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Abstract 
 

We investigate the use of probabilistic models and 
cost-benefit analyses to guide the operation of a 
Web-based question-answering system. We first 
provide an overview of research on question-
answering systems. Then, we present details about 
AskMSR, a prototype question-answering system 
that synthesizes answers from the results of queries 
to a Web search engine. We describe Bayesian 
analyses of the quality of answers generated by the 
system and show how we can endow the system 
with the ability to make decisions about the nature 
and number of queries that should be issued, by 
considering the expected value and cost of 
submitting the queries. Finally, we review the 
results of a set of experiments. 
 

1  Introduction 
 

For several decades, researchers have pursued the goal of 
developing computational machinery with the ability to 
generate answers to freely-posed questions. General 
question-answering systems depend on techniques for 
analyzing questions and for composing answers from 
some corpus of knowledge. This is a challenging problem 
because the corpus may not contain an explicit matching 
answer or may contain multiple variants of relevant 
answers or answer components.  

We have been interested in procedures that enlist the 
poorly-structured but copious resources of the Web for 
answering questions. Web-based question answering 
systems typically employ rewriting procedures for 
converting components of questions into sets of queries 
posed to search engines, along with techniques for 
converting query results into one or more answers.   

To date, there has been little understanding of the value of 
alternate query rewriting strategies and answer 
composition methods.  We have also had little knowledge 

about the enhancement of the quality of answers with the 
issuance of increasing numbers of queries to search 
engines.  Given the burden that widely fielded question-
answering systems can place on search engines, gaining a 
deeper understanding of the nature and number of query 
rewrites is important for deploying real-world question-
answering systems.   

We describe an investigation of probabilistic modeling 
and decision analyses to characterize and control querying 
policies in Web-based question answering.  We first 
provide a brief review of prior work on question 
answering. We focus particularly on a system developed 
at Microsoft Research, named AskMSR.  We present the 
rewrite procedures and answer composition methods 
performed by AskMSR. Then, we describe a set of 
experiments we undertook to better understand how 
alternative rewrite methods influenced the ultimate 
quality of answers.  Beyond exploring alternate 
procedures, we also studied the influence of the quantity 
of rewrites on the quality of answers. Such an analysis 
relies on an effective strategy for ordering queries by their 
expected value, so as to allow the learning of models that 
can reason about the costs and benefits of employing 
additional numbers of queries to the web.  We describe 
the methods we developed and review a set of 
experiments that demonstrate the effectiveness of the 
cost-benefit procedures. 

2  Question-Answering Systems 
 

Most text retrieval systems operate at the level of entire 
documents.  In searching the web, complete web pages or 
documents are returned.  There has been a recent surge of 
interest in finer-grained analyses focused on methods for 
obtaining answers to questions rather than retrieving 
potentially relevant documents or best-matching passages 
from queries—tasks information retrieval (IR) systems 
typically perform.  The problem of question answering 
hinges on applying several key concepts from information 



retrieval, information extraction, machine learning, and 
natural language processing (NLP). 

Automatic question answering from a single, constrained 
corpus is extremely challenging.  Consider the difficulty 
of gleaning an answer to the question “Who killed 
Abraham Lincoln?” from a source which contains only 
the text “John Wilkes Booth altered history with a bullet.  
He will forever be known as the man who ended Abraham 
Lincoln’s life.”  As Brill et al. (2002) have shown, 
however, question answering is far easier when the vast 
resources of the Web are brought to bear, since hundreds 
of Web pages contain the literal string “killed Abraham 
Lincoln.” 

2.1 Approaches to Question Answering 

The TREC Question Answering Track (e.g., Voorhees & 
Harman, 2000) has motivated much of the recent work in 
the field of question answering. The initial efforts in 
question answering have focused on fact-based, short-
answer questions such as “Who killed Abraham 
Lincoln?”, “What was the length of the Wright brothers 
first flight?”, “When did CNN begin broadcasting” or 
“What two US biochemists won the Nobel Prize in 
medicine in 1992?” 

