
Back and Forth: Prophecy Variables for Static
Verification of Concurrent Programs

October 13, 2009

Technical Report
MSR-TR-2009-142

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052

This page intentionally left blank.

1 2009/10/31

Back and Forth: Prophecy Variables for
Static Verification of Concurrent Programs

Shaz Qadeer
Microsoft Research

qadeer@microsoft.com

Ali Sezgin Serdar Tasiran
Koc University

asezgin@ku.edu.tr stasiran@ku.edu.tr

Abstract
Several static proof systems have been developed over the years
for verifying shared-memory multithreaded programs. These proof
systems make use of auxiliary variables to express mutual exclu-
sion or non-interference among shared variable accesses. Typi-
cally, the values of these variables summarize the past of the pro-
gram execution; consequently, they are known as history variables.
Prophecy variables, on the other hand, are the temporal dualof his-
tory variables and their values summarize the future of the program
execution. In this paper, we show that prophecy variables are use-
ful for locally constructing proofs of systems with optimistic con-
currency. To enable the fullest use of prophecy variables inproof
construction, we introduce tressa annotations, as the dualof the
well-known assert annotations. A tressa claim states a condition
for reverse reachability from an end state of the program, much
like an assert claim states a condition for forward reachability from
the initial state of the program.

We present the proof rules and the notion of correctness of a
program for two-way reasoning in a static setting: forward in time
for assert claims, backward in time for tressa claims. Even though
the interaction between the two is non-trivial, the formalization is
intuitive and accessible. We demonstrate how to verify implemen-
tations based on optimistic concurrency which is a programming
paradigm that allows conflicts to be handled after they occur. We
have incorporated our proof rules into the QED verifier and have
used our implementation to verify a handful of small but sophis-
ticated algorithms. Our experience shows that the proof steps and
annotations follow closely the intuition of the programmer, making
the proof itself a natural extension of implementation.

1. Introduction
The main challenge in proving a concurrent program is reasoning
about interactions among threads on the shared memory. In a proof
based on validating assertions that specify a program’s desired be-
havior, one has to consider all possible interleavings of conflict-
ing operations. Most existing methods verify programs at the finest
level of granularity of atomic actions: only actions guaranteed to be
executed without interruption by the runtime are considered to be
atomic. At this level of granularity, there are a large number of pos-
sible interleavings. Proving the program at this level requires one to

[Copyright notice will appear here once ’preprint’ option is removed.]

consider concurrency- and data-related properties at the same time
and this results in complicated proofs.

We have recently developed a static verification method called
QED [1] that alleviates this complexity. A proof in QED consists
of rewriting the input program iteratively using abstraction and
reduction so that, in the limit, one arrives at a program thatcan
be verified by sequential reasoning methods. Reduction, dueto [2],
creates coarse-grained atomic statements from fine-grained ones.
Whether statements can be thus combined depends on theirmover
types. Abstraction of a statement allows us to reason that it does
not interfere with other atomic statements. Adding assertions over
auxiliary history variables or relaxing transitions are two main
abstraction methods. We will have more to say on these in Sec.2.
In short, though, as we shall see, abstraction leads to reduction
which in turn may enable more abstraction. This proof methodis
supported by a tool also called QED. The QED tool provides a set
of intuitive, concise and machine checked proof commands.

For sample implementations based on optimistic concurrency,
our experience with QED suggests that expressing facts about con-
currency control mechanisms in the form of assertions over his-
tory variables is unnatural and counter-intuitive. Correct operation
of optimistic concurrency implementations, used in the implemen-
tation of non-blocking data structures or Software Transactional
Memories (STM’s) [3], do not depend on exclusive access to shared
variables. The idea is to carry out computationas if no interference
will occur and then, prior to termination, check whether this as-
sumption is correct. If it is, then simplycommit; if not, roll-back
any visible global change and, optionally, re-start. In this case, it is
not the prefix of the execution that leads to the statement that sum-
marizes its interference, but rather, the suffix of the execution that
leads from the statement.

Prophecy variables, the temporal dual of history variables, are
ideal for this kind of reasoning. They are used to select at a state
q a subset of all execution segments fromq onwards. To the best
of our knowledge, research on using prophecy variables so far has
concentrated on execution-based refinement proofs (e.g., [4]). The
auxiliary variables allowed in static proof systems are exclusively
history variables.

In this paper, we incorporate prophecy variables as a new class
of auxiliary variables into the static QED proof system for concur-
rent programs. Along with prophecy variables, in order to achieve
their fullest use in proof construction, we introduce tressa anno-
tations, as the dual of the well-known assert annotations. Atressa
claim states a condition for reverse reachability from an end state
of the program, much like an assert claim states a condition for for-
ward reachability from the initial state of the program. Annotating
actions with prophecy variables allows information about the rest
of the execution to be used in deciding the mover types of actions
which are checked locally. A tressa claim stating that an action fol-
lowed by another action cannot lead to a final state of the program

2 2009/10/31

because it contradicts with the current value of a prophecy variable
becomes very useful in locally constructing proofs of systems with
optimistic concurrency.

We present the proof rules and the notion of correctness of a
program for two-way reasoning in a static setting: forward in time
for assert claims, backward in time for tressa claims. Building on
our initial work [1], we reformulate simulation and mover defini-
tions, valid for both forward and backward reasoning. Even though
the interaction between the two is non-trivial, the formalization is
intuitive and accessible. We demonstrate how to verify a handful
of small but sophisticated algorithms based on optimistic concur-
rency.

Related Work.Prophecy variables were introduced in [5] in the
context of refinement proofs. They were used to define refinement
mappings between specification and its implementation in cases
where the mapping between abstract and concrete states depends on
the rest of the execution. Subsequent work on prophecy variables
were almost exclusively on refinement checking (e.g., [4]).Static
verification is a well-known technique for concurrent program ver-
ification (e.g., [6, 7, 8]). A variety of techniques have beenproposed
for static verification of concurrent programs (e.g., [6, 7,9, 8]).
Some work on static verification use reduction as the key ingredient
(e.g., [10, 11, 12]). However, the only work on prophecy variables
in static verification we know of is by Marcus and Pnueli [13].In
the context of a static method for proving refinement betweentwo
transition systems, the authors present two sound ways of augment-
ing a sequential program with assignments that involve temporal
logic formulas with future operators. Their soundness condition for
annotating programs with auxiliary variables is, as expected, sim-
ilar to ours. In contrast, our proof system targets concurrent soft-
ware and the verification of assertions rather than refinement, and
uses atomicity as a key reasoning tool.

Roadmap.In the next section, we briefly highlight QED method.
We give a semi-formal description of reduction, abstraction and
how they interact. We then give an example for which the current
proof rules do not give an immediate solution. We demonstrate how
prophecy variables can help in reduction. In Sec. 4, we formalize
our framework, describing the programming language syntaxand
semantics. For ease of presentation, we only use a subset of QED.
In Sec. 5, we formalize prophecy variables, define the new mover
conditions, and state the soundness theorem. In Sec. 6, we show in
detail how to reason and use prophecy variables and tressa annota-
tions in the proof of implementations using optimistic concurrency.
We finish with concluding remarks.

2. QED- An Informal Summary
In this section, we will briefly describe the QED method (for a
detailed account, please see [1]) . This section can be skipped by
those who are familiar with QED.

2.1 Reduction, Movers, Simulation

Reduction, the starting point of QED, combines sequentially com-
posed atomic actions of appropriate mover types into a single
atomic action. Consider two sequentially composed actionss1; s2.
Now imagine that in any execution,s1 executed by a threadt at
stateq followed by an arbitrary actions′ executed by a different
threadu reaches stateq′ implies that from the stateq, s′ executed
by u followed bys1 executed byt reaches the stateq′; that is, from
the same initial state, the same end state remains reachableafter
swapping the order of execution of the two actions. In such a case,
s1 is a right-mover, because, in any execution, it can commute to
the right of any other statement without changing the end state. It is
then sound to treats1; s2 as a single atomic action. The mover type
of an action depends on the existence ofconflictingactions: pairs of
actions accessing the same shared variable with at least oneof them

... ...
acq(lock); //sets lock==tid atomic { acq(lock);

assert lock==tid; }
g := x; atomic { assert lock==tid;

g := x; }

rel(lock); //sets lock==0 atomic { assert lock==tid;
rel(lock); }

... ...

Figure 1. Enabling commuting by adding assertions.

writing to it. Actions with only thread-local accesses are both left
and right movers. Lock acquires are right-movers, since they can-
not be immediately followed by an acquire or release of the same
lock by another thread. Similarly, lock releases are left-movers.

The QED method improves this idea of reduction by relaxing
the requirement that the same end state be reached from every
initial state. This is formalized as a simulation relation:as long as
s1 followed by s′ is simulated bys′ followed by s1, for arbitrary
s′, actions1 is a right-mover. The simulation relation used by QED
is illustrated below.

qi

q

q

qf : e1

qf : e
′
1

fail:e′2 fail:e′3

?

T1:s1

T2:s2

T2:s2

T1:s1

T
2
:s2

T
1
:s1

The topmost line represents a pair of actions executed one after
the other: from stateq, s1 by T1 followed by s2 by T2 reaches
stateqf . We say thatT1:s1,T2:s2 is simulated byT2:s2,T1:s1 if
one of the transition sequences depicted in the bottom exists.

(i) The sequencee′
1 corresponds to the regular simulation (com-

mutativity) condition: starting from the same starting state q,
the same end stateqf is reached after swapping the order of
execution of the two actions.

In the remaining cases, the transition sequenceT1:s1,T2:s2 is
simulated by assertion failures.

(ii) The sequencee′
2 corresponds to the case where executings2 at

q leads to an assertion violation, makingq a failing state.

(iii) Similarly, e
′
3 is the sequence which ends with an assertion

violation after executings1.

With this definition of simulation, QED transformations areguar-
anteed to preserve (and potentially increase) assertion violations in
programs.

