

 Web-Based Question Answering: A Decision-Making Perspective

 David Azari Eric Horvitz Susan Dumais Eric Brill
University of Washington Microsoft Research Microsoft Research Microsoft Research
 Seattle, Washington Redmond, Washington Redmond, Washington Redmond, Washington
azari@cs.washington.edu horvitz@microsoft.com sdumais@microsoft.com brill@microsoft.com

Abstract

We investigate the use of probabilistic models and
cost-benefit analyses to guide the operation of a
Web-based question-answering system. We first
provide an overview of research on question-
answering systems. Then, we present details about
AskMSR, a prototype question-answering system
that synthesizes answers from the results of queries
to a Web search engine. We describe Bayesian
analyses of the quality of answers generated by the
system and show how we can endow the system
with the ability to make decisions about the nature
and number of queries that should be issued, by
considering the expected value and cost of
submitting the queries. Finally, we review the
results of a set of experiments.

1 Introduction

For several decades, researchers have pursued the goal of
developing computational machinery with the ability to
generate answers to freely-posed questions. General
question-answering systems depend on techniques for
analyzing questions and for composing answers from
some corpus of knowledge. This is a challenging problem
because the corpus may not contain an explicit matching
answer or may contain multiple variants of relevant
answers or answer components.

We have been interested in procedures that enlist the
poorly-structured but copious resources of the Web for
answering questions. Web-based question answering
systems typically employ rewriting procedures for
converting components of questions into sets of queries
posed to search engines, along with techniques for
converting query results into one or more answers.

To date, there has been little understanding of the value of
alternate query rewriting strategies and answer
composition methods. We have also had little knowledge

about the enhancement of the quality of answers with the
issuance of increasing numbers of queries to search
engines. Given the burden that widely fielded question-
answering systems can place on search engines, gaining a
deeper understanding of the nature and number of query
rewrites is important for deploying real-world question-
answering systems.

We describe an investigation of probabilistic modeling
and decision analyses to characterize and control querying
policies in Web-based question answering. We first
provide a brief review of prior work on question
answering. We focus particularly on a system developed
at Microsoft Research, named AskMSR. We present the
rewrite procedures and answer composition methods
performed by AskMSR. Then, we describe a set of
experiments we undertook to better understand how
alternative rewrite methods influenced the ultimate
quality of answers. Beyond exploring alternate
procedures, we also studied the influence of the quantity
of rewrites on the quality of answers. Such an analysis
relies on an effective strategy for ordering queries by their
expected value, so as to allow the learning of models that
can reason about the costs and benefits of employing
additional numbers of queries to the web. We describe
the methods we developed and review a set of
experiments that demonstrate the effectiveness of the
cost-benefit procedures.

2 Question-Answering Systems

Most text retrieval systems operate at the level of entire
documents. In searching the web, complete web pages or
documents are returned. There has been a recent surge of
interest in finer-grained analyses focused on methods for
obtaining answers to questions rather than retrieving
potentially relevant documents or best-matching passages
from queries—tasks information retrieval (IR) systems
typically perform. The problem of question answering
hinges on applying several key concepts from information

retrieval, information extraction, machine learning, and
natural language processing (NLP).

Automatic question answering from a single, constrained
corpus is extremely challenging. Consider the difficulty
of gleaning an answer to the question “Who killed
Abraham Lincoln?” from a source which contains only
the text “John Wilkes Booth altered history with a bullet.
He will forever be known as the man who ended Abraham
Lincoln’s life.” As Brill et al. (2002) have shown,
however, question answering is far easier when the vast
resources of the Web are brought to bear, since hundreds
of Web pages contain the literal string “killed Abraham
Lincoln.”

2.1 Approaches to Question Answering

The TREC Question Answering Track (e.g., Voorhees &
Harman, 2000) has motivated much of the recent work in
the field of question answering. The initial efforts in
question answering have focused on fact-based, short-
answer questions such as “Who killed Abraham
Lincoln?”, “What was the length of the Wright brothers
first flight?”, “When did CNN begin broadcasting” or
“What two US biochemists won the Nobel Prize in
medicine in 1992?”