Question-answering systems have typically used NLP 
analyses to augment standard information retrieval 
techniques.  Systems often identify candidate passages 
using IR techniques, and then perform more detailed 
linguistic analyses of both the question and matching 
passages to find specific answers.  A variety of linguistic 
resources (part-of-speech tagging, parsing, named entity 
extraction, semantic relations, dictionaries, WordNet, etc.) 
are used to support question answering.  The Falcon 
system by Harabagiu et al. (2001) is typical of the 
linguistic approaches and has demonstrated excellent 
performance in benchmark tests.  In the system, a query is 
parsed to identify important entities and to suggest a 
likely answer type.  A rich taxonomy of answer types has 
been developed using lexico-semantic resources from 
WordNet (Miller, 1995).  WordNet represents more than 
100,000 English nouns, verbs, adjectives and adverbs into 
conceptual synonym sets, as encoded by lexicographers 
over the course of many years.  Candidate matching 
paragraphs are similarly analyzed to see if they match the 
expected answer type.  Often, relevant passages will not 
share words with the query.  In these cases, the Falcon 
system uses WordNet to examine morphological 
alternatives, lexical alternatives (e.g., nouns “killer,” 
“assassin,” or “slayer” will match the verb “killed”), and 
semantic alternatives (e.g., “cause the death of”).  
Additional abductive processes are also used to provide 
answer justification and rule out erroneous answers. 

2.2 Web Question Answering 

In contrast to these rich natural language approaches, 
others have developed question answering system that 

attempt to solve the difficult matching and extraction 
problems by leveraging large amounts of data.  AskMSR 
(Brill et al., 2002; Dumais et al., 2002) is an example of 
such a system, and one that we explore in more detail in 
this paper.  The main idea behind the AskMSR system is 
to exploit the redundancy provided by the web to support 
question answering.  Redundancy, as captured by 
multiple, differently phrased answer occurrences, 
facilitates question answering in two important ways.  
First, the larger the information source, the more likely it 
is that answers bearing close resemblance to the query can 
be found.  It is quite straightforward to identify the 
answer to “Who killed Abraham Lincoln?” given the text, 
“John Wilkes Booth killed Abraham Lincoln in Ford’s 
theater.” Second, even when no exact answer can be 
found, redundancy can facilitate the recognition of 
answers by enabling procedures to accumulate evidence 
across multiple matching passages. 

Other researchers have also looked to the web as a 
resource for question answering.  The Mulder system 
(Kwok et al., 2001) is similar to AskMSR in many 
respects.  For each question, Mulder submits multiple 
queries to a web search engine and analyzes the results.  
Mulder does sophisticated parsing of the query and the 
full-text of retrieved pages to identify answer candidates.  
Mulder also employs a local database of term weights for 
answer extraction and selection.  Mulder has not been 
evaluated with TREC queries, so its performance is 
difficult to compare with other systems. 

Clarke et al. (2001) investigated the importance of 
redundancy in their question answering system.   They 
found that the best weighting of passages for question 
answering involves using both passage frequency (what 
they call redundancy) and a global term weight.  They 
also found that analyzing more top-ranked passages was 
helpful in some cases and not in others.   Their system 
builds a full-content index of a document collection, in 
this case the TREC test collection.  Their implementation 
requires an auxiliary web corpus be available for full-text 
analysis and global term weighting.    

Kwok et al. (2001) and Clarke et al. (2001) perform 
complex parsing and entity extraction for both queries and 
best matching web pages, which limits the number of web 
pages that they can analyze in detail.  They also require 
term weighting for selecting or ranking the best-matching 
passages which requires auxiliary data structures.  
AskMSR is distinguished from these in its simplicity and 
efficiency. The system only uses simple rewrites and 
string matching, and makes direct use of summaries and 
simple ranking returned from queries to web resources.  
The data-driven techniques perform well in TREC 
benchmark tests (Voorhees and Harman, 2001). 



 
3 AskMSR Prototype 
 

We now turn to reviewing details of the operation of 
AskMSR as background for our efforts to extend the 
heuristic system via introducing probabilistic models and 
automated decision making. After reviewing AskMSR, 
we will describe our work to develop Bayesian models of 
the performance of AskMSR components, and to integrate 
cost-benefit strategies for guiding the system’s actions. 