In a typical QED proof, at the final proof state, when atomic
blocks are relatively large, all assertions are discharged. This means
that, in the simulation check above, cases (ii) and (iii) were in fact
vacuous. Put differently, later in the proof we realize (show) that,
for statesq reachable from an initial state of the program, case (i)
of the simulation condition always applies. Assertion annotations
make this information locally available to actionss1 and s2 and
enable its use for mover checks earlier in the proof. For a proof of
soundness of this approach, see [1].

2.2 Abstraction and Reduction

In QED, reduction is combined with abstraction resulting ina pow-
erful proof methodology as explained next. QED decides on the
mover type of each action by local checks. Each action is compared
with every other action of the program, assuming they are executed
by different threads at any state satisfying an invariant. In order
to make mover checks local and efficient (linear in the numberof
program actions), this approach is forced to disregard all execution-
specific information. For instance, even though lock-protected ac-

3 2009/10/31

... ...
t := g; // t local, g global havoc t;

CAS(g,t,t+1); CAS(g,t,t+1);
... ...

Figure 2. Atomic increment using Compare-And-Swap (CAS).

cesses are provably both-movers, at first, QED fails to assign any
mover type to such accesses. Two types of abstraction are QED’s
mechanisms for providing such information to mover checks:anno-
tating statements with assertions and relaxing transitions by replac-
ing accesses to global variables with non-deterministic thread-local
reads or writes.

Fig 1 presents an example of abstraction through assertions. The
code on the left is the original snippet, where the global variableg
is updated with the value of the local variablex. The update ac-
tion is tagged as a non-mover because it apparently conflictswith
itself: the end value ofg may depends on the order of threads ex-
ecuting this action. However, this action is protected by a lock, so
conflicting accesses tog cannot be concurrent – a fact expressed
by annotating this action with an assertion as in the transformed
code on the right in Fig. 1. Lettid be the variable that holds the
unique thread identifier of each thread. Then clearly, two consecu-
tive updates by different threads will always end with an assertion
violation, proving that the update action is a both-mover. That these
assertions fail in mover check does not imply that we have added
extra failing behaviors to the original program. The assertions are
our way of telling QED that two updates tog are not simultane-
ously enabled and they are left unproved as proof obligations to be
eventually discharged, once all three actions are combinedinto a
single atomic block.

Fig. 2 presents an example of relaxing transitions by read ab-
straction. First the value of the global variableg is read to the local
variablet and then an atomic compare-and-swap (CAS) instruc-
tion attempts to incrementg. Thus, this code executed by a thread
t either atomically incrementsg or leaves it unchanged if aCAS in-
struction by another threadt ′ is interleaved between the read ofg
and theCAS by t . The read ofg (by t) will be tagged as a non-mover
because it fails to commute to the right of aCAS action executed by
a different thread (t ′). But, in this interference scenario,t does not
updateg and the value oft is irrelevant. We express this fact by
abstracting the read ofg. havoc t; assigns a non-deterministic
value tot.Note that all executions of the original program (that
may succeed or fail in incrementingg) are subsumed by the ab-
stracted program, and the set of possible end values forg remains
the same after this abstraction. The abstracted read is now tagged
as a both-mover and can be combined with theCAS action into a
single atomic block.

Copy(fr: Obj, to: Obj){

action SS(fr):

atomic{ version := fr.ver; value := fr.val;}

action ConfNWrt(fr, to):

atomic{ if (version == fr.ver)

{to.val := value; to.ver := to.ver + 1;}

}

}

Wrt(to: Obj, newVal: int){

atomic{ to.val := newVal; to.ver := to.ver + 1;}

}

Figure 3. TheCopy procedure consisting of two atomic actions.

3. Motivation
In this section, we present an example which is interesting because
it contains a pattern typical to optimistic concurrency control, and
is difficult to handle with the current set of QED proof rules.We
show how prophecy variables and tressa claims provide a simple
proof of atomicity.

3.1 Atomic Copy: First Proof Attempt

The purpose theCopy procedure (Fig. 3) is to copyfr.value to
to.value atomically. If Copy does not succeed, it leavesy un-
modified. One can imagineCopy to be the body of a loop that
is iterated until the atomic copy operation succeeds. In this ex-
ample, objects have version numbers (.version) that get incre-
mented atomically when the object’svalue field is modified.Copy
consists of two atomic actions. The firstSS(fr) takes a snapshot
of the objectfr into the local variablesversion andvalue. The
second,ConfNWrt(fr,to), confirms that the version number has
not changed since the snapshot was taken and copiesfr.value to
to.value. If the version number has changed, it leavesto unmod-
ified. Wrt(to,newVal) atomically writesnewVal to to.value.

T1 T2

-------- ---------------- --------

SS(x)

Wrt(x)

ConfNWrt(x y)ConfNWrt(x, y)

Figure 4. A thread interleaving with a conflict.

From the caller’s point of view,Copy is atomic, because, when
it succeeds in writing to the objectto, the version number check
guarantees thatto has not been written to by another thread be-
tweenSS(x) andConfNWrt(x). WhenCopy fails, to is not mod-
ified. In a QED-style static proof, the atomicity ofCopy is shown
by attempting to show that eitherSS(fr) is a right-mover, or that
ConfNWrt(fr,to) is a left-mover. In the presence of concurrent
Write’s by other threads,SS(fr) andConfNWrt(fr,to) are not
movers as they stand as the interleaving in Figure 4 shows. One
must abstract one of these actions to make it into a mover without
changing whatCopy is meant to accomplish.

Copy(fr: Obj, to: Obj){

action SS_Abs(fr):

atomic{ havoc version, value; }

action ConfNWrt(fr, to):

atomic{ if (version == fr.ver)

{to.val := value; to.ver := to.ver + 1;}

}

}

T1 T2

-------- --------

Wrt(x)

SS_Abs(x)

ConfNWrt(x, y)

Figure 5. The initial proof attempt abstractsSS to SS abs. This
interleaving contains no conflicts, but the final value ofy.val is
arbitrary.

SinceConfNWrt writes toto.value, we avoid abstracting this
action. We observe that, in the interleaving shown in Figure4, the
values ofversion and value are not used byConfNWrt. Our

4 2009/10/31

first proof attempt is therefore to abstractSS(fr) to SS Abs(fr)
(Fig. 5). The latter does not depend onfr, thus, does not conflict
with any Wrt action. However, this turns out to be too much ab-
straction. In the interleaving in Figure 5, an arbitrary value is writ-
ten toy.val.

T1 T2

-------- --------

// Want to abstract SS(x) iff p == true

SS_Proph(x)

Wrt(x)

ConfNWrt(x, y)

Prophecy variable p indicates

whether version == x.ver at this point

Figure 6. The prophecy variablep
.

3.2 Introducing Prophecy Variables toCopy

We would like to constrain the amount of abstraction we ap-
ply to SS(x). We would likeversion and value to have non-
deterministically-chosen values only in executions like the one in
Fig. 4, in which aWrt by another thread interferes withCopy and
the atomic copy attempt fails. Introducing a prophecy variable p
(local to theCopy procedure) allows us to do just that (Fig 6.)

p has the valuetrue iff no interfering Wrt(x) occurs be-
tween taking a snapshot ofx and confirmingx.ver == ver.
Put differently,p encapsulates how future thread interleaving non-
determinism is resolved in an execution:p == true iff ConfNWrt
finds thatversion == x.ver. This is accomplished by “reverse-
assignment” of the valuetrue to p (denoted byp =: true)
exactly whenversion == x.ver, as shown in Figure 7.p =:
true; is shorthand for the actionatomic{ assume p == true;
havoc p;}. We refer top =: true as reverse assignment be-
cause, if we imagine that we are going backwards in time along
a given execution, this action has the effect of constraining earlier
(between it and program start) values ofp to true. If we think
forward in time, initially the value of the prophecy variable is non-
deterministic and guesses whetherversion == x.ver will be the
case later whenConfNWrt executes. The execution ofConfNWrt
is blocked if the guess expressed by the prophecy variable does not
match reality.

Usingp, we abstract the snapshot action only in desired execu-
tions, i.e., whenp is false, as shown in the actionSS Proph in
Fig. 7.

3.3 Tressa Annotations

Recall that in QED proofs, assertions are used to annotate actions
with information about execution history in order to removeappar-
ent conflicts between actions (See abstraction through assertions in
Section 2.) Annotating actions with assertions expressed in terms
of prophecy variables is helpful in enabling further reduction in a
similar way. However, assertions that refer to prophecy variables
cannot be discharged by forward reasoning in time. To distinguish
assertions that are discharged by backward reasoning from afinal
state of the program, we introduce the tressa construct.SS Proph
in Fig. 7 makes use of tressa statements. Similar to assertions, an-
notating an action with a tressa is always a valid abstraction.

In theCopy example in Fig. 7, the tressa claim inSS Proph(x)
states that if the prophecy variable is true but the value ofversion
is not up to date, then this execution will eventually block and
not reach a final state. With this tressa annotation,SS Proph(x)
becomes a right mover as illustrated in Fig. 8. This makes theentire
Copy procedure atomic, and the tressa annotation is discharged by
a simple sequential analysis.

Copy(fr: Obj, to: Obj){

action SS_Proph(fr):

atomic{ if (p) {version := fr.ver; value := fr.val;}

else { havoc version, value;}

tressa p ==> (version >= ver);

}

action ConfNWrt(fr, to):

atomic{ if (version == fr.ver) {

p =: true;

to.val := value; to.ver := to.ver + 1;

} else {

p =: false;

}

}

}

Figure 7. The transformedCopy procedure makes use of a
prophecy variable and a tressa annotation.

The remainder of this section provides a detailed explanation of
how tressa annotations make mover checks pass.

e1: q0

e
′
1: q0

q

q qf

fail:e′3 fail:e′2

T1:s1

T2:s2

T2:s2

T1:s1

?

