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Abstract

Replication system is one of the most fundamental building blocks of wide-area applications.
Due to the inevitable dependencies on wide-area communication, trade-off between performance,
availability and replication consistency is often a necessity. While a number of proposals have
been made to provide a tunable consistency bound between strong and weak extremes, many
of them rely on a statically specified enforcement across replicas. This approach, while easy
to implement, neglects the dynamic contexts within which replicas are operating, delivering
sub-optimal performance and/or system availability.

In this paper, we analyze the problem of optimal performance/availability for a given con-
sistency level under heterogeneous workload and network condition. Our analysis is based on a
consistency model of update window, which is flexible enough to express a number of popular
replica control schemes. We prove several optimization rules for different policies. Based on
these models, we developed an adaptive update window protocol in which consistency enforce-
ment across replicas is self-tuned to achieve optimal configuration. A prototype system, FRACS,
is built and evaluated in this paper. The experiment results demonstrate significant advantages

of adaptation over static approach for a variety of workloads.
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1 Introduction

Wide-area applications such as remote collaboration, e-commerce, and content delivery network face
the challenges on performance and availability from the geographically distributed nature of such
applications. Replication relieves this barrier by eliminating expensive remote accesses as well as
single failure points. Although strong consistency as ensured by traditional one-copy serializability
provides most desirable correctness guarantee, it becomes prohibitively expensive across wide-area
networks. Optimistic concurrency control [6] lifts the performance barrier by allowing concurrent
and potential inconsistent accesses. Bayou [14, 11] further relaxes to an update-anywhere-anytime-
anyway consistency model, with the only guarantee of eventually consistent state on replicas.

The “gray zone” between eventual consistency and the strong consistency bound has been an
active research area [10, 5, 12, 13, 15, 9, 18]. Those systems introduce various bounds on consistency
relaxations: time-based [13, 15] which is appropriate for keeping the freshness of web documents;
non-sequential order for better concurrency [10, 9]; multiple-tier consistency [5] that differentiates
different clients; or comprehensive approach like [18] that carries multiple higher level semantic
meanings.

However, in a number of proposals, the consistency is uniformly relaxed on all replicas without
differentiation. Even when some systems allow individually tunable consistency, there lacks an easy
way to decide a “correct” configuration for a given “context” in which the replicas are operating.
As far as a replication system is concerned, such context includes, but is not limited to, the
update activities on each replica, as well as their resource constraints (most predominantly the
characteristics of their network connectivity such as latency and bandwidth). Intuitively, busy
replicas need looser consistency to reduce overhead. Replicas on remote slow network also cry
for relaxation because they can not afford frequent communications. These observations lead us
to develop a replication system with adaptive consistency. In this model, user specifies desired
consistency level, and replicas adjust their share of inconsistency bound according to their activities

and connectivities.



Specifically, we make the following contributions in this paper:

o We propose a quantitative model to describe the consistency in a replicated system. We prove
that performance (latency or number of messages) can be optimized with certain configuration
of model parameters. Likewise, a similar result can be achieved if total system availability
is the optimization target. However, the optimal configuration always depends on what the

goal is.

o We develop a distributed algorithm to adjust configuration when adaptation is necessary. The
algorithm is light-weight. It requires no additional message passing, and converges without

any centralized or group agreement protocols.

Our consistency model is expressive enough to accommodate a number of popular replication
control protocols. Such versatility also enabled us to use the same set of mechanisms to control the
meta-data of the system, for instance, replica membership and dynamic consistency bound.

The consistency models and adaptation algorithm are implemented in FRACS, a replication
system that combines anti-entropy communication protocol with adaptive consistency control. Our
experiments show significant benefits of adaptive consistency, as well as some cases where it is less
effective.

The remainder of this paper is organized as follows. Section 2 presents the analytical model of
window-based consistency bound. Section 3 discusses algorithms for adaptation of model configu-
ration. Section 4 describes the prototype FRACS system. The experimental results in Section 5
evaluate the effectiveness of adaptation under different access patterns. Discussion of related work

is offered in Section 6. And we conclude in Section 7.

2 Analytical Models

Among the many goals one may expect from a replication system, performance, consistency and

availability are usually found in a subtle tension towards each other. Our approach has been to pick



up a consistency model generic enough to express a range of replication models, build an analytical
model to gain enough insight, and then try to configure the system to optimize the performance

and availability while keeping a certain consistency promise.

