Back and Forth: Prophecy Variables for Static
Verification of Concurrent Programs

October 13, 2009

Technical Report
MSR-TR-2009-142

Microsoft Research
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

1 2009/10/31

Back and Forth: Prophecy Variables for
Static Verification of Concurrent Programs

Shaz Qadeer

Microsoft Research
gadeer@microsoft.com

Abstract

Several static proof systems have been developed over #rs ye
for verifying shared-memory multithreaded programs. Ehawof
systems make use of auxiliary variables to express mutucili-ex
sion or non-interference among shared variable accesges. T
cally, the values of these variables summarize the pasteopitb-
gram execution; consequently, they are known as histoigivias.
Prophecy variables, on the other hand, are the temporabfihé-
tory variables and their values summarize the future of tbgnam
execution. In this paper, we show that prophecy variablesiae-
ful for locally constructing proofs of systems with optiriiscon-
currency. To enable the fullest use of prophecy variablgx dof
construction, we introduce tressa annotations, as the afudie
well-known assert annotations. A tressa claim states aittond
for reverse reachability from an end state of the programchmu
like an assert claim states a condition for forward readhatiiom
the initial state of the program.

We present the proof rules and the notion of correctness of a
program for two-way reasoning in a static setting: forwardiine
for assert claims, backward in time for tressa claims. Ebengh
the interaction between the two is non-trivial, the forraation is
intuitive and accessible. We demonstrate how to verify anpn-
tations based on optimistic concurrency which is a progrargm
paradigm that allows conflicts to be handled after they oddler
have incorporated our proof rules into the QED verifier angeha
used our implementation to verify a handful of small but $eph
ticated algorithms. Our experience shows that the progisséad
annotations follow closely the intuition of the programpmaaking
the proof itself a natural extension of implementation.

1. Introduction

The main challenge in proving a concurrent program is raagon
about interactions among threads on the shared memory.rtyoé p
based on validating assertions that specify a programisadkebe-
havior, one has to consider all possible interleavings offlimt-
ing operations. Most existing methods verify programs affitest
level of granularity of atomic actions: only actions gudesu to be
executed without interruption by the runtime are considecebe
atomic. At this level of granularity, there are a large numifegoos-
sible interleavings. Proving the program at this level ieggione to

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

Ali Sezgin Serdar Tasiran

Koc University
asezgin@ku.edu.tr stasiran@ku.edu.tr

consider concurrency- and data-related properties aitine sime
and this results in complicated proofs.

We have recently developed a static verification methoddall
QED [1] that alleviates this complexity. A proof in QED cosisi
of rewriting the input program iteratively using abstraatiand
reduction so that, in the limit, one arrives at a program tiaat
be verified by sequential reasoning methods. Reductiontal2g,
creates coarse-grained atomic statements from fine-graines.
Whether statements can be thus combined depends omtbhear
types Abstraction of a statement allows us to reason that it does
not interfere with other atomic statements. Adding assestiover
auxiliary history variables or relaxing transitions are two main
abstraction methods. We will have more to say on these inSec.
In short, though, as we shall see, abstraction leads to tieduc
which in turn may enable more abstraction. This proof metisod
supported by a tool also called QED. The QED tool providesta se
of intuitive, concise and machine checked proof commands.

For sample implementations based on optimistic concuyrenc
our experience with QED suggests that expressing facts abau
currency control mechanisms in the form of assertions oi®r h
tory variables is unnatural and counter-intuitive. Cori@oeration
of optimistic concurrency implementations, used in thelamen-
tation of non-blocking data structures or Software Tratisaal
Memories (STM’s) [3], do not depend on exclusive accessdoesh
variables. The idea is to carry out computatasif no interference
will occur and then, prior to termination, check whetheisths-
sumption is correct. If it is, then simplgommit if not, roll-back
any visible global change and, optionally, re-start. Iis tase, it is
not the prefix of the execution that leads to the statemenstima-
marizes its interference, but rather, the suffix of the etienuthat
leads from the statement.

Prophecy variables, the temporal dual of history varighdes
ideal for this kind of reasoning. They are used to select ahte s
g a subset of all execution segments frgronwards. To the best
of our knowledge, research on using prophecy variablesrduafa
concentrated on execution-based refinement proofs (d]y.The
auxiliary variables allowed in static proof systems arelgsicely
history variables.

In this paper, we incorporate prophecy variables as a nesg cla
of auxiliary variables into the static QED proof system foncur-
rent programs. Along with prophecy variables, in order toiewe
their fullest use in proof construction, we introduce teessino-
tations, as the dual of the well-known assert annotationsegsa
claim states a condition for reverse reachability from ath state
of the program, much like an assert claim states a conditiofof-
ward reachability from the initial state of the program. Atating
actions with prophecy variables allows information abdw test
of the execution to be used in deciding the mover types obasti
which are checked locally. A tressa claim stating that aioadol-
lowed by another action cannot lead to a final state of theramg

2009/10/31

because it contradicts with the current value of a propheciable
becomes very useful in locally constructing proofs of systevith
optimistic concurrency.

We present the proof rules and the notion of correctness of a
program for two-way reasoning in a static setting: forwardiine
for assert claims, backward in time for tressa claims. Bugdn
our initial work [1], we reformulate simulation and moverfidé
tions, valid for both forward and backward reasoning. Evenugh
the interaction between the two is non-trivial, the forraation is
intuitive and accessible. We demonstrate how to verify alhdn
of small but sophisticated algorithms based on optimisticcar-
rency.

Related WorkProphecy variables were introduced in [5] in the
context of refinement proofs. They were used to define refineme
mappings between specification and its implementation gesa
where the mapping between abstract and concrete statasidepe
the rest of the execution. Subsequent work on prophecyblasa
were almost exclusively on refinement checking (e.g., [8tatic
verification is a well-known technique for concurrent praogrver-
ification (e.g., [6, 7, 8]). A variety of techniques have beeoposed
for static verification of concurrent programs (e.g., [6,97.8]).
Some work on static verification use reduction as the ke\eidignt
(e.g., [10, 11, 12]). However, the only work on prophecy ables
in static verification we know of is by Marcus and Pnueli [1i8].
the context of a static method for proving refinement betwaen
transition systems, the authors present two sound waysjofiewnt-
ing a sequential program with assignments that involve teaip
logic formulas with future operators. Their soundness @ardfor
annotating programs with auxiliary variables is, as exgp@csim-
ilar to ours. In contrast, our proof system targets concurseft-
ware and the verification of assertions rather than refingraex
uses atomicity as a key reasoning tool.

Roadmapln the next section, we briefly highlight QED method.
We give a semi-formal description of reduction, abstractmd
how they interact. We then give an example for which the airre
proof rules do not give an immediate solution. We demorestiatv
prophecy variables can help in reduction. In Sec. 4, we fozma
our framework, describing the programming language syatak
semantics. For ease of presentation, we only use a subséDf Q
In Sec. 5, we formalize prophecy variables, define the newemov
conditions, and state the soundness theorem. In Sec. 6,0meigh
detail how to reason and use prophecy variables and treastean
tions in the proof of implementations using optimistic corrency.
We finish with concluding remarks.

2. QED- An Informal Summary

In this section, we will briefly describe the QED method (for a
detailed account, please see [1]) . This section can be ettipg
those who are familiar with QED.

2.1 Reduction, Movers, Simulation

Reduction, the starting point of QED, combines sequegt@im-
posed atomic actions of appropriate mover types into a singl
atomic action. Consider two sequentially composed actions,.
Now imagine that in any executior; executed by a threatat
stateq followed by an arbitrary actior’ executed by a different
threadu reaches statg’ implies that from the state, s’ executed

by u followed by s; executed by reaches the statg; that is, from
the same initial state, the same end state remains reachidte
swapping the order of execution of the two actions. In suchsac
s1 Is aright-mover because, in any execution, it can commute to
the right of any other statement without changing the erié stiais
then sound to treat; ; s2 as a single atomic action. The mover type
of an action depends on the existenceaiflictingactions: pairs of
actions accessing the same shared variable with at leasf tmem

atomic {

acq(lock); //sets lock==tid acq(lock);

assert lock==tid; }
g = X; atomic { assert lock==tid;

g =x; }
rel(lock); //sets lock==0 atomic { assert lock==tid;

rel(lock); }

Figure 1. Enabling commuting by adding assertions.

writing to it. Actions with only thread-local accesses anthbleft
and right movers. Lock acquires are right-movers, sincg tam-
not be immediately followed by an acquire or release of thmeesa
lock by another thread. Similarly, lock releases are |eftsens.

The QED method improves this idea of reduction by relaxing
the requirement that the same end state be reached from every
initial state. This is formalized as a simulation relatias:long as
s1 followed by s’ is simulated bys’ followed by s1, for arbitrary
s’, actions; is a right-mover. The simulation relation used by QED
is illustrated below.

q T1:Sl T2252 qf el
fail: e}, fail: ef
.o AT oy LT
s30T aT
- s .
i ? 74 Ta:so - Tq:s1 qf ell

The topmost line represents a pair of actions executed ¢ee af
the other: from state, s; by T, followed by s, by T2 reaches
stategs. We say thafl';:s1,T2:s2 is simulated byI'2:s2,T1:s1 if
one of the transition sequences depicted in the bottomsexist

(i) The sequence’ corresponds to the regular simulation (com-
mutativity) condition: starting from the same startingtsta,
the same end staig is reached after swapping the order of
execution of the two actions.

In the remaining cases, the transition sequel¢es;, T2 s2 IS
simulated by assertion failures.