T
2 :s

2

T
1 :s

1

Here,qf represents a state in which all threads have reached the
end of the code they are executing. Similarly to the mover check in
the presence of assert annotations (Section 2.1), in the presence of
tressa’s, there are three ways a mover check to pass:

(i) Transition sequence starting ate′1: qf is reached starting from
q0. This is the conventional simulation definition.

(ii) e′2: The tressa predicate ofs1 fails.

(iii) e′3: The tressa predicate ofs2 fails.

With this definition of simulation in the presence of tressa’s, QED
transformations are guaranteed to preserve (and potentially in-
crease) tressa violations in programs.

Again similarly to the case with assertions, the goal of a QED
proof is to reach a proof state in which atomic blocks are large
enough to discharge all tressa’s. Intuitively, this means later proof
steps allow us to conclude that, in this mover check, cases (ii) and
(iii) were vacuous, i.e., for statesq starting from which each thread
can run its code to completion, it is not possible to violate the tressa
predicates ofs1 ands2. Put differently, executions starting from a
stateq that violates the tressa predicates will eventually get stuck.
The tressa annotations allow us to use this information locally for
mover checks earlier in the proof.

In the Copy example, when the prophecy variablep is false,
SS Proph(x) commutes to the right ofWrt(x) , since it is able
to assign arbitrary values toversion andvalue, as shown in the
first part of Fig. 8. Whenp is true, SS Proph(x) cannot be im-
mediately followed byWrt(x). The tressa annotation inp is able
to express this fact locally. Ifp == true, from any states2 that
can be reached by executingSS Proph(x) immediately followed
by Wrt(x), the program eventually blocks. All suchs2 violate the
tressa annotation ofSS Proph(x). The second part of Fig. 8 illus-
trates the case where the tressa on the left-hand side of the simu-
lation checkSS Proph(x).Wrt(x) �Wrt(x).SS Proph(x) fails.

5 2009/10/31

p == falseSS_Proph(x):havoc version, value

Wrt(x)

Wrt(x)
SS_Proph(x):havoc version, value

p == true
SS_Proph(x):tressa(version>=x.ver)

Wrt(x)
SS_Proph(x):tressa(version>=x.ver)

p == true
SS_Proph(x):tressa(version>=x.ver)

Wrt(x)

Figure 8. Why SS Proph(x) commutes to the right ofWrt(x),
i.e., SS Proph(x).Wrt(x) � Wrt(x).SS Proph(x). In each fig-
ure, the bottom and top parts of the diamond correspond to theleft-
and right-hand sides of this simulation check, respectively.

In the third part of the figure, this tressa succeeds, but the tressa on
the right-hand side still fails. Thus,SS Proph(x) commutes to the
right of Wrt(x).

4. Formalization
We start this section by formalizing the programming environment
by giving the syntax and operational semantics of a simple pro-
gramming language. We then build a proof system for this program-
ming environment. The formalization given in this section closely
follows that of QED as was given in [1].

4.1 Syntax

Actions: Atomic, Compound, Nullary, Full. First, we will as-
sume that each atomic actionα is in the form

assert a; p; tressa b

We require thata, the assert predicate, (b, the tressa predicate)
be over only unprimed (primed) variables. Thetransition predicate
p is over both primed and unprimed variables. For any actionδ,
let φδ, ψδ, τδ denote its assert, tressa and transition predicates,
respectively. For instance,φα = a, ψα = b andτα = p, for α
given above.

We use sequential composition (;) choice (2) and loop ()
operators to formcompound actions. Formally, each atomic action
is a compound action and for compound actionsc1 andc2, c1;c2,
c12c2 andc	1 are also compound actions. We will represent each
sequential code segment by afull action. A full action is either the
nullary actionstop which intuitively marks the end of the code, or a
compound actionc sequentially composed with the nullary action,
c; stop. Let Atom andFull denote the set of all atomic and full
actions, respectively.

Note that, we have opted for the more intuitively appealing
pseudo-language in the sample codes given in this paper. Themean-
ing of each construct in the pseudo-language is either giveninfor-
mally or should be obvious. The language we describe here, onthe
other hand, is more suitable for formal treatment.

4.2 Semantics

Program states. A program states is a pair consisting of

↪−→⊆ Full× (Atom ∪ {λ}) × Full

A-EVAL
γ ∈ Atom

γ; c1
γ
↪−→ c1

C-LEFT
γ = λ

c12c2
γ
↪−→ c1

C-RIGHT
γ = λ

c12c2
γ
↪−→ c2

L-ITER
γ = λ

c	1
γ
↪−→ c1; c

	

1

L-SKIP
γ = λ

c	1 ; c2
γ
↪−→ c2

S-EVAL

c1
γ
↪−→ c2

c1; c3
γ
↪−→ c2; c3

Figure 9. Obtaining all possible subactions of a given full action
via the silent transformation relation,↪−→.

• a variable valuationσs that maps a thread id and a variable to
a value,

• a code mapεs that associates a thread with a full action.

We require thatσs(t, g) = σs(u, g) for all statess and thread id’s
t, u, wheneverg is a global variable. The code mapεs keeps track
of what each thread is to execute. For instance,εs(t) = c means
that at program states, the remaining part of the program to be
executed by threadt is given byc. We will give the small step
semantics for the execution of full actions below. A programstate
s is calledfinal if εs(t) = stop, for all t.

Predicates over program variables.For an assert predicatex
(over unprimed program variables), letx[t] denote the same pred-
icate in which all free occurrences oftid is replaced witht. We
say that a program states satisfiesx[t], denoted ass � x[t] or as
x[t](s), if x[t] evaluates to true when all free occurrences of each
unprimed variablev is replaced withσs(t, v), its value seen by
threadt.

Similarly, the pair of program states(s1, s2) satisfies a tran-
sition predicatep[t] (over unprimed and primed variables), de-
noted as(s1, s2) � p[t] or asp[t](s1, s2), if p[t] evaluates to true
when each unprimed variablev is replaced withσs1

(t, v) and each
primed variablev′ is replaced withσs 2

(t, v).
Finally, for a tressa predicatey (over primed program variables)

and a threadt, the program states satisfiesy[t], denoted ass ′ � y[t]
or asy[t](s ′), if y[t] evaluates to true when each primed variablev′

is replaced withσs(t, v).

Configurations. The evaluation of a full action is given in terms
of thesilent transformation relation, ↪−→, whose definition is given
in Fig. 9. Intuitively, if we imagine the execution of a full action
represented as a flowchart with an explicit control pointer denoting
what to execute next, the silent transformation relation corresponds
to advancing the control pointer over the flowchart not modifying
any program variable’s value. When this imaginary control pointer
selects a branch, it is represented by the labelλ which is called the
invisible transition. Otherwise, the label is the content of the box
over which the control pointer passes.

For full actionsc andd, and a stringγ = γ1 . . . γn overAtom∪

{λ}, we letc
γ
↪−→ d denote a sequence of silent transformations

c = c0
γ1

↪−→ c1 . . .
γn
↪−→ cn = d

A program states′ is in conf(s), theconfigurationsreachable from
program states, if, for all t, there exists some stringγt such that

εs(t)
γt
↪−→ εs′(t). Intuitively, s′ is a configuration ofs if s′ can be

obtained by moving forward the control pointer of each thread’s
program an arbitrary number of, possibly 0, steps.

Let s and s′ be program states,t be a thread id. Then,s′ is
called a(t, α)-successorof s (or s, a (t, α)-predecessor ofs′, if
the following conditions hold:

6 2009/10/31

• εs(t)
λkα
↪−−→ εs′(t), for somek ≥ 0.

• for all u 6= t, εs′(u) = εs(u),

Intuitively, s′ is a (t, α)-successor ofs if at s threadt hasα as a
possible next action ands′ is the same ass except the control flow
at t skips overα. For any threadt andγ ∈ Atoms, (t, γ) is called
a transition label.

Execution semantics. Alluding to the flowchart and control
pointer analogy given above, the execution of a program can be
seen as advancing the control pointer of each thread while mak-
ing the effect of each atomic action passed over visible to variable

valuations. Letα be an atomic action. We writes
(t,α)
−−−→ s′ if

• s′ is a(t, α)-successor ofs,

• for all u 6= t and for any local variablex,σs(u, x) = σs′(u, x),

• for any variableg and threadu, σs′(t, g) = σs′(u, g),

• (s, s′) � τα[t].

In other words,s
(t,α)
−−−→ s′ holds whent can executeα next, all

other threads do not update their control flow, all local variables
of other threads remain the same, the global variables and local
variables oft are updated so that the transition predicate ofα is
satisfied. Note that both assert and tressa commands behave like
no-op’s.

A traceis a sequence of transition labels,l = l1 . . . lk. The trace

moves a states0 to sk, written s0
l
−→ sk, if there is a sequence of

states〈si〉0<i≤k, a run of P over l, such that for all0 < i ≤ k,

si−1
li−→ si.

The run ismaximalif sk cannot make any transition. The run is
exhaustiveif sk is final (it is maximal andεs k

(t) = stop, for all
threadst). Henceforth, we will always consider maximal runs.

4.3 Proof and Correctness

Proof state. A proof stateis the tuple(P , I), whereP and I
are called the program and the forward invariant, respectively. The
programP ⊂ Full is a set ofprocedures. The forward invariant
I is a predicate over unprimed global variables appearing in the
program. It is a predicate that has to be preserved by each atomic
action inP . An atomic actionα preserves the forward invariantI,

written I � α, if s1
(t,α)
−−−→ s2 and s1 � I imply s2 � I. In

other words,I is preserved byα if I cannot be falsified (changed
from true to false) by any execution ofα. If all the atomic actions of
programP preserve the invariantI,P is said to preserveI, written
I � P .

A program states is called an initial program state of(P , I) if
s � I,1 there are only finitely manyt such thatεs(t) 6= stop and
for each sucht, εs(t) is in P . We will let T id be the (finite) set
{t | εs(t) 6= stop}.