The design of AskMSR was motivated by several efforts 
within NLP research that have demonstrated that, for 
many applications, significant improvements in accuracy 
can be attained by significantly increasing the amount of 
data used for learning.  Following the same guiding 
principle, the tremendous data resources that the Web 
provides was used as the backbone of AskMSR.  

AskMSR contains two main components, query rewriting 
and answer composition, which consists of several sub-
processes (see Brill et al., 2002; Dumais et al., 2002 for 
details). 

3.2  Query Rewriting 

AskMSR reformulates each user question into likely 
substrings of declarative answers to the question.  For 
each question, several rewrites are generated using eight 
rewrite heuristics.  The rewrites vary from specific string 
matching to a simple "ANDing" of all the query words.  
As an example, for the query “Who killed Abraham 
Lincoln?” there are three rewrites: <LEFT> “killed 
Abraham Lincoln”; “Abraham Lincoln was killed by” 
<RIGHT>; and who AND killed AND Abraham AND 
Lincoln. <LEFT> and <RIGHT> refer to the likely 
placement of candidate answers. The first two rewrites 
require that a text on the Web match the exact phrase, 
such as “killed Abraham Lincoln.” We refer to the last 
rewrite as a conjunctional back-off strategy, as it simply 
"ANDs" together all the query words, leading to less 
specific queries.   

The rewrite strings are formulated as search engine 
queries and sent to a search engine from which page 
summaries are collected.  Any search engine can be used 
as the provider of results to the second stage of 
AskMSR’s analysis.  AskMSR assigns heuristic scores to 
results of different kinds of rewrites. The system assigns 
higher weights to the results of more precise rewrites than 
it does to the more general back-off rewrite. 

3.3 Answer Composition 

Several phases of analysis are employed in AskMSR to 
identify answers to questions from the results returned by 
searches with query rewrites. 

Mine N-Grams.  From the page summaries returned for 
each query rewrite, all unigram, bigram and trigram word 
sequences are extracted.  The n-grams are scored 

according to their frequency of occurrence and the weight 
of the query rewrite that retrieved it.  As an example, the 
common n-grams for the example query about the 
assassination of Abraham Lincoln are: Booth, Wilkes, 
Wilkes Booth, John Wilkes Booth, bullet, actor, president, 
Ford’s, Gettysburg Address, derringer, assignation, etc. 

Filter N-Grams.  The n-grams are filtered and re-
weighted according to how well each candidate matches 
the expected answer type, as specified by fifteen 
handwritten filters.  These filters use surface-level string 
features, such as capitalization or the presence of digits.  
For example, for When or How many questions, answer 
strings with numbers are given higher weight, and for 
Who questions, answer strings with capitals are given 
added weight and those with dates are demoted. 

Tile N-Grams.  Finally, the n-grams are tiled together by 
lining up matching sub-phrases where appropriate, so that 
longer answers can be assembled from shorter ones.  
Following tiling, the answers to the example query are: 
John Wilkes Booth, bullet, president, actor, Ford.  John 
Wilkes Booth receives a much higher score than the other 
answer candidates because it is found in matches to 
specific rewrites and because it occurs more often overall.  

4   Challenge of Limiting Query Costs  
AskMSR’s performance has been judged in the TREC 
question-answering conference to be competitive with the 
best question answering systems (Voorhees and Harman, 
2001). The system can be viewed as deriving its power by 
employing relatively simple strategies targeted at 
leveraging the redundancy of the informational content of 
the Web.  Unfortunately, the same mechanisms which 
provide its power make the system’s operation costly. 
AskMSR generates an average of 7 rewrites per query (in 
the test collections to be described below). Large scale 
deployment of the system to many simultaneous users 
would place a significant burden on the backend search 
engines. 

We set out to explore the possibility of using machine 
learning to better understand the value of different kinds 
of rewrites, and to build models that could be used to 
control the classes and numbers of query rewrites issued 
to search engines. This work involves understanding how 
the probability of identifying a correct answer is 
influenced by the properties of the question and the nature 
and number of queries issued to search engines.   

In addition to providing guidance on the policies for 
generating and submitting queries, models of accuracy 
and cost could enable the system to know when it would 
be best to skip completing the pursuit of an answer to a 
question.  In these cases, the system could instead ask a 
user to attempt a reformulation of the question, or to seek 
the answer elsewhere.  



