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Abstract 
In this paper, we propose to improve our previously developed 
method for joint compensation of additive and convolutive 
distortions (JAC) applied to model adaptation. The 
improvement entails replacing the vector Taylor series (VTS) 
approximation with unscented transform (UT) in formulating 
both the static and dynamic model parameter adaptation. Our 
new JAC-UT method differentiates itself from other UT-based 
approaches in that it combines the online noise and channel 
distortion estimation and model parameter adaptation in a 
unified UT framework. Experimental results on the standard 
Aurora 2 task show that the new algorithm enjoys 20.0% and 
16.9% relative word error rate reductions over the previous 
JAC-VTS algorithm when using the simple and complex 
backend models, respectively. 
Index Terms: unscented transform, vector Taylor series, 
additive and convolutive distortions, robust ASR, adaptation 

1. Introduction 
Environment robustness has been one of the most popular 
research topics in automatic speech recognition (ASR) during 
past two decades. Techniques tackling robustness issues can 
be categorized into two classes: feature-domain (e.g., [1][2]) 
and model-domain (e.g., [3][4]) approaches. Feature-domain 
approaches enhance the distorted speech features with 
advanced signal processing methods without adjusting the 
model parameters while the model-domain approaches adapt 
the model parameters to make the model better matched to the 
distorted environment.  

In recent years, a model-domain approach that jointly 
compensates for additive and convolutive distortions (JAC) 
was proposed and evaluated (e.g., [4][5][6][7][8][9]), yielding 
promising results. The various JAC-based methods proposed 
so far use a parsimonious nonlinear physical model to describe 
the environmental distortion and use the vector Taylor series 
(VTS) approximation technique to find closed-form hidden 
Markov model (HMM) adaptation and noise/channel 
parameter estimation formulas. The JAC-VTS model 
adaptation technique, while achieving noticeable performance 
improvement over various competing techniques, has the 
known limitation that the same approximated linear mapping 
between the clean and distorted speech model parameters is 
shared across the entire model space even though the true 
mapping is nonlinear.  

In this paper, we propose to address this and related 
limitations of the JAC-VTS technique by replacing VTS with 
unscented transformation (UT) in estimating the noise and 
channel distortions and in adapting the HMM parameters 
online. Originally developed to improve extended Kalman 
filter, UT [10] is an effective way to estimate mean and 
variance parameters under nonlinear transformation. It was 
first introduced to the field of robust ASR in [11]. In that 
work, the static mean and variance of nonlinearly distorted 
speech signals was estimated using UT, but the authors 
estimated the static noise mean and variance with a simple 

average of the beginning and ending frames of the current 
utterance. The technique was improved in [12], where the 
static noise parameters were estimated online with maximum 
likelihood estimation (MLE) using the VTS approximation 
and the estimates were subsequently plugged into the UT 
formulation to obtain the estimate of the mean and variance of 
the static distorted speech features. Most recently, Faubel et al. 
[13] proposed a novel robust feature extraction technique 
which estimates the parameters of the conditional noise and 
channel distribution using UT and embeds the estimated 
parameters into the expectation maximization (EM) [14] 
framework. Note that in all these approaches [11][12][13], 
sufficient statistics of only the static features or model 
parameters are estimated using UT although adaptation of the  
dynamic model parameters with reliable noise and channel 
estimations has shown to be important [7]. 

The JAC-UT approach proposed in this paper 
differentiates itself from [13] in that it is a model-domain 
approach while the technique proposed in [13] is a feature-
domain one. Our approach also differs from that of [11][12] in 
that our JAC-UT approach estimates both noise estimation and 
distorted speech estimation consistently within the same UT 
framework. Furthermore, our JAC-UT extends the previous 
work of [11][12][13] by estimating sufficient statistics of not 
only the static model parameters but also the dynamic model 
parameters.  