For a non-initial (resp. non-final) program states (resp. r),
define lst(s) (resp.fst(r)) as the set of all transition labelsl =
(t, α) such that there exists some program states′ (resp.r′) with

s′
l
−→ s (resp.r

l
−→ r′). That is,(t, α) ∈ lst(s) means that the last

action that threadt performed prior to reachings is α. Similarly,
(t, α) ∈ fst(s) means thatα can be the first action executed by
threadt at states. Note that, either set contain more than one label
for the same thread due to possible branching.

Forward and backward violations. With the introduction of
tressa predicates, correctness not only implies the impossibility

1 The thread id is ignored for invariants, since all threads agree on the value
of all global variables.

of reaching an assert violation from an initial program state, but
also the impossibility of reaching a final state starting from a state
violating a tressa predicate. The former kind of violation is named a
forward violation, whereas the latter is called abackward violation.
For the formal definitions to follow, fix a proof state(P , I).

DEFINITION 1 (forward violation).A run〈sr〉0≤r≤n ofP is called
a forward violation(f-violation) if the following conditions hold:

• s0 is an initial state of(P ,I),
• ¬φβ[u](sn) evaluates to true for some(u, β) ∈ fst(sn).

Intuitively, a forward violation is a run ofP that starts from an
initial program states0 and reaches a program statesn which
violates the assert predicate,φβ , of an actionβ which threadu
can execute at statesn. It is important to note that the transition
predicate ofβ, τβ , does not need to be satisfied atsn; if its assert
predicate is violated, the outgoing transition (fromsn) is ignored
in f-violation.

DEFINITION 2 (backward violation).The run〈sr〉0≤r≤n of P is
called a backward violation(b-violation) if the following condi-
tions hold:

• s0 ∈ conf(s) for some initial states of (P ,I),
• sn is a final state ofP ,
• I(s0)∧¬ψα[t](s0

′) evaluates to true for some(t, α) ∈ lst(s0),

Intuitively, a backward violation is a run ofP that ends at a final
statesn, starts at a configurations0 of an initial program states
such that there is a threadt which could have executedα prior to
reachings0 and the tressa predicate ofα, ψα, is violated bys0.
Again, as in forward violation, we do not require that there exist a
states′ such that(s′, s0) � τα[t]; if the tressa predicate is violated,
the incoming transition (intos0) is ignored.

Note that, a forward violation does not have to lead to a final
state, much like a backward violation does not have to start from an
initial state.

DEFINITION 3 (Violation-free).A proof state(P , I) is violation
free(vf) if it does not allow a run that is either a forward or a back-
ward violation; it is callednon-violation free, (non-vf), otherwise.

4.4 Simulation and Composition

In this section, we will define the simulation relation between two
atomic actions and prove that simulation preserves violations of
the program. We will also define the composition of two atomic
actions which will be used in a proof rule making use of mover
types explained in the following section.

DEFINITION 4 (Simulation).Let α = assert a; p; tressa b, β =
assert c; q; tressa d, t be an arbitrary thread id andρ = (P , I) be
a proof state. We sayβ simulatesα at ρ, writtenα �ρ β, if the
following three conditions hold:

S1 c⇒ a,
S2 d⇒ b,
S3f p⇒ q ∨ ¬c,
S3b p⇒ q ∨ ¬d

Whenever clear from the context the proof state subscript will be
dropped.

The simulation conditions are relaxed in certain cases. Intu-
itively, S3f, along with S1, is used to preserve forward violations:
If there was a forward violation withα, there has to be a forward
violation with β substituted in place ofα. If each assert predicate
is true, there can be no forward violation, thus condition S3f be-
comes unnecessary (S1 becomes trivially satisfied witha being

7 2009/10/31

identical to true). Thus, ifρ is such that the assert predicate of each
α ∈ Atoms(P) is identical to true, the condition S3f is not re-
quired to hold. In other words, if the program contained onlytressa
annotations, then we require only S1, S2 and S3b to hold. A sim-
ilar argument holds for backward violations, tressa predicates and
S3b: Ifρ is such that the assert predicate of eachα ∈ Atoms(P) is
identical to true, the condition S3f is not required to hold.That is,
if the program contained only assert annotations, then we require
only S1, S2 and S3f to hold.

We will sometimes restrict a simulation relation to a set of
program state pairs represented by a logical formula. Formally,
α �Θ β if the simulation conditions hold for all state pairs that
satisfyΘ. For instance, if there is nos2 such that(s1, s2) � Θ,
then the first simulation condition S1,c(s1) ⇒ a(s1), does not
need to hold forα �Θ β whereasα � β would fail if S1 failed for

s1. LetAtoms(P) be all atomic actionsα of P , that is,s
(t,α)
−−−→ s′

holds for somes ∈ conf(si), wheresi is an initial state ofP .

LEMMA 1. Let ρ = (P , I) be a non-violation free proof state.
Letα be an atomic action inAtoms(P). Letβ be another atomic
action such thatα �ρ β holds. Then,(P ′, I) is a non-violation
free proof state, whereP ′ is obtained by replacingα with β in P .

PROOF1. Take any violation ofρ in whichα occurs. That replac-
ing all occurrences ofα with β in the violation will lead to the
construction of another violation in(P ′, I) follows directly from
the definition of simulation.

Let wp(p, x), theweakest (liberal) pre-conditionof predicatex
for transition predicatep, stand for all states which cannot reach a
state wherex evaluates to false after executingp. Formally,

wp(p, x) = {s | ∀s′. p(s, s′) ⇒ x(s′)}

Similarly, sp(x, p) denotes thestrongest post-conditionof predi-
catex for transition predicatep, and stands for all next states that
cannot be reached after executingp from states violatingx. For-
mally,

sp(x, p) = {s′ | ∀s. p(s, s′) ⇒ x(s)}

Finally, for two transition predicatesp andq, define their composi-
tion p · q, as the transition predicate

p · q = {(s1, s2) | ∃s3. p(s1, s3) ∧ q(s3, s2)}

As actions are reduced, we need a formal mechanism to define
the resulting atomic action by specifying what its assert, tressa
predicates and transition predicate are. The following definition
provides this mechanism in terms ofwp, sp and·.

DEFINITION 5. Let α and β be two atomic actions. Define their
composition, α ◦ β, as the atomic action

assert φα ∧ wp(τα, φβ); τα · τβ; tressaψβ ∧ sp(ψα, τβ)

5. Proof Rules
In this section, we will define the new rules enabling the use of
tressa and assert claims . In order to make the paper self-sufficient,
Figure 10 lists the proof rules of [1] relevant to the subset we are
using in this paper. The ruleANNOT-H is for annotating atomic ac-
tions with a new (history) variable. The ruleINV is for strength-
ening of the invariant. The ruleSIM is for abstracting an action by
replacing it with one that simulates it. The rulesRED-L , RED-S,
RED-C are for reducing loops, sequential composition and condi-
tional branches of two atomic statements, respectively.

5.1 Prophecy Variable Introduction

The main concern when adding a new variable into the program
is to annotate statements so that no terminating execution of the

P1,I1 99K P2,I2

ANNOT-H

a /∈ Var 1 ≤ i ≤ n Atoms(P) = {αi
1}

φi
α1

= φi
α2

ψi
α1

= ψi
α2

I � αi
2

� τ i
α1

⇒ ∀a.∃a′. τ i
α2

P, I 99K P[Var 7→ Var ∪ {a}, αi
1 7→ αi

2],I

INV
I2 ⇒ I1 I2 � P

P,I1 99K P, I2

SIM
α �(P,I) β

P,I 99K P[α 7→ β],I

RED-C
γ = assertφα ∧ φβ ; τα ∨ τβ ; tressaψα ∧ ψβ

P,I 99K P[α2β 7→ γ],I

RED-S
P,I ` α1 : R or P,I ` α2 : L

P,I 99K P[α1;α2 7→ α1 ◦ α2],I

RED-L
P, I ` α : m m ∈ {R,L} I � β
� φβ ⇒ τβ [Var/Var

′] I ` β ◦ α � β

P,I 99K P[α	 7→ β],I

Figure 10. The proof rules of the QED method.

original program is left out. That is why theANNOT-H rule for in-
troducing history variables into the program requires a transition
for every valuation of the auxiliary variable: if the original program
makes a transition over a certain valuation of variables, sowill the
new program over the same valuation for any value of the history
variable. Prophecy variables should satisfy a similar requirement.
The condition that has to be satisfied for prophecy variables, how-
ever, is the dual of that of a history variable. Prophecy variable
introduction requires the new transition be defined for all next state
values of the prophecy variable. The formal condition for prophecy
variable introduction is given by the followingANNOT-P rule.

ANNOT-P

a /∈ Var 1 ≤ i ≤ n Atoms(P) = {αi
1}

φi
α1

= φi
α2

ψi
α1

= ψi
α2

I � αi
2

� τ i
α1

⇒ ∀a′.∃a. τ i
α2

P, I 99K P[Var 7→ Var ∪ {a}, αi
1 7→ αi

2],I

LEMMA 2. Letρ1 = (P1, I1) be a proof state. Letρ2 be the proof
state obtained fromρ1 by an application of theANNOT-P rule. Let
〈si〉1≤i≤n be a run ofP1. Then, there exists a run〈s′i〉1≤i≤n ofP2

such that for alli, si ands′i have the same code maps and variable
valuations except for the prophecy variablea introduced by the
ANNOT-P rule.

PROOF2 (Sketch).By induction on the length of the run,n. Con-
struct the run backwards, starting from the end state and make the
observation that for each state, due to the premise of theANNOT-
P rule, there always exists a value of the prophecy variable inthe
preceding state such that the transition ofP1 is enabled inP2.

5.2 Mover Checks

QED depends on reduction and reduction is the act of merging
atomic actions of suitable mover types, as can be seen from the
rules RED-S and RED-L. In our previous work [1], we defined
mover types with only forward violations in mind. Below, we
re-define mover types to account for both forward and backward
violations. We also establish the correctness of the definitions via
soundness results.

