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SUMMARY

We present a type-preserving translation of System F (the polymorphic lambda calculus)
into a forthcoming revision of the C] programming language supporting parameterized
classes and polymorphic methods. The forthcoming revision of Java in JDK 1.5 also
makes a suitable target. We formalize the translation using a subset of C] similar to
Featherweight Java. We prove that the translation is fully type-preserving and that it
preserves behaviour via the novel use of an environment-style semantics for System F.

We observe that whilst parameterized classes alone are sufficient to encode the
parameterized datatypes and let-polymorphism of languages such as ML and Haskell, it
is the presence of dynamic dispatch for polymorphic methods that supports the encoding
of the “first-class polymorphism” found in System F and recent extensions to ML and
Haskell.
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1. Introduction

Parametric polymorphism is a well-known and well-studied feature of declarative programming
languages such as Haskell and ML. It ranges in expressive power from the parameterized types
and let-polymorphism of core ML, through the parameterized modules of Standard ML and
Caml, in which module parameters may themselves contain polymorphic values, right up to full
support for first-class polymorphism found in extensions to Haskell [9, 13] and ML [17]. The
polymorphic lambda calculus, System F, and its higher-order variant Fω [15] are foundational
calculi that capture the range of polymorphic constructs found in such languages.

Some object-oriented languages have introduced support for polymorphism. Eiffel supports
parameterized classes, whilst extensions to Java such as Pizza, GJ and NextGen [14, 3, 4], the
forthcoming version of Java based on GJ [2], and the forthcoming version of C] [10, 6] also
support the type-parameterization of static and virtual methods.

Received 5 Jan 2003
Copyright c© 2003 John Wiley & Sons, Ltd.



2 A. J. KENNEDY AND D. SYME

In this paper we pose the question “what’s the difference?” and show that the combination
of parameterized classes and polymorphic virtual methods is sufficient to encode the first-
class notion of polymorphism supported by System F and extensions to ML and Haskell. We
demonstrate this through a formal translation of a variant of System F into a subset of C] with
polymorphism. The translation is fully type-preserving and preserves the evaluation behaviour
of terms. When mentioning C] in the rest of this paper, we assume the inclusion of generics [10].

The paper is structured as follows. We begin by discussing informally the various flavours
of polymorphism. In Sections 2 and 3 we define typing and evaluation rules for System F
and C], and in Section 4 we present the formal translation and a proof that it is fully type-
preserving. Section 5 proves semantic soundness of the translation by first recasting System F
in an environment-style semantics. Section 6 concludes.

1.1. Core ML polymorphism

The following piece of SML code typifies the use of polymorphism in the core language:

datatype ’a Tree = Leaf of ’a | Node of ’a Tree * ’a Tree

fun tmap (f : ’a->’b) (t : ’a Tree) =
case t of Leaf v => Leaf (f v)

| Node(left,right) => Node (tmap f left, tmap f right)

val itree = Leaf 5
val stree = tmap Int.toString itree

This code illustrates two aspects to polymorphism in ML: the type-parameterization of types
(here, the type parameter ’a to the type Tree) and of functions (implicit type parameters ’a
and ’b in the map function). Both aspects of polymorphism also feature in the object-oriented
systems of Pizza, GJ, NextGen and Generic C], where parameterized classes and interfaces play
the same role as parameterized types, and polymorphic methods play the role of polymorphic
functions.

The corresponding Generic C] code suggests that parameterized classes alone are sufficient
to achieve a direct encoding of core ML into an object-oriented language with parametric
polymorphism:

abstract class Tree<A> { }
class Leaf<A> : Tree<A> {

public A val;
public Leaf(A a) { val = a; }

}
class Node<A> : Tree<A> {

public Tree<A> left;
public Tree<A> right;
public Node(Tree<A> l, Tree<A> r) { left = l; right = r; }

}

interface Arrow<A,B> { B apply(A x); }
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TRANSPOSING F TO C] 3

class IntToString : Arrow<int,string> {
public string apply(int x) { return x.ToString(); }

}

class Mapper<A,B> {
public Tree<B> tmap(Arrow<A,B> f, Tree<A> tree) {

if (tree is Leaf<A>) {
return new Leaf<B>(f.apply((tree as Leaf<A>).val));

} else {
Node<A> node = tree as Node<A>;
return new Node<B>(tmap(f, node.left), tmap(f, node.right));

}
}

}

Tree<int> itree = new Leaf<int>(5);
Tree<string> stree = new Mapper<int,string>().tmap(new IntToString(), itree);

Observe that parameterized datatypes and their constructors are translated directly into
parameterized classes, and polymorphic functions are translated into parameterized classes
whose type parameters are the inferred type parameters of the function. Classes are required
for parametric functions because, like any function value in core ML, these functions may be
nested and contain free variables. Function values then correspond to object instances of such
classes.

One case in such translations requires careful attention: core ML permits let-bound functions
to be polymorphic, and closure conversion must take into account the cases where the bodies
of such functions contain free type variables, i.e. type variables that are not type parameters
of the function. For example, the following function extracts integer and floating point values
for each element of a list:

fun markTwice (f:’a->int) (g:’a->real) (l:’a list) =
let fun mark (h:’a->’b) = map h l
in (mark f, mark g) end

Here the function mark is inferred to have the type scheme ∀β.(α -> β) -> β list and is
used with type arguments int and real. Conversion to parameterized classes must translate
mark into a class parameterized by both the type parameter β and the free type variable α:

class mark<A,B> : Arrow<Arrow<A,B>,List<B>> {
List<A> l;
string apply(Arrow<A,B> h) { ... }

}
class markTwice<A> : ... {

... apply() {
... new Pair<List<int>,List<double>>(

new mark<A,int>(l).apply(f),
new mark<A,float>(l).apply(g)) ...

}
}
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4 A. J. KENNEDY AND D. SYME

Such translations depend on the fact that in core ML polymorphic values are never passed
around in their polymorphic form: instead they must be used locally at some (inferred) type
instantiation. In this sense they are not “first-class” citizens of the language.

From these observations we claim informally that core ML may be directly encoded into
parameterized classes without using polymorphic methods. For example, it is possible to
translate a toy fragment of ML into C] with parameterized classes only.

1.2. First-class polymorphism

We now present an example illustrating how adding polymorphic methods to a system with
parameterized classes leads to a system whose polymorphism is more expressive than found in
core ML. Consider the following fragment of C]:

interface IComparer<T> { int Compare(T x, T y); }

interface Sorter { void Sort<T>(T[] a, IComparer<T> c); }

class QuickSort : Sorter {
void Sort<T>(T[] a, IComparer<T> c) { ... }

}

class MergeSort : Sorter {
void Sort<T>(T[] a, IComparer<T> c) { ... }

}

class IntComparer : IComparer<int> { ... }
class StringComparer : IComparer<string> { ... }

void Test(Sorter s, int[] ia, string[] sa) {
s.Sort<int>(ia, new IntComparer());
s.Sort<string>(sa, new StringComparer());

}

Here we define an interface∗ Sorter representing the type of polymorphic sorters, and whose
single method is polymorphic in the element type of the array to be sorted. This interface
is then implemented by particular sorter classes such as QuickSort and MergeSort. Object
instances of such sorters can then be passed around at run-time and applied at different type
instantiations, as shown in the method Test. We call this “first-class polymorphism”.