We evaluated the JAC-UT technique on the standard 
Aurora 2 task. The experimental results show that JAC-UT 
outperforms JAC-VTS by 20.0% and 16.9% in relative word 
error rate (WER) reductions when using the simple and 
complex backend models, respectively. The experimental 
results reported in this paper also shed insight into our earlier 
work [8][15] on the role of the mixing phase between speech 
and noise in speech feature enhancement. Specifically, our 
new results show that with better model space mapping and 
improved estimation of noise and channel parameters using 
UT, the performance of a phase-ignored JAC system [8][15] 
can be significantly improved and the unusually high 
distortion adjustment term proposed in [8] becomes less 
important compared with the adjustment introduced  under the 
previous JAC-VTS framework. 

The rest of the paper is organized as follows. In Section 2, 
we describe the novel JAC-UT algorithm. In Section 3, we 
present the experimental results on the standard Aurora 2 task 
using both simple and complex back-ends. We summarize our 
study and conclude the paper in Section 4. 

2. JAC-UT Adaptation Algorithms 
In this section, we first briefly review the JAC-VTS algorithm 
and then derive the JAC-UT algorithm for the HMM means 
and variances on the Mel-frequency cepstral coefficient 
(MFCC) features for both static and dynamic model 
parameters. We subsequently describe the algorithm which 
jointly estimates the additive and convolutive distortion 
parameters using UT.  

2.1. JAC-VTS Adaptation Algorithm 
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Figure 1 shows a model for degraded speech with both noise 
(additive) and channel (convolutive) distortions. The observed 
distorted speech signal ���� is generated from clean speech ���� with noise ���� and channel’s impulse response ���� 
according to  ���� 	 ���� 
 ����� ����� 

With discrete Fourier transformation (DFT), the equivalent 
relationship  

��� 	 �������� ����� 
can be established in the frequency domain, where k is the 
frequency-bin index in DFT given a fixed-length time window. 

 

  
Figure 1: A model for acoustic environment distortion 
 
The power spectrum of the distorted speech can then be 

obtained as ������ 	 �������������� � �������� ������������������������� (1) 

where ��  denotes the (random) angle between the two 
complex variables ���� and (��������).  

It is noted that Eq. (1) is a general formulation for JAC. If ����� is set to zero, Eq. (1) becomes ������ 	 �������������� � �������� (2)

which is the formulation often used when power spectra [5] 
are adopted as  the acoustic feature. If ����� is set to one, we 
obtain  ����� 	 �������������� ������� (3) 

which is the formulation often used when magnitude spectra 
[7] are adopted as  the acoustic feature. 

By taking logarithm and multiplying the non-square 
discrete cosine transform (DCT) matrix C to both sides of Eq. 
(1) for all the L Mel filter-banks, we obtain the nonlinear 
distortion model of � 	 � � �� ���� ! � "#$%�&' � ( � ( �)*

� �+"#$,�&' � ( � ( �)� -� (4) 

where � , ��, � , and �  are clean speech, noise, channel, and 
distorted speech, respectively, in the cepstral domain, and + is 
a phase related adjustment term. If + 	 ., Eq. (4) becomes 

� 	 � � �� ���� ! � "#$%�&' � ( � ( �)*� (5)

which is the popular JAC formulation.  
Note that + 	 . is a reasonable theoretical approximation 

since this is its mean value and the random value of +  is 
ranged between -1 and 1 in theory [15]. However, it was 
observed in [8] and [16] that setting  + 	 . performs much 
worse than setting + 	 ��/  using JAC-VTS. A possible 
explanation is that the noise and channel distortions were 
estimated with possibly systematic biases since VTS discards 
the second and higher-order terms. A larger +  thus may 
partially compensate for the biases. 

Given its theoretical justification, we assume + 	 . and 
thus use Eq. (5) to describe the feature space distortion hereon. 
By taking the expectation on both sides of Eq. (5), the static 
mean value of the distorted speech signal is 

01 	 02 � 03 � � 02�03� 04) ������5 02 � 03�6 � 7%03 ( 03�6* �  8 ( 7)%04 ( 04�6*� (6)

where � 02�03� 04) 	 ����%! � "#$%�&' 04 ( 02 ( 03)**� (7)

By noting,  901902 	 �:;<� = !!� "#$��&' 04 ( 02 ( 03�>�&' 	 7 (8)

901902 	 8 (7� (9)

we can derive the JAC-VTS adaption formulations for  the k-
th Gaussian in the j-th state as (following [7]): 