8 2009/10/31

Let pre(tp, x), the pre-imageof predicatex for the transi-
tion predicatetp, denote the predicate only satisfied by all the
states in the set{s | ∃s′. tp(s, s′) ∧ x(s′)}. Intuitively, pre(tp, x)
gives all statess such that executingtp at s can reach a states′

which satisfiesx. Similarly, post(x, tp), the post-imageof x for
tp, denotes the predicate only satisfied by all the states in theset
{s′ | ∃s. tp(s, s′) ∧ x(s)}. Intuitively, post(x, tp) gives all states
s′ that can be reached by executingtp from some states satis-
fying x. A label (u, β) follows another label(t, α) in program
P , if there exists a program states such that(t, α) ∈ lst(s) and
(u, β) ∈ fst(s).

DEFINITION 6 (Right-mover).Let ρ = (P ,I) be a proof state
andα be an atomic action inAtoms(P). The actionα is a right-
mover if for anyβ in Atoms(P), threadst, u with t 6= u, the
following conditions hold:

1. α[t] ◦ β[u] �Θ β[u] ◦ α[t], with Θ = τα[t] · τβ[u] ⇒
φα[t] ∨ ψα[t],

2. post(φβ[u], τα[t]) ⇒ φβ[u]

The first condition requires that(t, α) followed by (u, β), for
arbitraryt 6= u, is simulated by(u, β) followed by (t, α) except
possibly for state pairs(s1, s2) such thats1 violatesφα[t], s2
violatesψα[t] and s2 is the program state reached froms1 by
executing(t, α) followed by (u, β). The second condition states
thatα cannot change the assert predicate of any other action from
false to true.

A left-mover can be defined similar to right-mover using dual
conditions.

DEFINITION 7 (Left-mover).Letρ = (P , I) be a proof state and
α be an atomic action inAtoms(P). The actionα is a left-mover
if for any β in Atoms(P), threadst, u with t 6= u, the following
conditions hold:

1. β[u] ◦ α[t] �Θ α[t] ◦ β[u], with Θ = τα[t] · τβ[u] ⇒
φα[t] ∨ ψα[t],

2. pre(ψβ[u], τα[t]) ⇒ ψβ [u]

Let P , I ` α : R denote thatα is a right-mover at proof state
(P , I). Similarly,P , I ` α : L denotes thatα is a left-mover. Be-
sides the change in the mover definitions, the sequential reduction
rule RED-S given in Fig. 10 remains the same in the presence of
prophecy variable and tressa annotations.

We close this section by stating the soundness results. The
lemma below establishes that reduction based on the above mover
definitions cannot change a non-vf proof state into a vf proofstate.

LEMMA 3 (Soundness of Reduction).Letρ1 = (P , I) be a proof
state. Letρ2 be the proof state obtained fromρ1 by an application
of theRED-S rule. If ρ2 is violation free, thenρ1 is also violation
free.

PROOF3 (Sketch).By contradiction. Without loss of generality,
assumeα1 of the RED-S rule to be a right-mover. Assumeρ1 to
be non-violation free andρ2 to be violation free. Then, there must
exist a violation inρ1 in which for somet, (t, α1) are not(t, α2)
not consecutive in the violation. Starting from this execution, move
each such(t, α1) to the right until it either immediately precedes
its matching(t, α2) or (t, α1) along with its matching(t, α2) is re-
moved from the execution. This moving around is feasible dueto the
definitions of the simulation relation and right-mover. Thefinal ex-
ecution, where each occurrence of(t, α1) is immediately followed
by (t, α2) is a violation inρ2, establishing the contradiction.

Finally, the theorem below establishes the soundness of the
QED method. We define aproof as a sequence of proof states

procedure ReadPair(a: int, b: int)

returns (s: bool, da: Obj, db: Obj)
{

var va: int, vb: int;

1: atomic { va := m[a].v; da := m[a].d; }

2: atomic { vb := m[b].v; db := m[b].d; }
3: s := true;

4: atomic { if (va < m[a].v) { s:= false; } }
5: atomic { if (vb < m[b].v) { s:= false; } }

6: if (!s) { da := nil; db := nil; }
}

procedure Write(a: int, d: Obj)
{

atomic { m[a].d := d; m[a].v := m[a].v+1; }
}

Figure 11. A collection that implements an atomic read of two
distinct variables,ReadPair, and random access updates,Write.

each of which is obtained from its immediate predecessor by an
application of the proof rules defined in this section.

THEOREM1 (Soundness).Let (P0, I0) 99K . . . 99K (Pn, In)
be a proof. If the proof state(Pn, In) is violation free, then so is
(P0, In).

6. Examples
In this section, we verify two examples, both making use of op-
timistic concurrency. The first is an implementation of an atomic
snapshot of a pair of objects in the presence of concurrent updates
to the objects. The second is an implementation of a set with meth-
ods for searching and inserting elements. In both of the examples,
a finite number of threads share the global and execute one of the
methods.

6.1 Pair Snapshot

Consider the code in Fig. 11. TheReadPair procedure is supposed
to implement an atomic read of two addresses in the presence of
concurrent updates done by theWrite procedure.ReadPair suc-
ceeds and returns the read values along with a status flag denoting
success, if it observes a consistent state of the memory for two ad-
dresses. Otherwise, it fails and sets its status flag to falsedenoting
failure, along with setting the read values to default values (nil).
Each call of theWrite procedure updates the data value stored in an
address and increments the version number for that address by one.
We would like to prove that theReadPair(a,b) method, when
it returns true, behaves like an instantaneous read of the two ad-
dresses.

Intuition for Atomicity. There are two possible execution sce-
narios for ReadPair(a,b). Imagine that threadt is executing
ReadPair(a,b) and has executed line1, the first read ofa
(henceforthinitial read). Until the second read of line4, which
we will call the confirming read, if some other thread executes
Write(a,d), thenReadPair will observe two distinct states ofa
and hence will return false, representing this inconsistency. Mu-
tatis mutandis forb, lines2, 5 andWrite(b,d). We will call such
executions asinconsistent. In other words, an inconsistent run of
ReadPair returns(false,nil,nil). An execution where inter-
fering updates do not occur between the initial and confirming
reads of either address will be calledconsistent.

Now each read action conflicts with an update to the same ad-
dress. As such, neither of the read actions ofReadPair are movers
in their current state. Observe that ifReadPair is to have an incon-
sistent execution, since the read values do not matter, their values
can be abstracted away. Abstracting the read values will make all

9 2009/10/31

procedure ReadPair(a: int, b: int)

returns (s: bool, da: Obj, db: Obj)
{

p1: atomic { if (p[a]) { va := m[a].v; da := m[a].d; }
else { havoc va, da; }

}

p2: atomic { if (p[b]) { vb := m[b].v; db := m[b].d; }
else{ havoc vb, db; }

}
p3: s := true;

p4: atomic { if (va < m[a].v) {
s:= false; p[a] =: false; }

else { havoc s, p[a]; } }

p5: atomic { if (vb < m[b].v) {
s:= false; p[b] =: false; }

else { havoc p[b]; if(s) { havoc s; } } }
p6: if (!s) { da := nil; db := nil; }
}

Figure 12. Prophecy variable introduction, one per object.

procedure ReadPair(a: int, b: int)
returns (s: bool, da: Obj, db: Obj)

{
f1: atomic { if (p[a]) { va := m[a].v; da := m[a].d; }

else { havoc va, da; }
tressa p[a] ==> va>=m[a].v; }

f2: atomic { if (p[b]) { vb := m[b].v; db := m[b].d; }
else{ havoc vb, db; }
tressa p[b] ==> vb>=m[b].v; }

f3: s := true;
f4: atomic { if (va < m[a].v) {

s:= false; p[a] =: false; }
else { havoc s, p[a]; } }

f5: atomic { if (vb < m[b].v) {

s:= false; p[b] =: false; }
else { havoc p[b]; if(s) { havoc s; } }

f6: if (!s) { da := nil; db := nil; }
}

Figure 13. Complete annotation with tressa claims included.

the read actions both movers. However, we have to also take care of
the consistent execution ofReadPair. In a consistent execution, a
write toa cannot occur between the corresponding initial and con-
firming reads. Put differently, in a consistent execution, the initial
read is a right-mover, the confirming read is a left-mover, because
no update to the read address can occur between them. Note that,
in a consistent execution, the read values do matter as they should
be returned whenReadPair terminates successfully so abstracting
away the read values in this case is not possible.

In the proof we will construct, initial reads will either read
the exact value (consistent execution) or abstract away thereads
(inconsistent execution). The decision will be made according to a
prophecy variable per address whose value will be set according to
the presence of a conflicting update before confirming read isdone.
The reverse assignment to the prophecy variables will be made in
the confirming reads.

Prophecy variables. The code with prophecy variables intro-
duced is given in Fig. 12. As we have hinted above, the prophecy
variable, mapping each address to a boolean value, is reverse
assigned in linesp4 and p5. For an inconsistent execution, the
prophecy variable is set to false. The initial reads are updated to
make use of the prophecy variable values. Intuitively,p[a] equal
to true means that the current execution will not see an interfer-
ing update until the confirming read ofa is done. That is why
whenp[a] is true, the exact value ofq[a].d is read. Similarly,
whenp[a] is false, the read values are abstracted away since the
prophecy variable foresees interference.

procedure ReadPair(a: int, b: int)

returns (s: bool, da: Obj, db: Obj)
{

atomic {
if (p[a]) { va := m[a].v; da := m[a].d; }
else { havoc va, da; }

if (p[b]) { vb := m[b].v; db := m[b].d; }
else { havoc vb, db; }

s := true;
if (va < m[a].v) {

s:= false; p[a] =: false; }
else { havoc s, p[a]; } }
if (vb < m[b].v) {

s:= false; p[b] =: false; }
else { havoc p[b]; if(s) { havoc s; } }

if (!s) { da := nil; db := nil; }
}

Figure 14. ReadPair reduced to a single atomic action.

