Single-Value Combinatorial Auctions and Algorithmic
Implementation in Undominated Strategies

MOSHE BABAIOFF

Microsoft Research — Silicon Valley, Mountain View, California

RON LAVI

The Technion — Israel Institute of Technology, Haifa, Israel

AND
ELAN PAVLOV

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. In this article, we are interested in general techniques for designing mechanisms that ap-
proximate the social welfare in the presence of selfish rational behavior. We demonstrate our results
in the setting of Combinatorial Auctions (CA). Our first result is a general deterministic technique to
decouple the algorithmic allocation problem from the strategic aspects, by a procedure that converts
any algorithm to a dominant-strategy ascending mechanism. This technique works for any single value
domain, in which each agent has the same value for each desired outcome, and this value is the only
private information. In particular, for “single-value CAs”, where each player desires any one of several
different bundles but has the same value for each of them, our technique converts any approximation
algorithm to a dominant strategy mechanism that almost preserves the original approximation ratio.
Our second result provides the first computationally efficient deterministic mechanism for the case of
single-value multi-minded bidders (with private value and private desired bundles). The mechanism
achieves an approximation to the social welfare which is close to the best possible in polynomial
time (unless P=NP). This mechanism is an algorithmic implementation in undominated strategies, a
notion that we define and justify, and is of independent interest.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; I.2.m [Artificial Intelligence]: Miscellaneous; J.4 [Social
and Behavioral Sciences]: Economics

General Terms: Theory, Algorithms, Economics

Authors’ addresses: M. Babaioff, Microsoft Research, 1065 La Avenida, Mountain View, CA, 94043,
e-mail: moshe@microsoft.com; R. Lavi, Faculty of Industrial Engineering and Management, The
Technion — Israel Institute of Technology, Haifa 32000, Israel, e-mail: ronlavi @ie.technion.ac.il; E.
Pavlov, The Media Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue,
Cambridge, MA 02139-4307, e-mail: elan@mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax 41 (212) 869-0481, or permissions @acm.org.

© 2009 ACM 0004-5411/2009/01-ART4 $5.00 DOI 10.1145/1462153.1462157 http://doi.acm.org/
10.1145/1462153.1462157

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:2 M. BABAIOFF ET AL.

Additional Key Words and Phrases: Combinatorial auctions, incentives, mechanism design, undom-
inated strategies
ACM Reference Format:

Babaioff, M., Lavi, R., and Pavlov, E. 2009. Single-value combinatorial auctions and algorithmic
implementation in undominated strategies. J. ACM 56, 1, Article 4 (January 2009), 32 pages. DOI =
10.1145/1462153.1462157 http://doi.acm.org/10.1145/1462153.1462157

1. Introduction

Algorithmic Mechanism Design [Nisan and Ronen 2001] studies the design of com-
putationally efficient algorithms under the assumption that the input is distributed
among a set of rational selfish players. One successful approach to this problem is
of designing truthful mechanisms, in which a player always maximizes his utility
by simply revealing his true input. The classic VCG [Clarke 1971; Groves 1973;
Vickrey 1961] scheme from the economic literature that converts algorithms to
truthful mechanisms is computationally infeasible for most interesting domains,
including Combinatorial Auctions. Thus, the important task of designing computa-
tionally efficient mechanisms for combinatorial auctions with selfish agents should
be addressed by other means.

In this context, this article makes several contributions. We first describe a deter-
ministic technique for converting arbitrary algorithms into strategic mechanisms.
We then describe how this technique may be applied in the setting of single-value
multi-minded bidders, for which no nontrivial deterministic mechanism was pre-
viously known. This mechanism is an algorithmic implementation in undominated
strategies, a new notion that we define and discuss. We believe that this notion is
of independent interest.