(i) The sequence’, corresponds to the case where executingt

q leads to an assertion violation, makiga failing state.

(ii) Similarly, e5 is the sequence which ends with an assertion

violation after executing; .

With this definition of simulation, QED transformations ayear-
anteed to preserve (and potentially increase) assertadatidns in
programs.

In a typical QED proof, at the final proof state, when atomic
blocks are relatively large, all assertions are discharghid means
that, in the simulation check above, cases (ii) and (ii))eviarfact
vacuous. Put differently, later in the proof we realize ghthat,
for statesg reachable from an initial state of the program, case (i)
of the simulation condition always applies. Assertion dations
make this information locally available to actions and s. and
enable its use for mover checks earlier in the proof. For afprb
soundness of this approach, see [1].

2.2 Abstraction and Reduction

In QED, reduction is combined with abstraction resulting pow-
erful proof methodology as explained next. QED decides @n th
mover type of each action by local checks. Each action is emetp
with every other action of the program, assuming they areigrel

by different threads at any state satisfying an invariamtorder

to make mover checks local and efficient (linear in the nunaber
program actions), this approach is forced to disregarckattetion-
specific information. For instance, even though lock-priete ac-

2009/10/31

havoc t;
CAS(g,t,t+1);

t :=g; // t local, g global
CAS(g,t,t+1);

Figure 2. Atomic increment using Compare-And-Swajh$).

cesses are provably both-movers, at first, QED fails to assny
mover type to such accesses. Two types of abstraction are'SQED
mechanisms for providing such information to mover cheaksio-
tating statements with assertions and relaxing transitiyrreplac-

ing accesses to global variables with non-deterministieati-local
reads or writes.

Fig 1 presents an example of abstraction through asserfibies
code on the left is the original snippet, where the globaiaire g
is updated with the value of the local variable The update ac-
tion is tagged as a non-mover because it apparently conflitits
itself: the end value of may depends on the order of threads ex-
ecuting this action. However, this action is protected bgck| so
conflicting accesses tg cannot be concurrent — a fact expressed
by annotating this action with an assertion as in the transfad
code on the right in Fig. 1. Letid be the variable that holds the
unique thread identifier of each thread. Then clearly, twtseou-
tive updates by different threads will always end with areassn
violation, proving that the update action is a both-movéafithese
assertions fail in mover check does not imply that we haveddd
extra failing behaviors to the original program. The assestare
our way of telling QED that two updates gpare not simultane-
ously enabled and they are left unproved as proof obligatiorbe
eventually discharged, once all three actions are comhimeda
single atomic block.

Fig. 2 presents an example of relaxing transitions by read ab
straction. First the value of the global varialglés read to the local
variablet and then an atomic compare-and-swap (CAS) instruc-
tion attempts to incremergt Thus, this code executed by a thread
t either atomically incrementgsor leaves it unchanged if@s in-
struction by another thread is interleaved between the readgf
and thecAs by ¢. The read of (by ¢) will be tagged as a non-mover
because it fails to commute to the right of &8 action executed by
a different thread#(). But, in this interference scenaribdoes not
updateg and the value ot is irrelevant. We express this fact by
abstracting the read @f. havoc t; assigns a non-deterministic
value tot.Note that all executions of the original program (that
may succeed or fail in incrementing are subsumed by the ab-
stracted program, and the set of possible end valueg femains
the same after this abstraction. The abstracted read is agyed
as a both-mover and can be combined with ¢h8 action into a
single atomic block.

Copy (fr: Obj, to: Obj){

atomic{ version := fr.ver; value := fr.val;}
action ConfNWrt(fr, to):

atomic{ if (version == fr.ver)
value; to.ver :=

{to.val := to.ver + 1;}

}
}

Wrt (to: Obj, newVal:

atomic{ to.val :=

int) {
newVal; to.ver := to.ver + 1;}

}

Figure 3. TheCopy procedure consisting of two atomic actions.

3. Motivation

In this section, we present an example which is interestemabse

it contains a pattern typical to optimistic concurrency tcolh and

is difficult to handle with the current set of QED proof rul&¥e
show how prophecy variables and tressa claims provide alsimp
proof of atomicity.

3.1 Atomic Copy: First Proof Attempt

The purpose th€opy procedure (Fig. 3) is to cop§r.value to
to.value atomically. If Copy does not succeed, it leavgsun-
modified. One can imagin€opy to be the body of a loop that
is iterated until the atomic copy operation succeeds. Ia éx-
ample, objects have version numbersdrsion) that get incre-
mented atomically when the object’alue field is modified Copy
consists of two atomic actions. The figt (fr) takes a snapshot
of the objecttr into the local variablesersion andvalue. The
secondConfNWrt (fr,to), confirms that the version number has
not changed since the snapshot was taken and cepiealue to
to.value. If the version number has changed, it leavesinmod-
ified. Wrt (to,newVal) atomically writesnewVal to to.value.

Tl T2
ot st
Wrt (x)
ConfNWrt (x, y)

Figure 4. A thread interleaving with a conflict.

From the caller’s point of viewGopy is atomic, because, when

it succeeds in writing to the objec¢b, the version number check
guarantees thato has not been written to by another thread be-
tweenss (x) andConfNWrt (x). WhenCopy fails, to is not mod-
ified. In a QED-style static proof, the atomicity 0bpy is shown

by attempting to show that eith8g (fr) is a right-mover, or that
ConfNWrt (fr,to) is a left-mover. In the presence of concurrent
Write's by other threadssS(fr) andConfNWrt (fr,to) are not
movers as they stand as the interleaving in Figure 4 shows. On
must abstract one of these actions to make it into a moveoutth
changing whatopy is meant to accomplish.

Copy (fr: Obj, to: Obj) {
action SS_Abs(fr):

atomic{ havoc version, value; }

action ConfNWrt(fr, to):
atomic{ if (version
{to.val

== fr.ver)

:= value; to.ver := to.ver + 1;}

SS_Abs (x)
ConfNWrt (x, y)

Figure 5. The initial proof attempt abstracgs to SS_abs. This
interleaving contains no conflicts, but the final valueyofral is
arbitrary.

SinceConfNWrt writes toto.value, we avoid abstracting this

action. We observe that, in the interleaving shown in Fighrihe
values ofversion and value are not used byonfNwrt. Our

2009/10/31

first proof attempt is therefore to abstr&st(fr) to SS_Abs (fr)
(Fig. 5). The latter does not depend o, thus, does not conflict
with any wrt action. However, this turns out to be too much ab-
straction. In the interleaving in Figure 5, an arbitraryuels writ-
ten toy.val.

// Want to abstract SS (x) iff p == true
SS_Proph (x)
Wrt (x)

< Prophecy variable p indicates
whether version == x.ver at this point

ConfNWrt (x, y)

Figure 6. The prophecy variablg

3.2

We would like to constrain the amount of abstraction we ap-
ply to SS(x). We would likeversion andvalue to have non-
deterministically-chosen values only in executions like bne in
Fig. 4, in which awrt by another thread interferes witlopy and

the atomic copy attempt fails. Introducing a prophecy \déa®
(local to theCopy procedure) allows us to do just that (Fig 6.)

p has the valuetrue iff no interfering wrt (x) occurs be-
tween taking a snapshot of and confirmingx.ver == ver.
Put differently,p encapsulates how future thread interleaving non-
determinism is resolved in an executign== true iff ConfNwrt
finds thatversion x.ver. This is accomplished by “reverse-
assignment” of the valugrue to p (denoted byp =: true)
exactly whenversion x.ver, as shown in Figure 7p =:
true; is shorthand for the actiomtomic{ assume p == true;
havoc p;}. We refer top =: true as reverse assignment be-
cause, if we imagine that we are going backwards in time along
a given execution, this action has the effect of constrgiarlier
(between it and program start) valuesto true. If we think
forward in time, initially the value of the prophecy variaki$ non-
deterministic and guesses whethetsion == x.ver will be the
case later whe@onfNWrt executes. The execution ObnfNwWrt
is blocked if the guess expressed by the prophecy varialge dlot
match reality.

Usingp, we abstract the snapshot action only in desired execu-
tions, i.e., wherp is false, as shown in the actio8S_Proph in
Fig. 7.

Introducing Prophecy Variables toCopy

3.3 Tressa Annotations

Recall that in QED proofs, assertions are used to annotéitenac
with information about execution history in order to remaypar-
ent conflicts between actions (See abstraction throughtassein
Section 2.) Annotating actions with assertions expresseadrms
of prophecy variables is helpful in enabling further reduetin a
similar way. However, assertions that refer to prophecyatsdes
cannot be discharged by forward reasoning in time. To djsigh
assertions that are discharged by backward reasoning friomala
state of the program, we introduce the tressa const8ScProph
in Fig. 7 makes use of tressa statements. Similar to assgrém-
notating an action with a tressa is always a valid abstmactio

In theCopy example in Fig. 7, the tressa claim3a8_Proph (x)
states that if the prophecy variable is true but the valugeotion
is not up to date, then this execution will eventually blocida
not reach a final state. With this tressa annotat8f1Proph (x)
becomes a right mover as illustrated in Fig. 8. This makestttiee
Copy procedure atomic, and the tressa annotation is dischasged b
a simple sequential analysis.