The abstracted confirming reads, linesp4, p5, are left-mover.
For instance,p4, coming immediately after a conflicting update is
simulated by executingp4 followed by the same update. However,
the initial reads are still non-mover.

Consider the code given in Fig. 13. We have added tressa
claims to the initial reads reflecting our intuition about the value
of the prophecy variables. Sincep[a] equal to true foresees no
interference, we claim that any execution that violates thetressa
predicate cannot terminate. Imagine the contrary:p[a] is true
and va>=m[a].v is false. Observe thatm[a].v is never decre-
mented andva remains the same fromf1 onwards. When linef4
is reached, the conditionva<m[a].v will be true. The then branch
of the if statement will be taken and the current value ofp[a], true,
will not match the reverse assigned value, false, which willblock
the execution. It is important to note the role of additionalblocking
behavior which we deliberately inserted via the prophecy variable.
It is also important to note that all this execution based reasoning is
implied in the tressa claim whose main use comes in representing
this kind of information in locally performing mover checks.

The rest of the proof is trivial as it consists of reducing thewhole
method into a single action and discharging the tressa claims using
sequential analysis (or applying the definition of composition of
actions). The final code is given in Fig. 14.

6.2 Lookup and Insert

Fig. 15 presents theLookup andInsert methods for a bounded
set of non-negative integers. Set elements are stored in an array in
which duplicates are allowed. An array slot is taken to be empty if it
contains -1. Initially, all slots are assumed to be empty. The contents
of the set are given by the set of values in non-empty slots. Reads
and writes to the array are protected by a separate lock per array
index. For simplicity, in the figures we do not refer to this lock.
Instead, we indicate what accesses are guaranteed to be atomic by
use of this lock.

TheInsert method starts from an arbitrary array index in or-
der to reduce conflicts between concurrent executions ofInsert
on early array indices. It examines array slots in increasing order of
indices and wraps around at the end of the array.Insert succeeds
when it either finds an empty slot to which it atomically writes
the new element, or it finds an occupied slot containing the ele-
ment it was trying to insert. The method fails if all array slots are
tried exactly once and each try finds a non-empty slot containing
a different element. In this simplified implementation, there is no
removal.Lookup(x) starts from the first array slot and searches in
increasing order of indices forx. It returns true iff for some array in-
dexi, q[i] == x. SinceInsert can start from an arbitrary index,
Lookup must examine the entire array before deciding whether or
not x is in the set.

10 2009/10/31

procedure Lookup(x: data)

returns result: bool;
{

f := false; i := 0;

while (i<n && !f) { f := (q[i] == x); i := i+1; }

result = f;
}

procedure Insert(x: data)

returns done: bool;
{

havoc i; assume i<n;

cnt := 0; f := false;

while (cnt<n && !f) {
if (*) {

atomic { assume q[i]==-1; q[i] := x; f := true; } }

else {
if (*) { atomic { assume q[i]==x; f := true; } }

else {
atomic {

assume q[i]!=x && q[i]!=-1;
i := (i+1) mod n; cnt := cnt+1; }

}

}
}

done := f;
}

Figure 15. A bounded set with two methods for searching for an
element,Lookup, and adding an element,Insert.

We would like to prove that theLookup method can be summa-
rized as an atomic block that returns true iff for some array index
i, q[i] == x.

Intuition for Atomicity. Observe that all actions except the read
of q[i] are thread-local, i.e., they are both movers. Then the only
potential conflict which needs to considered is between the read of
q[i] and the update toq[i] done by theInsert method when
q[i] == -1.

Call an iteration of theLookup loop for somei failing if q[i]
!= x (denoted byF (i)) andsucceeding(denoted byS(i)) other-
wise. Executions ofLookup that return false are of the following
form

..., F (0), ..., F (1), ..., F (2), ..., F (n− 1), ..., F (n), ...

while executions that return true are of the following form

..., F (0), ..., F (1), ..., F (2), ..., F (i− 1), ..., S(i), ...

where ... represents a sequence of actions by other threads. The
reduction-based proof is based on the following intuition.The
commit action forLookup(x)’s that return false isF (0) because
the set may contain x later in the execution. ForLookup’s that
return true, the commit action isS(i), since the action that writes
the firstx to an array slot may immediately precedeS(i).

In order to reduce the entire execution of the loop to an atomic
action, forLookup’s that return false, we need allF (k) to be left-
movers in order to group them next toF (0), while, for Lookup’s
that return true, allF (k)’s must be right movers in order to move
immediately to the left ofS(i). The two kinds of lookups seem to
require different applications of reduction to prove atomicity.

To remedy this difficulty, we duplicate the loop. One copy
represents the case whereLookup fails to find the element and
returns false, and the other represents the case whereLookup finds
the element and returns true. This split allows us to apply reduction
differently in the two different cases.

After the split,Lookup’s that return false are handled easily.
F (k), which requires thatq[k] != -1, commutes to the left of
any other action. This is because onceq[k] != -1, it never be-

procedure Lookup(x: data)

returns result: bool;
{

f := false; i := 0;

if (*) {

while (i<n && !f) {
atomic { f := (q[i] == x); }

i := i+1;
}

assume !f;
} else {
while (i<n && !f) {

atomic { f := (q[i] == x); }
i := i+1;

assume (!f && i<n);
}
f := q[i]==x;

assume (f || i>=n);
assume f;

}
result := f;

}

Figure 16. TheLookup method after some code transformations.
The main loop is duplicated with the then branch representing
the unsuccessful search, the else branch representing the failing
iterations followed by the succeeding iteration.

comes−1 again, thus, all actions to the left ofF (k) must have left
q[k] == -1 unmodified.

For Lookup’s that return true, further abstraction is needed. It
is clear thatF (k) does not commute to the right of an actionα
that writesx to q[k]. Thus, forLookup’s that return true, we need
to abstract the loop body so thatF (k) becomes a right mover.
We accomplish this by allowing the loop body to setf to false
even whenq[k] == x. We perform this abstraction for all loop
iterations except for the last one.

This contrived example mimics lookups in more realistic con-
current data structures. In these examples as well, the commit
points and mover types depend on the method’s return value which
is only known in the future. In this example, we make only implicit
use of prophecy variables. Most importantly, the return value of the
method (i.e., the value off at the end of the loop) acts as a prophecy
variable. The two copies of the code after the split correspond to the
two different values of the prophecy variable.

Code transformation. The code after the transformation ex-
plained above is given in Fig. 16. The main loop is duplicatedand a
non-deterministic choice, represented byif(*) and corresponding
to whetherLookup returns true or false, picks either branch. The
statementsassume f andassume !f (both left-movers, since they
refer to the local variablef) are appended to the two copies to mark
them as such. This transformation preserves all executionsof the
originalLookup. In the else branch, the final iteration of the loop is
peeled out in order to carry out the reduction proof outlinedearlier.

Abstraction, prophecy variables and tressa claims.The anno-
tated code is given in Fig. 17. Let us first analyze the abstraction
done in the failing branch: appendingtressa !f to the read of
q[i]. This tressa annotation claims that this action can lead to pro-
gram termination only when it is executed at a state whereq[i]
is not equal tox. Note that, this necessary condition for termi-
nation of the failing branch is due to the very endassume !f.
Executions which violate this tressa annotation have “chosen the
wrong branch”, i.e., in order for these executions to terminate, con-
trol should have gone down the other non-deterministic branch.

Recall that we were trying to show that failing iterations were
left-movers. The problematic case for the left-mover checkfor a
failing iteration that readsq[i] occurs when it is preceded by the

11 2009/10/31

procedure Lookup(x: data)

returns result: bool;
{

f := false; i := 0;

if (*) {

while (i<n && !f) {
atomic { f := (q[i] == x); tressa !f; }

i := i+1;
}

assume !f;
} else {
while (i<n && !f) {

atomic { havoc f; }
i := i+1;

assume (!f && i<n);
}
f := q[i]==x;

assume (f || i>=n);
assume f;

}
result := f;

}

Figure 17. The Lookup method after some abstraction and
prophecy-tressa annotation.

actionassume q[i]==-1; q[i]:=x; executed by another thread
running Insert(x).2 Coming after theInsert, this iteration of
theLookup loop should be succeeding. Coming before theInsert,
the iteration should be failing. This would imply that this failing
iterationF (i) is not a left-mover. But, intuitively, it should never
be the case that anq[i] := x precede a failing iterationF (i) in
Lookup(x). This is precisely what the tressa claim achieves. The
left-mover check requires the simulation to hold only at those next
states that satisfy the tressa predicate, which here is equal to !f.
But q[i]:=x; followed byf := q[i]==x; setsf to true. Thus,
the tressa claim allows us to ignore this problematic interleaving
since any execution in which these two actions appear in thatorder
cannot reach a final state. The tressa claim is discharged with the
assume !f after this branch is proved to be atomic.

Let us now analyze the succeeding (else) branch. Abstracting
the actionf := (q[i] == x) to havoc f allows loop iterations
F (i) to commute to the right of actions that write toq[i]. The
final succeeding iteration is a non-mover and the other actions are
left-movers, and are all reduced into a single action. Here,we have
implicitly made use of prophecy variable that indicates whether the
current loop iteration is the final one or not.

Constituting a typical proof, it is worth repeating what we did in
this example from a more general perspective. We started by adding
annotations in the form of tressa claims so as to make actionsof the
proper mover type. This can be perceived asborrowingtressa’s: an
action becomes a mover thanks to the presence of the tressa claim
but the correctness of the proof depends on correctly discharging
the tressa claim; the proof onus is on the user. This step was
followed by reduction by which actions were reduced according
to their mover types. If the tressa claims were true and sufficient
reduction occurred, each tressa claim would be discharged by a
sequential (backward) analysis. This sequential analysisis actually
implied by the definition of action composition, given in Sec. 4.4.
In our example, we successfully discharged the tressa claims after
reducing the loop bodies into single atomic actions.

The final reduced and simplified version of the method is given
in Fig. 18.