Question-answering systems have typically used NLP
analyses to augment standard information retrieval
techniques. Systems often identify candidate passages
using IR techniques, and then perform more detailed
linguistic analyses of both the question and matching
passages to find specific answers. A variety of linguistic
resources (part-of-speech tagging, parsing, named entity
extraction, semantic relations, dictionaries, WordNet, etc.)
are used to support question answering. The Falcon
system by Harabagiu et al. (2001) is typical of the
linguistic approaches and has demonstrated excellent
performance in benchmark tests. In the system, a query is
parsed to identify important entities and to suggest a
likely answer type. A rich taxonomy of answer types has
been developed using lexico-semantic resources from
WordNet (Miller, 1995). WordNet represents more than
100,000 English nouns, verbs, adjectives and adverbs into
conceptual synonym sets, as encoded by lexicographers
over the course of many years. Candidate matching
paragraphs are similarly analyzed to see if they match the
expected answer type. Often, relevant passages will not
share words with the query. In these cases, the Falcon
system uses WordNet to examine morphological
alternatives, lexical alternatives (e.g., nouns “killer,”
“assassin,” or “slayer” will match the verb “killed”), and
semantic alternatives (e.g., “cause the death of”).
Additional abductive processes are also used to provide
answer justification and rule out erroneous answers.

2.2 Web Question Answering

In contrast to these rich natural language approaches,
others have developed question answering system that

attempt to solve the difficult matching and extraction
problems by leveraging large amounts of data. AskMSR
(Brill et al., 2002; Dumais et al., 2002) is an example of
such a system, and one that we explore in more detail in
this paper. The main idea behind the AskMSR system is
to exploit the redundancy provided by the web to support
question answering. Redundancy, as captured by
multiple, differently phrased answer occurrences,
facilitates question answering in two important ways.
First, the larger the information source, the more likely it
is that answers bearing close resemblance to the query can
be found. It is quite straightforward to identify the
answer to “Who killed Abraham Lincoln?” given the text,
“John Wilkes Booth killed Abraham Lincoln in Ford’s
theater.” Second, even when no exact answer can be
found, redundancy can facilitate the recognition of
answers by enabling procedures to accumulate evidence
across multiple matching passages.

Other researchers have also looked to the web as a
resource for question answering. The Mulder system
(Kwok et al., 2001) is similar to AskMSR in many
respects. For each question, Mulder submits multiple
queries to a web search engine and analyzes the results.
Mulder does sophisticated parsing of the query and the
full-text of retrieved pages to identify answer candidates.
Mulder also employs a local database of term weights for
answer extraction and selection. Mulder has not been
evaluated with TREC queries, so its performance is
difficult to compare with other systems.

Clarke et al. (2001) investigated the importance of
redundancy in their question answering system. They
found that the best weighting of passages for question
answering involves using both passage frequency (what
they call redundancy) and a global term weight. They
also found that analyzing more top-ranked passages was
helpful in some cases and not in others. Their system
builds a full-content index of a document collection, in
this case the TREC test collection. Their implementation
requires an auxiliary web corpus be available for full-text
analysis and global term weighting.

Kwok et al. (2001) and Clarke et al. (2001) perform
complex parsing and entity extraction for both queries and
best matching web pages, which limits the number of web
pages that they can analyze in detail. They also require
term weighting for selecting or ranking the best-matching
passages which requires auxiliary data structures.
AskMSR is distinguished from these in its simplicity and
efficiency. The system only uses simple rewrites and
string matching, and makes direct use of summaries and
simple ranking returned from queries to web resources.
The data-driven techniques perform well in TREC
benchmark tests (Voorhees and Harman, 2001).

3 AskMSR Prototype

We now turn to reviewing details of the operation of
AskMSR as background for our efforts to extend the
heuristic system via introducing probabilistic models and
automated decision making. After reviewing AskMSR,
we will describe our work to develop Bayesian models of
the performance of AskMSR components, and to integrate
cost-benefit strategies for guiding the system’s actions.

The design of AskMSR was motivated by several efforts
within NLP research that have demonstrated that, for
many applications, significant improvements in accuracy
can be attained by significantly increasing the amount of
data used for learning. Following the same guiding
principle, the tremendous data resources that the Web
provides was used as the backbone of AskMSR.

AskMSR contains two main components, query rewriting
and answer composition, which consists of several sub-
processes (see Brill et al., 2002; Dumais et al., 2002 for
details).