Copy (fr: Obj, to: Obj){
action SS_Proph (fr):

atomic{ if (p) {version := fr.ver; value := fr.val;}

else { havoc version, value;}

tressa p ==> (version >= ver);

}

action ConfNWrt(fr, to):

atomic{ if (version == fr.ver) {
p =: true;
to.val := value; to.ver := to.ver + 1;
} else {
p =: false;

}

}

Figure 7. The transformedCopy procedure makes use of a
prophecy variable and a tressa annotation.

The remainder of this section provides a detailed explanaif
how tressa annotations make mover checks pass.

i T1:51 Ta:s2
€1.40
HEP HEP
fail: % fail: e,
AN S0
\f@e \\'@1
< N
?
> ~ H
el:qo 3 > qf
To:s2 T1:s1

Here,q; represents a state in which all threads have reached the
end of the code they are executing. Similarly to the movecklire
the presence of assert annotations (Section 2.1), in tlsepce of
tressa’s, there are three ways a mover check to pass:

(i) Transition sequence starting éft: gy is reached starting from
go- This is the conventional simulation definition.

(i) e5: The tressa predicate ef fails.
(i) e4: The tressa predicate ef fails.

With this definition of simulation in the presence of tress® ED
transformations are guaranteed to preserve (and potgnimal
crease) tressa violations in programs.

Again similarly to the case with assertions, the goal of a QED
proof is to reach a proof state in which atomic blocks aredarg
enough to discharge all tressa’s. Intuitively, this meaterlproof
steps allow us to conclude that, in this mover check, cagesn(
(i) were vacuous, i.e., for statesstarting from which each thread
can run its code to completion, it is not possible to violatetressa
predicates o&; ands». Put differently, executions starting from a
stateq that violates the tressa predicates will eventually getkstu
The tressa annotations allow us to use this informationlliptar
mover checks earlier in the proof.

In the Copy example, when the prophecy varialies false,
SS_Proph(x) commutes to the right dfirt (x) , since it is able
to assign arbitrary values t@ersion andvalue, as shown in the
first part of Fig. 8. Wherm is true, SS_Proph(x) cannot be im-
mediately followed byWrt (x). The tressa annotation inis able
to express this fact locally. I true, from any states; that
can be reached by executisg_Proph(x) immediately followed
by wrt (x), the program eventually blocks. All sueh violate the
tressa annotation &S_Proph (x). The second part of Fig. 8 illus-
trates the case where the tressa on the left-hand side ointioe s
lation checkSS_Proph(x).Wrt (x) <Wrt(x).SS_Proph(x) fails.

2009/10/31

Figure 8. Why SS_Proph(x) commutes to the right dfrt (x),
i.e., 8S_Proph(x).Wrt(x) =< Wrt(x).SS_Proph(x). In each fig-
ure, the bottom and top parts of the diamond correspond tethe
and right-hand sides of this simulation check, respegtivel

In the third part of the figure, this tressa succeeds, butrdssa on
the right-hand side still fails. ThuSS_Proph (x) commutes to the
right of wrt (x).

4. Formalization

We start this section by formalizing the programming envinent
by giving the syntax and operational semantics of a simpbe pr
gramming language. We then build a proof system for thisnanog
ming environment. The formalization given in this sectidosely
follows that of QED as was given in [1].

4.1 Syntax
Actions: Atomic, Compound, Nullary, Full. First, we will as-
sume that each atomic actianis in the form

assert a; p; tressa b

We require that, the assert predicate(b, the tressa predicate
be over only unprimed (primed) variables. Ti@nsition predicate
p is over both primed and unprimed variables. For any acfion

let ¢s, 15, 75 denote its assert, tressa and transition predicates,

respectively. For instancéy, = a, ¥ = band7r, = p, for a
given above.

We use sequential composition)(choice (0) and loop €)
operators to forntompound actiong-ormally, each atomic action
is a compound action and for compound actiengndcs, c; ; co,
c10ca amdc§5 are also compound actions. We will represent each
sequential code segment byudl action. A full action is either the
nullary actionstop which intuitively marks the end of the code, or a
compound actior sequentially composed with the nullary action,
c; stop. Let Atom and Full denote the set of all atomic and full
actions, respectively.

Note that, we have opted for the more intuitively appealing
pseudo-language in the sample codes given in this papem&he-
ing of each construct in the pseudo-language is either givien
mally or should be obvious. The language we describe heréaeon
other hand, is more suitable for formal treatment.

4.2 Semantics
Program states. A program state is a pair consisting of

— C Full x (Atom U{\}) x Full

A-EVAL C-LEFT C-RIGHT
v € Atom Y= y=A
Y Y Y
Y;c1 — c1 ciecz — c1 c10cg — c2
L-ITER L-SKIP STEVAL
y=A Y= c1 — c2
o o o

¢ v Y
¢y <= c1;eq Ccy;C2 — C2 C1;€C3 — C2;C3

Figure 9. Obtaining all possible subactions of a given full action
via the silent transformation relatios.

e avariable valuationo; that maps a thread id and a variable to
avalue,

e acode map; that associates a thread with a full action.

We require that (¢, g) = os(u, g) for all statess and thread id’'s
t,u, whenever is a global variable. The code mapkeeps track
of what each thread is to execute. For instang€;) = ¢ means
that at program state, the remaining part of the program to be
executed by thread is given byc. We will give the small step
semantics for the execution of full actions below. A progrstate

s is calledfinal if e5(t) = stop, for all ¢.

Predicates over program variables.For an assert predicate
(over unprimed program variables), left] denote the same pred-
icate in which all free occurrences ofd is replaced witht. We
say that a program statesatisfiesc[t], denoted as F z[t] or as
z[t](s), if z[t] evaluates to true when all free occurrences of each
unprimed variablev is replaced witho, (¢, v), its value seen by
threadt.

Similarly, the pair of program state€s1, s2) satisfies a tran-
sition predicatep[t] (over unprimed and primed variables), de-
noted ag(s1, s2) F p[t] or asplt](s1, s2), if p[t] evaluates to true
when each unprimed variabies replaced withv s, (¢, v) and each
primed variabley’ is replaced witho; , (¢, v).

Finally, for a tressa predicaig(over primed program variables)
and a thread, the program statesatisfieg[t], denoted as’ £ y][t]
or asy[t](s"), if y[t] evaluates to true when each primed varialdle
is replaced withrs (¢, v).

Configurations. The evaluation of a full action is given in terms
of the silent transformation relation—, whose definition is given
in Fig. 9. Intuitively, if we imagine the execution of a fultton
represented as a flowchart with an explicit control pointraling
what to execute next, the silent transformation relatianesponds
to advancing the control pointer over the flowchart not mgdd
any program variable’s value. When this imaginary contmhfer
selects a branch, it is represented by the labehich is called the
invisible transition Otherwise, the label is the content of the box
over which the control pointer passes.

For full actionsc andd, and a stringy = 1 . . . y» over AtomU

5 . .
{A\}, we letc — d denote a sequence of silent transformations
1 In
C:CO‘—>61...‘—>Cn:d

A program state’ is in conf(s), theconfigurationgreachable from
program state, if, for all ¢, there exists some strirfg, such that

es(t) LN e« (t). Intuitively, s” is a configuration of if s’ can be
obtained by moving forward the control pointer of each thiga
program an arbitrary number of, possibly 0, steps.

Let s and s’ be program stateg, be a thread id. Thery' is
called a(t, a)-successonf s (or s, a (¢, «)-predecessor of’, if
the following conditions hold:

2009/10/31

k;a
o e.(t) 2% . (1), for somek > 0.
o forallu # t, €5 (u) = es(u),

Intuitively, s’ is a (, a)-successor of if at s threadt hasa as a

possible next action and is the same as except the control flow
att skips overa. For any thread and~y € Atoms, (t,) is called

atransition label

Execution semantics. Alluding to the flowchart and control
pointer analogy given above, the execution of a program @n b
seen as advancing the control pointer of each thread while ma
ing the effect of each atomic action passed over visible t@abte
valuations. Letx be an atomic action. We write- %), s’ if

e s'isa(t, a)-successor of,

o forall u # t and for any local variable, o (u, z) = oy (u, z),

o for any variableg and threads, o5/ (¢, g) = o4 (u, g),

o (s5,8) F 7alt]-

In other words,s AL holds whent can executex next, all
other threads do not update their control flow, all local atles
of other threads remain the same, the global variables aral lo
variables oft are updated so that the transition predicatexads
satisfied. Note that both assert and tressa commands bekave |
no-op’s.

A traceis a sequence of transition labdlss [; . . . lx. The trace
moves a statey to s, written so — s, if there is a sequence of

states(s;)o<i<k, arun of P overl, such that for alb < ¢ < k&,
Si—1 l—7> Si.

The run ismaximalif s, cannot make any transition. The run is
exhaustivef s is final (it is maximal anc;, (t) = stop, for all
thread<). Henceforth, we will always consider maximal runs.

4.3 Proof and Correctness

Proof state. A proof stateis the tuple(P,Z), where? andZ
are called the program and the forward invariant, respelgtilhe
programP C Full is a set ofprocedures The forward invariant
7 is a predicate over unprimed global variables appearindpén t
program. It is a predicate that has to be preserved by eaahi@ato
action inP. An atomic actionx preserves the forward invariaft

writtenZ 2 q, if s; LGN sy ands; E Zimply s2 F Z. In
other words is preserved by if Z cannot be falsified (changed
from true to false) by any execution af If all the atomic actions of
programP preserve the invariatf, P is said to preserve, written
I=P.

A program states is called an initial program state ¢P, 7) if
s E Z," there are only finitely many such that,(t) # stop and
for each sucht, e,(t) is in P. We will let T'id be the (finite) set
{t|es(t) # stop}.