2.1 Bounding obsoleteness

Counsistency is highly dependent on application semantics. For example, the loose consistency
guarantee provided by NFS is usually strong enough for users in LAN, but hardly acceptable
for a database management system. So our first step is to quantitatively model the consistency
metrics. Our bottom-line is eventual consistent states on all replicas. Even when this is guaranteed,
inconsistency can occur during the transient state when update issued in one replica has not yet
reached all other replicas, either because of buffering or communication delay.

Consider the case of External Consistency, where users can communicate with each other via
channels outside the replication system. When a user makes an update and notifies another one
of the event, this update may be still unavailable in the receiver’s replica. In another case, some
systems give a “safe” view to application, i.e. no tentative data is exposed to read requests until
they get committed. The commonality of both is that read operation sees an “obsolete” view
where some amount of recent updates can be missing. We quantify such kind of inconsistency
into “obsoleteness”, or error of local data view. The measurement can be as simple as the number
of missing updates, or more complex schemes that assign different weights to different update
operations. We use the former for its simplicity.

The consistency in the system is controlled by limiting the amount of inconsistency in each
replica, i.e. the uncommitted updates. Each replica; is assigned an update window of W; that
allows it to buffer up to W; tentative updates. When a replica has accumulated W; updates locally,
it has to push out the tentative updates to other replicas. After everyone gets the updates, they are
committed. During this time, the user’s new update requests are blocked until tentative updates
are committed and removed from update window. Read to local replica is always allowed since it

does not change system state. We call this an update window system.



A number of popular consistency constraints can be expressed using different configurations of

such update window system. Take Jim Gray’s models [5] for example:

e Master-eager: this corresponds to W; = 1, and Vj # ¢, W; = 0. So there is one single master

that can make update. It pushes eagerly to all slaves.

Master-lazy: this is W; = oo, and Vj # 4, W; = 0. The master can buffer updates and push

to slaves later.

e Group-eager: Vi, W; = 1. Everyone makes updates and pushes immediately to others.

Group-lazy: Vi, W; = co. No consistency guarantee at all.
Furthermore, a host of other more complex requirements can also be described:

e Floating master: a useful variation of Master-lazy where the master can be changed dynami-
cally. Such case is particularly useful for mobile applications where the user moves from one

replica to another.

e Two-tier [5]: here > (W;) = M, where i belong to the first tier of replicas, and W; = 0 if i

belongs to the read-only tier

e Bounded error: when we place a constraint to the window configuration, a certain consis-
tency guarantee can be enforced. The obsoleteness bound can be expressed as > W; <
Boundgpsojeteness- A straight-forward enforcement of such a bound is to divide the total

bound evenly across all replicas:

. Boundobsoleteness
¢ N

J1<i<N
where N is the total number of replicas.
More general and flexible configurations can be constructed in similar ways.

Though quite general, the above model is not easy to deploy because there are a lot of knobs

for users to tune. In a lot of cases, users do not care the consistency levels in specific replicas. They



want an overall acceptable consistency level achieved with minimal overhead. In the remaining
parts of this paper, we will discuss how to specify the window configuration to achieve optimization

goals under consistency constraints.

2.2 Optimizing cost with square-root distribution rule

Our overall consistency constraint is the total obsoleteness, defined as the sum of update windows
of all replicas:

One straightforward way of enforcing the constraint would be to split the total window bound
evenly to N replicas. However, in a lot of scenarios this makes little sense. For example, consider
a bursty replication system: replicas are silent in most of time; once a while, they wake up and do
some operations. Allocating a constant window size to everyone is awkward, you either give out too
much window that system experience high obsoleteness when they become active together; or get
very poor performance in every replica when a small window share is given to everyone to bound
worst-case obsoleteness. Similar case can be made for scenarios where activities among replicas are
skewed. Not only the application behavior affects the decision of window configuration, network
connectivity will make a difference too. Replicas on slow network need bigger window to keep up
with other faster ones.

In summary, our goal is to derive a window configuration that minimizes “cost” or maximizes
“benefit” in certain operation “context”. The context includes, but not limited to the update ac-
tivity of replicas, network latency and bandwidth. The cost and benefit can be anything interesting
to the user. Here we will discuss the number of messages, the latency added to update process,
and the availability.