Finally, beyond seeking characterization and control, 
probabilistic analyses of accuracy and value of alternate 
query policies could also lead to new insights with 
implications for refining the methods used by the base 
system.  

Brill et al. (2002) explored a related problem of using 
learning techniques to estimate the confidence the system 
has in the answer.  However, Brill et al. did not explore 
the quality of individual rewrites, the quantity of rewrites 
allowed, or perform a cost-benefit analysis as we have. 

5   Analysis of Answer Quality 

Research on the analysis and control of the heuristic 
processes of the AskMSR system is facilitated by the 
system’s architecture.  AskMSR processes a question in 
distinct stages in a question-answering pipeline that can 
be independently analyzed.  We set out to learn about the 
query reformulation and n-gram mining stages of the 
pipeline, with an eye on controlling the nature and 
numbers of queries issued to search engines. 

5.1 Understanding the Value of Queries 

In the pursuit of limiting the number of queries issued by 
AskMSR, we sought to replace the expert-derived 
heuristic functions used in AskMSR with Bayesian 
models that could generate probabilities of success.   

In an initial phase of analysis, we explored models that 
could provide a ranking of individual queries. Our work 
on developing scores of query value was stimulated by 
our direct inspection of query rewrites generated by the 
system; many of the rewrites appeared to be nonsensical.  
We sought to endow AskMSR with insight about poor 
queries. 

We employed Bayesian learning procedures to generate 
models from a training set of cases that could be used to 
infer the probabilistic lift in accuracy that queries of 
different types would confer. Such models promised to 
provide a normalized metric for ordering sets of queries 
by their value, providing a decision surface for 
deliberating about the costs and benefits in a more global 
analysis of the end-to-end performance of the overall 
AskMSR system.   

5.2 Establishing a Query-Quality Gradient 

We first separated queries into two categories: (1) queries 
that involve ANDing of individual words and 
occasionally short phrases (e.g., population AND “of 
Japan”), and (2) queries that contain a single phrase (e.g., 
“the population of Japan is”).  We refer to the former as 
conjunctional rewrites.  We refer to the latter as phrasal 
rewrites.  These two sets of queries have several distinct 
features, which we examined in our modeling efforts. 

For both types of rewrites, we considered such features as 
the number of distinct words and the number and 
percentage of stop words present in the queries. For 

building predictive models of the goodness of phrasal 
rewrites we additionally examined similar features, but 
also included features derived from a statistical natural 
language parser for English text created by the Natural 
Language Group at Microsoft. The syntactic parser 
constructs multiple parse trees, capturing multiple 
hypotheses for an input string, based on a consideration of 
the likely different parts of speech that words in a phrase 
can have. After producing all hypotheses, the parser 
employs a language model to rank the likely syntactic 
hypothesis, computing probabilities of each parse tree as 
the product of the probability of all of the nodes in the 
tree.   

The application of NLP parsing to each query rewrite 
does not put a significant computational burden on clients 
hosting AskMSR. Rewrites are parsed on an order of 
milliseconds. 

We took into consideration several features output by the 
parser including the number of primary and secondary 
parses and the maximum probability parse tree, or a 
measure of grammatical “goodness” of a query rewrite. A 
complete list of the features used for both sets of query 
rewrites is listed in Tables 1 and 2.   

 

Table 1: Features of conjunctional and phrasal rewrites 
considered in learning models of query goodness. 

LONGPHRASE: The longest phrase in the rewrite, in terms 
of words.   

LONGWD: The length of the longest word in the entire 
query. 

NUMCAP: The number of capitalized words in the entire 
query. 

NUMPHRASES: The total number of phrases in the overall 
query.   

NUMSTOP: The number of stopwords in the entire query, 
using our list. 

NUMWORDS: The number of words in the entire query 
string. 

PCTSTOP: Percentage of stop words. 

 

Table 2: Features used only for phrasal rewrites 
considered in learning models. 

NUMCAP, NUMSTOP, PCTSTOP: as above. 

PRIMARY_PARSES: The number of primary parses given 
by the natural language parser. 

SECONDARY_PARSES: The number of secondary parses 
given by the natural language parser. 