For a non-initial (resp. non-final) program state(resp.r),
definelst(s) (resp.fst(r)) as the set of all transition labels=
(t,) such that there exists some program stat@resp.r’) with

s’ L s (respr L 1), That is,(t, @) € Ist(s) means that the last
action that thread performed prior to reaching is «. Similarly,
(t,a) € fst(s) means thatx can be the first action executed by
threadt at states. Note that, either set contain more than one label
for the same thread due to possible branching.

Forward and backward violations. With the introduction of
tressa predicates, correctness not only implies the iniubiss

1The thread id is ignored for invariants, since all threadseagn the value
of all global variables.

of reaching an assert violation from an initial program estdmut
also the impossibility of reaching a final state startingrfra state
violating a tressa predicate. The former kind of violatismamed a
forward violation whereas the latter is calledbackward violation
For the formal definitions to follow, fix a proof sta{®, 7).

DerINITION 1 (forward violation).Arun(s,)o<r<n Of P is called
a forward violation(f-violation) if the following conditions hold:

e 50 is an initial state of(P,7),
* —¢s[u](sn) evaluates to true for sonfe:, 5) € fst(sn).

Intuitively, a forward violation is a run ofP that starts from an
initial program statesp; and reaches a program statge which
violates the assert predicatég, of an actions which threadu
can execute at stats,. It is important to note that the transition
predicate ofg, 75, does not need to be satisfiedsat if its assert
predicate is violated, the outgoing transition (frar) is ignored
in f-violation.

DEFINITION 2 (backward violation)The run(s,)o<r<n Of P is
called abackward violation(b-violation) if the following condi-
tions hold:

® 5o € conf(s) for some initial states of (P,),
* s, is a final state ofP,
® Z(s0) Apa[t](so”) evaluates to true for some, o) € Ist(so),

Intuitively, a backward violation is a run @® that ends at a final
states,,, starts at a configuratios, of an initial program state
such that there is a threadvhich could have executed prior to
reachingso and the tressa predicate of v, is violated byso.
Again, as in forward violation, we do not require that thexisea
states’ such thai(s’, so) F 7. [t]; if the tressa predicate is violated,
the incoming transition (intey) is ignored.

Note that, a forward violation does not have to lead to a final
state, much like a backward violation does not have to stam &n
initial state.

DeFINITION 3 (Violation-free).A proof state(P,Z) is violation
free(vf) if it does not allow a run that is either a forward or a back
ward violation; it is callednon-violation free (non-vf), otherwise.

4.4 Simulation and Composition

In this section, we will define the simulation relation beéngwo
atomic actions and prove that simulation preserves vimiatiof
the program. We will also define the composition of two atomic
actions which will be used in a proof rule making use of mover
types explained in the following section.

DEFINITION 4 (Simulation).Let « = assert a; p;tressab, 8 =
assert ¢; g; tressa d, t be an arbitrary thread id angp = (P, Z) be
a proof state. We sag simulatesa at p, written o <, 3, if the
following three conditions hold:

Slc=aqa,
S2d =,
S3fp=qV ¢,
S3bp=qV-d

Whenever clear from the context the proof state subscripptbei
dropped.

The simulation conditions are relaxed in certain casesi- Int
itively, S3f, along with S1, is used to preserve forward &tains:
If there was a forward violation with, there has to be a forward
violation with 3 substituted in place aok. If each assert predicate
is true, there can be no forward violation, thus conditior 153
comes unnecessary (S1 becomes trivially satisfied witteing

2009/10/31

identical to true). Thus, ip is such that the assert predicate of each
a € Atoms(P) is identical to true, the condition S3f is not re-
quired to hold. In other words, if the program contained drégsa
annotations, then we require only S1, S2 and S3b to hold. A sim
ilar argument holds for backward violations, tressa pratgis and
S3b: If pis such that the assert predicate of each Atoms(P) is
identical to true, the condition S3f is not required to hdltat is,

if the program contained only assert annotations, then weire
only S1, S2 and S3fto hold.

We will sometimes restrict a simulation relation to a set of
program state pairs represented by a logical formula. Ftyma
a <® g if the simulation conditions hold for all state pairs that
satisfy ©. For instance, if there is ne, such that(s1, s2) F ©,
then the first simulation condition St(s1) = a(s1), does not
need to hold forr <© 3 whereasy < 3 would fail if S1 failed for

s1. Let Atoms(P) be all atomic actions: of P, that is,s (&), s
holds for somes € conf(s;), wheres; is an initial state ofP.
LEMMA 1. Let p = (P,Z) be a non-violation free proof state.
Leta be an atomic action imMtoms(P). Let 3 be another atomic
action such thatx <, 3 holds. Then(P’,T) is a non-violation
free proof state, wher@’ is obtained by replacinge with 3 in P.

ProOOF1. Take any violation op in whicha occurs. That replac-
ing all occurrences ofv with 3 in the violation will lead to the
construction of another violation ifP’, Z) follows directly from
the definition of simulation.

Letwp(p,), theweakest (liberal) pre-conditionf predicater
for transition predicate, stand for all states which cannot reach a
state where: evaluates to false after executipgFormally,

wp(p,z) = {s|Vs'.p(s,s") = =(s')}

Similarly, sp(z, p) denotes thestrongest post-conditionf predi-
catex for transition predicate, and stands for all next states that
cannot be reached after executipdgrom states violatinge. For-
mally,

sp(z,p) = {s'| Vs.p(s,s") = x(s)}
Finally, for two transition predicatgsandq, define their composi-
tion p - ¢, as the transition predicate

p-q={(s1,52)3s3.p(s1,53) A q(s3,52)}

As actions are reduced, we need a formal mechanism to define

the resulting atomic action by specifying what its assegsda
predicates and transition predicate are. The followingnitédn
provides this mechanism in termswp, sp and-.

DEFINITION 5. Let o and 3 be two atomic actions. Define their
composition a o 3, as the atomic action

assert o A Wp(Ta, $3); Ta - 78; tressa g A sp(Ya, 73)

5. Proof Rules

In this section, we will define the new rules enabling the use o
tressa and assert claims . In order to make the paper séffisnf,
Figure 10 lists the proof rules of [1] relevant to the subsetase
using in this paper. The ruleNNOT-H is for annotating atomic ac-
tions with a new (history) variable. The rulsv is for strength-
ening of the invariant. The rulsim is for abstracting an action by
replacing it with one that simulates it. The rulegD-L, RED-S,
RED-C are for reducing loops, sequential composition and condi-
tional branches of two atomic statements, respectively.

5.1 Prophecy Variable Introduction

The main concern when adding a new variable into the program
is to annotate statements so that no terminating execufioheo

P1,Z1 --» P2, 12

ANNOT-H _
ag¢ Var 1<i<n Atoms(P)={a}}
by = 0hy Wh, =¥, Tah
Erh, = Va3dd . 1},

P,T --» P[Var — Var U{a}, ol — ab],T

INV SIM
Io=1T1 To=P a=pmn b
P, 11 --» P, 1> P,Z --» Pla— B],T
RED-C

v = assert ¢ A ¢3;Ta V Tg;tressatha Atbg
Pvl - P[Q’Dﬁ = FYLI

RED-S
P, ZFai :R or P,ZFas:L

P,Z --+» Plai;a2 — a1 o az], 7

RED-L
P,ITFa:m m € {R,L} =0
F ¢g = 15| Var/ Var') IFBoa=p

P,T --»Pla® — B,

Figure 10. The proof rules of the QED method.

original program is left out. That is why thenNOT-H rule for in-
troducing history variables into the program requires adition
for every valuation of the auxiliary variable: if the origilprogram
makes a transition over a certain valuation of variablesyiddhe
new program over the same valuation for any value of the fyisto
variable. Prophecy variables should satisfy a similar iregquent.
The condition that has to be satisfied for prophecy varialbles-
ever, is the dual of that of a history variable. Prophecyaldg
introduction requires the new transition be defined for aktrstate
values of the prophecy variable. The formal condition faprecy
variable introduction is given by the followingnNOT-P rule.

ANNOT-P _
ag¢ Var 1<i<n Atoms(P)={a;}
o = Pay VYo, =Va, TTah
Er, = V' Ja. 7,

P,T --» P[Var — Var U{a}, o’ — ab],T

LEMMA 2. Letp; = (P1,Z1) be a proof state. Let, be the proof
state obtained fromp; by an application of theNNOT-Prule. Let
(si)1<i<n be arun ofPi. Then, there exists a rufs;)1<i<» of P2
such that for alki, s; ands; have the same code maps and variable
valuations except for the prophecy variahieintroduced by the
ANNOT-Prule.

PrROOF2 (Sketch).By induction on the length of the run, Con-
struct the run backwards, starting from the end state andenth&
observation that for each state, due to the premise ofteoT-

P rule, there always exists a value of the prophecy variablthén
preceding state such that the transitionaf is enabled irP..

5.2 Mover Checks

QED depends on reduction and reduction is the act of merging
atomic actions of suitable mover types, as can be seen frem th
rules RED-S and RED-L. In our previous work [1], we defined
mover types with only forward violations in mind. Below, we
re-define mover types to account for both forward and bactwar
violations. We also establish the correctness of the digfirstvia
soundness results.