Let’s first define cost as the number of messages used to propagate updates. This is usually
more meaningful than the number of bytes since the updates are often quite small. When the
number of uncommitted updates on replica; is below the window W;, replica; can buffer writes
without sending to others. Once update window of W; is full, replica; sends all buffered updates

to all replicas. Thus the update window reduces messages from replica; by W; times. Note, this is



assuming a “lazy” propagation scheme where everyone buffers updates to the maximal limit.

MessageRate; = EN—;,&
2
N—-1)xA;
MessageRateiar = Di<i<n (V=1)xA; Wz :

In above formulas, A; is the update rate on replica;, how many updates are generated per unit
time; and N is the number of replicas. We can minimize the total message rate with the following

theorem.

Theorem 1 Square-Root Distribution Rule

Given constraint of >, W; = W, and constants T;, amortized total ) v_% is minimized when W; =

W I
"YVh

Proof. Let X; = ,/V—TV%, Y, = VW, use Cauchy-Schwarz inequation

(X2 4+ . XHY2+..+Y2) > (X1 * Y1 + ...+ X, % V)2

where “=" holds when %‘ is constant for V1 <¢ <n. O
Applying this rule to the number of messages, we get the conclusion that optimal configuration

in this case is to assign window size {W;} proportional to square root of the replica access rate:

L W/ A;
Wz = =
E1§j5NvAJ’

If we look at the cost of update latency, things get a little more complex. As in the case for
the number of messages, the update window also collects messages and reduce the overall observed
communication latency. There is only one round-trip communication delay per W; updates. So the
latency for update propagation on replica; is I%; Here C; is the latency of committing updates on
replica;. The overall latency in the whole system is the average of latencies at each replica weighted

by the update rate A;.

1 A; x C;
Latency = i i
i

*
XA 2 W,
We can apply square-root rule to this formula and minimize the latency with W; proportional

to \/Ai * Cz



2.3 Availability under failure

Availability is another reason that one wants to alleviate consistency. In a replicated system
enforcing strong consistency, there is no way to proceed when part of the nodes are not reachable.
By buffering some amount of updates in replicas during network partition, replicas can tolerate a
short-term failure at the expense of data consistency.

We use an availability concept similar to [17]. In case of failure, system appears to user as
available if it continues to accept user request. For a window-based system, if a replica server can
not commit the updates due to partitioning, it can only accept updates within its window limit.
Once the window is filled up, it will have to refuse any update to avoid breaking its promise of
consistency. The overall availability is quantified as (Number of accepted operations)/(Number of
submitted operations).

First we look at aggressive update propagation. Since writes are committed as soon as possible,
update windows are almost empty during normal operation. When partitioning occurs, the maximal
number of updates that replica; can accept is Min{W;, A; * Ty}, where Ty is failure repair time.

Intuitively, we should choose W; according to the access rate A; to maximize acceptance.

Theorem 2 Proportional Distribution Rule

Given constraint of 3°) <;<y Wi = W, and constants {C;}, 31 <<y Ci = C, bounded sum 3 Min{W;, C;}

is mazimized when W; = W * 2?6 The mazimal value is Min{W,C}.
J
Proof. First, Min{W, C} is an upper bound:

> Min{W;,Ci} < Min{)_ W, > Ci} = Min{W,C}

Second, Min{W,C} is achieved when W; = YCi,



= YAMin{"F, Ci}}

= Min{% 1} x 3 C;

= Min{% 1} xC

= Min{W,C}

So the proportional configuration maximizes the sum expression. [

Replacing C; with A; x T gives the solution to our problem.

The above analysis assumes that no replica can commit any updates during network partition.

Since the occurrence of failure is generally unpredictable and independent of the replica hosts, more

general assumptions on replication protocol do not change our conclusions.

When partition time is too long or too short, there is no difference between window distribution

schemes: either everyone can fully mask the faults, or no one. In between is where adaptation wins

out. For more detailed analysis please refer to [19].

When a lazy update propagation policy is used, the system presents less availability, because

update window can be quite full and leave no room to buffer updates when failure occurs. For the

“laziest” case, where updates are not sent out to other replicas until the window is filled up, the

average number of updates already in window when failure occurs should be half of window size.

This gives roughly the same availability level as an aggressive propagation scheme with half of total

update window.