Recent variants of Haskell [9, 13] and ML [17] support a similar notion. For example, the
above example can be rendered in Russo’s extension to the module system of Standard ML.

signature Sorter = sig
val Sort : ’a array * (’a*’a->order) -> unit

end
structure QuickSort :> Sorter = struct

∗We could have used an abstract class in place of the interface
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TRANSPOSING F TO C] 5

fun Sort(a, c) = ...
end
structure MergeSort :> Sorter = struct

fun Sort(a, c) = ...
end
fun Test(s : [Sorter], ia, sa) =
let structure S as Sorter = s
in

S.Sort(ia, Int.compare);
S.Sort(sa, String.compare)

end;

Attempts to write the program in a similar fashion in Core ML fail, e.g.

type ’a sorter = ’a array * (’a*’a->order) -> unit

(* type error: sorter is applied to two different kinds of arrays *)
fun test (sorter: ’a sorter, ia : int array, sa : string array) =
(

sorter (ia, Int.compare);
sorter (sa, String.compare)

)

2. System F with recursion

The above examples motivate a more rigorous investigation into the expressivity of
polymorphic methods. Our approach is to take a variant of the expressive calculus System
F [15] and to show that it can be compiled to Generic C] [10, 6], an object-oriented language
with both parameterized classes and polymorphic methods. We focus on a translation which
is fully type-preserving but which fails to support separate compilation, and briefly discuss
a simpler translation which is only partially type-preserving but which supports separate
compilation.

We consider an extension of System F with recursion and a call-by-value evaluation order.
Its syntax, typing rules and big-step evaluation semantics are presented in Figure 1.

A typing environment Γ has the form Γ = X , x :A where free type variables in A are drawn
from X . A typing judgment Γ ` M : A should be read “in the context of a typing environment
Γ the term M has type A” with free type variables in M and A drawn from Γ. An evaluation
judgment M ⇓ V should be read “closed term M evaluates to produce a closed value V ”.

We identify types and terms up to renaming of bound variables, and assume that names
of variables are chosen so as to be different from names already bound by Γ. The notation
[B/X ]A denotes the capture-avoiding substitution of B for X in A; likewise for [B/A]M and
[V /x ]M . Observe that

• There are no base types. The usual System F encodings can be used to support types
such as bool, nat and A list and operations over them (see [16] for proofs that these
encodings are faithful).
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6 A. J. KENNEDY AND D. SYME

Syntax:

(types) A,B ::= X | A → B | ∀X .A

(terms) M ,N ::= x | M N | rec y(x :A):B .M | M A | ΛX .M

(values) V ,W ::= rec y(x :A):B .M | ΛX .M

(typing environments) Γ ::= X , x : A

Typing:

Γ, x :A ` x : A

Γ ` M : A → B Γ ` N : A

Γ ` M N : B

Γ,X ` M : A

Γ ` ΛX .M : ∀X .A

Γ ` M : ∀X .B

Γ ` M A : [A/X ]B

Γ, x :A, y :A → B ` M : B

Γ ` rec y(x :A):B .M : A → B

Evaluation:
M ⇓ ΛX .M ′ [A/X ]M ′ ⇓ V

M A ⇓ V V ⇓ V

M ⇓ rec y(x :A):B .M ′ N ⇓ V [rec y(x :A):B .M ′/y ,V /x ]M ′ ⇓ W

M N ⇓ W

Figure 1. Syntax and semantics of System F with recursion

• Function values are by default recursive. Sometimes we will use the notation λx :A.M as
shorthand for the equivalent rec y(x :A):B .M (for fresh y and appropriate B).

• Evaluation does not occur under a Λ, but the body of a type abstraction is in general
an arbitrary term; this contrasts with the ‘value restriction’ of ML [11].

Theorem 1 (System F evaluation preserves typing) Suppose that X , x :A ` M : A and
` V : [B/X ]A. If [V /x ,B/X ]M ⇓ V then ` V : [B/X ]A.

Proof. By induction over the structure of the evaluation derivation. 2
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TRANSPOSING F TO C] 7

3. C] minor

Our target language ‘C] minor’ is a small, purely-functional subset of Generic C] [10, 6]. Its
syntax, typing rules and big-step evaluation semantics are presented in Figures 2 and 3. This
formalisation is based on Featherweight GJ [8] and has similar aims: it is just enough for our
purposes (in our case, a translation from System F) but does not “cheat” – valid programs in
C] minor really are valid C] programs. The differences from Featherweight GJ are as follows:

• There are minor syntactic differences between Java and C]: the use of ‘:’ in place of
extends, and base in place of super. Methods must be declared virtual explicitly, and
are overridden explicitly using the keyword override. (In the full language, redeclaration
of an inherited method as virtual introduces a new method without overriding the
inherited one. Our subset does not support this.)

• For simplicity we omit bounds on type parameters.
• We include a separate rule for subsumption instead of including subtyping judgments in

multiple rules.
• We omit (down)cast expressions. These are considered in Section 4.7.

Like Featherweight GJ, the language does not include object identity and encapsulated
state, which arguably are defining features of the object-oriented programming paradigm.
However, it does include dynamic method dispatch, another defining feature of object-oriented
programming, and the crucial ingredient in our translation from System F. Moreover, it is clear
that the same translation works for larger subsets of C] (e.g. see [1] for a subset of non-generic
Java that includes aliasing and state, which could be extended with parametric polymorphism).

For readers unfamiliar with the work on Featherweight GJ we summarise the language here;
for more details see [8].

• A type (ranged over by T and U ) is either a formal type parameter (ranged over by
X and Y ) or the type instantiation of a class (ranged over by C ) written C<T> and
ranged over by I . We abbreviate C<> by C .

• A class definition cd consists of a class name C with formal type parameters X , base
class (superclass) I , constructor definition kd , instance fields T f and methods md .
Method names in md must be distinct i.e. there is no support for overloading.

• A method definition md consists of a method qualifier Q , a return type T , name m,
formal type parameters X , formal argument names x and types T , and body consisting
of an expression e.

• A method qualifier Q is either public virtual, denoting a new publically-accessible
method that can be inherited or overridden in subclasses, or public override, denoting
a method that overrides a method of the same name and type signature in the superclass.

• A constructor kd simply initializes the fields declared by the class and its superclass.
Sometimes we omit constructors, as they are uniquely determined by the field
declarations and superclass.

• An expression e can be a method parameter x , a field access e.f , the invocation of a
virtual method at some type instantiation e.m<T>(e) or the creation of an object with
initial field values new I (e). We abbreviate e.m<>(e) to e.m(e).
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8 A. J. KENNEDY AND D. SYME

• A value v is a fully-evaluated expression, and has the form new I (v).
• A class table D maps class names to class definitions. The distinguished class object

is not listed in the table and is dealt with specially.

A typing environment E has the form E = X , x :T where free type variables in T are drawn
from X . Judgment forms are as follows:

• A typing judgment E ` e : T states that “In the context of a typing environment E, the
expression e has type T” with type variables in e and T drawn from E.

• A method well-formedness judgment ` md ok in C<X > states that “method definition
md is valid in class C<X >.”

• A class well-formedness judgment ` cd ok states that “class definition cd is valid”.
• The judgment e ⇓ v states that “closed expression e evaluates to closed value v .”

All of the judgment forms and helper definitions of Figures 2 and 3 assume a class table D.
When we wish to be more explicit, we annotate judgments and helpers with D. We say that
D is a valid class table if `D cd ok for each class definition cd in D.

Theorem 2 (C] minor evaluation preserves typing) Suppose that D is a valid class
table, X , x :T `D e : T and `D v : [U /X ]T. If [v/x ,U /X ]e ⇓D v then `D v : [U /X ]T.

Proof. By induction over the structure of the evaluation relation. 2

4. Transposing F to C]

In outline, the translation from System F to C] minor works as follows. There are three main
aspects: support for functions, support for recursion, and support for polymorphism.