2009/10/31

Let pre(tp,x), the pre-imageof predicatex for the transi-
tion predicatetp, denote the predicate only satisfied by all the
states in the sefis | 3s". tp(s,s’) A z(s')}. Intuitively, pre(tp, x)
gives all states such that executingp at s can reach a state
which satisfiesz. Similarly, post(z, tp), the post-imageof x for
tp, denotes the predicate only satisfied by all the states isehe
{s" | 3s.tp(s,s") A z(s)}. Intuitively, post(z, tp) gives all states
s’ that can be reached by executityg from some states satis-
fying z. A label (u,3) follows another label(¢, «) in program
P, if there exists a program statesuch that(t,) € Ist(s) and

(u, B) € fst(s).

DEFINITION 6 (Right-mover).Let p = (P,Z) be a proof state
and « be an atomic action imtoms(P). The action is a right-

mover if for anyg in Atoms(P), threadst, u with ¢ # wu, the

following conditions hold:

1. aft] o Bu] <® Blu] o aft], with © = 7,[t] - 78[u] =
Balt] V Yalt],
2. post(pglul, Talt]) = @plu]

The first condition requires thatt, «) followed by (u,), for
arbitraryt # w, is simulated by(u, 3) followed by (¢, o)) except
possibly for state pairgsi,sz) such thats, violates ¢ [t], s2
violates ¢, [t] and sz is the program state reached from by
executing(¢, «) followed by (u, 3). The second condition states

thata cannot change the assert predicate of any other action from g

false to true.
A left-mover can be defined similar to right-mover using dual
conditions.

DEFINITION 7 (Left-mover).Letp = (P, Z) be a proof state and
a be an atomic action iM¢oms(P). The actionx is a left-mover
if for any 8 in Atoms(P), threadst, v with ¢t # wu, the following

conditions hold:

1. 8] o aft] <® «oft] o Bu], with ©® = 7,[t] - 75[u] =
Palt] V Palt],

2. pre(vslu], Talt]) = ¥slu]

Let P,Z - « : R denote thatx is a right-mover at proof state

(P,Z). Similarly, P,Z I o : L denotes that is a left-mover. Be-
sides the change in the mover definitions, the sequentiaktienh

procedure ReadPair(a: int, b: int)

returns (s: bool, da: Obj, db: 0bj)
{
var va: int, vb: int;
1: atomic { va := m[al.v; da := m[al.d; }
2: atomic { vb := m[bl.v; db := m[bl.d; }
3: s := true;
4: atomic { if (va < m[al.v) { s:= false; } }
5: atomic { if (vb < m[b].v) { s:= false; } }
6: if (!s) { da := nil; db := nil; }
}
procedure Write(a: int, d: 0bj)
{
atomic { m[al.d :=d; m[al.v := m[al.v+1; }

}

Figure 11. A collection that implements an atomic read of two
distinct variablesReadPair, and random access updatésjte.

each of which is obtained from its immediate predecessorrby a
application of the proof rules defined in this section.

THEOREM1 (Soundness).et (Po,Zo) --» ... -=* (Pn,Zn)
be a proof. If the proof statéP,,Z,) is violation free, then so is
(Po,Zn).

Examples

In this section, we verify two examples, both making use of op
timistic concurrency. The first is an implementation of aonait
snapshot of a pair of objects in the presence of concurretdtap

to the objects. The second is an implementation of a set wtinm
ods for searching and inserting elements. In both of the plesn

a finite number of threads share the global and execute oreof t
methods.

6.1 Pair Snapshot

Consider the code in Fig. 11. TReadPair procedure is supposed

to implement an atomic read of two addresses in the presdnce o
concurrent updates done by thieite procedureReadPair suc-
ceeds and returns the read values along with a status flagireno
success, if it observes a consistent state of the memorwioati-

rule RED-S given in Fig. 10 remains the same in the presence of dresses. Otherwise, it fails and sets its status flag to fEeeting

prophecy variable and tressa annotations.

failure, along with setting the read values to default val@e1).

We close this section by stating the soundness results. The Each call of theirite procedure updates the data value stored in an

lemma below establishes that reduction based on the abovermo
definitions cannot change a non-vf proof state into a vf petafe.

LEMMA 3 (Soundness of Reduction)et p; = (P, Z) be a proof
state. Letp, be the proof state obtained from by an application
of therRED-s rule. If p2 is violation free, therp; is also violation
free.

PROOF3 (Sketch).By contradiction. Without loss of generality,
assumen; of the RED-S rule to be a right-mover. Assumg to
be non-violation free ang, to be violation free. Then, there must
exist a violation inp; in which for some, (¢, 1) are not(¢, az)
not consecutive in the violation. Starting from this exarytmove
each such(t, 1) to the right until it either immediately precedes
its matching(¢, a2) or (t, 1) along with its matchingt,) is re-
moved from the execution. This moving around is feasibleatiine
definitions of the simulation relation and right-mover. Timal ex-
ecution, where each occurrence (0f o1) is immediately followed
by (¢, a2) is a violation inp2, establishing the contradiction.

address and increments the version number for that addyesseb
We would like to prove that th@eadPair(a,b) method, when
it returns true, behaves like an instantaneous read of theatlw
dresses.

Intuition for Atomicity. There are two possible execution sce-
narios forReadPair(a,b). Imagine that thread is executing
ReadPair(a,b) and has executed ling, the first read ofa
(henceforthinitial read). Until the second read of line, which
we will call the confirming read if some other thread executes
Write(a,d), thenReadPair will observe two distinct states af
and hence will return false, representing this inconsisteMu-
tatis mutandis fob, lines2, 5 andWrite(b,d). We will call such
executions agnconsistentIn other words, an inconsistent run of
ReadPair returns(false,nil,nil). An execution where inter-
fering updates do not occur between the initial and confignin
reads of either address will be callednsistent

Now each read action conflicts with an update to the same ad-
dress. As such, neither of the read actionR&fdPair are movers
in their current state. Observe thaRéadPair is to have an incon-

Finally, the theorem below establishes the soundness of thesistent execution, since the read values do not matter, thkies

QED method. We define proof as a sequence of proof states

can be abstracted away. Abstracting the read values wileradk

2009/10/31

procedure ReadPair(a: int, b: int)
returns (s: bool, da: Obj, db: 0bj)

{
pl: atomic { if (plal) { va := m[al.v; da := m[al.d; }
else { havoc va, da; }
}
p2: atomic { if (p[bl) { vb := m[bl.v; db := m[b].d; }
else{ havoc vb, db; }
}
p3: s := true;
p4: atomic { if (va < m[al.v) {
s:= false; plal =: false; }
else { havoc s, plal; } }
p5: atomic { if (vb < m[b].v) {
s:= false; p[b] =: false; }
else { havoc p[bl; if(s) { havoc s; } } }
p6: if (!s) { da := nil; db := nil; }
}

Figure 12. Prophecy variable introduction, one per object.

procedure ReadPair(a: int, b: int)
returns (s: bool, da: Obj, db: 0bj)

{
f1: atomic { if (plal) { va := m[al.v; da :=m[al.d; }
else { havoc va, da; }
tressa pla]l ==> va>=m[a].v; }
£2: atomic { if (p[bl) { vb := m[b]l.v; db := m[b].d; }
else{ havoc vb, db; }
tressa p[b]l ==> vb>=m[b].v; }
£f3: s := true;
f4: atomic { if (va < m[al.v) {
s:= false; plal =: false; }
else { havoc s, plal; } }
£5: atomic { if (vb < m[bl.v) {
s:= false; p[b] =: false; }
else { havoc p[bl; if(s) { havoc s; } }
f6: if (!s) { da := nil; db := nil; }
}

Figure 13. Complete annotation with tressa claims included.

the read actions both movers. However, we have to also taketa
the consistent execution 8kadPair. In a consistent execution, a
write to a cannot occur between the corresponding initial and con-
firming reads. Put differently, in a consistent executitm, initial
read is a right-mover, the confirming read is a left-movecaose

procedure ReadPair(a: int, b: int)
returns (s: bool, da: Obj, db: 0bj)
{
atomic {
if (plal) { va := m[al.v; da :=
else { havoc va, da; }
if (p[bl) { vb := m[bl.v; db
else { havoc vb, db; }
s := true;
if (va < mf[al.v) {
s:= false; plal =: false; }
else { havoc s, plal; } }
if (vb < m[bl.v) {
s:= false; pl[b] =: false; }
else { havoc plbl; if(s) { havoc s; } }
if (!s) { da := nil; db := nil; }

m[a].d; }

m[b].d; }

Figure 14. ReadPair reduced to a single atomic action.

The abstracted confirming reads, lines p5, are left-mover.
For instancep4, coming immediately after a conflicting update is
simulated by executing4 followed by the same update. However,
the initial reads are still non-mover.

Consider the code given in Fig. 13. We have added tressa
claims to the initial reads reflecting our intuition aboué tvalue
of the prophecy variables. Singdal equal to true foresees no
interference, we claim that any execution that violatestthesa
predicate cannot terminate. Imagine the contrarfal is true
and va>=m[a] .v is false. Observe thai[a].v is never decre-
mented andra remains the same frofi. onwards. When ling4
is reached, the conditiora<m[a] . v will be true. The then branch
of the if statement will be taken and the current value &1, true,
will not match the reverse assigned value, false, which gtk
the execution. It is important to note the role of additidnlaicking
behavior which we deliberately inserted via the prophecyjatide.
Itis also important to note that all this execution basedoaag is
implied in the tressa claim whose main use comes in repriegent
this kind of information in locally performing mover checks

The rest of the proof is trivial as it consists of reducingwhmle
method into a single action and discharging the tressa slasing
sequential analysis (or applying the definition of compositof
actions). The final code is given in Fig. 14.