01�?� 	 02�?� � 03 � �%02�?�� 03� 04*� (10)

@1�?� 5 7 A� �)@2�?�7 A� �)B 

����������������%8 ( 7 A� �)*@4%8 ( 7 A� �)*B� (11)

0C1�?� 5 7 A� �)0C2�?�� (12)

0CC1�?� 5 7 A� �)0CC2�?�� (13)

@C1�?� 5 7 A� �)@C2�?�7 A� �)B 

������������������%8 ( 7 A� �)*@C4%8 (7 A� �)*B� (14)

@CC1�?� 5 7 A� �)@CC2�?�7 A� �)B�������������������� 
������������������%8 ( 7 A� �)*@CC4%8 (7 A� �)*B� (15)

The online estimation formulas for 04, 03 , @4, @C4, and @CC4 can be found in [9] and are not repeated here. 

2.2. Basic UT Algorithm 

As in [11], an augmented signal D 	 ��B��B�B is formed 

with a D-dimensional clean speech cepstrum x and a noise

cepstrum n, with dimensionality EF 	 EG � EH 	 �E� 
The UT algorithm samples the augmented signal s with 4D 

sigma points: 

DI 	 J 0K � %L�EMK�*I � NO�; 	 !PP�E
0K ( %L�EMK�*I&�Q� NO�; 	 �E� !PPRE�S (16)

where 0K  and MK  are the mean and covariance of the 
augmented signal, and %T@�*I  denotes the i-th column of the 
square root matrix of @. 

In the feature space, the transformed sample UI  with a
mapping function V � ) is UI 	 V DI)� 

In the model space, the mean and variance values are 01 	 MIW6XQ YIUI� (17)

M1 	 MIW6XQ YI%UI ( 01*%UI ( 01*B� (18)

where YI 	 ! REZ  are weights of each sigma  point. 

2.3. JAC-UT Algorithm 

From Eq. (5) the transformed sample UI  for the sigma point DI 
is UI 	 V DI) 	 V%�IB� �IB* �����	 �I � � �����%! � "#$%�&' �I ( �I ( �)**� 
where �I 	 02 � [2I  and �I 	 04 � [4I , with [2I  and [4I  
being the offsets of �I  and �I  from 02  and 04 , respectively.  

h[m] x[m] y[m] 

n[m] 
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They can be easily calculated from Eq. (16). 
We thus obtain the static transformed mean values as 

shown in Eq. (19), where �\ �02� 03� 04) 	 @�YI����� 

��������������%! � "#$%�&' 04 � [4I ( 02 ( [2I ( 03)**� (23) 

Likewise, the static transformed variance can be calculated 
with Eq. (18). We can also calculate the derivatives of 01 with 
respect to 02 and 03 as shown in Eq. (20)  and to 04 as 

]^_]^` 	 8 ( 7\. (24)

EM algorithm is developed in this work as part of the 
overall JAC-UT algorithm to estimate the noise and channel 
parameters. Let ab A� �) denote the posterior probability for the 
k-th Gaussian in the j-th state of the HMM, i.e.,  ab A� �) 	 c%db 	 A� eb 	 �f� gh*� 
where db denotes the state index, and eb denotes the Gaussian 
index at time frame t. gh is the old parameter set of noise and 
channel. Embedding 01  into the EM auxiliary function, and 
taking the first derivative with respect to 04 and 03,we obtain 9i904 jkkkab A� �)%8 ( 7\ A� �)*B@1�?�&' %�b ( 01�?�*

�?b 	 .� �l 9i903 jkkkab A� �)7\ A� �)B@1�?�&' %�b ( 01�?�* 	 .
�?b

� 
Because 01  is a nonlinear function of 04  and 03 , by 

linearlizing it as  

01 	 02 � 03�6 � 7\%^m&^m�n* �  8 ( 7\)%04 ( 04�6* (25) 

we obtain the closed-form solution as shown in Eqs. (21) and 
(22). 