SGM: The “statistical goodness” of the rewrite; a measure 
of how grammatical the sentence or phrase is, given by the 
parser. 

 



We employed the WinMine toolkit for Bayesian learning 
developed by Microsoft Research (Chickering et al., 
1997) to train decision models for the query rewrites from 
a training set. To generate training cases, we ran AskMSR 
on questions included in the TREC-9 data set. This data 
set includes a set of questions and correct answers used in 
the annual TREC workshop for evaluating the 
performance of competing question-answering systems 
(Voorhees & Harman, 2000). For each query, we 
collected rewrites generated by AskMSR for the TREC-9 
data set. Cases were created by examining the features of 
conjunctional and phrasal query rewrites provided by the 
system (as shown in Tables 1 and 2), and noting the 
success of the system in answering the questions with 
single queries. The accuracy of the models was tested 
with questions drawn from TREC-10 questions.   

 
Figure 1: Decision tree learned for predicting success of 
conjunctional queries. 

Figure 1 displays a decision tree derived from the 
Bayesian model that maps properties of queries based on 
conjunctional rewrites to an expected accuracy of answers 
to questions when a conjunctional query is issued to the 
Web. Figure 2 depicts a model for the accuracy of 
questions associated with the issuance of queries derived 
from phrasal rewrites. These models provide the 
probabilities that specific single rewrites will lead to a 
correct answer to a question.  We use the probabilities 
that individual queries will achieve a correct answer as a 
query-quality score for ordering the list of rewrites in a 
subsequent analysis. The ordering provides a decision 
surface for a cost-benefit analysis of the ideal number of 
queries to issue.  The ordering is heuristic in that the 
system does not use single queries in normal operation, 
but rather ensembles of queries. 

 
Figure 2: Decision tree for predicting success of phrasal 
queries. 
 

5.3 Learning the Influence of Quantity on Quality  

The initial analysis, yielding models of the usefulness of 
individual rewrites, enabled us to build a new version of 
AskMSR that orders the submission of queries according 
to the probability that individual queries will provide an 
accurate answer. We set out, in a second stage of learning 
and analysis, to understand how best to control to control 
the numbers of queries issued by the revised version of 
AskMSR.   

In the second phase of analyses, we again use machine 
learning to build Bayesian models of the relationship 
between the ultimate accuracy of AskMSR’s processing 
of questions and the numbers of queries submitted to a 
search engine, considering the properties of the question 
at hand. Such models enable cost-benefit analyses, trading 
off the expected gains in accuracy of an answer with the 
costs of submitting additional queries.  These analyses 
provide AskMSR with new abilities for making dynamic 
decisions about the number of queries to submit to a 
search service—and to make decisions about when to 
forego an analysis and, instead, to ask a user to 
reformulate their question.  We built an ensemble of 
models by generating cases via a process of running 
AskMSR on TREC questions and applying different fixed 
thresholds on the number of rewrites submitted to search 
engines, as ordered by the goodness of queries established 
in the first phase of model construction.  Additional 
features used in this phase are shown in Table 3. 

We note that the threshold numbers of rewrites were not 
always submitted because some questions generated 
fewer rewrites than the threshold values allowed.   

 



Table 3: Features considered by the models for choosing 
rewrite thresholds for a given question-answering run. 

AVERAGE_SNIPPETS_PER_REWRITE: Snippets are the 
summaries collected from web pages for a given query. 

DIFF_SCORES_1_2: The difference between the first and 
second highest scored answer from AskMSR’s scoring 
heuristic. 

FILTER: The filter applied to the original query, such as 
“nlpwin_who_filter". 

FILTER2 : Filters that focus on words and bigrams. 

MAXRULE: Scores are given at the reformulation stage, 
based on the filter used to generate rewrites.  This is the 
highest score procured for a particular query. 

NUMNGRAMS: Total ngrams mined from snippets. 

RULESCORE_X: Number of ngrams for rules with score X. 

STD_DEVIATION_ANSWER_SCORES: The std. deviation 
amongst the top five answer scores from AskMSR's heuristic. 

TOTALQUERIES: Total queries issued after all rewrites. 

TOTNONBAGSNIPS: Total snippets generated from phrasal 
rewrites. 

TOTSNIPS: Total snippets for all rewrites. 