4.1. Functions

Function types in System F are translated into instantiations of a parameterized class Arrow
in C], whose definition is

public class Arrow<X,Y> {
public virtual Y app(X x) { return this.app(x); }

}

Writing A? for the translation of A, we have (A → B)? = Arrow<A?,B?>. In the full C]

language, we would make the app method abstract. Given the lack of abstract methods in C]

minor, we instead define a looping body; it is a property of the translation that only methods
overriding app will be invoked.

Function application is translated as invocation of the app method. For example, x y
translates to x.app(y).

Function values, i.e. λ-terms, are translated into closures, where a closure value is represented
by an instance of a class extending an Arrow type whose method app implements the body of
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TRANSPOSING F TO C] 9

Syntax:

(class def) cd ::= class C<X > : I {T f ; kd md}
(constr def) kd ::= public C(T f ) : base(f ) {this.f = f ;}

(method qualifier) Q ::= public virtual | public override
(method def) md ::= Q T m<X >(T x) { return e;}
(expression) e ::= x | e.f | e.m<T>(e) | new I (e)

(value) v ,w ::= new I (v)
(type) T ,U ::= X | I

(instantiated type) I ::= C<T>
(typing environment) E ::= X , x : T

Subtyping:

T <: T

T1 <: T2 T2 <: T3

T1 <: T3 X <: object

D(C ) = class C<X > : I { . . . }

C<T> <: [T/X ]I

Typing:

(ty-var)
E, x :T ` x : T (ty-fld)

E ` e : I fields(I ) = T f

E ` e.fi : Ti

(ty-sub)
E ` e : T T <: U

E ` e : U
(ty-new)

fields(I ) = T f E ` e : T

E ` new I (e) : I

(ty-meth)
E ` e : I E ` e : [T/X ]U mtype(I .m) = <X >U → U

E ` e.m<T>(e) : [T/X ]U

Method and Class Typing:

class C<X > : I { . . . } mtype(I .m) not defined X ,Y , x :T , this:C<X > ` e : T

` public virtual T m<Y >(T x) {return e;} ok in C<X >

class C<X > : I { . . . } mtype(I .m) = <Y >T → T X ,Y , x :T , this:C<X > ` e : T

` public override T m<Y >(T x) {return e;} ok in C<X >

fields(I ) = U g f and g disjoint
` md ok in C<X > kd = public C(U g ,T f ) base(g) {this.f =f ; }

` class C<X > : I {T f ; kd md} ok

Figure 2. Syntax and typing rules for C] minor
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10 A. J. KENNEDY AND D. SYME

Evaluation:

(e-fld)
e ⇓ new I (v) fields(I ) = T f

e.fi ⇓ vi
(e-new)

e ⇓ v

new I (e) ⇓ new I (v)

(e-meth)
e ⇓ new I (w) mbody(I .m<T>) = 〈x , e ′〉 e ⇓ v [v/x , new I (w)/this]e ′ ⇓ v

e.m<T>(e) ⇓ v

Field lookup:

fields(object) = {}

D(C ) = class C<X > : I {U1 f1; kd md}
fields([T/X ]I ) = U2 f2

fields(C<T>) = U2 f2, [T/X ]U1 f1

Method lookup:

D(C ) = class C<X > : I {U f ; kd md} m not defined in md

mtype(C<T1>.m) = mtype([T1/X ]I .m)
mbody(C<T1>.m<T2>) = mbody([T1/X ]I .m<T2>)

D(C ) = class C<X > : I {U1 f ; kd md} Q U2 m<Y >(U2 x) {return e;} ∈ md

mtype(C<T1>.m) = [T1/X ](<Y >U2 → U2)
mbody(C<T1>.m<T2>) = 〈x , [T1/X ,T2/Y ]e〉

Figure 3. Evaluation rules and helper definitions for C] minor

the function and whose fields contain the free variables of the function. In general, functions
contain free type variables in addition to free term variables, so we must close over these too.
This is done by parameterizing the closure class on the type variables in the context. For
example, the translation of λx :Y → X .x y with y :Y would be new C<X,Y>(y) with

class C<X,Y> : Arrow<Arrow<Y,X>,X> {
Y y;
public C(Y y) { this.y = y; }
public override X app(Arrow<Y,X> x) { return x.app(this.y); }

}

4.2. Recursion

Recursion in our extended version of System F is translated into self-reference through this
in C]. For example, the translation of rec y(x :X ):X .y(x ) would be new C<X>() with
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TRANSPOSING F TO C] 11

class C<X> : Arrow<X,X> {
public override X app(X x) { return this.app(x); }

}

4.3. Polymorphism

Ideally, to translate polymorphic types in System F we would use a parameterized All class
in C], just as we used Arrow to translate function types. But this would require support for
first-class type functions in C] such as the F parameter in the following definition:

class All<X,F> {
public virtual F<X> tyapp<X>() { return this.tyapp<X>(); }

}

Instead, we use multiple All classes to encode polymorphic types in the source. For example,
the type ∀X .X → X is translated to a class

class All_X_XtoX {
public virtual Arrow<X,X> tyapp<X>() { return this.tyapp<X>(); }

}

Similarly, the type ∀X .X → Y is translated to a class

class All_X_XtoY<Y> {
public virtual Arrow<X,Y> tyapp<X>() { return this.tyapp<X>(); }

}

Again, we would use an abstract method for tyapp in the full C] language.
Type application translates to invocation of the nullary tyapp method with a particular

instantiation. For example, x X translates to x.tyapp<X >().
Polymorphic values, i.e. Λ-terms, are translated into instances of a class extending an All

type whose polymorphic method tyapp implements the body of the term and whose fields
contain its free variables. Again, the class must be parameterized by type variables in the
context. For example, the term ΛX .λx :X .y with y :Y is translated to new C1<Y>(y) where

class C1<Y> : All_X_XtoY<Y> {
Y y;
public C1(Y y) { this.y = y; }
public override Arrow<X,Y> tyapp<X>() { return new C2<X,Y>(this.y); }

}
class C2<X,Y> : Arrow<X,Y> {

Y y;
public C2(Y y) { this.y = y; }
public override Y app(X x) { return y; }

}
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12 A. J. KENNEDY AND D. SYME

Global class definitions (G):

class Arrow<X,Y> { public virtual Y app(X x) { return this.app(x); } }

(Infinite family where freevars(T ) \ {X } = X and identified up to renaming of X ,X )
class All(X )T<X > { public virtual T tyapp<X >(){return this.tyapp<X >();}}

Types:

X ? = X
(A → B)? = Arrow<A?,B?>
(∀X .A)? = All(X )T<T> where X -lifting of A? is 〈(X )T ,T 〉

Figure 4. Fully type-preserving translation: types

There are two difficulties with this scheme that need to be addressed. First, we must assign
class names to polymorphic types. This can be done using a consistent “mangling” scheme
that respects alpha-equivalence through the use of de Bruijn indices. For example, the type
∀X .X → (∀Y .Y → X ) could be given the name All!0toAll!0to!1 where !n denotes a type
variable with de Bruijn index n.

The second problem is more fundamental: substitution of types for type parameters does not
commute with the encoding. That is, we do not have ([B/X ]A)? = [B?/X ]A?. For example,
consider ∀X .X → Y , translated as shown above to All_X_XtoY<Y>, and (substituting ∀Z .Z
for Y ) the type ∀X .X → ∀Z .Z , translated to All_X_XtoAll_Z_Z.