1.1. GENERAL METHODS FOR CREATING DOMINANT-STRATEGY MECHANISMS.
We first consider the issue of general methods for creating dominant-strategy mech-
anisms. In principle, we would like to decouple the algorithmic problem (solving
or approximating the optimum) from the strategic problem (eliciting the privately
known input). Such a decoupling would allow us to utilize the full power of ap-
proximation algorithms without reference to the strategic properties. Several papers
suggest methods to convert algorithms to truthful mechanisms for several differ-
ent problem domains (we discuss these papers in details at Section 1.4 below). A
common drawback of all these methods is the use of randomization. Randomized
mechanisms suffer from several drawbacks, as compared to deterministic mecha-
nisms, for example, the approximation guarantees are only in expectation, and it is
not possible (as with approximation algorithms) to repeat the computation and take
the best outcome, in order to approach the expected guarantee, as this will damage
the truthfulness properties.! Our first contribution is a deterministic technique that
converts any given algorithm into a dominant-strategy ascending mechanism for
any one-parameter Combinatorial Auction (CA) domain. For example, for combi-
natorial auctions with “known” single-minded bidders [Mu’alem and Nisan 2002],
where each player desires one specific publicly known subset of items for a private

'In addition, randomized methods sometimes assume that players are neutral to risk; a detailed
discussion can be found in Dobzinski et al. [2006].

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:3

value of ¥;, our method deterministically converts any c-approximation of the social
welfare to a dominant-strategy mechanism with O(log(V,,,.) - ¢)-approximation,
where ¥,,,, = max; v;.2 If players are multi-minded, with publicly known desired
bundles and the same private value for all desired bundles, our technique yields a
dominant-strategy mechanism with O(/ 08> (Vmax) - ¢)-approximation.

The conversion method takes an approximation algorithm that receives as input a
vector of assumed players’ values (bids), and then utilizes an ascending procedure as
a wrapper to iteratively output a set of provisional winners. Every provisional loser
is then required to either double his bid (reported value) or to permanently retire.
This is repeated until all losers decide to retire. Each winner pays his final bid. The
analysis shows that the number of iterations is surprisingly low (only O(log(V,4x))),
and this by itself is enough to bound the approximation loss, relative to the original
approximation of the algorithm.

While this method cannot improve the existing results for single-minded
combinatorial auctions, as these already obtain the best possible /m-
approximation [Lehmann et al. 2002], it is fruitful for special cases in which
some further structure on the bundles is assumed, allowing to break the /m lower
bound (see, e.g., Akcoglu et al. [2002]). It is additionally fruitful if one wishes to
use the many well-known heuristics that work well in practice but are not truthful to
begin with. Since our method converts the given algorithm to an ascending auction,
that is, players compete by placing bids, and winners pay their last offer, it has a
more realistic structure than standard direct revelation mechanisms, in which each
player simply reveals his value. In particular, it has the advantage that winners do
not reveal their true values. It has been argued many times (see, e.g., Parkes [2005])
that such indirect mechanisms should be preferred over the more common “direct
revelation” mechanisms.

1.2. SINGLE-VALUE COMBINATORIAL AUCTIONS. The next case we consider is
when players are multi-minded, and their desired bundles are private information.
Specifically, we look at the class of valuations in which a player desires several
different bundles, all for the same value. We call these players “single-value” play-
ers. Here, both the player’s value and his collection of desired bundles are assumed
to be private information. The best deterministic truthful approximation guarantee
for general combinatorial auctions is O(\/121@) [Holzman et al. 2004], and no bet-
ter bound is known even for single-value players. This is in sharp contrast to the
best deterministic approximation that is achievable without strategic considerations,
which is \/m.*

The model of single-value players does not fall into the family of one-parameter
domains defined in Archer and Tardos [2001] since the desired bundles are not
public information, and hence value monotonicity by itself is no longer sufficient

This assumes that v; > 1 for all i; a normalization that is equivalent to the assumption that values
are bounded away from 0 by some known constant. We also note that our technique does not assume
that ¥,,,, 1s known a-priori.

For any € > 0, an approximation of m can not be computed in polynomial time, unless
P=NP [Lehmann et al. 2002; Zuckerman 2006], where m is the number of goods.

“There exist several other special cases of combinatorial auctions for which deterministic mechanisms
achieve good approximation guarantees, for example, in Bartal et al. [2003]. We discuss these papers
in details at Section 1.4 below.