Optimization

Optimal Window

Benefit over Even

Goal Model Optimal Value Configuration Distri%ltion
AixC; _ A;%C; Nx) (A;%C;)
Update Latency ElAi > S w* VAT | Wi =W % E\(\/Aj*cj VLI
)
. . . A, N*Z A;
Number of Messages Time* N+ 4 LimeeN « (3 VA)? W; =W % : e
: RV VT
Rejections during ATr — mi AT A« To) — o A; depends on
Partition 2 (AiTy —min{Wi, AiTy}) | 30 (Ai+Ty) =W Wi=Ws Do, Ai Ty and {A;}

Table 1: Optimization models summary.




2.4 Discussion

Table 1 gives a summary of the three optimization goals we discussed. We got several interesting

conclusions from these formulas:

e The benefit of optimal window configuration over even distribution does not depend on W.

Instead, the benefit ratio solely depends on access distribution and communication cost.

e Optimal configuration can be N times better than even distribution. The extreme case hap-
pens when all accesses happens on one replica. This can be meaningful for some workload
where most of the accesses are read-only, and concurrent updates are rare. Such access

patterns are not uncommon in real word applications.

e Even distribution is near-optimal for balanced systems with comparable update rates on
different replicas. For example, in a two server system with 1:2 ratio of update rates, optimal
window configuration gives only 3% lower latency than even window distribution. A ratio of

1:4 gives 10% benefit.

To summarize, we expect an even window distribution works well for balanced, steady system
where update rates on different replicas are of roughly the same magnitude. However, in other
workloads where write accesses are more bursty and irregular, it becomes necessary to dynamically
adjust window sizes and keep an optimal configuration. Under skewed update activity and resource

distribution, larger number of replicas benefit from adaptation more.

2.5 Extension

Above analysis are all based on a system-wide consistency criterion: worst-case obsoleteness. This
is suitable for a lot of applications where consistency in any particular replica is not a concern.
However, there are certain scenarios where different replicas have different consistency requirements.

Our model can be extended to accommodate per replica consistency guarantees.
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In the extended model, each replica specifies its acceptable obsoleteness, and split the bound
into update windows for every other replicas. The whole update window system will be a N x N
array, where W; ; specify the amount of tentative updates replica; can hide from relica;. The
optimization strategy in the system are almost same as before. Each replica splits its consistency
bound according to the rules we developed above. The result is a consistency semantics similar to

that of numerical error defined in [18], but optimized in performance and availability.

3 Distributed Adaptation Algorithm

As described earlier, to optimize for either performance or availability goals, the ideal update
window distribution {W;}, needs to be a function of a set of input parameters, rather than even
distribution among replicas. In a distributed environment, dynamic parameters such as the update
rates are measured at each replicas. Consequently, there must be some mechanism to exchange
those parameters and maintain a consistent window configuration.

For a small scale system, relying either on centralized control or group anti-entropy to reach
and distribute a window configuration agreement is simple and practical. In fact, in our prototype
system (see Section 4.2), we use the later approach. However, in other situations, more scalable
and fully distributed algorithms are needed. We will explore such a light-weight algorithm in the
following paragraphs.

To simplify the discussion, we represent the parameters measured by a replica as its weight
C;. For different optimization purposes, this weight can be the update rate, square root of update
rate, or square root of product of update rate and communication latency. However, C; is local
knowledge of each replica. To build a global view of replica weight, the values of C; are included
in update messages and exchanged during group anti-entropy. We represent the weight of replica;
received by replica j as Cj ;.

As time goes on, each replica will maintain a roughly up-to-date view of weights on all replicas.

Then the window share can be computed locally. However, this algorithm introduces the chance

11



of breaking window bound. When a replica increases its weight and compute its new window
share before other replicas ever know the change, the total window size will temporarily exceed the
bound. To avoid this flaw, we must refrain the replicas from adopting its newly increased weight.

The trick is to use C;; instead of Cj:

e Record all weight value posted in messages as {CF,,qrive };

e When update is committed, i.e. received acknowledgement from all replicas, record the weight

posted with that update message as Ceommit, also remove it from CE,, ..

_ : k
o Cz',z' = mzn(ccommita Ct

Cntative)- 1ntuitively, C;j; is a conservative version of C;. It is guaran-

teed to be no higher than any C; ; another replica; may use in its calculation.

The window share is computed locally as:

W Cz',i
22 Cii

Enforcing window distribution without using a group agreement protocol seems rather risky.

W; =

However, as we shall prove next, the algorithm is correct in that it ensures optimal window distri-

bution at steady state and at no time the window sum exceeds W.