There are two ways out. The first, described by Jones [9], is to define conversion functions in
the target language between ([B/X ]A)? and [B?/X ]A?, and to apply the conversion function
immediately after invoking the tyapp method in the translation of type application. We instead
follow a method used by Läufer and Odersky [13] which ensures by definition that substitution
commutes with translation. Instead of defining a separate All class for every polymorphic type,
parameterize the All classes so that each captures a family of polymorphic types sharing
the same pattern of occurrences of the bound type variable. For example, the translation
of ∀X .X → ∀Z .Z is All_X_XtoY<All_X_X>, making use of the class All_X_XtoY<Y> that
captures all polymorphic types of the form ∀X .X → A.

In the next two sections we formalize this translation, first for types and then for terms.

4.4. Translation of types

The translation of a type A is denoted by A? and is defined in Figure 4. The class table G
contains global definitions used in the translation. Type variables map to themselves and arrow
types are encoded as discussed above. The translation of polymorphic types makes use of an
operation that Odersky and Läufer call “lifting”.

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 00:1–7
Prepared using cpeauth.cls



TRANSPOSING F TO C] 13

Definition 1 (Lifting) The X -lifting of a C] type T is a pair 〈(X )U ,T 〉 in which (X )U is
the abstracting out of maximal subterms T of T that do not contain X , replacing the subterms
by type variables X such that T = [T/X ]U .

For example, the X-lifting of the type Arrow<Arrow<X,Y>,Arrow<Y,Y>> is the type abstraction
(Z1, Z2)Arrow<Arrow<X,Z1>,Z2> together with the types Y and Arrow<Y,Y> which when
substituted for variables Z1 and Z2 produce the original type.

The translation satisfies two important properties. First, it does not lose any type
information, justifying the term “fully type-preserving”.

Lemma 1. A? = B? iff A = B.

Proof. Easy induction on structure of types, using the identification of All types up to renaming
of type variables. 2

Second, it commutes with substitution.

Lemma 2. ([B/X ]A)? = [B?/X ]A?.

Proof. See [13]. 2

4.5. Translation of terms

Figure 5 defines the translation of terms. The translation of a System F term M is given by a
judgment

Γ;ψ ` M : A ; e in D

which should be read “Under the context of typing environment Γ and function environment
ψ, term M with type A translates to an expression e and additional class definitions D”. In
the translation it is assumed that rules (tr-abs) and (tr-tyabs) generate fresh class names away
from those in the global table G.

When translating the body M of a function value rec y(x :A):B .M it is necessary to
distinguish three kinds of variable: the argument x , the function y itself, or a free variable
of the function. To capture this in the translation the context contains both an ordinary
typing environment Γ and “function environment” ψ defined by the grammar

ψ ::= • | y(x :A):B

in which the empty environment • is used when translating expressions that are not bodies
of functions (closed terms or Λ-abstractions), and y(x :A):B denotes an environment used
when translating functions in which x :A is the argument and y :A → B is the function. A
similar split-context technique is used in treatments of typed closure conversion for functional
languages [12].

The translation of function and type abstractions makes use of an operation Γ ] ψ that
pushes the bindings from ψ into Γ. It is defined as follows:

Γ ] • = Γ
Γ ] y(x :A):B = Γ, x :A, y : A → B
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14 A. J. KENNEDY AND D. SYME

(tr-argvar)
Γ; y(x :A):B ` x : A ; x in {}

(tr-funvar)
Γ; y(x :A):B ` y : A → B ; this in {}

(tr-var)
X , x1:A1, . . . , xn:An;ψ ` xi : Ai ; this.xi in {}

(tr-app)
Γ;ψ ` M : A → B ; e in D Γ;ψ ` N : A ; e ′ in D′

Γ;ψ ` M N : B ; e.app(e ′) in D ∪D′

(tr-tyapp)
Γ;ψ ` M : ∀X .B ; e in D

Γ;ψ ` M A : [A/X ]B ; e.tyapp<A?>() in D

(tr-abs)
Γ ] ψ; y(x :A):B ` M : B ; e in D Γ;ψ ` x : A ; e in {}

Γ;ψ ` rec y(x :A):B .M : A → B ; new C<X >(e) in {C 7→ cd} ∪ D

Γ ] ψ = X , x :A
C 6∈ dom(D) and cd =
class C<X > : (A → B)? {

A
?

x;
public C(A

?
x) { this.x = x;}

public override B? app(A? x) { return e; }
}

(tr-tyabs)
X ,Γ ] ψ; • ` M : A ; e in D Γ;ψ ` x : A ; e in {}

Γ;ψ ` ΛX .M : ∀X .A ; new C<X >(e) in {C 7→ cd} ∪ D

Γ ] ψ = X , x :A
C 6∈ dom(D) and cd =
class C<X > : (∀X .A)? {

A
?

x;
public C(A

?
x) { this.x = x;}

public override A? tyapp<X >() { return e;}
}

Figure 5. Fully type-preserving translation: terms
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TRANSPOSING F TO C] 15

Observe that the translation is essentially defined by induction over the structure of the
typing derivation of M . More precisely, Γ;ψ ` M : A ; e in D is defined when Γ ] ψ ` M : A.

4.6. Type preservation

We prove that the translation preserves types.

Theorem 3 (Type preservation for open terms) Suppose Γ;ψ ` M : A0 ; e0 in D0

with Γ ] ψ = X , x :A and Γ;ψ ` x : A ; e in {}. Then (a) D0 ∪ G is a valid class table, and
(b) for any valid class table D ⊇ D0 ∪ G and typing environment E of form E = X , . . . such
that E `D e : A

?
it is the case that E `D e0 : A?0.

Proof. It is easy to check that G is a valid class table. The proof then proceeds by induction
over the structure of the translation derivation.

Cases (tr-argvar), (tr-funvar), (tr-var)

Result follows immediately from assumptions about D and E.

Case (tr-app)

We have a derivation that ends with the rule

Γ;ψ ` M : A → B ; e1 in D1 (1)
Γ;ψ ` N : A ; e2 in D2 (2)

Γ;ψ ` M N : B ; e1.app(e2) in D1 ∪ D2

Suppose D ⊇ D1 ∪ D2 ∪ G. Applying the induction hypothesis to (1), we have that D1 ∪ G is
valid, and E `D e1 : (A → B)?. Applying the induction hypothesis to (2), we have that D2∪G
is valid, and E `D e2 : A?. For part (a) of the theorem, we use the fact (proof omitted) that if
both D1∪G and D2∪G are valid (for disjoint D1 and D2), then so is D1∪D2∪G. For part (b),
the translation on types gives (A → B)? = Arrow<A?,B?>. Then we can use rule (ty-meth)
to obtain

E `D e1 : Arrow<A?,B?> E `D e2 : A? mtypeD(Arrow<A?,B?>.app) = <>A? → B?

E `D e1.app(e2) : B?

as required.

Case (tr-tyapp)

We have a derivation that ends with the rule
Γ;ψ ` M : ∀X .B ; e in D0

Γ;ψ ` M A : [A/X ]B ; e.tyapp<A?>() in D0

Applying the induction hypothesis to the premise of this rule, we have E `D e : (∀X .B)?.
From the translation on polymorphic types given in Figure 4 we have (∀X .B)? = All(Y )U<T>

where the X -lifting of B? is 〈(Y )U ,T 〉. The definition of All types gives us

mtypeD(All(Y )U<T>.tyapp) = 〈X 〉() → [T/Y ]U
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16 A. J. KENNEDY AND D. SYME

Then from Definition 1 (Lifting) we know that [T/Y ]U = B?. Finally, we can apply typing
rule (ty-meth) to obtain a derivation of

E `D e.tyapp<A?>() : [A?/X ]B?

and using Lemma 2 we obtain the required result.