3.2 Query Rewriting

AskMSR reformulates each user question into likely
substrings of declarative answers to the question. For
each question, several rewrites are generated using eight
rewrite heuristics. The rewrites vary from specific string
matching to a simple "ANDing" of all the query words.
As an example, for the query “Who killed Abraham
Lincoln?” there are three rewrites: <LEFT> “killed
Abraham Lincoln”; “Abraham Lincoln was killed by”
<RIGHT>; and who AND killed AND Abraham AND
Lincoln. <LEFT> and <RIGHT> refer to the likely
placement of candidate answers. The first two rewrites
require that a text on the Web match the exact phrase,
such as “killed Abraham Lincoln.” We refer to the last
rewrite as a conjunctional back-off strategy, as it simply
"ANDs" together all the query words, leading to less
specific queries.

The rewrite strings are formulated as search engine
queries and sent to a search engine from which page
summaries are collected. Any search engine can be used
as the provider of results to the second stage of
AskMSR’s analysis. AskMSR assigns heuristic scores to
results of different kinds of rewrites. The system assigns
higher weights to the results of more precise rewrites than
it does to the more general back-off rewrite.

3.3 Answer Composition

Several phases of analysis are employed in AskMSR to
identify answers to questions from the results returned by
searches with query rewrites.

Mine N-Grams. From the page summaries returned for
each query rewrite, all unigram, bigram and trigram word
sequences are extracted. The n-grams are scored

according to their frequency of occurrence and the weight
of the query rewrite that retrieved it. As an example, the
common n-grams for the example query about the
assassination of Abraham Lincoln are: Booth, Wilkes,
Wilkes Booth, John Wilkes Booth, bullet, actor, president,
Ford’s, Gettysburg Address, derringer, assignation, etc.

Filter N-Grams. The n-grams are filtered and re-
weighted according to how well each candidate matches
the expected answer type, as specified by fifteen
handwritten filters. These filters use surface-level string
features, such as capitalization or the presence of digits.
For example, for When or How many questions, answer
strings with numbers are given higher weight, and for
Who questions, answer strings with capitals are given
added weight and those with dates are demoted.

Tile N-Grams. Finally, the n-grams are tiled together by
lining up matching sub-phrases where appropriate, so that
longer answers can be assembled from shorter ones.
Following tiling, the answers to the example query are:
John Wilkes Booth, bullet, president, actor, Ford. John
Wilkes Booth receives a much higher score than the other
answer candidates because it is found in matches to
specific rewrites and because it occurs more often overall.

4 Challenge of Limiting Query Costs
AskMSR’s performance has been judged in the TREC
question-answering conference to be competitive with the
best question answering systems (Voorhees and Harman,
2001). The system can be viewed as deriving its power by
employing relatively simple strategies targeted at
leveraging the redundancy of the informational content of
the Web. Unfortunately, the same mechanisms which
provide its power make the system’s operation costly.
AskMSR generates an average of 7 rewrites per query (in
the test collections to be described below). Large scale
deployment of the system to many simultaneous users
would place a significant burden on the backend search
engines.

We set out to explore the possibility of using machine
learning to better understand the value of different kinds
of rewrites, and to build models that could be used to
control the classes and numbers of query rewrites issued
to search engines. This work involves understanding how
the probability of identifying a correct answer is
influenced by the properties of the question and the nature
and number of queries issued to search engines.

In addition to providing guidance on the policies for
generating and submitting queries, models of accuracy
and cost could enable the system to know when it would
be best to skip completing the pursuit of an answer to a
question. In these cases, the system could instead ask a
user to attempt a reformulation of the question, or to seek
the answer elsewhere.

Finally, beyond seeking characterization and control,
probabilistic analyses of accuracy and value of alternate
query policies could also lead to new insights with
implications for refining the methods used by the base
system.

Brill et al. (2002) explored a related problem of using
learning techniques to estimate the confidence the system
has in the answer. However, Brill et al. did not explore
the quality of individual rewrites, the quantity of rewrites
allowed, or perform a cost-benefit analysis as we have.

5 Analysis of Answer Quality

Research on the analysis and control of the heuristic
processes of the AskMSR system is facilitated by the
system’s architecture. AskMSR processes a question in
distinct stages in a question-answering pipeline that can
be independently analyzed. We set out to learn about the
query reformulation and n-gram mining stages of the
pipeline, with an eye on controlling the nature and
numbers of queries issued to search engines.