Theorem 3 Correctness in steady state

At steady state, this algorithm achieves the optimal window distribution as required.

Proof. Steady state means C; = C; ; for all replica;, 1 <4 < N. In that case, C;; = C; = C; ;.

Thus the local computed window shares reflect the optimal window configuration. O

Theorem 4 Preservation of window bound

At no time the bound on window sum is violated. i.e., > W; < W.
Proof. From the definition of C;;, the inequation C;; < Cj ; holds.
_ W*Ci,i
XiWi = % S, Cra

< 3 WxCii _
- EZZ,CM W
Thus S Wi < W. 0

12
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Figure 1: The FRACS architecture.

This algorithm is almost free — there is no additional messages and protocols to communicate
window shares. All that is required is to include the update rate in the anti-entropy message and
small memory to keep the parameter vectors. The algorithm is conservative only when a replica’s
share is being increased as a result of its own increased update rate. It will promptly converge to
the desired level when anti-entropy is completed. In some cases, we need faster convergence. For
example, when a node falls inactive, it will send out updates and new weight less frequently. We
can send a null update message to inform others the newly decreased weight. For other details,

please refer to [19].

4 Prototype design and implementation

In this section, we describe our prototype implementation of window-based replication system —

FRACS, which stands for ”Flexible Replication Architecture for a Consistency Spectrum?”.

4.1 Architecture

FRACS uses a modular design. Figure 1 shows the components and how they are stacked together.

The Application Interface Layer translates the abstractions in FRACS into semantics needed

13



by certain applications.

Update control layer maintains given consistency guarantees with a distributed update window
system at the granularity of volume. Window configuration can be dynamically adjusted with
either the protocol discussed in Section 3, or with the meta-object described in Section 4.2. We
currently use the latter for its simplicity.

Local update rate is measured at update control layer with a rolling average algorithm. In order
to balance the contradictory requirements of measurement stability and sensibility to changes, we
use a relatively long averaging window (64 seconds in our test) and give more weight to recent
accesses.

The communication modules transfer messages between hosts using standard TCP socket for its
reliability and simplicity. A parallel layer, simulator, is included for research purpose. The details
are explained in Section 4.3.

The update propagation module is based on Time-Stamped Anti-Entropy algorithm [4], one
variant of popular anti-entropy algorithm. Here we do not detail the design of TSAE. The main
point is to use timestamp vectors to detect version differences between replicas, so that they can
exchange unknown updates to get each other into sync. Any update is kept in log until it has been
received by every replica. Thus eventual delivery is guaranteed. Furthermore, FRACS use causal
prefix constraint [11] to maintain dependence between updates. Together with TSAE, it guarantees
eventual consistency among all replicas.

For efficiency purpose, a FRACS replica server propagates its updates with group anti-entropy
instead of one-to-one sessions. It pushes buffered updates to all other replicas together, and pulls in
their updates simultaneously. This shortens update propagation time, but is not scalable to large
replica set. With hundreds or more replicas, more scalable propagation schemes like multicast trees

are needed to avoid communication bottlenecks.
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4.2 Dynamic Volume Maintenance

Interesting enough, the first application for FRACS is itself. The meta-data of FRACS volume is
maintained with the same protocol as data objects. Such meta-data includes group membership of
replica set, global consistency bound, etc. For convenience, we also maintain window configuration
as meta-data, though it is more efficient to be managed with the algorithm described in Section 3.
To keep a strong consistency for meta-data, we fix the update window as 1 on each replica.

Using such a strong guarantee is not always necessary. For example, adding a replica can be done
locally without breaking any consistency promise. To make things worse, the above process will stop
making progress when network is partitioned due to failure and reconfiguration is necessary. This
can be partially remedied by a sub-group commit of meta-object update, where changes involving

only a sub-set of replicas can be committed after reaching this sub-group.

4.3 Integrated Simulator and Validation

Machine 1 Machine 2
Operating System | Linux Linux
Location Princeton, NJ | Stanford, CA
LAN interface 100 Mbps 100 Mbps
Network RTT 79.5 ms
TCP bandwidth 367 KB/s

Table 2: Platform characteristics.

Due to the lack of a large WAN environment and the long running time of our tests, the
experiment results reported in Section 5 are obtained with the integrated simulator. The simulator
substitutes the message passing layer with a event-queue and shares all higher level code with the
real FRACS. We simulate a TCP connection as a channel with certain latency and bandwidth.