Case (tr-abs)

We have a derivation that ends with the rule

Γ ] ψ; y(x :A):B ` M : B ; e in D1 (1)
Γ;ψ ` x : A ; e in {} (2)

Γ;ψ ` rec y(x :A):B .M : A → B ; new C<X >(e) in {C 7→ cd} ∪ D1

Γ ] ψ = X , x :A
C 6∈ dom(D1) and cd =
class C<X > : (A → B)? {

A
?

x;
public override B? app(A? x) { return e; } }

(3)

For part (a) of the theorem, consider E′ = {X , x :A?, this:C<X >} and Γ′ = Γ ] ψ and
ψ′ = y(x :A):B and D′ = {C 7→ cd} ∪ D1 ∪ G. Clearly we have

Γ′;ψ′ ` x : A ; x in {} and E′ `D′
x : A? by (ty-var)

Γ′;ψ′ ` y : A → B ; this in {} and E′ `D′
this : (A → B)? by (ty-sub)

Γ′;ψ′ ` x : A ; this.x in {} and E′ `D′
this.x : A

?
by (ty-fld)

which fulfils the assumptions required to apply the induction hypothesis to (1), to get
E′ `D′

e : B?. Together with the fact that mtypeD′(Arrow<A?,B?>.app) = <>A? → B?

this gives us method validity for app in (3) (see rules in Figure 2) and class validity for cd
then follows.

For part (b), from (2) and assumptions on E and D we have E `D e : A
?
. We can then apply

typing rules (ty-new) and (ty-sub) to obtain E `D new C<X >(e) : (A → B)? as required.

Case (tr-tyabs)

We have a derivation ending with the rule

X ,Γ ] ψ; • ` M : A ; e in D1 (1)
Γ;ψ ` x : A ; e in {} (2)

Γ;ψ ` ΛX .M : ∀X .A ; new C<X >(e) in {C 7→ cd} ∪ D1

Γ ] ψ = X , x :A
C 6∈ dom(D1) and cd =
class C<X > : (∀X .A)? {

A
?

x;
public override A? tyapp<X >() { return e;} }

(3)
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Global class definitions:

class Arrow<X,Y> { public virtual Y app(X x) { return this.app(x); } }
class All { public virtual object tyapp<X>() { return this.tyapp<X>(); } }

Types:
X ? = X

(A → B)? = Arrow<A?,B?>
(∀X .A)? = All

Terms:
Γ;ψ ` M : ∀X .B ; e in D

Γ;ψ ` M A : [A/X ]B ; (([A/X ]B)?)(e.tyapp<A?>()) in D

Figure 6. Partial type-preserving translation

For part (a) of the theorem, consider E′ = {X ,X , this:C<X >} and Γ′ = X ,Γ]ψ and ψ′ = •
and D′ = {C 7→ cd} ∪ D1 ∪ G. Clearly we have

Γ′;ψ′ ` x : A ; this.x in {} and E′ `D′
this.x : A

?
by (ty-fld)

which fulfils the assumptions required to apply the induction hypothesis to (1), to get
E′ `D′

e : A?. Together with the fact that mtypeD′((∀X .A)?.tyapp) = <X >() → A? this
gives us method validity for tyapp in (3) and class validity for cd then follows.

For part (b), from (2) and assumptions on E and D we have E `D e : A
?
. We then apply

typing rules (ty-new) and (ty-sub) to obtain E `D new C<X >(e) : (∀X .A)? as required. 2

This is a rather general formulation of type preservation; specializing to closed terms
produces a more direct statement.

Corollary 1 (Type preservation for closed terms) If ` M : A ; e in D then D ∪ G is a
valid class table and `D∪G e : A?.

4.7. A partial type-preserving translation

The translation above assumes the existence of an infinite collection of All classes. If we wished
to compile System F to C], we would instead generate such classes on demand. However, this
breaks separate compilation; or to put it another way, the translation is not compositional.
For example, consider separately translating the terms

f = λx :(∀X .X → X ).x AV
and g = ΛX .λx :X .x

In System F, f can be applied to g, but separate translation would generate two distinct classes
for the type ∀X .X → X and so the translation of f g would be ill-typed.
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18 A. J. KENNEDY AND D. SYME

Syntax:
(expression) e ::= . . . | (T)e

Typing:
E ` e : T

E ` (U )e : U

Evaluation:
e ⇓ new I (v) I <: T

(T)e ⇓ new I (v)

Figure 7. Downcasts for C] minor

Compositionality and separate compilation can be attained if one is willing to sacrifice
full type preservation. Figure 6 presents changes to the translation that retains the structure
of function types but represents all polymorphic types by the same All class, relying on a
runtime-checked type-cast operation after type application. The syntax and semantics of this
cast construct are formalized in Figure 7. Note that “bad” casts simply fail to evaluate; all
casts introduced by the translation will succeed.

This new translation on types has the property that if A = B then A? = B? but not the
converse, as witnessed by any pair of distinct System F ∀-types.

5. Semantic soundness

In addition to type preservation we would also like to know that it is sound semantically: that
it preserves observable behaviour. For our variant of System F, we take observable behaviour
to be the convergence of closed terms. (If we added constants to the language then evaluation
to a literal value could be taken as observation instead; but convergence is enough.) For the
translation to preserve behaviour means that if M translates to e then M ⇓ iff e ⇓.

Note that the translation is complex enough that translation does not commute with
evaluation, even disregarding choice of names for classes. That is to say, if M translates to
e and M ⇓ V and e ⇓ v then it is not necessarily true that V translates to v . Consider,
for example, the term (ΛX .λx :X .λy :X .x )AV . If this term is translated into C] minor it
evaluates to a value of the form new C<A?>(v) but the translation of the evaluated System F
term λy :A.V has the form new C ′<>().

We prove semantic soundness in two stages. First we recast the semantics of System F in
terms of environments and closure values instead of substitutions, and prove that this semantics
is equivalent to the original one. Then we show that under the environment-style semantics,
translation does commute with evaluation, given an appropriate definition of translation for
closure values. Combining these two results applied to convergence behaviour of closed terms
gives the soundness result we desire.
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TRANSPOSING F TO C] 19

Syntax:
(closure values) γ ::= 〈ρ,V 〉
(environments) ρ ::= {X 7→ B , x :A 7→ γ}

Typing:
` γ : [B/X ]A X , x :A ` V : A

` 〈{X 7→ B , x :A 7→ γ},V 〉 : [B/X ]A

Evaluation:

(e-var)
ρ ` x ⇓e ρ(x )

(e-val)
ρ ` V ⇓e 〈ρ,V 〉

(e-tyapp)
ρ ` M ⇓e 〈ρ′,ΛX .M ′〉 X 7→ ρA, ρ′ ` M ′ ⇓e γ

ρ ` M A ⇓e γ

(e-app)
ρ ` M ⇓e 〈ρ′, rec y(x :A):B .M ′〉 ρ ` N ⇓e γ
x :A 7→ γ, y :A → B 7→ 〈ρ′, rec y(x :A):B .M ′〉, ρ′ ` M ′ ⇓e γ′

ρ ` M N ⇓e γ′

Figure 8. Environment-style semantics of System F with recursion

Figure 8 presents the new semantics. An environment ρ = {X 7→ B , x :A 7→ γ} maps type
variables to closed types and value variables to closure values; then a closure value 〈ρ,V 〉
pairs an environment with a System F value whose free type variables and free variables are
bound by the environment. Programming languages are sometimes specified in this style (see,
for example, the specification of Standard ML [11]) but the application to a polymorphic
language in the style of System F appears to be novel.