5.1 Understanding the Value of Queries

In the pursuit of limiting the number of queries issued by
AskMSR, we sought to replace the expert-derived
heuristic functions used in AskMSR with Bayesian
models that could generate probabilities of success.

In an initial phase of analysis, we explored models that
could provide a ranking of individual queries. Our work
on developing scores of query value was stimulated by
our direct inspection of query rewrites generated by the
system; many of the rewrites appeared to be nonsensical.
We sought to endow AskMSR with insight about poor
queries.

We employed Bayesian learning procedures to generate
models from a training set of cases that could be used to
infer the probabilistic lift in accuracy that queries of
different types would confer. Such models promised to
provide a normalized metric for ordering sets of queries
by their value, providing a decision surface for
deliberating about the costs and benefits in a more global
analysis of the end-to-end performance of the overall
AskMSR system.

5.2 Establishing a Query-Quality Gradient

We first separated queries into two categories: (1) queries
that involve ANDing of individual words and
occasionally short phrases (e.g., population AND “of
Japan”), and (2) queries that contain a single phrase (e.g.,
“the population of Japan is”). We refer to the former as
conjunctional rewrites. We refer to the latter as phrasal
rewrites. These two sets of queries have several distinct
features, which we examined in our modeling efforts.

For both types of rewrites, we considered such features as
the number of distinct words and the number and
percentage of stop words present in the queries. For

building predictive models of the goodness of phrasal
rewrites we additionally examined similar features, but
also included features derived from a statistical natural
language parser for English text created by the Natural
Language Group at Microsoft. The syntactic parser
constructs multiple parse trees, capturing multiple
hypotheses for an input string, based on a consideration of
the likely different parts of speech that words in a phrase
can have. After producing all hypotheses, the parser
employs a language model to rank the likely syntactic
hypothesis, computing probabilities of each parse tree as
the product of the probability of all of the nodes in the
tree.

The application of NLP parsing to each query rewrite
does not put a significant computational burden on clients
hosting AskMSR. Rewrites are parsed on an order of
milliseconds.

We took into consideration several features output by the
parser including the number of primary and secondary
parses and the maximum probability parse tree, or a
measure of grammatical “goodness” of a query rewrite. A
complete list of the features used for both sets of query
rewrites is listed in Tables 1 and 2.

Table 1: Features of conjunctional and phrasal rewrites
considered in learning models of query goodness.

LONGPHRASE: The longest phrase in the rewrite, in terms
of words.

LONGWD: The length of the longest word in the entire
query.

NUMCAP: The number of capitalized words in the entire
query.

NUMPHRASES: The total number of phrases in the overall
query.

NUMSTOP: The number of stopwords in the entire query,
using our list.

NUMWORDS: The number of words in the entire query
string.

PCTSTOP: Percentage of stop words.

Table 2: Features used only for phrasal rewrites
considered in learning models.

NUMCAP, NUMSTOP, PCTSTOP: as above.

PRIMARY_PARSES: The number of primary parses given
by the natural language parser.

SECONDARY_PARSES: The number of secondary parses
given by the natural language parser.

SGM: The “statistical goodness” of the rewrite; a measure
of how grammatical the sentence or phrase is, given by the
parser.

We employed the WinMine toolkit for Bayesian learning
developed by Microsoft Research (Chickering et al.,
1997) to train decision models for the query rewrites from
a training set. To generate training cases, we ran AskMSR
on questions included in the TREC-9 data set. This data
set includes a set of questions and correct answers used in
the annual TREC workshop for evaluating the
performance of competing question-answering systems
(Voorhees & Harman, 2000). For each query, we
collected rewrites generated by AskMSR for the TREC-9
data set. Cases were created by examining the features of
conjunctional and phrasal query rewrites provided by the
system (as shown in Tables 1 and 2), and noting the
success of the system in answering the questions with
single queries. The accuracy of the models was tested
with questions drawn from TREC-10 questions.

Figure 1: Decision tree learned for predicting success of
conjunctional queries.