A two nodes test environment was setup for validation purpose. Table 2 summarizes the con-

figurations and the network properties of the test platform. We run a series of 1-hour experiments

15
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Figure 2: Simulator validation

with different settings of total update window. Figure 2 compares the latency measured from real

runs to that of simulations. The curves matches well.

5 Experimental Results

In this section, we evaluate the optimization scheme and adaptation technique in FRACS. We
compare the performance and availability of two window configuration alternatives: non-adaptive
system with even distribution of window among all replicas; and adaptive system following optimal
configuration based on update rate and network condition.

In the experiments, we simulate a transaction processing application replicated on multiple
servers on top of FRACS. There are two types of transactions: read-only and read-update-write.
Read-only transactions always access local replica, thus can see obsolete data. We externally
compare the data to detect out-of-date read results. Each transaction involves only one record.

We use synthetic workloads to access this replicated database. Each server issues a Poisson
stream of random read and write accesses. The average inter-arrival rate can vary with time. The
read/write ratio, average transaction arrival rate and variation periods are adjustable on a per
replica basis. Specifically, we simulate two kinds of dynamic workload: on-off and high-low. In on-

off workload, replica servers experience periodic busy/idle cycles. In high-low workload, different

16



80000 : —
on:off=2:1, adaptive —+—
H on:off=2:1, non-adaptive ----x---
70000 i on:off=1:7, adaptive —x— |
% on:off=1:7, non-adaptive --—-&--
60000 |
@
=}
X 50000 |
o
c
I
K] 40000
L
S 30000 -
o
=)
20000
10000 -

0 . . . .
0 0.5 1 15 2 25 3 3.5 4

Obsoleteness %
Figure 8: Update latency vs. obsoleteness when we vary the setting of total window size. We use two sets of on-off
workload with different ratio of on and off periods. For each workload, we give results of both adaptive and non-adaptive

window configurations.
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Figure 4: Number of messages vs. obsoleteness.

replicas are subject to different access rate, but the average request rates are constant over time.
We believe that these two access patterns are typical in real world applications.
In the experiments, we simulate network connections with bandwidth of 300KB/s, and round

trip time 100 mili-seconds, unless otherwise stated.

5.1 Varying the Total Window Size

The first experiment runs 8 replica servers with random on-off periods under Poisson distribution.

Each server makes 5 update transactions per second during busy periods. Off periods only see
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Figure 6: Update latency vs. obsoleteness under skewed access pattern.

background accesses of a few requests per hour. We simulated different ratios between on and off
periods, 2:1 and 1:7. The simulation time is 16,000 seconds.

Figure 3 shows the update latency curves under varied consistency bounds. The X-axis is
set as actual obsoleteness measured during simulation to give a fair comparison. As expected,
adaptive algorithm shows much lower latency than non-adaptive algorithm under workload with
on/off ratio of 1:7. When on/off ratio is 2:1, which means most replicas are active at any time, the
two algorithms performs similarly because the little benefit from adaptation is almost offset by the
cost of adaptation. Figure 4 shows the number of messages vs. obsoleteness. A similar trend can
be found from the curves.

The theoretical results implies that the benefit ratio of adaptive system over non-adaptive one is
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constant for different total window size. However, the benefit observed in Figure 3 and 4 diminishes
when we loosen the consistency bound. This is due to other overhead factors not considered in
our analytical model: computation time, adaptation operations, update queuing time, and message
size etc. These overheads do not decrease when increasing window bound, thus eventually offset
the benefit from adaptation.

In another experiment, we use different update rates at the replicas, but keep them constant
all the time. We keep the average Poisson arrival rates on the 8 replica servers as 1:1:1:1:2:2:4:8,
with total 12.5 updates per second. Such a configuration is trying to characterize an unbalanced
load distribution : a few replicas get very hot while a lot of replicas are relatively idle. The results
are shown in Figure 5 and Figure 6. Compared to that in on-off test, adaptation in this case is not

very effective, but still gives some benefit.

5.2 Varying the Number of Replicas

Section 2.4 gives conclusions that the the maximal benefit of optimal configuration over even
distribution is bounded by N — the number of replicas. In this experiment, we simulate extreme
cases to test these conclusions: the hosts enter their active periods in a round-robin fashion where
there is only one replica active at any time. The total window size keeps constant(128) throughout
all test runs. The average update rate on active replica is also constant. We increase link bandwidth
to 1 MB/s to compensate for large communication cost due to increased number of replicas.