Evaluation is given by a judgment ρ ` M ⇓e γ that should be read “Under environment ρ
the term M evaluates to closure value γ”. The notation ρA, used in rule (e-tyapp), denotes
the application on A of the substitution defined by the mapping from type variables to types
present in ρ.

Theorem 4 (System F environment-style evaluation preserves typing) If X , x :A `
M : A and ` γ : [B/X ]A then {X 7→ B , x :A 7→ γ} ` M ⇓e γ implies ` γ : [B/X ]A.

Proof. Straightforward induction over the structure of the evaluation derivation. 2

To relate the environment-style semantics back to the substitution-style semantics we define
an operator [·]◦ that maps closures to closed values and maps environments to substitutions
on type variables and value variables.

〈ρ,V 〉◦ = ρ◦V
{X 7→ B , x :A 7→ γ}◦ = [B/X , γ◦/x ]
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20 A. J. KENNEDY AND D. SYME

(tr-absclos)
`D γ ; v X , x :A; y(x :A):B ` M : B ; e in D′ D′ ⊆ D

`D 〈{X 7→ B , x :A 7→ γ}, rec y(x :A):B .M 〉 ; new C<B
?
>(v)

D(C ) =
class C<X > : (A → B)? {

A
?

x;
public C(A

?
x) { this.x = x;}

public override B? app(A? x) { return e; }
}

(tr-tyabsclos)
`D γ ; v X ,X , x :A; • ` M : A ; e in D′ D′ ⊆ D

`D 〈{X 7→ B , x :A 7→ γ},ΛX .M 〉 ; new C<B
?
>(v)

D(C ) =
class C<X > : (∀X .A)? {

A
?

x;
public C(A

?
x) { this.x = x;}

public override A? tyapp<X >() { return e;}
}

Figure 9. Fully type-preserving translation: closure values

Lemma 3 (Equivalence of two styles of semantics for System F) ρ ` M ⇓e γ iff
ρ◦M ⇓ γ◦.

Proof. By induction over the structure of the evaluation derivations. 2

We now show that evaluation under the environment-style semantics commutes with
translation. Translation on closure values is defined in Figure 9; the judgment `D γ ; v
should be read “Closure value γ translates to v using classes drawn from D”. Unlike the
translation on terms, classes are not generated ; this is a requirement because evaluation of C]

expressions does not create new classes.
Consider evaluation of the System F term given earlier: we have

` (ΛX .λx :X .λy :X .x )AV ⇓e 〈{X 7→ A, x :X 7→ 〈{},V 〉}, λy :X .x}〉.

Translating this closure value using the rules of Figure 9 matches the C] minor evaluation of
the translation of the original term, as we desired.

As with type preservation, the general statement of the theorem is rather complicated
because of the need for a sufficiently strong induction hypothesis. To simplify the statement
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we introduce an auxiliary judgment that relates environments for the source language to
substitutions on the target language.

Definition 2. We write ρ .DΓ;ψ S to mean “Under class table D the substitution S interprets
environment ρ for translation context Γ;ψ”. For Γ]ψ = X , x :A it holds when S(X ) = ρ(X )

?

and Γ;ψ ` x : A ; e in D and there exists v such that S(e) ⇓D v and `D ρ(x ) ; v.

The theorem is then as follows.

Theorem 5. Suppose that Γ;ψ ` M0 : A0 ; e0 in D0. Then for any valid class table
D ⊇ D0 ∪ G, environment ρ and substitution S such that ρ .DΓ;ψ S:
(1) If ρ ` M0 ⇓e γ0 then there exists v0 such that Se0 ⇓D v0 and `D γ0 ; v0.
(2) If Se0 ⇓D v0 then there exists γ0 such that ρ ` M0 ⇓e γ0 and `D γ0 ; v0.

Proof.
Part (1). By induction over the structure of the derivation of ρ ` M0 ⇓e γ0.

Case (e-var)

Let M0 = x so ρ ` x ⇓e ρ(x ). The result follows immediately from Definition 2.

Case (e-val)

Let M0 = ΛX .M so ρ ` ΛX .M ⇓e 〈ρ,ΛX .M 〉. Suppose Γ ] ψ = X , x :A. The translation
derivation must end with the following instance of (tr-tyabs):

X ,Γ ] ψ; • ` M : A ; e in D′ (1)
Γ;ψ ` x : A ; e in {} (2)

Γ;ψ ` ΛX .M : ∀X .A ; new C<X >(e) in {C 7→ cd} ∪ D′

C 6∈ dom(D′) and cd =
class C<X > : (∀X .A)? {

A
?

x;
public override A? tyapp<X >() { return e;} }

(3)

From Definition 2 we have S(new C<X >(e)) = new C<ρ(X )
?
>(S(e)). Hence by evaluation

rule (e-new), premise (2) and Definition 2 we obtain

S(e) ⇓D v

new C<ρ(X )
?
>(S(e)) ⇓D new C<ρ(X )

?
>(v)

where `D ρ(x ) ; v . Now using premise (1) and side-condition (3) from the translation
derivation we can apply translation rule (tr-tyabsclos) to get

`D ρ(x ) ; v X ,Γ ] ψ; • ` M : A ; e in D′

`D 〈ρ,ΛX .M 〉 ; new C<ρ(X )
?
>(v)

as required.
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Case (e-tyapp)

Let M0 = M A. The evaluation derivation must end with the rule

ρ ` M ⇓e 〈ρ′,ΛX .M ′〉 (1)
X 7→ ρA, ρ′ ` M ′ ⇓e γ0 (2)

ρ ` M A ⇓e γ0

and the translation derivation must end with the following instance of (tr-tyapp):

Γ;ψ ` M : ∀X .B ; e in D0

Γ;ψ ` M A : [A/X ]B ; e.tyapp<A?>() in D0

Applying the induction hypothesis to the subderivation ending with (1), there exists some v
such that S(e) ⇓D v and `D 〈ρ′,ΛX .M ′〉 ; v . Now suppose ρ′ = {X 7→ B , x :A 7→ γ}. The
closure translation must have been derived using rule (tr-tyabsclos):

`D γ ; v X ,X , x :A; • ` M ′ : A ; e ′ in D′ D′ ⊆ D

`D 〈ρ′,ΛX .M ′〉 ; new C<B
?
>(v)

D(C ) =
class C<X > : (∀X .A)? {

A
?

x;
public override A? tyapp<X >() { return e ′;} }

It is easy to see that

X 7→ ρA, ρ′ .D
X ,X ,x :A;• [(ρA)?/X ,B

?
/X , new C<B

?
>(v)/this]

so we can apply the induction hypothesis to the subderivation ending with (2) to show that
there exists some v0 such that

[(ρA)?/X ,B
?
/X , new C<B

?
>(v)/this]e ′ ⇓D v0.

and `D γ0 ; v0. Finally we can derive the evaluation of S(e.tyapp<A?>()) =
Se.tyapp<(ρA)?>() by rule (e-meth):

Se ⇓D new C<B
?
>(v)

mbodyD(C<B
?
>.tyapp<(ρA)?>) = 〈(), [(ρA)?/X ,B

?
/X ]e ′〉

[(ρA)?/X ,B
?
/X , new C<B

?
>(v)/this]e ′ ⇓D v0

Se.tyapp<(ρA)?>() ⇓D v0

as required.
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Case (e-app)