Figure 1 displays a decision tree derived from the
Bayesian model that maps properties of queries based on
conjunctional rewrites to an expected accuracy of answers
to questions when a conjunctional query is issued to the
Web. Figure 2 depicts a model for the accuracy of
questions associated with the issuance of queries derived
from phrasal rewrites. These models provide the
probabilities that specific single rewrites will lead to a
correct answer to a question. We use the probabilities
that individual queries will achieve a correct answer as a
query-quality score for ordering the list of rewrites in a
subsequent analysis. The ordering provides a decision
surface for a cost-benefit analysis of the ideal number of
queries to issue. The ordering is heuristic in that the
system does not use single queries in normal operation,
but rather ensembles of queries.

Figure 2: Decision tree for predicting success of phrasal
queries.

5.3 Learning the Influence of Quantity on Quality

The initial analysis, yielding models of the usefulness of
individual rewrites, enabled us to build a new version of
AskMSR that orders the submission of queries according
to the probability that individual queries will provide an
accurate answer. We set out, in a second stage of learning
and analysis, to understand how best to control to control
the numbers of queries issued by the revised version of
AskMSR.

In the second phase of analyses, we again use machine
learning to build Bayesian models of the relationship
between the ultimate accuracy of AskMSR’s processing
of questions and the numbers of queries submitted to a
search engine, considering the properties of the question
at hand. Such models enable cost-benefit analyses, trading
off the expected gains in accuracy of an answer with the
costs of submitting additional queries. These analyses
provide AskMSR with new abilities for making dynamic
decisions about the number of queries to submit to a
search service—and to make decisions about when to
forego an analysis and, instead, to ask a user to
reformulate their question. We built an ensemble of
models by generating cases via a process of running
AskMSR on TREC questions and applying different fixed
thresholds on the number of rewrites submitted to search
engines, as ordered by the goodness of queries established
in the first phase of model construction. Additional
features used in this phase are shown in Table 3.

We note that the threshold numbers of rewrites were not
always submitted because some questions generated
fewer rewrites than the threshold values allowed.

Table 3: Features considered by the models for choosing
rewrite thresholds for a given question-answering run.

AVERAGE_SNIPPETS_PER_REWRITE: Snippets are the
summaries collected from web pages for a given query.

DIFF_SCORES_1_2: The difference between the first and
second highest scored answer from AskMSR’s scoring
heuristic.

FILTER: The filter applied to the original query, such as
“nlpwin_who_filter".

FILTER2 : Filters that focus on words and bigrams.

MAXRULE: Scores are given at the reformulation stage,
based on the filter used to generate rewrites. This is the
highest score procured for a particular query.

NUMNGRAMS: Total ngrams mined from snippets.

RULESCORE_X: Number of ngrams for rules with score X.

STD_DEVIATION_ANSWER_SCORES: The std. deviation
amongst the top five answer scores from AskMSR's heuristic.

TOTALQUERIES: Total queries issued after all rewrites.

TOTNONBAGSNIPS: Total snippets generated from phrasal
rewrites.

TOTSNIPS: Total snippets for all rewrites.

In our experiments, we discretized the number of queries
into fixed thresholds at 1-10, 12, 15, and 20 rewrites per
question, thus building 13 models. The models generated
by this process provide predictions about the overall
accuracy of answers to questions at increasingly higher
levels of thresholds on query rewrites submitted to a
back-end search engine. Figure 3 displays a decision tree
learned from data about the performance of question
answering when limiting submitted queries to 10 rewrites.

Figure 3: Decision tree for a query rewrite threshold of 10
rewrites per question. Models such as this were
constructed for 1-10, 12, 15, and 20 maximum rewrites
per question.

6 Cost-Benefit Considerations

Once we generate a set of Bayesian models that can
predict the ultimate accuracy of answers to questions for
different numbers of query rewrites, we are poised to
deploy a system with the ability to dynamically control
the number of queries used to answer previously unseen
questions. We refer to the new version of AskMSR as
AskMSR-DT (for AskMSR-Decision Theoretic).

In controlling the number of queries relayed to a search
engine, we need to represent preferences about the costs
of sending increasing numbers of queries to search
engines and the benefits of obtaining a more accurate
answer. Several models for representing costs and
benefits are feasible.