6.2 Lookup and Insert

no update to the read address can occur between them. Nate thaFig. 15 presents theookup and Insert methods for a bounded

in a consistent execution, the read values do matter as Hueyds
be returned wheReadPair terminates successfully so abstracting
away the read values in this case is not possible.

In the proof we will construct, initial reads will either ma
the exact value (consistent execution) or abstract awayehés
(inconsistent execution). The decision will be made adogrtb a
prophecy variable per address whose value will be set aiteptd
the presence of a conflicting update before confirming reddrig.
The reverse assignment to the prophecy variables will beerrad
the confirming reads.

Prophecy variables. The code with prophecy variables intro-
duced is given in Fig. 12. As we have hinted above, the prophec

variable, mapping each address to a boolean value, is eevers

assigned in linep4 and p5. For an inconsistent execution, the
prophecy variable is set to false. The initial reads are tguiéo
make use of the prophecy variable values. Intuitivelia] equal
to true means that the current execution will not see anfatter
ing update until the confirming read af is done. That is why
whenpla] is true, the exact value af[a] .d is read. Similarly,

set of non-negative integers. Set elements are stored imraynia
which duplicates are allowed. An array slot is taken to betgrifi
contains -1. Initially, all slots are assumed to be emptg ddntents
of the set are given by the set of values in non-empty slotadRe
and writes to the array are protected by a separate lock pay ar
index. For simplicity, in the figures we do not refer to thisko
Instead, we indicate what accesses are guaranteed to bie &pm
use of this lock.

The Insert method starts from an arbitrary array index in or-
der to reduce conflicts between concurrent executiorknsért
on early array indices. It examines array slots in incrapeider of
indices and wraps around at the end of the artayert succeeds
when it either finds an empty slot to which it atomically wsite
the new element, or it finds an occupied slot containing tlee el
ment it was trying to insert. The method fails if all arraytslare
tried exactly once and each try finds a non-empty slot coimtgin
a different element. In this simplified implementation,rthé no
removal.Lookup (x) starts from the first array slot and searches in
increasing order of indices far. It returns true iff for some array in-
dexi, q[i] == x. SinceInsert can start from an arbitrary index,

whenp[a] is false, the read values are abstracted away since theLookup must examine the entire array before deciding whether or

prophecy variable foresees interference.

10

not x is in the set.

2009/10/31

procedure Lookup(x: data)
returns result: bool;
{

f := false; i := 0;
while (i<n && !'f) { £
result = f;

}

:= (qli] == x); i := i+1; }

procedure Insert(x: data)
returns done: bool;
{
havoc i; assume i<n;
cnt := 0; £ := false;

while (cnt<n && !'f) {
if (%) {
atomic { assume q[il==-1; q[i] := x; £
else {
if () { atomic { assume q[i]==x; f
else {
atomic {
assume q[i]'=x && q[i]!=-1;
i := (i+1) mod n; cnt := cnt+1l; }

:= true; } }

3

:= true;

done := f;

Figure 15. A bounded set with two methods for searching for an
elementLookup, and adding an elemerinsert.

We would like to prove that theookup method can be summa-
rized as an atomic block that returns true iff for some arralek
i, ql[i] == x.

Intuition for Atomicity. Observe that all actions except the read

of q[i] are thread-local, i.e., they are both movers. Then the only

potential conflict which needs to considered is betweenehd of
qli] and the update tq[i] done by theInsert method when
qli -1.

Call an iteration of thé&.ookup loop for somei failing if q[i]
1= x (denoted byF (7)) andsucceedingdenoted byS(7)) other-
wise. Executions of.ookup that return false are of the following
form

o F(0), ..., F(1),.... F(2),.... F(n — 1), ..., F(n), ...
while executions that return true are of the following form
o F(0), .., F(1), ..., F(2),.., F(i—1),...,5(i), ...

where... represents a sequence of actions by other threads. The,

reduction-based proof is based on the following intuitidine
commit action forLookup (x)’s that return false i¢'(0) because
the set may contain x later in the execution. Eeokup’s that
return true, the commit action i$(:), since the action that writes
the firstx to an array slot may immediately precefl&).

In order to reduce the entire execution of the loop to an atomi
action, forLookup’ s that return false, we need dll(k) to be left-
movers in order to group them next f6(0), while, for Lookup’s
that return true, alF’(k)’s must be right movers in order to move
immediately to the left of5(z). The two kinds of lookups seem to
require different applications of reduction to prove atoityi

To remedy this difficulty, we duplicate the loop. One copy
represents the case wheteokup fails to find the element and
returns false, and the other represents the case thekap finds
the element and returns true. This split allows us to applycton
differently in the two different cases.

After the split, Lookup’s that return false are handled easily.
F(k), which requires that[k] != -1, commutes to the left of
any other action. This is because ongé&] '= -1, it never be-

11

procedure Lookup(x: data)
returns result: bool;
{
f := false; i := 0;
if (%) {
while (i<n && 'f) {
atomic { £ := (qlil
i o= i+1;
}
assume !f;
} else {
while (i<n && !'f) {
atomic { f := (qlil
i o= i+1;
assume (!'f && i<n);
}
f := qlil==x;
assume (f || i>=n);
assume f;
}
result

}

= f;

Figure 16. TheLookup method after some code transformations.
The main loop is duplicated with the then branch represgntin
the unsuccessful search, the else branch representingitimg f
iterations followed by the succeeding iteration.

comes—1 again, thus, all actions to the left #f(k) must have left
qlk] -1 unmodified.

For Lookup’s that return true, further abstraction is needed. It
is clear thatF'(k) does not commute to the right of an action
that writesx to q [k]. Thus, forLookup’s that return true, we need
to abstract the loop body so that(k) becomes a right mover.
We accomplish this by allowing the loop body to seto false
even wheng [k] x. We perform this abstraction for all loop
iterations except for the last one.

This contrived example mimics lookups in more realistic-con
current data structures. In these examples as well, the @¢omm
points and mover types depend on the method’s return valishwh
is only known in the future. In this example, we make only iiipl
use of prophecy variables. Most importantly, the returniealf the
method (i.e., the value dfat the end of the loop) acts as a prophecy
variable. The two copies of the code after the split corradgo the
two different values of the prophecy variable.

Code transformation. The code after the transformation ex-
plained above is given in Fig. 16. The main loop is duplicated a
non-deterministic choice, representedilfy(*) and corresponding
to whetherLookup returns true or false, picks either branch. The
statementassume f andassume !f£ (both left-movers, since they
refer to the local variable) are appended to the two copies to mark
them as such. This transformation preserves all executibtise
original Lookup. In the else branch, the final iteration of the loop is
peeled out in order to carry out the reduction proof outlisedier.

Abstraction, prophecy variables and tressa claimsThe anno-
tated code is given in Fig. 17. Let us first analyze the abistrac
done in the failing branch: appendingessa !'f to the read of
qlil. This tressa annotation claims that this action can leadao p
gram termination only when it is executed at a state wigdre
is not equal tox. Note that, this necessary condition for termi-
nation of the failing branch is due to the very eassume !f.
Executions which violate this tressa annotation have “ehdbe
wrong branch”, i.e., in order for these executions to teaténcon-
trol should have gone down the other non-deterministicdiran
Recall that we were trying to show that failing iterationsreve
left-movers. The problematic case for the left-mover chferka
failing iteration that readg [i] occurs when it is preceded by the

2009/10/31

procedure Lookup(x: data)
returns result: bool;
{
f := false; i := 0;
if (%) {
while (i<n && 'f) {
atomic { £ := (q[i] == x); tressa !f; }
i = i+1;
¥
assume !f;
} else {
while (i<n && 'f) {
atomic { havoc f; }
i = i+1;
assume (!'f && i<n);
}
f := qlil==x;
assume (f || i>=n);
assume f;
}

result := f;

Figure 17. The Lookup method after some abstraction and
prophecy-tressa annotation.

actionassume q[i]l==-1; ql[il:=x; executed by another thread
running Insert (x).2 Coming after theInsert, this iteration of
theLookup loop should be succeeding. Coming beforeTthgert,
the iteration should be failing. This would imply that thiling
iteration F'(7) is not a left-mover. But, intuitively, it should never
be the case that aq[i] := x precede a failing iteratiod’(7) in
Lookup(x). This is precisely what the tressa claim achieves. The
left-mover check requires the simulation to hold only atsthaext
states that satisfy the tressa predicate, which here id égué&.
But q[i] :=x; followed by f := q[i]l==x; setsf to true. Thus,
the tressa claim allows us to ignore this problematic irtaring
since any execution in which these two actions appear irofioker
cannot reach a final state. The tressa claim is dischargédthet
assume !f after this branch is proved to be atomic.

Let us now analyze the succeeding (else) branch. Absttactin
the actionf := (q[i] == x) tohavoc f allows loop iterations
F(i) to commute to the right of actions that write 4di]. The
final succeeding iteration is a non-mover and the other est@Ewe
left-movers, and are all reduced into a single action. Heechave
implicitly made use of prophecy variable that indicates thikethe
current loop iteration is the final one or not.

Constituting a typical proof, it is worth repeating what we ith
this example from a more general perspective. We startedding
annotations in the form of tressa claims so as to make aatitthe
proper mover type. This can be perceivedasgowingtressa’s: an
action becomes a mover thanks to the presence of the tressa cl
but the correctness of the proof depends on correctly digotta

the tressa claim; the proof onus is on the user. This step was

followed by reduction by which actions were reduced accadi
to their mover types. If the tressa claims were true and seiffic
reduction occurred, each tressa claim would be dischargea b
sequential (backward) analysis. This sequential analysistually
implied by the definition of action composition, given in Sdal.
In our example, we successfully discharged the tressa slafter
reducing the loop bodies into single atomic actions.