1/2—¢

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:4 M. BABAIOFF ET AL.

for dominant strategy implementation. In Babaioff et al. [2005] we discuss general
single-value domains and the sufficient conditions for dominant strategy imple-
mentations in such domains. We emphasize that the model of single-value players
is significantly richer than the model of single-minded players, as a single-value
player may be multi-minded, and may desire even an exponential number of bun-
dles that are not contained one in the other. Even if the players’ values were fixed
and known, single-value valuations might require an exponential representation in
the number of goods [Nisan and Segal 2006]. Nisan and Segal [2006] show that, for
single-value domains, even with no computational constraints, exponential com-
munication in the number of goods m is required in order to get approximation of
m!/2=¢_ for any fixed € > 0. Thus, the best approximation bound we can hope for
is 4/m, and this is indeed achievable if one ignores the strategic issue.

A natural single-value multi-minded CA domain is the Edge Disjoint Paths (EDP)
problem: given a graph, (graph edges may be thought of as the items for sale), each
player i obtains a value ¥; from receiving any path from an unknown source node
s; to an unknown target node #;. The algorithm is required to allocate edge disjoint
paths to maximize the sum of values of players that receive a desired path. In
this problem, players are naturally single valued (a player obtains the same value
from any source-target path), but are not single minded. Even for this special case,
no deterministic mechanism with approximation guarantees that approach /m is
currently known.

Our second contribution is a deterministic mechanism for “unknown” single-
value players, with O(10g>(¥nax) - /m) approximation. In particular, this applies
to the EDP problem.

The mechanism for “unknown” single-value players is composed of the above
wrapper technique, on top of a specific algorithm. As the collection of desired
bundles is assumed to be private, we maintain an “active bundle” for each player.
At the beginning of the auction each active bundle contains all items, and at the end
of the auction, each winner receives his last active bundle. In addition to increasing
their bids, as before, losing players may also shrink their active bundle, by this
focusing on one of their desired bundles.

This additional building block of active bundles forces a transition from dominant
strategies to undominated strategies: the mechanism admits more than one reason-
able strategic choice for a rational player (and not just one as implied by dominant
strategies), but the approximation is guaranteed for any rational choices that the
players make. Intuitively, if a player shrinks his active bundle, he loses the ability
to win some of his desired bundles, as any subset he will eventually win must be
contained in his current active bundle, and this cannot expand. Therefore, a losing
player faces the trade-off of increasing his price, or shrinking his active bundle. A
mechanism with dominant strategies implies that the player has a specific optimal
choice, no matter what the other players choose. In our mechanism there is no such
“clear cut” decision for a player. The crucial point in the analysis shows that such
a unique optimal choice is also not necessary: to guarantee the approximation, all
we need is that a retiring player bids up to his true value and reveals one of his true
desired subsets, the exact “path” is not important!

1.3. ALGORITHMIC IMPLEMENTATION IN UNDOMINATED STRATEGIES. This
leads us to a new solution concept for strategic mechanisms. Requiring that players

have dominant strategies limits the family of allocation algorithms that can be

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:5

used [Archer and Tardos 2001; Babaioff et al. 2005; Lavi et al. 2003]. Clearly, this
requirement is not the real essence, but rather a tool to obtain the underlying goal:
reaching approximately optimal outcomes in the presence of selfish behavior.
Here, we obtain this goal although we allow the mechanisms to leave in several
“reasonable” strategies for the players to choose from. The basic assumption
still remains that a player prefers not to choose a dominated strategy, since this
means that there exists another strategy that always performs at least as well. We
say that a mechanism M is an algorithmic implementation of a c-approximation
(in undominated strategies) if there exists a set of strategies, D, such that (1) M
obtains a c-approximation for any combination of strategies from D, in polynomial
time, and (2) for any strategy that does not belong to D, there exists a strategy in
D that dominates it (D stands for Dominating strategies). Furthermore, we require
that this “improvement step” can be computed in polynomial time.

Thus, while we leave some uncertainty on the game-theoretic side, we com-
pensate by strengthening the algorithmic analysis, showing that the mechanism
performs well for any combination of strategies from the set D. This moves some
burden from the game theoretic constraints on mechanism design to the algorithmic
part in mechanism design.