Comparing Eqs. (21) and (22) with the solution in [9] 
where VTS is used, we can see that the solution formulas are 
the same except  we are using weighted sums 7\ A� �) (defined 
in Eq. (20)) and �\%�02�?�� 03�6� 04�6* (defined in Eq. (23)) to 
replace 7 A� �)   (defined in Eq. (8)) and �%�02�?�� 03�6� 04�6* 
(defined in Eq. (7)).  

To estimate the dynamic parameters for distorted speech, 
linearization is still needed as discussed in [9]. Inferring from 
Eq. (25) and Eq. (6), we can similarly use  7\ A� �) to replace 7 A� �)  in Eqs. (12), (13), (14), and (15), and obtain the 
corresponding dynamic model formulations for the distorted 
speech signal. The re-estimation formulas for the dynamic 

noise variances are the same as that in [9] because the 
adaptation formulations share the same formulas.  

3. Experimental Evaluation 
The proposed JAC-UT algorithm presented in Section 2 has 
been evaluated on the standard Aurora 2 task [17] of 
recognizing digit strings in noise and channel distorted 
environments. The clean training set is used to train the 
baseline maximum likelihood estimation (MLE) HMMs. The 
test material consists of three sets of distorted utterances. Set-
A and set-B contain eight different types of additive noise 
while set-C contains two different types of noise and 
additional channel distortion. The baseline experiment setup 
follows the standard script provided by ETSI, including the 
standard simple and complex backend [1] of HMMs trained 
using the HTK toolkit. 

The features are 13-dimension MFCCs, appended by their 
first- and second-order time derivatives.  The cepstral 
coefficient of order zero is used instead of the log energy in 
the original script. We use power spectra for MFCC extraction 
in all experiments.  

The JAC-UT algorithm presented in this paper is used to 
adapt the ML-trained HMMs utterance by utterance for the 
entire test set (Sets-A, B, and C). The implementation steps 
described in [7] are used in the experiments. We use the first 
and last 20 frames from each utterance for initializing the 
noise means and variances. Only one-pass processing is used 
in the reported experiments.  

Table 1: Recognition accuracies (Acc) under the baseline, 
JAC-VTS, and different JAC-UT setups for clean-trained 

simple backend HMMs. Power spectra are used to extract 
MFCC features. 

������ �		�

������� 58.70% 

�������� 88.35% 

�����	�������	������������������������
�����	�����������������	���������������� 89.21% 

�����	�������	����������������������������	�
����������������	���������������� 89.34% 

������������������������������ 90.68% 
 

To examine the contribution of individual components in 
the JAC-UT algorithm, we conducted experiments using the 

7\\ 	 8 ( @YI�:;<� o "#$%�&' 04 � [4I ( 02 ( [2I ( 03)* � p "#$��&' 04 � [4I ( 02 ( [2I ( 03)q����! � "#$��&' 04 � [4I ( 02 ( [2I ( 03)� � �p "#$��&' 04 � [4I ( 02 ( [2I ( 03)q�����r �&' (26)

01 	 s YIUIXQIW' 	 sYI t02 � [2I � 03 � ����%! � "#$%�&' 04 � [4I ( 02 ( [2I ( 03)**u  

      	 sYI02 � sYI[2I � sYI03 � sYI�����%! � �"#$%�&' 04 � [4I ( 02 ( [2I ( 03)**  
      	 02 � 03 � sYI����%! � "#$%�&' 04 � [4I ( �02 ( [2I ( 03)** 	 02 � 03 � �\ �02�03� 04).  

(19)

]^_]^v 	 ]^_]^m
             	 8 ( sYI�:;<�w"#$%�&' 04 � [4I ( 02 ( [2I ( 03)*  !� "#$��&' 04 � [4I ( 02 ( [2I ( 03)�)Z x�&' 
             	 sYI�:;<�y!  !� "#$��&' 04 � [4I ( 02 ( [2I ( 03)�)Z z�&' 	 7\� 

(20)

       04 	 04�6 � �{s s s ab A� �)%8 ( 7\ A� �)*B@1�?�&' %8 ( 7\ A� �)*�?b |&'
  

                             {s s s ab A� �)%8 ( 7\ A� �)*B@1�?�&' t�b ( 02�?� ( 03�6 ( �\%04�6� 02�?�� 03�6*u�?b |��  (21)