 

In our experiments, we discretized the number of queries 
into fixed thresholds at 1-10, 12, 15, and 20 rewrites per 
question, thus building 13 models. The models generated 
by this process provide predictions about the overall 
accuracy of answers to questions at increasingly higher 
levels of thresholds on query rewrites submitted to a 
back-end search engine.  Figure 3 displays a decision tree 
learned from data about the performance of question 
answering when limiting submitted queries to 10 rewrites. 

 

 
Figure 3: Decision tree for a query rewrite threshold of 10 
rewrites per question.  Models such as this were 
constructed for 1-10, 12, 15, and 20 maximum rewrites 
per question. 

6  Cost-Benefit Considerations 
 

Once we generate a set of Bayesian models that can 
predict the ultimate accuracy of answers to questions for 
different numbers of query rewrites, we are poised to 
deploy a system with the ability to dynamically control 
the number of queries used to answer previously unseen 
questions.  We refer to the new version of AskMSR as 
AskMSR-DT (for AskMSR-Decision Theoretic). 

In controlling the number of queries relayed to a search 
engine, we need to represent preferences about the costs 
of sending increasing numbers of queries to search 
engines and the benefits of obtaining a more accurate 
answer.  Several models for representing costs and 
benefits are feasible.   

We considered a model where a user or system designer 
assesses a parameter v, indicating the dollar value of 
receiving a correct answer to a question, and a parameter 
c representing the cost of each query rewrite submitted to 
a search engine. Rather than asserting a constant value for 
receiving an answer to a question, a user may consider the 
value of receiving an answer as a function of the details of 
the situation at hand.   For example, the value of an 
answer may be linked to the type of question, goals, and 
even the time of day for a user. Likewise the cost of 
submitting queries can a function of such factors as the as 
the current load sensed on a search engine or the numbers 
of queries being submitted by a user’s entire organization 
to a third-party search service.  Costs may also be asserted 
directly as a fee for query by a search service. The costs 
may be linear in the number of queries or may scale non-
linearly with increasing numbers of queries. For example, 
the first n queries may be considered free by a search 
service supporting the question-answering systems at an 
enterprise, after which expenses are incurred in a supra-
linear manner. 

Models that output the probability of retrieving a 
successful answer, conditioned on different numbers of 
query rewrites, allow us to compute the expected value of 
submitting the queries.  If we take the value of not 
receiving an valid answer as zero, the expected value of 
submitting n queries is the product of the likelihood of the 
answer, given evidence E about the query and background 
state of knowledge ξ, p(A|E,n,ξ), and the value of 
obtaining a correct answer v,  p(A|E,n,ξ) v.   

Let us take the simple example of a preference model 
where the value of an answer, v, is assessed in terms of 
the cost of queries, c. That is, we assess the value of 
answers as some multiple k of the cost of each query c, 
v=kc.  

In a deployed version of AskMSR-DT, a user or system 
administrator for an enterprise could be provided with an 
easy-to-use interface for assessing preferences about 
value and costs. Easy access to such controls would allow 



users to change preferences about the willingness to pay 
for accuracy in different settings. 

Let us assume a cost model that grows linearly with the 
number of queries, nc.  In making decisions about the 
ideal number of queries to submit, we seek to optimize 
the net expected value, computed as the difference of the 
expected value and cost, for different n. Thus we wish to 
find the ideal number of queries, n* where 

                    n* = arg maxn p(A|E,n,ξ)kc – nc. 

AskMSR-DT has the ability to check each quantity of 
query rewrites explored in the machine learning studies, 
and identify the best number of queries to submit. 

Figure 4 shows an idealized view of the case of a cost-
benefit analysis where the probability of an answer grows 
with decreasing marginal returns with additional query 
reformulations.  The expected value, cost, and net 
expected value are displayed as a function of the number 
of queries submitted. If we had such smooth decreasing 
marginal returns on accuracy with increasing numbers of 
queries, we could identify n* simply from the derivatives 
of the curves.  As indicated in Figure 4, the ideal number 
of queries to issue is obtained at a position on the x-axis 
where the change in expected value of the answer is equal 
to the cost of each query.  In reality, given the potential 
non-monotonicity of the expected value curve, we check 
the number of queries associated with each learned 
model. 