The final reduced and simplified version of the method is given
in Fig. 18.

2|magine that both threads agree on the values of the locilblasi and
X.

12

procedure Lookup(x: data)
returns result: bool;
{
atomic {
f := false; i := 0;
if (%) {
while (i<n && 'f) {
£ (qli] == x);
i i+1;
}
assume
} else {
havoc f, i;
assume (!f && i<n);
f := qlil==x;
assume f;
}
result
}
}

'f;

= f;

Figure 18. TheLookup method reduced to a single atomic action.

7. Conclusion

In this paper, we incorporated prophecy variables intacstatrifi-
cation. We achieved this by augmenting the static verificatdol
QED with a new proof rule for the introduction of prophecyivar
ables into the program and with a new construct, tressa. Yikesiu
more re-defined correctness and simulation to allow formeiag

in both forward and backward executions. We have demomstrat
the usage of this new approach in the atomicity proofs of énpl
mentations based on optimistic concurrency.

Our next goal is to statically verify STM (Software Transac-
tional Memory) implementations. Actually, the need for ginecy
variables, and in general backwards reasoning in a statioge
manifested itself while we were doing preliminary work onN&T
verification. The copy and snapshot examples given in thiepa
encapsulate the notion of optimistic concurrency used ikl 8-
plementations.

References

[1] Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atorstas. In:
POPL '09, New York, NY, USA, ACM (2009) 2-15

[2] Lipton, R.J.: Reduction: a method of proving propertasparallel
programs. Commun. ACM8(12) (1975) 717-721

[3] Larus, J.R., Rajwar, R.: Transactional Memory. MorgaiC&ypool
(2006)

[4] Kesten, Y., Pnueli, A., Shahar, E., Zuck, L.D.: Networkariants in
action. In: CONCUR '02, London, UK, Springer-Verlag (20a2)1—
115

[5] Abadi, M., Lamport, L.: The existence of refinement maqs. Theor.
Comput. Sci82(2) (1991) 253-284

[6] Ashcroft, E.A.: Proving assertions about parallel peogs. J. Com-
put. Syst. Sci10(1) (1975) 110-135

[7] Owicki, S., Gries, D.: Verifying properties of parallprograms: an
axiomatic approach. Commun. ACM5) (1976) 279-285

[8] Wang, L., Stoller, S.D.: Static analysis for programsthwnon-
blocking synchronization. In: PPoPP '05, ACM Press (2005)

[9] O’Hearn, P.W.: Resources, concurrency, and local rdago Theor.
Comput. Sci3751-3) (2007) 271-307

[10] Flanagan, C., Qadeer, S.: A type and effect system fomiaity.
SIGPLAN Not.38(5) (2003) 338—349

[11] Freund, S.N., Qadeer, S.: Checking concise specificatfor multi-
threaded software. Journal of Object Technol8d2004)

[12] Freund, S.N., Qadeer, S., Flanagan, C.: Exploitingtytor atomicity.
IEEE Trans. Softw. Eng31(4) (2005) 275-291

2009/10/31

[13] Marcus, M., Pnueli, A.: Using ghost variables to progémement. In:
AMAST 96, London, UK, Springer-Verlag (1996) 226-240

13 2009/10/31

A. Proofof Theorem 1

Below, we construct the proof for the soundness of the prolef, RED-S. We show that an application &ED-Ss cannot remove violations
from a proof state. We analyze both kinds of violations, ekl and forward, separately. In both cases, we assume isterse of a
violation in p and show how to obtain a violation j#i. Roughly speaking, the idea is to show that if a violatiop ixists, then there is also
a violation inp such that for any thread all occurrences oft, v) is immediately preceded ky, «).

In the backward case, we start with an arbitrary backwarthtiam. We show how to obtain a backward violation in whicem\(t, «) is
immediately followed by itsnatching(¢,) (Lemma 6). This does not account fsolatedoccurrences oft,) whose matchingdt, o) does
not occur in the violation at all. We then show how to obtairaakward violation with no such isolatéé, -y) by introducing their matching
(t,) into the backward violation (Lemma 7). It is then trivial toosv that the existence of a backward violatiorpiimplies the existence
of a backward violation ip’.

The forward case follows a similar route. We first prove th#tére is a forward violation ip, then there is a forward violation in which
all occurrences oft,), except possibly wheft, «) is the very last label of the violation, imply a succeedingt(mecessarily immediately)
(t,) in the same violation (Lemma 13). Then, we show how to obtdoraard violation in which eacl(t,) is immediately followed by
its matching(t, v) (Lemma 14).

For the following, we assume thatis a right-mover inp, p’ is obtained fromp by applying the sequential reduction rukgp-s, to «
and its immediate successprUnless explicitly stated otherwise, a backward violaismassumed to be in the form

L1 la In
So — S1 — S2... — Sn

where for eacl) < ¢ < n, l; = (i,).
Preserving backward violations.

LEMMA 4. Leta and 8 be two atomic actiong, # u be two distinct thread id's anel be a program state. L&t +j0s[.)(s) be false. o is

a right-mover, then) . a4 (s) must also be false. In particular, eithér, [t](s) is false, or there exists a staté such thats’ &) ¢ and

Pelu](s') is false.

ProoF4. The only tricky part is the effect @ used in the first condition of right-mover. Observe that, state pair(s’, s) does not satisfy
©, we must havew), [t](s). Butify, [t](s) fails, so does)gyjoap(s). The rest follows from the definition of right-mover, sintigla ando.

Alabell; = (t;,) in a backward violation issolatedif 7 > 1 andl; = (¢;, «) implies thatj > ¢. Call an intervaljj, k] safefor label
(t,a),if 0 < j < k are two index values such that for glk i < k, ¥4, 1,10 (i) holds andt; # t.

LEMMA 5. Letr = (s;)o<i<n be a backward violation ip. Let[j, k] be safe foi; = (¢;,). Then, the run’

] lg41

li—1 it Liy2 U j In
Sj 8j+1"‘_)8k71_)Sk—>8k+1‘~~_>8n

3
So —> S1... Sj—1

is also a backward violation ip.
PROOF5. Sincer’ starts from the same initial statg and ends at the same final statg if it is a run of P, then it necessarily is a backward
violation in p. So, we have to show theltis a run of P. We prove the latter by induction on the differerice j.

e Base Casek — j = 0): r’ is identical tor which by assumption is a backward violation.

e Inductive Hypothesisi(— j < m, m > 0): Assume that for anj, j such that their difference is less than or equahipr’ is a run of P.

¢ Inductive StepX — ;7 = m + 1): Consider the actions of; and /41, « and «;41, respectively. Sincey is a right-mover and
by assumptiony., (1, 1]oalt;1(Sj+1) holds, by definition of right-mover and simulation[t;] - 7a, , [tj+1](sj-1, 5;+1) implies
Taji1 [ti+1] - Talts](sj-1, 55+1). Then, the sequence

U Lj—1 G+1o s 4 Lj+2
So — ... —> Sj—-1 —>8j — Sj+1 —— ... Sn

is a run inp. Applying the inductive hypothesisiandj + 1 which is the new index dt;, o) completes the proof.
Alabell; = (¢;,a;) isunmatchednr, if o; =, 5 > 1, t;_1 # t;, andl; is not isolated.
LEMMA 6. Letp contain a backward violation. Thep,contains a backward violation which has no unmatched labels

PROOF6. Let X be the set of backward violations jnLetY C X consist of only those elementsinwith shortest length. Lat, € Y

be such that it has a minimal number of unmatched labels. Geepthe lemma by contradiction, we assume that the numbemoaiched
labels,m, in ry is greater than 0. Pick the rightmost unmatched laladbor somek > 1. That is, for anyi > k, t; # t, anda,; = v implies
that eitherl;_1 = (¢;,) or l; is isolated. Let; be the matching label fds,. Leti < k be such thafi, k — 1] is safe, bufi — 1,k — 1] is

not safe, foii;. Consider the following two cases:

® ; > j. By the choice of, this means thaﬁ;aH[tifl]oa[tj](s@;l) is false. This in turn implies that either

’ Lj l; In
Si_o — 8i—1 —> 8i... — Sp

or
li in
Si—1 —> 8Si... —> Sn

is a backward violation irp. Since both have length strictly less tharfn — i + 2 with ¢ > 2), this contradicts the assumption that
belongs tay.

14 2009/10/31

¢ ; < j.In this case, we havg, k — 1] safe forl;. By Lemma 5, the following

U1 liv1 4 Ltz / Lo Uy In
80 — ...8j—1 —— 8; — Sj41...5k—2 = Sp_1 — Sk ... — S

is also a backward violation ip. Since this run has one less unmatched label than and the lesgih asry, its existence contradicts
the assumption that, had the minimum number of unmatched labels among the badkialations of lengthe.

The initial assumption that, > 0 is false. So, there exists a backward violation with no ucined labels.

For a backward violatiom, let len(r) andiso(r) denote the length of and the number of isolated labels iBall a run of lengthn
a, y-matchedf for any j < n, l; = (¢;, «) implies thatl; 1 = (¢;,7).

LEMMA 7. Letp contain a backward violation. Then, there existscan-matched backward violation in.