03 	 03�6 � ws s s ab A� �)7\ A� �)B@1�?�&' 7\ A� �)�?b x&'
  

                     {s s s ab A� �)7\ A� �)B@1�?�&' t�b ( 02�?� ( 03�6 ( ��\%04�6� 02�?�� 03�6*u�?b | . (22)
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JAC-VTS setting, and then gradually switched components 
from VTS to UT formulation. As shown in Table 1, the 
baseline accuracy (Acc) is 58.70% using the clean-trained 
simple backend model. When adapting with the normal JAC-
VTS (i.e., + 	 .  in phase-JAC-VTS, all noise/channel 
parameters are online estimated), the Acc improves to 88.35%. 
If we use VTS to estimate the static noise and channel means 
and then plug them into Eqs. (17) and (18) to adapt the static 
model mean and variance as done in [12], the Acc is increased 
to 89.21%. After applying Eqs. (21) and (22) to estimate the 
noise and channel means, the Acc further improves to 89.34%. 
Finally, the dynamic model parameters are updated by 
replacing the VTS-derived 7 A� �)  with the UT-derived 7\ A� �) in Eqs. (12)-(15), and the dynamic noise variances are 
estimated online. This setting achieves the highest accuracy of 
90.68%, which translates to a 20.0% relative WER reduction 
over the normal JAC-VTS algorithm. This demonstrates that 
the normal JAC method (without any phase term) can have 
better performance with an improved estimate of model space 
mapping using UT. 

In Table 2, we show experimental results using the 
complex backend with the JAC-UT model adaptation 
technique. When + 	 ., JAC-UT obtains 91.68% Acc, which 
stands for 16.9% relative WER reduction from the 89.99% 
Acc achieved using the JAC-VTS approach. Note that this 
accuracy is still lower than the 93.32% Acc achieved in [8] 
with phase-adjusted JAC-VTS when + 	 ��/. 

Table 2: Recognition accuracies (Acc) under the settings of 
baseline, phase-JAC-VTS, and alpha-JAC-UT with 

different�+ for clean-trained complex backend HMMs. Power 
spectra are used to extract MFCC features. 

��������� } 	 ~�� �} 	 ~� �� } 	 ��� �} 	 �� ��
�������������� 89.99% 91.85% 92.70% 93.32% 

������������ 91.68% 92.57% 92.91% 93.30% 
 

In the formulation of JAC-UT, linearization is still used in 
order to achieve a closed-form solution. As argued in [9], a 
large value of  +  may be used to compensate for the 
linearization bias. Therefore, we try to keep the UT model 
space mapping in Eqs. (17) and (18), and use the 7\\ defined 
in Eq. (26) to replace 7\ defined in Eq. (20) by introducing an + term with each element similar to the format in [9]. Note 
that 7\\ 	 7� when + 	 .. We call this method alpha-JAC-UT 
instead of phase-JAC-UT because there is no phase term in 
this feature space distortion model and the + term is only used 
to compensate for the linearization bias. 

The results in Table 2 demonstrate that with larger + 
values, JAC-UT can further improve the accuracy. When + 
equals 0, 0.5, and 1, alpha-JAC-UT outperforms phase-JAC-
VTS with reduced relative gains as +  is increased. When + 	 ��/, these two methods obtain almost the same accuracy.   

4. Conclusions 
In this paper, we have presented our recent development of the 
JAC-UT algorithm for HMM adaptation and demonstrated its 
effectiveness on the standard Aurora 2 environment-robust 
ASR task. This approach unifies the static and dynamic model 
parameter adaptation with online estimation of noise and 
channel parameters in the UT framework, distinguishing itself 
from prior arts.  

In the experimental evaluation using the standard Aurora 2 
task, the proposed JAC-UT algorithm has achieved 20.0% and 
16.9% relative WER reduction from JAC-VTS algorithm, with 
the clean-trained simple and complex HMM backends, 

respectively. The UT formulation and the experimental results 
shed light onto the previous unsatisfactory performance with  + 	 .  using the phase-JAC-VTS technique. We conclude 
from this work that JAC methods can obtain more satisfactory 
accuracy by utilizing a better model space mapping.  