 
Figure 4: Key relationships in an idealized cost-benefit 
model for the case of decreasing returns in expected value 
of an answer with additional queries. The reality of non-
monotonicity in expected value is highlighted with an 
irregular curve. 

7  Empirical Study of Decision Making 
 

We performed a set of experiments with AskMSR-DT, 
employing the utility model described above, to drive 
dynamic decisions about the best number of query 
rewrites to select. Given a query, AskMSR-DT generates 
all rewrites that would have been submitted in the legacy 

AskMSR system. The query rewrites are first ranked by 
the single-query models. Then, the ensemble of Bayesian 
models for different numbers of rewrites are employed in 
conjunction with the utility model to select the best 
number of rewrites to issue to a search engine. The search 
results are then passed to the answer composition stage of 
the system.  The available actions are defined by the end-
to-end performance models which were trained for 
thresholds of 1-10, 12, 15, and 20 rewrites.  

Figure 5 shows the cost-benefit analysis graphically for 
the example query “Where is the Orinoco River?,” with a 
cost per query of 1 and a correct answer valued at 10.  In 
this case, the best decision available is to choose to 
submit 5 query rewrites.  
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Figure 5: Expected value, cost, and net expected value of 
submitting different numbers of query rewrites for the 
question, “Where is the Orinoco River?” 
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Figure 6: Expected value, cost, and net expected value of 
submitting different numbers of query rewrites for the 
question, “What currency does Argentina use?” 



Figure 6 displays cost-benefit analysis for the query, 
“What currency does Argentina use?” for the same 
preference settings. With this policy, it is best to send 2 
query rewrites to the search engine. 

Table 4 shows the performance of the system over 
different baseline policies.  In these fixed-cost runs, 
AskMSR is given a ceiling on the number of query 
rewrites it can use.  In the first set of experiments, the 
system chooses randomly from the rewrites available for 
each query up to a threshold (N).  In a second set of 
experiments, AskMSR was executed with a static policy 
of selecting N rewrites from a list of query rewrites, 
ranked by the probabilistic query-quality score described 
in Section 5.  A ceiling of 20 rewrites is roughly equal to 
the policy in the legacy AskMSR system, which had no 
limitation on rewrites, as only a few queries yield more 
than 20 rewrites.  As highlighted in the table of results, 
sequencing queries by the query-quality score dominates 
the randomly ordered queries, demonstrating the value of 
using the query-quality score.  

Table 4: Cost and accuracy for a set of baseline policies 
with fixed cost. 

Max Rewrites Per 
Question (N) 

Total 
Cost    

Correct 
Answers, 
Random 
Order 

Correct 
Answers, 

Likelihood 
Order 

N = 1 499 156 225 

N = 2 946 217 238 

N = 3 1383 243 254 

N = 4 1805 252 278 

N = 5 2186 272 282 

N = 6 2490 268 282 

N = 7 2738 272 282 

N = 8 2951 279 282 

N = 9 3103 276 282 

N = 10 3215 281 282 

N = 12 3334 281 283 

N = 15 3410 282 283 

N = 20 3426 283 283 
 

 

We also used the ranked query rewrites for cost-benefit 
analysis. Table 5 compares the policy chosen by the cost-
benefit analysis with two fixed policies, one using only 
conjunctional rewrites (top row) and the other using all 
rewrites (bottom row).  Our results show good 
performance for the system using the cost-benefit control 
(middle row).  With the cost-benefit analysis, the system 
answers nearly as many correct as the original, 
unbounded system (277 versus 283), while posing less 
than a third of the total queries used without control. 

As a baseline comparison, the system was also executed 
with a fixed policy of using only the conjunctional rewrite 
for each question (first row, Table 5).  This is useful 
because the conjunctional rewrite is the query 
reformulation that nearly always leads to the most results 
from the search-engine backend.  This makes the 
conjunctional rewrite extremely valuable, as a greater set 
of intermediate results means a better chance of finding 
an answer.   Our experiment shows that the conjunctional-
query-only policy does fairly well, leading to 49% 
accuracy using only 499 total queries. However, this static 
policy is outperformed by the utility-directed system by a 
significant margin in terms of accuracy. Using the 
decision model, we achieve a 12% increase in correct 
answers at a cost of 680 additional queries.  Another 
baseline is considers the current AskMSR system which 
submits all rewrites 

Table 5: Cost and accuracy for AskMSR-DT versus the 
static policies of choosing only the conjunctional rewrite 
and using all rewrites. 