We considered a model where a user or system designer
assesses a parameter v, indicating the dollar value of
receiving a correct answer to a question, and a parameter
c representing the cost of each query rewrite submitted to
a search engine. Rather than asserting a constant value for
receiving an answer to a question, a user may consider the
value of receiving an answer as a function of the details of
the situation at hand. For example, the value of an
answer may be linked to the type of question, goals, and
even the time of day for a user. Likewise the cost of
submitting queries can a function of such factors as the as
the current load sensed on a search engine or the numbers
of queries being submitted by a user’s entire organization
to a third-party search service. Costs may also be asserted
directly as a fee for query by a search service. The costs
may be linear in the number of queries or may scale non-
linearly with increasing numbers of queries. For example,
the first n queries may be considered free by a search
service supporting the question-answering systems at an
enterprise, after which expenses are incurred in a supra-
linear manner.

Models that output the probability of retrieving a
successful answer, conditioned on different numbers of
query rewrites, allow us to compute the expected value of
submitting the queries. If we take the value of not
receiving an valid answer as zero, the expected value of
submitting n queries is the product of the likelihood of the
answer, given evidence E about the query and background
state of knowledge ξ, p(A|E,n,ξ), and the value of
obtaining a correct answer v, p(A|E,n,ξ) v.

Let us take the simple example of a preference model
where the value of an answer, v, is assessed in terms of
the cost of queries, c. That is, we assess the value of
answers as some multiple k of the cost of each query c,
v=kc.

In a deployed version of AskMSR-DT, a user or system
administrator for an enterprise could be provided with an
easy-to-use interface for assessing preferences about
value and costs. Easy access to such controls would allow

users to change preferences about the willingness to pay
for accuracy in different settings.

Let us assume a cost model that grows linearly with the
number of queries, nc. In making decisions about the
ideal number of queries to submit, we seek to optimize
the net expected value, computed as the difference of the
expected value and cost, for different n. Thus we wish to
find the ideal number of queries, n* where

 n* = arg maxn p(A|E,n,ξ)kc – nc.

AskMSR-DT has the ability to check each quantity of
query rewrites explored in the machine learning studies,
and identify the best number of queries to submit.

Figure 4 shows an idealized view of the case of a cost-
benefit analysis where the probability of an answer grows
with decreasing marginal returns with additional query
reformulations. The expected value, cost, and net
expected value are displayed as a function of the number
of queries submitted. If we had such smooth decreasing
marginal returns on accuracy with increasing numbers of
queries, we could identify n* simply from the derivatives
of the curves. As indicated in Figure 4, the ideal number
of queries to issue is obtained at a position on the x-axis
where the change in expected value of the answer is equal
to the cost of each query. In reality, given the potential
non-monotonicity of the expected value curve, we check
the number of queries associated with each learned
model.

Figure 4: Key relationships in an idealized cost-benefit
model for the case of decreasing returns in expected value
of an answer with additional queries. The reality of non-
monotonicity in expected value is highlighted with an
irregular curve.

7 Empirical Study of Decision Making

We performed a set of experiments with AskMSR-DT,
employing the utility model described above, to drive
dynamic decisions about the best number of query
rewrites to select. Given a query, AskMSR-DT generates
all rewrites that would have been submitted in the legacy

AskMSR system. The query rewrites are first ranked by
the single-query models. Then, the ensemble of Bayesian
models for different numbers of rewrites are employed in
conjunction with the utility model to select the best
number of rewrites to issue to a search engine. The search
results are then passed to the answer composition stage of
the system. The available actions are defined by the end-
to-end performance models which were trained for
thresholds of 1-10, 12, 15, and 20 rewrites.

Figure 5 shows the cost-benefit analysis graphically for
the example query “Where is the Orinoco River?,” with a
cost per query of 1 and a correct answer valued at 10. In
this case, the best decision available is to choose to
submit 5 query rewrites.

Net Expected Value for Sample Query "Where is the
Orinoco River?"

-25

-20

-15

-10

-5

0

5

10

15

0 5 10 15 20 25

Total Queries

V
al

ue
Total Cost
Expected Value

Net Expected Value

Figure 5: Expected value, cost, and net expected value of
submitting different numbers of query rewrites for the
question, “Where is the Orinoco River?”

Net Expected Value for Sample Query "What
currency does Argentina use?"