We argue that this concept captures all the truly important ingredients of the
dominant strategies notion: First, the only assumption is that a player is willing to
replace any chosen strategy with a strategy that dominates it. Indeed, this guarantees
at least the same utility (even in the worst-case), and can be done in polynomial
time. In addition, as in dominant strategies, our notion does not require any form
of coordination among the players (unlike Nash equilibrium), or that players have
any assumptions on the rationality behavior of the others (unlike ““iterative deletion
of dominated strategies”). Our mechanisms also ensure that the resulting utility is
nonnegative, thus players have no risk in participating. Algorithmic implementa-
tion differs from truthfulness in one main aspect: it cannot predict what strategies
from the set D the players will choose to play, as there is no single strategy that
dominates all the rest. In fact, it is not straightforward for a player to choose a
strategy from D, and it may well be that a player regrets his choice in retrospect,
realizing that another strategy from D would have performed better. However, we
are guaranteed that players will choose some strategies from D, and this is enough
to ensure the approximation, which is what the mechanism designer cares about.
In a companion paper [Babaioff et al. 2006], we present an additional technique
for algorithmic implementation, completely different than our iterative wrapper
method. This further demonstrates its potential usefulness.

As we explain in Section 5, the notion of algorithmic implementation generalizes
the notion of implementation in undominated strategies. This is a well-known game-
theoretic concept, but very few positive results have been achieved by using it (one
such positive example is Jackson [1992]). To the best of our knowledge, we are the
first to adapt it to the context of algorithmic mechanism design and to demonstrate
its usefulness.

1.4. RELATED WORK. One of the first papers to consider the problem of
constructing computationally efficient and truthful combinatorial auctions with a
good approximation guarantee is Lehmann et al. [2002]. They consider the case
of unknown single-minded bidders, and provide a deterministic truthful O(y/m)-
approximation mechanism. Two randomized mechanisms that obtain the best

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:6 M. BABAIOFF ET AL.

possible approximation ratio for the general problem are known: Lavi and Swamy
[2005] give a randomized mechanism that is truthful in expectation, and provides an
O (/m)-approximation. Their mechanism gives tight bounds for several additional
problem domains, including the domain of multi-unit combinatorial auctions, and
some special cases of the EDP problem that admit approximation guarantees better
than 4/m. The mechanism of Lavi and Swamy [2005] obtains the approximation
guarantee only in expectation, hence for some coin tosses the outcome can be far
from optimal. Their solution also assumes that players are risk-neutral. Dobzinski
et al. [2006] and Dobzinski [2007] improve these two problematic points. They
give a randomized mechanism that provides an O(./m)-approximation with high
probability, and is universally-truthful (truthful for any realization of the coin
tosses).

Despite many efforts to complete this line of papers and to provide a deter-
ministic truthful mechanism with a tight approximation guarantee, the problem is
still open The best-known approximation of a truthful deterministic mechanism
is 0() [Holzman et al. 2004], while the best possible approximation with-

out truthfulness is «/m. Bartal et al. [2003] were the first to construct a truthful
deterministic mechanism with a significantly improved approximation guarantee
for a multi-dimensional combinatorial auction domain, assuming that each item is
supplied in several copies, while each player desires at most a small fraction of the
total number of copies. For example, if there are B > 3 copies of each item and
each player desires at most one copy from each item then their mechanism is a de-
terministic and truthful O (B - m#-2) approximation. When the number of copies is
logarlthmlc in the number of items then the approximation ratio becomes logarith-
mic in the number of items (i.e., if B = O(logm) then O(B - m3- 2) = O(log m)).
Dobzinski et al. [2005] study another special case, were the valuation functions
of the players are assumed to be subadditive, and provide a truthful deterministic
mechanism with O(/m) approximation. Briest et al. [2005] discuss several single-
dimensional domains, including the EDP problem under the assumption that the
source and target nodes of each player are public knowledge.

To tackle the problem from its other end, several papers have tried to pin-point
the impossibilities of deterministic mechanism design. Lavi et al. [2003] show
that a certain family of algorithms that are “strongly monotone” cannot yield a
good deterministic and truthful approximation to the general combinatorial auctions
problems, and Dobzinski and Sundararajan [2008] give slightly different conditions
that yield the same impossibility. Dobzinski and Nisan [2007] show that VCG-based
mechanisms cannot yield an approximation factor better than Q(min(nz, m'/¢)) when
valuations are subadditive. Given all this, it is clear that despite the many efforts of
the community, the question of constructing deterministic combinatorial auctions
is far from being solved.