2 Imagine that both threads agree on the values of the local variablesi and
x.

procedure Lookup(x: data)

returns result: bool;
{

atomic {
f := false; i := 0;

if (*) {
while (i<n && !f) {

f := (q[i] == x);
i := i+1;

}
assume !f;

} else {

havoc f, i;
assume (!f && i<n);

f := q[i]==x;
assume f;

}

result := f;
}

}

Figure 18. TheLookup method reduced to a single atomic action.

7. Conclusion
In this paper, we incorporated prophecy variables into static verifi-
cation. We achieved this by augmenting the static verification tool
QED with a new proof rule for the introduction of prophecy vari-
ables into the program and with a new construct, tressa. We further-
more re-defined correctness and simulation to allow for reasoning
in both forward and backward executions. We have demonstrated
the usage of this new approach in the atomicity proofs of imple-
mentations based on optimistic concurrency.

Our next goal is to statically verify STM (Software Transac-
tional Memory) implementations. Actually, the need for prophecy
variables, and in general backwards reasoning in a static setting,
manifested itself while we were doing preliminary work on STM
verification. The copy and snapshot examples given in this paper
encapsulate the notion of optimistic concurrency used in STM im-
plementations.

References
[1] Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In:

POPL ’09, New York, NY, USA, ACM (2009) 2–15

[2] Lipton, R.J.: Reduction: a method of proving propertiesof parallel
programs. Commun. ACM18(12) (1975) 717–721

[3] Larus, J.R., Rajwar, R.: Transactional Memory. Morgan &Claypool
(2006)

[4] Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Network invariants in
action. In: CONCUR ’02, London, UK, Springer-Verlag (2002)101–
115

[5] Abadi, M., Lamport, L.: The existence of refinement mappings. Theor.
Comput. Sci.82(2) (1991) 253–284

[6] Ashcroft, E.A.: Proving assertions about parallel programs. J. Com-
put. Syst. Sci.10(1) (1975) 110–135

[7] Owicki, S., Gries, D.: Verifying properties of parallelprograms: an
axiomatic approach. Commun. ACM19(5) (1976) 279–285

[8] Wang, L., Stoller, S.D.: Static analysis for programs with non-
blocking synchronization. In: PPoPP ’05, ACM Press (2005)

[9] O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor.
Comput. Sci.375(1-3) (2007) 271–307

[10] Flanagan, C., Qadeer, S.: A type and effect system for atomicity.
SIGPLAN Not.38(5) (2003) 338–349

[11] Freund, S.N., Qadeer, S.: Checking concise specifications for multi-
threaded software. Journal of Object Technology3 (2004)

[12] Freund, S.N., Qadeer, S., Flanagan, C.: Exploiting purity for atomicity.
IEEE Trans. Softw. Eng.31(4) (2005) 275–291

12 2009/10/31

[13] Marcus, M., Pnueli, A.: Using ghost variables to prove refinement. In:
AMAST ’96, London, UK, Springer-Verlag (1996) 226–240

13 2009/10/31

A. Proof of Theorem 1
Below, we construct the proof for the soundness of the proof rule, RED-S. We show that an application ofRED-S cannot remove violations
from a proof state. We analyze both kinds of violations, backward and forward, separately. In both cases, we assume the existence of a
violation inρ and show how to obtain a violation inρ′. Roughly speaking, the idea is to show that if a violation inρ exists, then there is also
a violation inρ such that for any threadt, all occurrences of(t, γ) is immediately preceded by(t, α).

In the backward case, we start with an arbitrary backward violation. We show how to obtain a backward violation in which every (t, α) is
immediately followed by itsmatching(t, γ) (Lemma 6). This does not account forisolatedoccurrences of(t, γ) whose matching(t, α) does
not occur in the violation at all. We then show how to obtain a backward violation with no such isolated(t, γ) by introducing their matching
(t, α) into the backward violation (Lemma 7). It is then trivial to show that the existence of a backward violation inρ implies the existence
of a backward violation inρ′.

The forward case follows a similar route. We first prove that if there is a forward violation inρ, then there is a forward violation in which
all occurrences of(t, α), except possibly when(t, α) is the very last label of the violation, imply a succeeding (not necessarily immediately)
(t, γ) in the same violation (Lemma 13). Then, we show how to obtain aforward violation in which each(t, α) is immediately followed by
its matching(t, γ) (Lemma 14).

For the following, we assume thatα is a right-mover inρ, ρ′ is obtained fromρ by applying the sequential reduction rule,RED-S, to α
and its immediate successorγ. Unless explicitly stated otherwise, a backward violationis assumed to be in the form

s0
l1−→ s1

l2−→ s2 . . .
ln−→ sn

where for each0 < i ≤ n, li = (ti, αi).

Preserving backward violations.

LEMMA 4. Letα andβ be two atomic actions,t 6= u be two distinct thread id’s ands be a program state. Letψα[t]◦β[u](s) be false. Ifα is

a right-mover, thenψβ[u]◦α[t](s) must also be false. In particular, eitherψα[t](s) is false, or there exists a states′ such thats′
(t,α)
−−−→ s and

ψβ [u](s′) is false.

PROOF4. The only tricky part is the effect ofΘ used in the first condition of right-mover. Observe that, if astate pair(s′, s) does not satisfy
Θ, we must have¬ψα[t](s). But ifψα[t](s) fails, so doesψβ[u]◦α[t](s). The rest follows from the definition of right-mover, simulation and◦.

A label li = (ti, γ) in a backward violation isisolatedif i > 1 andlj = (ti, α) implies thatj > i. Call an interval[j, k] safefor label
(t, α), if 0 < j < k are two index values such that for allj < i ≤ k, ψαi[ti]◦α[t](si) holds andti 6= t.

LEMMA 5. Letr = 〈si〉0≤i≤n be a backward violation inρ. Let [j, k] be safe forlj = (tj , α). Then, the runr′

s0
l1−→ s1 . . .

lj−1

−−−→ sj−1

lj+1

−−−→ s
′
j

lj+2

−−−→ s
′
j+1 . . .

lk−→ s
′
k−1

lj
−→ sk

lk+1
−−−→ sk+1 . . .

ln−→ sn

is also a backward violation inρ.

PROOF5. Since,r′ starts from the same initial states0 and ends at the same final statesn, if it is a run ofP , then it necessarily is a backward
violation inρ. So, we have to show thatr

′ is a run ofP . We prove the latter by induction on the differencek − j.

• Base Case (k − j = 0): r
′ is identical tor which by assumption is a backward violation.

• Inductive Hypothesis (k− j ≤ m,m ≥ 0): Assume that for anyk, j such that their difference is less than or equal tom, r′ is a run ofP .
• Inductive Step (k − j = m + 1): Consider the actions oflj and lj+1, α and αj+1, respectively. Since,α is a right-mover and

by assumption,ψαj+1[tj+1]◦α[tj](sj+1) holds, by definition of right-mover and simulation,τα[tj] · ταj+1
[tj+1](sj−1, sj+1) implies

ταj+1
[tj+1] · τα[tj](sj−1, sj+1). Then, the sequence

s0
l1−→ . . .

lj−1
−−−→ sj−1

lj+1
−−−→ s

′
j

lj
−→ sj+1

lj+2
−−−→ . . . sn

is a run inρ. Applying the inductive hypothesis tok andj + 1 which is the new index of(tj , α) completes the proof.

A label lj = (tj , αj) is unmatchedin r, if αj = γ, j > 1, tj−1 6= tj , andlj is not isolated.

LEMMA 6. Letρ contain a backward violation. Then,ρ contains a backward violation which has no unmatched labels.

PROOF6. LetX be the set of backward violations inρ. LetY ⊆ X consist of only those elements inX with shortest length. Letry ∈ Y
be such that it has a minimal number of unmatched labels. To prove the lemma by contradiction, we assume that the number of unmatched
labels,m, in ry is greater than 0. Pick the rightmost unmatched labellk for somek > 1. That is, for anyi > k, ti 6= tk andαi = γ implies
that eitherli−1 = (ti, α) or li is isolated. Letlj be the matching label forlk. Let i < k be such that[i, k − 1] is safe, but[i − 1, k − 1] is
not safe, forlj . Consider the following two cases:

• i > j. By the choice ofi, this means thatψαi−1[ti−1]◦α[tj](si−1) is false. This in turn implies that either

s
′
i−2

lj
−→ si−1

li−→ si . . .
ln−→ sn

or

si−1
li−→ si . . .

ln−→ sn

is a backward violation inρ. Since both have length strictly less thann (n − i+ 2 with i > 2), this contradicts the assumption thatry

belongs toY .

14 2009/10/31

• i ≤ j. In this case, we have[j, k − 1] safe forlj . By Lemma 5, the following

s0
l1−→ . . . sj−1

lj+1

−−−→ s
′
j

lj+2

−−−→ s
′
j+1 . . . s

′
k−2

lj
−→ s

′
k−1

lk−→ sk . . .
ln−→ sn

is also a backward violation inρ. Since this run has one less unmatched label than and the samelength asry, its existence contradicts
the assumption thatry had the minimum number of unmatched labels among the backward violations of lengthn.

The initial assumption thatm > 0 is false. So, there exists a backward violation with no unmatched labels.

For a backward violationr, let len(r) and iso(r) denote the length of and the number of isolated labels inr. Call a run of lengthn
α, γ-matchedif for any j < n, lj = (tj , α) implies thatlj+1 = (tj , γ).

LEMMA 7. Letρ contain a backward violation. Then, there exists anα, γ-matched backward violation inρ.

