si
j, and let Ptr

i =
⋃N∗(Si)−1

j=1 Si
j. We need to show that the two re-

quirements for a good partition pair hold.

• V (P∗i ) ≥ V (Ptr
i ) ≥ 0: Since Si

N∗(Si)
is a procurement set, it has a non-negative

value. Hence, V (P∗i )−V (Ptr
i ) = V (Si

N∗(Si)
)≥ 0. Since every procurement set has

non-negative value, we also have V (Ptr
i )≥ 0.

•
V (Ptr

i )
V (P∗i ) ≥ minS∈Ŝ(Ă)

NT R(S)
N∗(S) : First observe that V (Ptr

i )
V (P∗i ) =

∑N∗(Si)−1
j=1 V (Si

j)

∑N∗(Si)
j=1 V (Si

j)
. Hence, by

applying Lemma 47 we get

V (Ptr
i )

V (P∗i )
≥

N∗(Si)−1
N∗(Si)

=
NT R(Si)

N∗(Si)
≥ min

S∈Ŝ(Ă)

NTR(S)

N∗(S)
.

2

Lemma 47 Let n ∈ Z+, m ∈ {1, . . . ,n}, and Xi ∈ R+ for all i ∈ {1, . . . ,n}. If Xi ≥
Xm for all i < m and Xi ≤ Xm for all i > m, then

∑m
i=1 Xi

∑n
i=1 Xi

≥
m
n
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Proof. The proof is by induction on n for any fixed m. For any n such that n≥m we
prove the claim by induction on n.

If n = m the claim is true since we have 1 on both sides of the inequality. Now
assume that we have proven the claim for some n0 such that n0 ≥ m, to prove the
claim for n0 +1. By the induction hypothesis,

∑m
i=1 Xi

∑n0
i=1 Xi

≥
m
n0

,

hence n0 ∑m
i=1 Xi ≥ m∑n0

i=1 Xi.

Since Xi≥Xm≥Xn0+1 for all i≤m, we have ∑m
i=1 Xi≥mXn0+1. Using the induction

hypothesis we get by summation

n0

m

∑
i=1

Xi +
m

∑
i=1

Xi ≥ m
n0

∑
i=1

Xi +mXn0+1

therefore
∑m

i=1 Xi

∑n0+1
i=1 Xi

=
∑m

i=1 Xi

∑n0
i=1 Xi +Xn0+1

≥
m

n0 +1

which is what we wanted to prove. 2

Finally, we are ready to prove the theorem.

Theorem 25 Let v̆ be any vector of agents values. The following is an efficiency
competitive ratio function for the KSM-TR auction:

RatioKSM−TR(v̆) = min
m∈CM∗

Tm(Ă)−1

Tm(Ă)

if Ă 6= /0 and
RatioKSM−TR(v̆) = 1

if Ă = /0.

Proof. The second component of the competitive ratio is true by definition, hence
we prove the first component. By Lemma 46v̆ has a good partition pair. By apply-
ing Lemma 44, the efficiency of KSM-TR satisfies the following:

Eff KSM−TR(v̆) =
V (ATR)

V (Ă)
≥ min

S∈Ŝ(Ă)

NT R(S)

N∗(S)

From Lemma 39 we know that there is a one-to-one mapping of procurement set
topologies in the efficient allocation to consumer markets with non-zero trade. If
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procurement set topology S is mapped to market m, then NTR(S) = Tm(ATR) =
Tm(Ă)−1 and N∗(S) = Tm(Ă).

So we conclude that

Eff KSM−TR(v̆) =
V (ATR)

V (Ă)
≥ min

S∈Ŝ(Ă)

NTR(S)

N∗(S)
= min

m∈CM∗

Tm(Ă)−1

Tm(Ă)
.

Therefore

RatioKSM−TR(v̆) = min
m∈CM∗

Tm(Ă)−1

Tm(Ă)
≤ Eff KSM−TR(v̆),

which is what we wanted to prove. 2
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