The model of combinatorial auctions also presents pure algorithmic questions
that are interesting and challenging, and the interested reader is referred to the book
chapter [Blumrosen and Nisan 2007] for further details. In addition to the theoret-
ical algorithms that were constructed for combinatorial auctions, many heuristics
that work extremely well in practice have also been designed, see, for example,
Fujishima et al. [1999], Gonen and Lehmann [2000], Nisan and Zurel [2001], and
Sandholm et al. [2005], and the references therein. Cramton et al. [2006] contains
many more details on this subject.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:7

As motivated above, an independent line of study is the question of constructing
methods to convert algorithms to mechanisms. This will yield the decoupling of
algorithmic constructions from strategic considerations, and will enable to convert
existing algorithms to new mechanisms, in a black-box fashion. Several papers
have designed such conversion methods, for various problem domains. Awerbuch
et al. [2003] give such a method for a family of online settings with one-parameter
agents. Lavi and Swamy [2005] base their results for combinatorial auctions on such
a conversion method, that operates whenever the underlying algorithm bounds the
integrality gap of the LP relaxation of the problem. Lavi and Swamy [2007] give a
different conversion method, for the problem domain of job-scheduling, assuming
processing times that can be either “low” or “high”. All these conversion techniques
are randomized, and in this article, we give the first deterministic conversion method.

1.5. ORGANIZATION OF THE ARTICLE. The rest of the article is organized as
follows: We formally describe the model, and give basic definitions, in Section 2.
Section 3 describes the wrapper technique for known single-minded players. In
Section 4, we move to the general single-value players case. Section 5 describes
the new notion of algorithmic implementation in undominated strategies, and, in
Section 6, we fully analyze the wrapper technique according to this notion. In
Appendix 7, we show how to use the general wrapper in order to convert algorithms
to mechanisms for known multi-minded players, complementing our results for
known single-minded players, and in Appendix 7 we generalize our results to the
case of Multi-Unit Combinatorial Auctions.

2. Model and Definitions

2.1. COMBINATORIAL AUCTIONS AND SINGLE-VALUE PLAYERS. We consider
mechanisms for the extensively studied domain of Combinatorial Auctions
(Cramton et al. [2006] provides a detailed survey). In a Combinatorial Auction
(CA), we need to allocate a set 2 of m items to n players, where an “allocation” is a
tuple of disjoint subsets s1, ..., s, of items (i.e., player i gets the items in s;). Note
that some of the items may be left unallocated. Players have values for subsets of
items, and v;(s) denotes player i’s value for the subset of items s. These value func-
tions are assumed to be monotone (this is often called the “free disposal” property),
that is, v;(s) C 7;(¢) for every s C ¢, and normalized (v;(¥) = 0). We denote by V;
the set of all valid valuation functions of player i. The goal is to (approximately)
maximize the sum of true values of players for the subsets they receive (the “social
welfare™), that is, to find an allocation s1, . .. , s, that maximizes Zi Vi (s;).

We mainly consider several special cases of CAs, as follows. In the case of
“known” single-minded players [Mu’alem and Nisan 2002], each player desires
one specific publicly known subset of items, for a private value of ¥;. For the
main result of this article, we suggest to look at a more general class of val-
uations, in which a player desires several different bundles, all for the same
value:

Definition 2.1 (Single-Value Players). Player i is a single-value (multi-
minded) player if there exists a real value ¥; > 0 such that for any bundle s,
vi(s) € {0, v;}. Both the player’s value and his collection of desired bundles are
assumed to be private information, known only to the player himself.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:8 M. BABAIOFF ET AL.

In other words, the player desires any bundle that belongs to a collection of
bundles S;, each for a value of ;. Both the player’s value and his collection of
desired bundles are assumed to be private information, known only to the player.’
We additionally assume that v; > 1. We denote by ,,,, the maximal value of any
player (this need not be known a-priori). Since S; may be of size exponential in m,
we need to assume that an oracle access is provided. The specific query types that
we use are detailed below, in the relevant sections.

A natural single-value multi-minded CA domain is the Edge Disjoint Paths (EDP)
problem: given a graph, (graph edges may be thought of as the items for sale), each
player i obtains a value ¥; from receiving any path from a source node s; to a target
node #;. The algorithm is required to allocate edge disjoint paths to maximize the
sum of values of players that receive a desired path. In this model, players are
naturally single valued (a player obtains the same value from any source-target
path), but are not single minded, and in general the source-target pair of a player is
not publicly known.