Let M0 = M N . The evaluation derivation must end with the rule

ρ ` M ⇓e 〈ρ′, rec y(x :A):B .M ′〉 (1)
ρ ` N ⇓e γ (2)
x :A 7→ γ, y :A → B 7→ 〈ρ′, rec y(x :A):B .M ′〉, ρ′ ` M ′ ⇓e γ0 (3)

ρ ` M N ⇓e γ0

and the translation derivation must end with

Γ;ψ ` M : A1 → A0 ; e in D1 Γ;ψ ` N : A1 ; e ′ in D2

Γ;ψ ` M N : A0 ; e.app(e ′) in D1 ∪ D2

Applying the induction hypothesis to the derivation ending with (1), there exists some v such
that Se ⇓D v with `D 〈ρ′, rec y(x :A):B .M ′〉 ; v . Applying the induction hypothesis to
the derivation ending with (2), there exists some v ′ such that Se ′ ⇓D v ′ with `D γ ; v ′.
Suppose ρ′ = {X 7→ B , x :A 7→ γ}. The closure translation must have been derived using rule
(tr-absclos):

`D γ ; v X , x :A; y(x :A):B ` M ′ : B ; e ′′ in D′ D′ ⊆ D

`D 〈ρ′, rec y(x :A):B .M ′〉 ; new C<B
?
>(v)

D(C ) =
class C<X > : (A → B)? {

A
?

x;
public override B? app(A? x) { return e ′′; } }

Let ρ′′ = x :A 7→ γ, y :A → B 7→ 〈ρ′, rec y(x :A):B .M ′〉, ρ′. It is easy to see that

ρ′′ .D
X ,x :A;y(x :A):B

[v ′/x , new C<B
?
>(v)/this,B

?
/X ]

so we can apply the induction hypothesis to the subderivation ending with (3) to show that
there exists some v0 such that

[v ′/x , new C<B
?
>(v)/this,B

?
/X ]e ′′ ⇓D v0

Finally consider the evaluation of S(e.app(e ′)) = Se.app(Se ′). Using rule (e-meth) we can
derive

Se ⇓D new C<B
?
>(v)

Se ′ ⇓D v ′

mbodyD(C<B
?
>.app<>) = 〈x , [B?

/X ]e ′′〉
[v ′/x , new C<B

?
>(v)/this,B

?
/X ]e ′′ ⇓D v0

Se.app(Se ′) ⇓D v0

as required.
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Part (2). By induction over the structure of the derivation of Se0 ⇓D v0.

Case (e-fld)

From the translation, we must have used rule (tr-var) on M0 = x to get e0 = this.x . By
evaluation rule (e-var) we have ρ ` x ⇓e ρ(x ). Then by Definition 2 we obtain have `D ρ(x ) ; v
and S(this.x ) ⇓D v as required.

Case (e-new)

There are three subcases.

• Suppose M0 = x and translation rule (tr-argvar) or (tr-funvar) was used. By evaluation
rule (e-var) we have ρ ` x ⇓e ρ(x ) and from Definition 2 we have `D ρ(x ) ; v0 as
required.

• Suppose M0 = ΛX .M and Γ ] ψ = X , x :A. The translation derivation ends with (tr-
tyabs):

X ,Γ ] ψ; • ` M : A ; e in D′ (1)
Γ;ψ ` x : A ; e in {} (2)

Γ;ψ ` ΛX .M : ∀X .A ; new C<X >(e) in {C 7→ cd} ∪ D′

C 6∈ dom(D′) and cd =
class C<X > : (∀X .A)? {

A
?

x;
public override A? tyapp<X >() { return e;} }

(3)

Now S(new C<X >(e)) = new C<ρ(X )
?
>(Se). Hence the evaluation derivation ends

with the following instance of (e-new):

S(e) ⇓D w

new C<ρ(X )
?
>(Se) ⇓D new C<ρ(X )

?
>(w)

Putting this together with (2) we can use Definition 2 to show `D ρ(x ) ; w . We can
then use (1) and (3) to apply translation rule (tr-tyabsclos):

`D ρ(x ) ; w X ,Γ ] ψ; • ` M : A ; e in D′

`D 〈ρ,ΛX .M 〉 ; new C<ρ(X )
?
>(w)

Finally by rule (e-val) we also have ρ ` ΛX .M ⇓e 〈ρ,ΛX .M 〉 as required.
• Suppose M0 = rec y(x :A):B .M and Γ ] ψ = X , x :A. The translation derivation ends

with (tr-abs):

Γ ] ψ; y(x :A):B ` M : B ; e in D′ (1)
Γ;ψ ` x : A ; e in {} (2)

Γ;ψ ` rec y(x :A):B .M : A → B ; new C<X >(e) in {C 7→ cd} ∪ D′

C 6∈ dom(D′) and cd =
class C<X > : (A → B)? {

A
?

x;
public override B? app(A? x) { return e; } }

(3)

Copyright c© 2003 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2003; 00:1–7
Prepared using cpeauth.cls



TRANSPOSING F TO C] 25

Now S(new C<X >(e)) = new C<ρ(X )
?
>(Se). Hence the evaluation derivation must

have ended with the following instance of (e-new):

S(e) ⇓D w

new C<ρ(X )
?
>(Se) ⇓D new C<ρ(X )

?
>(w)

Putting this together with (2) we can use Definition 2 to show `D ρ(x ) ; w . We can
then use (1) and (3) to apply translation rule (tr-absclos):

`D ρ(x ) ; w Γ ] ψ; y(x :A):B ` M : A ; e in D′

`D 〈ρ, rec y(x :A):B .M 〉 ; new C<ρ(X )
?
>(w)

Finally by rule (e-val) we also have ρ ` rec y(x :A):B .M ⇓e 〈ρ, rec y(x :A):B .M 〉 as
required.

Case (e-meth)

From translation, we must have used rule (tr-app) or rule (tr-tyapp). First consider (tr-app),
with M0 = M N :

Γ;ψ ` M : A1 → A0 ; e in D1 Γ;ψ ` N : A1 ; e ′ in D2

Γ;ψ ` M N : A0 ; e.app(e ′) in D1 ∪ D2

The evaluation derivation is as follows:
Se ⇓D new I (w) (1)
mbodyD(I .app<>) = 〈x , e ′′〉 (2)
Se ′ ⇓D v (3)
[v/x , new I (w)/this]e ′′ ⇓D v0 (4)

Se.app(Se ′) ⇓D v0

Applying the induction hypothesis to (1), there exists γ such that ρ ` M ⇓e γ and `D γ ;

new I (w). Applying the induction hypothesis to (3), there exists γ′ such that ρ ` N ⇓e γ′ and
`D γ′ ; v . Now by type preservation for System F, the closure value γ must have function
type and so have the form γ = 〈ρ′, rec y(x :A):B .M ′〉 with ρ′ = {X 7→ B , x :A 7→ γ}. The
closure translation must have been derived using with rule (tr-absclos):

`D γ ; w X , x :A; y(x :A):B ` M ′ : B ; e ′′′ in D′ D′ ⊆ D

`D 〈ρ′, rec y(x :A):B .M 〉 ; new C<B
?
>(w)

D(C ) =
class C<X > : (A → B)? {

A
?

x;
public override B? app(A? x) { return e ′′′; } }

So I = C<B
?
> and to fit premise (2) above e ′′ = [B

?
/X ]e ′′′. Now let Γ′ = X , x :A and

ψ′ = y(x :A):B . Then we have

ρ′, x :A 7→ γ′, y :A → B 7→ γ .DΓ′;ψ′ [v/x , new I (w)/this,B
?
/X ]
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Using this to apply the induction hypothesis to derivation (4) there must exist γ0 such that
ρ′, x :A 7→ γ′, y :A → B 7→ γ ` M ′ ⇓e γ0 and `D γ0 ; v0. Then we can derive the required
result using evaluation rule (e-app):