Rewrite Policy Cost                Correct Answers 
(out of 499) 

Conjunctional 
rewrites only 

499 247 

Cost-benefit         
k=10, c=1 

1179 277 

All rewrites 3426 283 
 

Table 6 shows the cost-benefit relationships for four 
different values of k.  With a value of k=15, we reach the 
performance of the current AskMSR system but with 
many fewer queries (1346 vs. 3426). 

Table 6: Cost (total queries) and accuracy with cost-
benefit decisions for four different settings of k, 
representing the value of a correct answer. 

Value of answer 
(k) 

Cost Correct answers 

5 603 253 

10 1179 277 

15 1346 283 

20 1405 283 

 

8  Summary and Future Work 
 

We described our efforts to characterize and control a 
legacy Web-centric question-answering system. The 
methods demonstrate the promise of employing a layer of 
probabilistic analysis to guide the extraction of 
information from the Web in a Web-centric question 
answering system.   

We employed two phases of machine learning to build 
Bayesian models that predict the likelihood of generating 
an accurate answer to questions, and showed how we can 



couple such predictive models with considerations of the 
value and costs of different web querying actions.  The 
project demonstrates broadly the use of Bayesian 
procedures to understand and control the behavior of a 
heuristic system. More specifically, we demonstrated the 
use of probability and utility in guiding costly search 
actions undertaken by a Web-based question-answering 
system.  

In ongoing work, we are studying how we can employ 
probabilistic analysis in several different ways to enhance 
additional components of the architecture and processes 
of question answering systems.  

We are interested in extending the decision making 
considerations to consider issues of mixed-initiative 
interaction (Horvitz, 1999), where the decision models 
consider real-time input from users to refine or 
reformulate questions. Beyond selecting the best web-
querying actions to take, we can include in cost-benefit 
analyses a consideration of when it would be best to ask a 
user to reformulate a question rather than expending effort 
on handling a query that would be expensive or likely to 
yield inaccurate results.  In such an analysis, we consider 
an assessment of the cost of delay and effort associated 
with a reformulation and the likelihood that a 
reformulation would lead to a better result. 

We seek to boost the predictive power of the models of 
answer accuracy by considering additional features of 
questions and query rewrites, and extending inference 
methods to acquire or reason about notions of topic, 
informational goals, and overall context of a user 
associated with a question.  In relevant recent work, 
researchers learned models for predicting topic and high-
level intentions associated with questions from tagged 
libraries of questions, posed by users of the Encarta online 
encyclopedia (Zukerman and Horvitz, 2001). The models 
provide predictions of the high-level information goals, 
topic, and desired level of detail of users, based on parts 
of speech and logical forms provided by an NLP parse of 
questions. There is opportunity to enhance the predictive 
power of models of the accuracy of answers to queries by 
incorporating the methods used in the prior work. 

Beyond extending the probabilistic models of accuracy 
and expected value analysis, we are interested in refining 
the base question-answering system in several ways.  
Refinements of the base system could provide more 
power and control opportunities to the cost-benefit 
machinery.  Promising refinements to the base system 
include introducing new variants of query rewrites and 
modifying methods for combining search results into 
candidate answers.  In addition to guiding real-time 
question-answering procedures, the decision-analytic 
evaluative and control machinery can serve as a tool, 
enabling us to probe in an explicit manner the utility of 
making specific modifications to the base system. 

Overall, we believe that pushing decision-theoretic 
analyses deeper into the operation of question answering 
systems will be fruitful in the development of methods for 
taking advantage of the massive, but unstructured 
knowledge of the Web. Beyond question-answering 
systems, we suspect that similar methods for introducing 
a “normalizing layer” of probabilistic analysis of accuracy 
coupled with utility-guided query control may be valuable 
for guiding the extraction of information from the Web 
and other large unstructured corpora, in support of a 
variety of tasks requiring information synthesis from 
large, unstructured corpora. 
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