-25

-20

-15

-10

-5

0

5

10

0 5 10 15 20 25

Total Queries

V
al

ue

Total Cost
Expected Value

Net Expected Value

Figure 6: Expected value, cost, and net expected value of
submitting different numbers of query rewrites for the
question, “What currency does Argentina use?”

Figure 6 displays cost-benefit analysis for the query,
“What currency does Argentina use?” for the same
preference settings. With this policy, it is best to send 2
query rewrites to the search engine.

Table 4 shows the performance of the system over
different baseline policies. In these fixed-cost runs,
AskMSR is given a ceiling on the number of query
rewrites it can use. In the first set of experiments, the
system chooses randomly from the rewrites available for
each query up to a threshold (N). In a second set of
experiments, AskMSR was executed with a static policy
of selecting N rewrites from a list of query rewrites,
ranked by the probabilistic query-quality score described
in Section 5. A ceiling of 20 rewrites is roughly equal to
the policy in the legacy AskMSR system, which had no
limitation on rewrites, as only a few queries yield more
than 20 rewrites. As highlighted in the table of results,
sequencing queries by the query-quality score dominates
the randomly ordered queries, demonstrating the value of
using the query-quality score.

Table 4: Cost and accuracy for a set of baseline policies
with fixed cost.

Max Rewrites Per
Question (N)

Total
Cost

Correct
Answers,
Random
Order

Correct
Answers,

Likelihood
Order

N = 1 499 156 225

N = 2 946 217 238

N = 3 1383 243 254

N = 4 1805 252 278

N = 5 2186 272 282

N = 6 2490 268 282

N = 7 2738 272 282

N = 8 2951 279 282

N = 9 3103 276 282

N = 10 3215 281 282

N = 12 3334 281 283

N = 15 3410 282 283

N = 20 3426 283 283

We also used the ranked query rewrites for cost-benefit
analysis. Table 5 compares the policy chosen by the cost-
benefit analysis with two fixed policies, one using only
conjunctional rewrites (top row) and the other using all
rewrites (bottom row). Our results show good
performance for the system using the cost-benefit control
(middle row). With the cost-benefit analysis, the system
answers nearly as many correct as the original,
unbounded system (277 versus 283), while posing less
than a third of the total queries used without control.

As a baseline comparison, the system was also executed
with a fixed policy of using only the conjunctional rewrite
for each question (first row, Table 5). This is useful
because the conjunctional rewrite is the query
reformulation that nearly always leads to the most results
from the search-engine backend. This makes the
conjunctional rewrite extremely valuable, as a greater set
of intermediate results means a better chance of finding
an answer. Our experiment shows that the conjunctional-
query-only policy does fairly well, leading to 49%
accuracy using only 499 total queries. However, this static
policy is outperformed by the utility-directed system by a
significant margin in terms of accuracy. Using the
decision model, we achieve a 12% increase in correct
answers at a cost of 680 additional queries. Another
baseline is considers the current AskMSR system which
submits all rewrites

Table 5: Cost and accuracy for AskMSR-DT versus the
static policies of choosing only the conjunctional rewrite
and using all rewrites.

Rewrite Policy Cost Correct Answers
(out of 499)

Conjunctional
rewrites only

499 247

Cost-benefit
k=10, c=1

1179 277

All rewrites 3426 283

Table 6 shows the cost-benefit relationships for four
different values of k. With a value of k=15, we reach the
performance of the current AskMSR system but with
many fewer queries (1346 vs. 3426).

Table 6: Cost (total queries) and accuracy with cost-
benefit decisions for four different settings of k,
representing the value of a correct answer.

Value of answer
(k)

Cost Correct answers

5 603 253

10 1179 277

15 1346 283

20 1405 283

8 Summary and Future Work

We described our efforts to characterize and control a
legacy Web-centric question-answering system. The
methods demonstrate the promise of employing a layer of
probabilistic analysis to guide the extraction of
information from the Web in a Web-centric question
answering system.

We employed two phases of machine learning to build
Bayesian models that predict the likelihood of generating
an accurate answer to questions, and showed how we can

couple such predictive models with considerations of the
value and costs of different web querying actions. The
project demonstrates broadly the use of Bayesian
procedures to understand and control the behavior of a
heuristic system. More specifically, we demonstrated the
use of probability and utility in guiding costly search
actions undertaken by a Web-based question-answering
system.