2.2. STRATEGIC ISSUES AND MECHANISM DESIGN. The literature on Algorith-
mic Mechanism Design [Nisan and Ronen 2001] studies algorithmic design when
players behave strategically: the “input” is held by the players, and they can “lie” in
order to increase their utility. To cope with this, the literature suggests to construct a
mechanism, as follows. A mechanism defines a set of actions .4; for every player i.
Let A= A, x ---x A,. Each player is required to choose an action, and, based on
the actions of the players, the mechanism chooses an outcome, and a payment for
every player. The outcome is determined by the function O : A — {all allocations},
and the payment for every player i is determined by the function P; : A — 9.
Thus, a mechanism M can be written as a tuple M = (A, O, P). Each player
chooses an action based on her privately known valuation function. Formally, a
player chooses a strategy st; : V; — A; that determines her action as a function
of her valuation. The basic assumption is that player i will choose a strategy in
order to maximize her utility. The utility of a player is assumed to be the player’s
value that is being obtained from the chosen outcome, minus the payment of the
player. Therefore, a player aims to choose a strategy st;(-) that will maximize the
term

Vi(O(st;(v;), a—;)) — Pi(st;(V;), a—;)
for every valuation function v;(-), and for every tuple of actions of the other players,
a_;.
The basic goal of the mechanism designer is to design the mechanism such
that the players’ strategies could be predicted. Based on that, the outcome of the

mechanism can be analyzed. The “usual” notion that is being used in the algorithmic
mechanism design literature is dominant strategies:

Definition 2.2 (The Domination Relation). A strategy st; dominates another
strategy st/ if for every ; € V;, and for any possible action of the othersa_; € A_;,

Vi(0(st;(V;), a—;)) — Pi(sti(v;), a—;) = vi(O(st](¥;), a—;)) — Pi(st;([#;), a_;).

>We also consider the case of “known single-value players”, in which the only private information is
the value.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:9

In other words, st; dominates st/ if the player’s utility from s#; is not less than her
utility from strategy st/, no matter what are the actions of the other players, and
what is her valuation (i.e., in the worst case).

Definition 2.3 (A Dominant Strategy). A strategy st; is dominant if it domi-
nates any other strategy st.

Although we construct some dominant-strategy mechanisms in this article, the
main focus of this article is a new, novel solution concept that we introduce in
Section 5.

3. The Iterative Ascending Wrapper for Known Single-Minded Players

We start by describing our iterative wrapper technique for domains in which the
only private information is the players’ values, with a focus on known single-
minded CAs. For this domain, our method converts any given c-approximation to a
dominant strategy mechanism with O (log(¥,,,.) - ¢) approximation, showing how
to incorporate value monotonicity,® which is equivalent to truthfulness [Mu’alem
and Nisan 2002], into any given algorithm.

A formal description of our Iterative Wrapper mechanism for the case of “known
single-minded players” is given as Mechanism 1. Informally, suppose that ALG
is an algorithmic procedure such that, when given as input a set of player values,
outputs a set of winners that is a c-approximation to the social welfare. We assume
without loss of generality,” that ALG outputs a Pareto efficient outcome (Pareto,
in short), that is, that there does not exist a loser that can be added to the set of
winners. The Iterative Wrapper Mechanism is a simple wrapper to ALG: a vector
of player values, initialized to v = 1 (line 1), is iteratively handed in as input to
ALG, who, in return, outputs a set of winners W, (line 3), where j is the iteration
number. If the new allocation W, has a value lower than the previous allocation
W;, we keep the previous allocation (lines 4-6, using the notation v(W,v) =
Y icw vi)- Every loser is then required to either double his value or to permanently
retire (this is denoted by setting v/ = 0) (lines 7-9). A retired player will not be
able to win any bundle. This is iterated until all nonretired players are declared
winners by ALG. These are the winners of the mechanism. Each winner gets his
desired bundle and pays his last bid, v/, where J denotes the total number of
iterations.