To obtain a closed-form solution in this work, we still 
retain the linearization step in the JAC-UT framework. Alpha-
JAC-UT is used to boost the accuracy by adding an + term to 
compensate for the linearization loss. This partially exposes 
the weakness of our current JAC-UT formulation. Our future 
work involves further improvement of the performance of 
JAC-UT without employing linearization. Note that UT brings 
more computation costs than VTS. It is important to reduce the 
costs in the future. 

5. References 
[1] Macho, D., et al., “Evaluation of a noise-robust DSR front-end 

on Aurora databases,” Proc. ICSLP, pp. 17–20, 2002. 
[2] Yu, D., et al., "Robust Speech Recognition Using a Cepstral 

Minimum-Mean-Square-Error-Motivated Noise Suppressor", 
IEEE Transactions on Audio, Speech and Language Processing, 
vol. 16, no. 5, pp. 1061-1070, July 2008 

[3] Gales, M. J. F. and Young, S., “An improved approach to the 
hidden Markov model decomposition of speech and noise,” 
Proc. ICASSP, Vol. I, pp. 233–236, 1992. 

[4] Gong, Y., “A method of joint compensation of additive and 
convolutive distortions for speaker-independent speech 
recognition,” IEEE Trans. Speech and Audio Proc., Vol. 13, 
No. 5, pp. 975-983, 2005. 

[5] Moreno, P., Speech Recognition in Noisy Environments. PhD. 
Thesis, Carnegie Mellon University, 1996. 

[6] Liao, H. and Gales, M. J. F., “Joint uncertainty decoding for 
robust large vocabulary speech recognition,” Tech. Rep. 
CUED/TR552, University of Cambridge, 2006. 

[7] Li, J., et al., “High-performance HMM adaptation with joint 
compensation of additive and convolutive distortions,” Proc. 
IEEE ASRU, 2007. 

[8] Li, J., et al., "HMM adaptation using a phase-sensitive acoustic 
distortion model for environment-robust speech recognition," 
Proc. IEEE ICASSP, 2008. 

[9] Li, J., et al., “A unified framework of HMM adaptation with 
joint compensation of additive and convolutive distortions,” 
Computer Speech and Language, no. 3, vol. 23, Elsevier, 2009. 

[10] Julier, S.J. and Uhlmann, J.K., “Unscented filtering and 
nonlinear estimation,” Proceedings of IEEE, vol. 92, no. 3, pp. 
401-422, 2004 

[11] Hu, Y. and Huo, Q., “An HMM compensation approach using 
unscented transformation for noisy speech recognition,” Proc. 
ISCSLP, 2006. 

[12] Xu, H. and Chin, K.K., “Comparison of estimation techniques 
in joint uncertainty decoding for noise robust speech 
recognition,” Proc. Interspeech, 2009. 

[13] Faubel, F., McDonough, J., and Klakow, D., “On expectation 
maximization based channel and noise estimation beyond the 
vector Taylor series expansion,” in Proc. ICASSP, pp. 4294-
4297, 2010. 

[14] Dempster, A., Laird, N., and Rubin, D., “Maximum likelihood 
from incomplete data via the EM algorithm,” Journal of the 
Royal Statistical Society, Series B, 39(1), pp. 1–38, 1977. 

[15] Deng, L., Droppo, J., and Acero, A., “Enhancement of log-
spectra of speech using a phase-sensitive model of the acoustic 
environment,” IEEE Trans. Speech and Audio Proc., Vol. 12, 
No. 3, pp. 133-143, 2004. 

[16] Gales, M. J. F. and Flego, F., "Discriminative classifiers and 
generative kernels for noise robust speech recognition," 
Technical Report, CUED, Cambridge, 2008. 

[17] Hirsch, H.G. and Pearce, D., “The Aurora experimental 
framework for the performance evaluation of speech 
recognition systems under noisy conditions,” Proc. ISCA ITRW 
ASR, 2000. 

1663


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Jinyu Li
	Also by Dong Yu
	Also by L. Deng
	----------