In ongoing work, we are studying how we can employ
probabilistic analysis in several different ways to enhance
additional components of the architecture and processes
of question answering systems.

We are interested in extending the decision making
considerations to consider issues of mixed-initiative
interaction (Horvitz, 1999), where the decision models
consider real-time input from users to refine or
reformulate questions. Beyond selecting the best web-
querying actions to take, we can include in cost-benefit
analyses a consideration of when it would be best to ask a
user to reformulate a question rather than expending effort
on handling a query that would be expensive or likely to
yield inaccurate results. In such an analysis, we consider
an assessment of the cost of delay and effort associated
with a reformulation and the likelihood that a
reformulation would lead to a better result.

We seek to boost the predictive power of the models of
answer accuracy by considering additional features of
questions and query rewrites, and extending inference
methods to acquire or reason about notions of topic,
informational goals, and overall context of a user
associated with a question. In relevant recent work,
researchers learned models for predicting topic and high-
level intentions associated with questions from tagged
libraries of questions, posed by users of the Encarta online
encyclopedia (Zukerman and Horvitz, 2001). The models
provide predictions of the high-level information goals,
topic, and desired level of detail of users, based on parts
of speech and logical forms provided by an NLP parse of
questions. There is opportunity to enhance the predictive
power of models of the accuracy of answers to queries by
incorporating the methods used in the prior work.

Beyond extending the probabilistic models of accuracy
and expected value analysis, we are interested in refining
the base question-answering system in several ways.
Refinements of the base system could provide more
power and control opportunities to the cost-benefit
machinery. Promising refinements to the base system
include introducing new variants of query rewrites and
modifying methods for combining search results into
candidate answers. In addition to guiding real-time
question-answering procedures, the decision-analytic
evaluative and control machinery can serve as a tool,
enabling us to probe in an explicit manner the utility of
making specific modifications to the base system.

Overall, we believe that pushing decision-theoretic
analyses deeper into the operation of question answering
systems will be fruitful in the development of methods for
taking advantage of the massive, but unstructured
knowledge of the Web. Beyond question-answering
systems, we suspect that similar methods for introducing
a “normalizing layer” of probabilistic analysis of accuracy
coupled with utility-guided query control may be valuable
for guiding the extraction of information from the Web
and other large unstructured corpora, in support of a
variety of tasks requiring information synthesis from
large, unstructured corpora.

Acknowledgments

We thank David Weise for providing assistance with the
Microsoft NLG statistical parser.

References

E. Brill, S. Dumais and M. Banko (2002). An analysis of
the AskMSR question-answering system. In Proceedings
of 2002 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2002).

D. M. Chickering, D. Heckerman, and C. Meek (1997).
A Bayesian approach to learning Bayesian networks with
local structure. In Proceedings of Thirteenth Conference
on Uncertainty in Artificial Intelligence, 80-89.

C. Clarke, G. Cormack and T. Lyman (2001). Exploiting
redundancy in question answering. In Proceedings of
SIGIR’2001, 358-365.

S. T. Dumais, M. Banko, E. Brill, J. Lin and A. Ng
(2002). Web question answering: Is more always better?
In Proceedings of SIGIR’2002, 207-214.

S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M.
Surdeanu, R. Bunescu, R. Girju, V. Rus and P. Morarescu
(2001). FALCON: Boosting knowledge for question
answering. In Proceedings of the Ninth Text Retrieval
Conference (TREC-9), 479-488.

E. Horvitz. Principles of mixed-initiative user interfaces.
In: Proceedings of the ACM SIGCHI Conference on
Human Factors in Computing Systems, Pittsburgh, PA,
May 1999, pp. 159-166.

C. Kwok, O. Etzioni and D. Weld (2001). Scaling
question answering to the Web. In Proceedings of the
10th World Wide Web Conference (WWW’10), 150-161.

E. Voorhees and D. Harman, Eds. (2001). Proceedings of
the Ninth Text Retrieval Conference (TREC-9). NIST
Special Publication 500-249.

I. Zukerman and E. Horvitz (2001). Using Machine
Learning Techniques to Interpret WH-Questions. In
Proceedings of Association for Computational Linguistics
(ACL-2001), Toulouse, France, July 2001, pp. 547-554.