PROPOSITION 3.1. It is a dominant strategy of any player to increase his re-
ported value when asked, as long as the increased value is lower than his true
value v;.

For our domains, an algorithm is value monotone if a winner continues to win when he plays the
dominant strategy with respect to a higher value, fixing the strategies of the others.

"Any set of winners that is not Pareto efficient can be expanded to a Pareto efficient set in polynomial-
time, as follows: go over all losing players, and for each player determine if her bundle intersects
some winner’s bundle. If not, make the player a winner. This can be done in polynomial-time since
players are single-minded, hence this greedy approach works. For non-single-minded players such a
Pareto improvement might not be polynomial-time computable.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:10 M. BABAIOFF ET AL.

PROOF. If player i bids up to some value larger than v; his utility will be non-
positive in any case, which can be improved by retiring at the last value not larger
than v;. If i retires at a value smaller than ¥; /2, then the mechanism ensures that he
will not receive any item, hence his utility will be zero, while if i continues to bid
and retires at the largest value smaller than ¥;, his utility is nonnegative. []

This implies that if player i retires at iteration j then v; /2 < vij < ;.
In order to analyze the approximation bounds of this mechanism, the crucial
point is that the number of iterations is low, independent of the number of players:

LEMMA 3.2. Ifall players are single minded and play their dominant strategy
then the number of iterations is at most 2 - 10g V4, + 1.

Mechanism 1 The Iterative Wrapper

1: Initialize j = 0, Wy = ¥, Ly = () and Vi, v? =1.
2: while W, UL; # N do
3: Wi = ALG(W)

4: ifv(W;iy,v/) < v(W;, v/) then

5: W/ur] = Wj

6: endif

7. fori ¢ Wi, do

8: i chooses vij+1 = 2v/ or v/ = 0 (retire)
9: end for

10: L ={i €N =0},j=j+1

11: end while

12:J=j

Output: Each winneri € W, receives his bundle and pays his final reported value v;’, others receive
nothing and pay 0.

PROOF. Suppose by contradiction that at iteration 21og v, + 1 there exists
a loser, i;, who is willing to double his (reported) value. This implies that there
exists another winner, i,, such that his desired bundle intersects the desired bundle
of i; (Pareto). Hence, in every previous iteration at least one of them was a loser,
and doubled his value. Since each player doubles his value at most log(v,,,,) times
before retiring (in the dominant strategy), the only possibility is that both i and i,
have value v,,,, atiteration 2 log v,,,, + 1. But this contradicts the assumption that
i1 is willing to increase his value in this iteration. []

This also implies that if ALG has polynomial running time then the Iterative
Wrapper has polynomial running time. For the case of single-minded players, not
much work is left to show that the mechanism almost preserves the original ap-
proximation ratio. We first define some more notation.

Notation. If W is a set of players that can be simultaneously satisfied,® we define
v(W,v) = ;. vi. For a general set of players X, we define OPT(X, v) to be
the maximal v(W, v) over all sets W C X of players that can be simultaneously
satisfied.

%A player is satisfied by some allocation if he receives one of his desired bundles in that allocation.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:11

LEMMA 3.3. Suppose that ALG is a c-approximation algorithm, and that
the Iterative Wrapper performs J iterations. Then, it obtains an (2 - J - ¢ + 1)-
approximation for known single-minded bidders.

PROOF. For any 1 < j < J, let R; be the set of players that retired at
iteration j. Note that szlR j 1s exactly the set of all losing players, and for
any j, OPT(R;,v’/) <c-v(W;,v/) <c-v(W,, V), where the last inequality
holds by step 5 (improvement of the allocation), and v < ¥; for all i when
playing dominant strategies. For any player i € R;, we have that vij > i /2,
thus $OPT(R;,7) < OPT(R;,v/), and therefore OPT(R;,7) < 2 - ¢ - v(Wy, ¥).
Wej CE}?)now bound the optimal value of the entire set of players N = W;U
(Uj:l j .

OPT(N, %) = OPT(W, U (U/_,R;), V)

A

J
OPT(W;. %)+ OPT(R;, %) < v(W;. %) + J 2:cv(W,. 7)
j=1

Thus, OPT(N,v) < (J -2-c+ 1) - v(W,, ¥), which is exactly what we need to
prove. [

These two lemmas give us:

THEOREM 3.4. Given any polynomial time c-approximation algorithm for
single-minded CAs, the Iterative Wrapper obtains an O (10g V,,4, - ¢)-approximation
in dominant strategies for known single-minded players, in polynomial time.