PROOF7. LetX be the set of backward violations that do not have unmatched labels. By Lemma 6,X is non-empty. LetY contain all
elements inX that satisfylen(r) + iso(r) is minimal inX. Pick ry ∈ Y such that its number of isolated labels is minimal inY . Let
n = len(ry) andni = iso(ry). We will prove thatni = 0. To prove it by contradiction, assume thatni > 0. Let lk = (tk, γ) be the
rightmost isolated label inry. Then, the matching label forlk is l0 = (tk, α). Let i < k be such that[i, k − 1] is safe, but[i− 1, k − 1] is
not safe, forl0. Consider the following cases:

• i > 1, or i = 1 andψα[tk](s0) is false. By the choice ofi, this means thatψα[tk](si−1) is false, which implies thatψα[tk]◦αi[ti](si) is
also false, by the definition of◦. By Lemma 4,ψαi[ti]◦α[tk](si) is also false. But, since by the choice ofi, ψα[tk](si) is true, there exists

a states′ such thatψαi
[ti](s

′) is false ands′
l0−→ si holds. This in turn implies that

s
′
i−1

l0−→ si

li+1
−−−→ si+1 . . .

ln−→ sn

is a backward violation inρ. By Lemma 5, the run above implies the existence of

s
′
i−1

li+1
−−−→ s

′
i . . .

lk−1
−−−→ s

′
k−2

l0−→ sk−1
lk−→ . . .

ln−→ sn

which is still a backward violation with no unmatched labels. This run has lengthn − i+ 1, which is at mostn with i > 0, but at most
ni − 1 isolated labels. But this contradicts with the assumption thatry belongs toY and has minimal number of isolated labels.

• i = 1 andψα[tk](s0) is true. Sincery is a backward violation, there must exist a label(u, β) such thatψβ[u](s0) is false. Becauseα is a

right-mover, and the choice ofi, Lemma 4 implies that there existss′ such thatψβ [u](s′) is false ands′
l0−→ s0 holds. Then, the following

s
′ l0−→ s0

l1−→ s1 . . .
ln−→ sn

is a backward violation with lengthn+ 1 andni − 1 isolated labels. By Lemma 5,

s
′ l1−→ s

′
0

l2−→ . . .
lk−1
−−−→

′

s
′
k−2

l0−→ sk−1
lk−→ sk . . .

ln−→ sn

is also a backward violation. Observe that this run has no unmatched labels and hence is an element ofX. Since the sum of its length and
the number of isolated labels it contains isn+1+ni −1 = n+ni, by assumption it is also an element ofY . And since it contains fewer
isolated labels thanry, it contradicts with the assumption thatry contained the minimum number of isolated labels among the elements
of Y .

Thus, the assumption thatni > 0 is false. Sincery is a backward violation with no unmatched labels and no isolated labels, it is by
definitionα, γ-matched.

LEMMA 8. Letρ contain anα, γ-matched backward violation. Then,ρ′ contains a backward violation.

PROOF8. Let r be anα, γ-matched backward violation inρ. First, consider the initial transition,l1. If l1 = (t1, γ), there are two
possibilities:

• ψα[t1](s0) is false. In this case, the definition of◦ implies thatψα◦γ [t1](s1) is false.
• ψα[t1](s0) is true. Then, there must exist a label(u, β) such thatu 6= t1 andψβ[u](s0) is false. By Lemma 4, there exists a states′ such

thatψβ[u](s′) is false ands′
(t1,α)
−−−−→ holds.

So, without loss of generality, we can assume that theα, γ-matched backward violation does not start with a label(t, γ) for any t. The
backward violation inρ′, r′, starts from the same states0 and makes the same transitions asr as long as the label does not contain anα.

Wheneversi
(t,α)
−−−→ si+1

(t,γ)
−−−→ si+2 occurs inr, we letsi

(t,α◦γ)
−−−−−→ si+2 in r

′ and continue fromsi+2. That this constructs a run inρ′

follows from the definition of◦ and the construction ofP ′.

LEMMA 9. Letρ contain a backward violation. Then,ρ′ contains a backward violation.

PROOF9. By Lemma 7,ρ contains anα, γ-matched backward violation. By Lemma 8,ρ′ contains a backward violation.

15 2009/10/31

Preserving forward violations.

A run is aminimal forward violation inρ, if it is a forward violation inρ and any of its prefix is not. A run is ashortestforward violation
in ρ if there does not exist a forward violation inρ of a shorter length.

LEMMA 10. A shortest forward violation is also minimal.

PROOF10. Follows from the definitions of shortest and minimal.

LEMMA 11. Letr = 〈si〉0≤i≤n be a shortest forward violation. Ifln = (tn, α), then(u, β) ∈ fst(sn) and¬φβ[u](sn) imply thatu = tn
andβ = γ.

PROOF11. Assume the contrary. Let(u, β) be such thatu 6= tn andφβ[u](sn) evaluates to false. By the definition of right-mover (second
condition),φβ[u](sn−1) must also be false. This contradicts the minimality ofr.

A label li = (ti, α) in a run isisolatedif lj = (ti, γ) implies thatj < i. Theisolating distanceof a run is given asn− j wheren is the
length of the run,j is the index of the rightmost isolated label (for all isolated labelslk in r, we havej ≥ k).

LEMMA 12. If there is an isolated label in a shortest forward violation, then there is a shortest forward violation which has an isolated label
as the last label of the run.

PROOF12. ConsiderX, the set of all shortest forward violations which contain anisolated label. Out ofX, pick a runr
′ with a minimal

isolation distance. Showing thatr′ has isolation distance 0 will prove the lemma. Assume contrary and let the isolation distance ofr′ be
m > 0. Setj = n −m. This means thatlj = (tj , α). First, observe that sincer′ is a minimal forward violation,φα[tj](sj) evaluates to
true. Sincej < n, there is a labellj+1 = (tj+1, β). Sincelj is isolated,tj 6= tj+1. Sinceα is a right-mover,

α[tj] ◦ β[tj+1] � β[tj+1] ◦ α[tj]

must hold. Note that,Θ(sj , sj+2) evaluates to true becauseφα[tj](sj) evaluates to true. Sincer′ is a shortest forward violation, the

simulation given above can only hold whensj

(tj+1,β),(tj,α)
−−−−−−−−−→ sj+2. Thus, the run which differs fromr′ only in the order of thejth and

(j + 1)th labels is also a forward violation. However, this new run hasan isolation distancen− (n −m + 1) = m− 1. This contradicts
the initial assumption thatr′ has a minimal non-zero isolation distance. Thus, there exists inX a forward violation whose isolation distance
is 0.

LEMMA 13. Letr = 〈si〉0≤i≤n be a shortest forward violation. Then,r contains at most one isolated label.

PROOF13. Let lj = (tj , α), lk = (tk, α) be isolated labels. Then, following the argument in the previous lemma, we can obtain a shortest
forward violation which hasln = (tj , α). By Lemma 11, this implies that the only label infst(sn) whose assertion is violated atsn is (tj , γ).
Similarly, we can obtain a shortest forward violation whichln = (tk, α). Again, by Lemma 11, this implies that the only label infst(sn)
whose assertion is violated atsn is (tk, γ). Sinceγ is the unique successor ofα and lj , lk are isolated labels, we must havej = k.

Call a labellj = (tj , α) unmatched, if lj is not isolated andtj+1 6= tj .

LEMMA 14. Letρ contain a forward violation. Then, there is a shortest forward violation r
′ which isα, γ-matched.

PROOF14. By Lemma 13, we can assume that in a shortest forward violation there is at most one isolated label and in case it exists, we can
assume that it occurs as the last label,ln. LetY be the set of all shortest forward violations. Out ofY , pick a runrm which has the least
number of unmatched labels. We need to prove thatrm isα, γ-matched. Assume the contrary and leta be the number of unmatched labels in
rm. Letlj be the rightmost unmatched label inrm. Sincelj is not isolated, there exists somek > j+1 such thatlk = (tj , γ). Choosek such
that j < o < k implies thatto 6= tj . In other words, all the labels betweenj andk belong to different threads. Sinceα is a right-mover,rm
is a shortest violation (no assertions can fail at intermediate states), the first condition of right-mover must hold. Using the same reasoning
as was done in the proof of Lemma 12, we obtain the run

s0
l1−→ s1 . . . sj

lj+1

−−−→ s
′
j+1 . . . s

′
k−2

lj
−→ sk−1

lk−→ sk . . .
ln−→ sn

which is a shortest forward violation. Since the relative ordering of labels among{li}i6=j remains the same, this run has one less unmatched
label, contradicting the assumption thatrm has a non-zero number of unmatched labels. Thus,rm isα, γ-matched.

LEMMA 15. If r is anα, γ-matched forward violation inρ, then there is a forward violation inρ′.

PROOF15. Similar to Lemma 9.

LEMMA 16. If ρ contains a forward violation, thenρ′ contains a forward violation.

PROOF16. Follows from Lemma 14 and Lemma 15.

LEMMA 17. Let (P , I) 99K (P ′, I) be a proof step which applies the sequential reduction rule,RED-S. If (P ′, I) does not contain a
violation, neither does(P , I).

PROOF17. We have shown how to obtain a violation inρ′ from a violation inρ when we tookα as a right-mover. The case ofγ of the
proof rule RED-S being a left-mover is similar. This is due to the duality between forward and backward reasoning and the accompanying
definitions. More explicitly, whenγ is a left-mover, a forward violation inρ′ is constructed in the same way as a backward violation inρ′

was constructed whenα was a right-mover. Similarly, whenγ is a left-mover, a backward violation inρ′ is constructed in the same way as a
forward violation inρ′ was constructed whenα was a right-mover.

16 2009/10/31

PROOF18 (Theorem 1).Proof is by induction on the length of the proof. The base case, a proof of length 0, is trivial. The inductive step
has to show that soundness is preserved for each rule application. The proof ofANNOT-H is similar to the proof of Lemma 2 whose sketch is
given in the paper. The proof ofINV is trivial. The proof ofSIM is again sketched in the paper (Lemma 1). The proof ofRED-C follows from
the proofSIM sinceγ of RED-C simulatesα2γ. The proof ofRED-S is given above. The proof ofRED-L follows from the proofs ofRED-S and
SIM (think ofβ of the ruleRED-L as simulating zero or more iterations ofα).

17 2009/10/31