ρ ` M ⇓e γ ρ ` N ⇓e γ′ x :A 7→ γ′, y :A → B 7→ γ ` M ′ ⇓e γ0

ρ ` M N ⇓e γ0

Now the second possibility for case (e-meth) is that we used the translation rule (tr-tyapp)
with M0 = M A:

Γ;ψ ` M : ∀X .B ; e in D

Γ;ψ ` M A : [A/X ]B ; e.tyapp<A?>() in D
We have S(e.tyapp<A?>()) = Se.tyapp<(ρA)?>(). The evaluation derivation is as follows:

Se ⇓D new I (w) (1)
mbodyD(I .tyapp<(ρA)?>) = 〈(), e ′〉 (2)
[new I (w)/this]e ′ ⇓D v0 (3)

Se.tyapp<(ρA)?>() ⇓D v0

Applying the induction hypothesis to (1) there exists γ such that ρ ` M ⇓e γ and
`D γ ; new I (w). By type preservation for System F evaluation we know that γ must
be a type abstraction closure with the form γ = 〈ρ′,ΛX .M ′〉 where ρ′ = {X 7→ B , x :A 7→ γ}.
The closure translation must have been derived using with rule (tr-tyabsclos):

`D γ ; v X ,X , x :A; • ` M ′ : A ; e ′′ in D′ D′ ⊆ D

`D 〈{X 7→ B , x :A 7→ γ},ΛX .M ′〉 ; new C<B
?
>(v)

D(C ) =
class C<X > : (∀X .A)? {

A
?

x;
public override A? tyapp<X >() { return e ′′;} }

In premise (2) above we must have e ′ = [(ρA)?/X ,B
?
/X ]e ′′. Now let Γ′ = X ,X , x :A. Hence

X 7→ ρA, ρ′ .DΓ′;• [new I (w)/this,B
?
/X ]

so we can apply the induction hypothesis to (3) to show that there exists γ0 such that
X 7→ ρA, ρ′ ` M ′ ⇓e γ0 and `D γ0 ; v0. Then we can derive the required result using
evaluation rule (e-tyapp):

ρ ` M ⇓e 〈ρ′,ΛX .M ′〉 X 7→ ρA, ρ′ ` M ′ ⇓e γ0

ρ ` M A ⇓e γ0

2

Specializing to convergence behaviour of closed terms produces the following corollary.

Corollary 2. If ` M : A ; e in D then M ⇓e iff e ⇓D∪G.

Putting this together with Lemma 3 applied to closed terms gives us semantic soundness.

Theorem 6 (Semantic soundness) If ` M : A ; e in D then M ⇓ iff e ⇓D∪G.
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6. Discussion

We have shown how the combination of parameterized classes and polymorphic methods in
object-oriented languages provides enough power to accurately encode System F. This helps to
characterize why the polymorphic virtual methods present in these languages lead to systems
that are more expressive than both core ML and systems with only polymorphic classes.

We have shown that the translation preserves types and convergence behaviour. It is
interesting to consider a much stronger property than semantic soundness: full abstraction.
A translation is fully abstract if source expressions that cannot be distinguished by any
source context, that is, are contextually equivalent, are mapped to target expressions that
are contextually equivalent. It is conjectured that our translation is fully abstract.

Of course, many features of the full C] language destroy full abstraction. One such is run-time
casts: the (T)e construct considered in Figure 7. By using casts it is possible to look inside
closures. This is easy to fix by introducing a private access qualifier on fields. But run-time
casts also allow types to be observed after translation, breaking the purely-parametric nature
of polymorphism in System F. For example, given distinct types A and B and values V :A
and W :B consider the contextually-equivalent System F terms λx :(∀X .X → unit).x AV and
λx :(∀X .X → unit).x B W , where unit = ∀X .X → X . Their translations into C] minor with
downcasts can be distinguished by passing their app methods an object whose tyapp method
returns a closure object that checks the type of its argument against A before returning.

The distinctiveness of polymorphic virtual methods shows up in implementations. First,
observe that such methods cannot be implemented by compile-time monomorphisation or
expansion, since it is not possible to determine all instantiations at compile-time. For this
reason, C++ template methods are not permitted to be declared virtual [18, §13.6.2].
Similarly, the CLR implementation of polymorphic virtual methods [10] involves execution-
time code generation, contrasting with the load-time code generation that is sufficient to
support non-virtual polymorphic methods.

Much of our translation is concerned with closure conversion. Two other works are relevant
here. Harper et al. have formalized closure conversion for a typed functional language [12].
Their correctness proof uses the method of logical relations, but this technique does not
scale well when adding language features such as recursion and impredicative System-F-style
polymorphism, both of which their language lacks. On the other hand, logical relations do
adapt well to complicated translation schemes. We were able to use direct syntactic techniques
in our proof of correctness because the source and target terms match up surprisingly well,
despite the “distance” between System F and C]. The use of environment-style semantics
for System F was the crucial component here, as it captured the notion of a ‘closure’ in the
semantics itself and thereby ensured that the translation commuted with evaluation.

Glew has formalized source-to-source closure conversion for an object calculus that supports
nested definitions of methods [5]. The language is very different from C] in that it does not
have classes, and type equivalence is by structure, not name. Glew proves a full abstraction
result for the translation with respect to contextual equivalence.

Finally, Igarashi and Pierce have considered Java’s inner classes feature [7], whereby a classes
can be nested and refer to instance fields of enclosing classes. They formalize the translating
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28 A. J. KENNEDY AND D. SYME

away of inner classes, a process akin to closure conversion, and prove correctness by matching
reductions in the source to reductions in the target.

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their comments and to Nick Benton, Gavin Bierman,
Luca Cardelli and Claudio Russo for discussions on this work.

REFERENCES

1. G.M. Bierman, M.J. Parkinson, and A.M. Pitts. An imperative core calculus for Java and Java with
effects. Technical Report 563, University of Cambridge Computer Laboratory, April 2003.

2. G. Bracha, N. Cohen, C. Kemper, S. Marx, M. Odersky, S. Panitz, D. Stoutamire, K. Thorup, and
P. Wadler. JSR-000014: Adding Generics to the JavaTM Programming Language, April 2001. See
http://jcp.org/aboutJava/communityprocess/review/jsr014/.

3. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past: Adding
genericity to the Java programming language. In Object-Oriented Programming: Systems, Languages,
Applications (OOPSLA). ACM, October 1998.

4. R. Cartwright and G. L. Steele. Compatible genericity with run-time types for the Java programming
language. In Object-Oriented Programming: Systems, Languages, Applications (OOPSLA), Vancouver,
October 1998. ACM.

5. N. Glew. Object closure conversion. In 3rd International Workshop on Higher Order Operational
Techniques in Semantics (HOOTS), September 1999.

6. A. Hejlsberg. The C] programming language. Invited talk at Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 2002.

7. A. Igarashi and B. C. Pierce. On inner classes. Information and Computation, 177(1):56–89, August
2002.

8. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java and GJ.
In Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), 1999.

9. M. P. Jones. First-class polymorphism with type inference. In ACM Symposium on Principles of
Programming Languages, pages 483–496. ACM, 1997.

10. A. J. Kennedy and D. Syme. Design and implementation of generics for the .NET Common Language
Runtime. In Programming Language Design and Implementation. ACM, 2001.

11. R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard ML (Revised). MIT
Press, 1997.

12. Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In ACM Symposium on Principles
of Programming Languages, pages 271–283, St. Petersburg, FL, January 1996.
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