The latency results are shown in Figure 7. Theoretically, the curve for adaptive system should
be flat. The actual result shows a slow ascending slope, due to the increase of message size that our
model fails to take into account. The ratio between results of adaptive and non-adaptive systems
is almost linear to N, which is expected.

Figure 8 shows the same comparison for the number of messages. As predicted in Section 2.4,
the number of messages for non-adaptive scheme should be O(N?), and benefit of adaptation be

linear to N in this case. The curves roughly match this trend.
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Figure 7: Update latency under varied number of replicas while keeping the total window size constant(128).
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Figure 8: Number of messages under varied number of replicas while keeping the total window size constant(128).

5.3 Availability Results

We run FRACS under a configuration for optimizing availability, i.e., the window share being
linear to the access rate of the replica. We experiment with 4 different algorithms as discussed in
Section 2.3: eager/lazy propagation cross adaptive/ non-adaptive configuration. We use a random
high-low access pattern : 4 replica servers with average Poisson update arrival rates of 1:2:3:4.
The total rate is about 25 updates per minute. We also introduce some random network partition
events with Poisson arrival rate and duration. Each failure separates the replica servers into two
random selected groups.

To explore the effectiveness of adaptation under different failure patterns, we run two set of
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Figure 10: Availability vs. obsoleteness. Average failure repair time is 10 minutes

failures, one has average duration of 2 minutes and another 10 minutes. The average failure interval
is 1 hour.

Figure 9 and Figure 10 give the results of running the four algorithms under these failure
streams. To ensure fair comparison, we test all alternative algorithms with the same request and
failure streams in each of the experiments.

The curves support the conclusions from Section 2.3. Adaptive algorithms give better avail-
ability than non-adaptive algorithms. And eagerly pushing out tentative updates also improves
availability over lazy propagation schemes. As analyzed in Section 2.3, long failure repair time

presents a harsher environment for application availability. And adaptation becomes less effective
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in that case.

6 Related Work

The trade-off between replication consistency and performance/availability has been a hot research
topic for many years. Strong consistency (one-copy serializability [2]) provides a notion of correct-
ness to replicated database. Examples include the popular primary-copy algorithms [5], quorum
consensus systems [8] and atomic broadcast protocols [3]. However, strong constraints on system
integrity seriously limit the availability and performance. Many systems take another extreme of
optimistic concurrency control. Ficus [6], Coda [7], Bayou [14, 11] provide single-copy availability
and non-serialized access performance at the expense of data consistency. They only guarantee
eventual consistency.

A number of efforts try to make compromises between the two extremes to benefit a variety
of applications which can tolerate a certain bounded violation of integrity. Delta consistency [13]
and timed consistency [15] developed models for time-related consistency. N-ignorant system [9]
improves concurrency by allowing a transaction to run in parallel with at most N other transactions.
This behavior can be directly expressed in our update window system. Lazy replication [10] provides
three levels of consistency for operations with different ordering requirements. Epsilon-serializability
[12] bounds the amount of divergence from strong consistency in regard of application semantics.
TACT [18, 17] gives application more general choices with a set of consistency guarantees. A root
difference between FRACS and the above systems is that we use an adaptive, fully-distributed
algorithm to enforce the consistency guarantee, while the previous system either rely on centralized
algorithms, or specify the consistency enforcement statically.

Adaptation by dynamic monitoring of replica references has been used in data placement and
load balancing [16, 1]. As far as we know, there is yet no other work on adaptive update propagation

and consistency enforcement.
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7 Conclusions

A sound replication system must strike a careful balance among performance, consistency and avail-
ability for wide-area applications. In dealing with these trade-offs, the context in which the replicas
are operating must be taken into account. In this paper, under the framework of update window
protocol, we qualitatively proved and experimentally verified optimal update control distribution.
This framework is expressive and versatile enough to capture a number of popular replica control
schemes, allowing us to bound the consistency with one single protocol for both data and meta-data
objects. The distribution of update control is through a lightweight protocol that does not require
any centralized or group agreement protocols. We have built a prototype system, FRACS, which
will enable us further researches in this direction.

Our planned future work includes to use this framework to implement more general consistency
guarantees, and to understand the implication and application of dynamically adjust consistency

bounds.
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