PROOF7. Let X be the set of backward violations that do not have unmatchbdis. By Lemma 6X is non-empty. Let” contain all
elements inX that satisfylen(r) + iso(r) is minimal inX. Pickry € Y such that its number of isolated labels is minimalYin Let
n = len(ry) andn; = iso(ry). We will prove that:; = 0. To prove it by contradiction, assume that > 0. Letl, = (¢x,) be the
rightmost isolated label irr,. Then, the matching label fay, is o = (tx,). Leti < k be such thafi, k — 1] is safe, bufi — 1,k — 1] is
not safe, fory. Consider the following cases:

®i>1,0ri=1andya[tr](s0) is false. By the choice af this means thai., [t.](s:—1) is false, which implies thab, (., joq,[;](s:) 1S
also false, by the definition of By Lemma 4y, [+,]0a(t,,] (5:) IS also false. But, since by the choiceip). [tx](s:) is true, there exists
a states’ such thaty,, [t;](s') is false ands’ 10, s, holds. This in turn implies that

i Lo lit1 ln
Si—1 — S —— Si+1... — Sn

is a backward violation irp. By Lemma 5, the run above implies the existence of

’ liv1 4 lk—1 4 lo Ly In
Sj_1 —— S ... —— S}_p — Sp_1 — ... — 8p

which is still a backward violation with no unmatched labdlhis run has lengtih — ¢ + 1, which is at most with ¢ > 0, but at most
n; — 1 isolated labels. But this contradicts with the assumptlmat t,, belongs taY” and has minimal number of isolated labels.

e i = 1 andya.[tk](so) is true. Sincery is a backward violation, there must exist a lalfe| 3) such that)s[u](so) is false. Because is a

right-mover, and the choice éf Lemma 4 implies that there existssuch that)s[u](s’) is false ands’ 0, o holds. Then, the following

1 lo I In
S —Sop —S81... — Snp

is a backward violation with length + 1 andn,; — 1 isolated labels. By Lemma 5,

!
;U ;2 lpg—1 ’ lo Uy In
S — Sy —~ ... —> Sp_9 —>8k—-1 —Sk... > 8n

is also a backward violation. Observe that this run has no atoimed labels and hence is an elemenkofSince the sum of its length and
the number of isolated labels it containgis- 1 +n, — 1 = n+ n;, by assumption it is also an elemenfi6f And since it contains fewer

isolated labels tham,, it contradicts with the assumption theg contained the minimum number of isolated labels among #raahts
of Y.

Thus, the assumption that > 0 is false. Sincery, is a backward violation with no unmatched labels and no igdabels, it is by
definitionc, y-matched.

LEMMA 8. Letp contain anc, yv-matched backward violation. Thepl, contains a backward violation.

PROOF8. Let r be anca,y-matched backward violation ip. First, consider the initial transition/:. If i1 = (¢1,7), there are two
possibilities:

* a[t1](s0) is false. In this case, the definition @fmplies thatyq.~[t1](s1) is false.
® 14 [t1](s0) is true. Then, there must exist a lalfel 3) such thatu # ¢1 andts[u](so) is false. By Lemma 4, there exists a stdtsuch
thaty[u](s') is false ands’), holds.
So, without loss of generality, we can assume thatathg-matched backward violation does not start with a labely) for any ¢t. The

backward violation ino’, r’, starts from the same statg and makes the same transitionsaas long as the label does not contain an

t,a t, . t,ao
Whenevers; RULIN Sit1 L, Si+2 OCcurs inr, we lets; (o), si+2 in ¥’ and continue froms; ;2. That this constructs a run ip’

follows from the definition of and the construction oP’.
LEMMA 9. Letp contain a backward violation. Thep, contains a backward violation.

PROOF9. By Lemma 7p contains anx, y-matched backward violation. By Lemmag8contains a backward violation.

15 2009/10/31

Preserving forward violations.

A run is aminimalforward violation inp, if it is a forward violation inp and any of its prefix is not. A run isshortestforward violation
in p if there does not exist a forward violation gnof a shorter length.

LEMMA 10. A shortest forward violation is also minimal.
ProOOF10. Follows from the definitions of shortest and minimal.

LEMMA 11. Letr = (s;)o<i<n be a shortest forward violation. lf, = (¢n, «), then(u, 8) € fst(s,) and —¢s[u](sn) imply thatu = ¢,
andg = .

PrROOF11. Assume the contrary. Lét, 8) be such that, # ¢, and¢g[u](s,) evaluates to false. By the definition of right-mover (second
condition),¢g[u](s»—1) must also be false. This contradicts the minimality.of

Alabell; = (t;,«) in arunisisolatedif I; = (¢;,~) implies thatj < . Theisolating distancef a run is given as — j wheren is the
length of the runj is the index of the rightmost isolated label (for all isothtabelsl. in r, we havej > k).

LEMMA 12. If there is an isolated label in a shortest forward violatjdhen there is a shortest forward violation which has anased label
as the last label of the run.

PrRoOOF12. ConsiderX, the set of all shortest forward violations which containiaalated label. Out ofX, pick a runr’ with a minimal
isolation distance. Showing that has isolation distance 0 will prove the lemma. Assume copnizad let the isolation distance af be
m > 0. Setj = n — m. This means that; = (¢;,). First, observe that since’ is a minimal forward violationg. [t;](s;) evaluates to
true. Sincej < n, there is a label ;11 = (¢;41,3). Sincel; is isolatedt; # t;+1. Sincea is a right-mover,

altj] o Bltj+1] X Bltj+1] o alty]

must hold. Note thatO(s;, s;+2) evaluates to true becausg.[t;](s;) evaluates to true. Since is a shortest forward violation, the

simulation given above can only hold when RCAEEICLON s;j+2. Thus, the run which differs from only in the order of thei*" and

(5 + 1)™" labels is also a forward violation. However, this new run laasisolation distance: — (n — m 4 1) = m — 1. This contradicts
the initial assumption that' has a minimal non-zero isolation distance. Thus, there®iisX a forward violation whose isolation distance
is 0.

LEMMA 13. Letr = (s;)0<i<n be a shortest forward violation. Thencontains at most one isolated label.

PROOF13. Letl; = (¢;,), lx = (tx, @) be isolated labels. Then, following the argument in the iprevlemma, we can obtain a shortest
forward violation which hag, = (¢;, o). By Lemma 11, this implies that the only labefst(s,) whose assertion is violated &4 is (¢;, 7).
Similarly, we can obtain a shortest forward violation which= (¢x,). Again, by Lemma 11, this implies that the only labefsir{s)
whose assertion is violated a4, is (¢,). Sincey is the unique successor afand!;, i, are isolated labels, we must haye= k.

Call a labell; = (t;, «) unmatchedif /; is not isolated and; 1 # ;.
LEMMA 14. Letp contain a forward violation. Then, there is a shortest fordvaiolation r’ which is«, yv-matched.

ProoOF14. By Lemma 13, we can assume that in a shortest forward violdtiere is at most one isolated label and in case it exists,ame ¢
assume that it occurs as the last labkl, LetY be the set of all shortest forward violations. OutYof pick a runr,, which has the least
number of unmatched labels. We need to proverthais «, y-matched. Assume the contrary anddete the number of unmatched labels in
rm. Letl; be the rightmost unmatched labelig,. Sincel; is not isolated, there exists sorhe> j + 1 such that,, = (¢;,). Choosek such
thatj < o < kimplies thatt, # ¢;. In other words, all the labels betwegrand k& belong to different threads. Sineeis a right-moverry,
is a shortest violation (no assertions can fail at internaeistates), the first condition of right-mover must holdingshe same reasoning
as was done in the proof of Lemma 12, we obtain the run
5 Livr / L Uk In

$0 —> 81...8; — Sjy1...-Sg_2 —> Sk—1 —> Sk ... — Sn
which is a shortest forward violation. Since the relativeening of labels amongl; },; remains the same, this run has one less unmatched
label, contradicting the assumption that, has a non-zero number of unmatched labels. Thuisis «, y-matched.

LEMMA 15. If ris ana, y-matched forward violation ip, then there is a forward violation ip’.
PROOF15. Similar to Lemma 9.

LEMMA 16. If p contains a forward violation, thep’ contains a forward violation.

PROOF16. Follows from Lemma 14 and Lemma 15.

LEMMA 17. Let (P,Z) --» (P',Z) be a proof step which applies the sequential reduction reep-s. If (P’,Z) does not contain a
violation, neither doe¢P,Z).

PROOF17. We have shown how to obtain a violationghfrom a violation inp when we tookx as a right-mover. The case ofof the
proof rule RED-S being a left-mover is similar. This is due to the duality bedw forward and backward reasoning and the accompanying
definitions. More explicitly, when is a left-mover, a forward violation ip’ is constructed in the same way as a backward violatiop’in
was constructed whemwas a right-mover. Similarly, whepis a left-mover, a backward violation j#f is constructed in the same way as a
forward violation inp’ was constructed whem was a right-mover.

16 2009/10/31

PrRoOOF18 (Theorem 1)Proof is by induction on the length of the proof. The base cag®oof of length 0, is trivial. The inductive step
has to show that soundness is preserved for each rule apipiical he proof oANNOT-H is similar to the proof of Lemma 2 whose sketch is
given in the paper. The proof afiv is trivial. The proof ofsim is again sketched in the paper (Lemma 1). The pro@&if-c follows from
the proofsimM sincey of RED-C simulatesxO~. The proof oRED-Sis given above. The proof efeD-L follows from the proofs akED-sand

SIM (think of 8 of the ruleRED-L as simulating zero or more iterations aj.

17 2009/10/31