PrROOF. By Lemma 3.2, we have J < 2 -log v, + 1, and, from Lemma 3.3,
we have that the approximation is (2 - J - ¢ 4+ 1). Combining these two terms, we
get that the approximation is O(log V4 - ¢). [

This finishes the analysis of the Iterative Wrapper, for the case of known single-
minded players.

In addition to being the framework for our undominated strategies implemen-
tation that we describe in the sequel, our construction is the first deterministic
technique to convert any algorithm to a dominant strategy mechanism. One way to
convert an algorithm for known single-minded players to a mechanism is to define
the action space of a player so that each player is required to simply declare a
value. The outcome of the mechanism is then the algorithm’s output when the input
is the declared values. In this case, one would like to construct payment functions so
that, in the resulting mechanism, declaring the true value will be a dominant strat-
egy. It is known that such payment functions can be constructed if and only if the
algorithm is value-monotonic® [Mu’alem and Nisan 2002]. Note that the Iterative
Wrapper is indeed value-monotonic (in the sense of Footnote 6), even if the origi-
nal algorithm was not value-monotonic to begin with. Most useful approximation
techniques (e.g., LP rounding, or taking the maximum over several algorithms)
are not value-monotonic, and our method converts such techniques to dominant
strategy mechanisms (with some additional approximation loss). The method can

°An algorithm is value-monotonic if, whenever a winner increases his value, he remains a winner.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:12 M. BABAIOFF ET AL.

also be used to create dominant-strategy mechanisms from algorithms based on
heuristics (algorithms that perform well on many instances, but with no worse case
guarantee). Many such heuristics were previously studied for CAs (e.g. Nisan and
Zurel [2001], Sandholm et al. [2005], and Gonen and Lehmann [2000]) but no
strategic construction of those was previously known. In particular, it enables us
to pick the best result over a polynomial number of heuristics and approximation
algorithms (by a MAX operator), enjoying the benefits of all methods (with a small
approximation loss), while having dominant strategies.

We make few additional technical remarks that shed more light on the technical
analysis. We first note that, in order to optimize the constants, one needs to multiply
a loser’s value by e instead of by 2. For ease of notation, we use the constant 2.
We also point out that, in principle, if log(¥,,4) - ¢ > min(m, n) then the iterative
wrapper can output a result which is far from optimal by a ratio even larger than
min(m, n). However, this extreme case can be avoided by adding the following
modification to the algorithmic procedure ALG: if there exists a single player with
value larger than the value of the computed allocation, the resulting allocation
should be any Pareto allocation that contains this player. Such a modification keeps
the approximation and ensures that the sum of values of the winners is larger than
the value of any single player. In turn, this implies that the approximation ratio will
not exceed min(m, n).'?

Our analysis of the Iterative Wrapper for known single-minded players is tight, up
to a constant. In Appendix 7, we prove that for any constant ¢ > 1 and large enough
Vmax there exists a c-approximation algorithm such that the Iterative Wrapper only
gets Q(c - 1og(V,,4x))-approximation.

For multi-minded players, the arguments that were used to show the approxima-
tion fail. In particular, the number of iterations of the basic Wrapper mechanism
may become large, dependent on the number of players:

PROPOSITION 3.5. There exists a scenario with n double-minded players for
which the basic Wrapper performs exactly n iterations.

PROOF. Assume that there are n — 1 goods. Playeri € {1, ...,n — 1} is double
minded with bundles {i} and {(i + 1) mod (n — 1)}. Player n wants the bundle {1}.
All players have values equal to 2. Suppose that the algorithmic procedure we use
is the optimal algorithm. The important point to notice is that any n — 1 players
can be satisfied jointly, while the n players cannot be satisfied together. Therefore,
the course of the wrapper will be as follows: at each iteration, all the players with
a current value of 2 will be winners, and exactly one of the players with a current
value of 1 will be the only loser. That player will then double his value. After n
iterations, when all players have doubled their values, one of them will be the loser,
at which point he will retire and the auction will end. Hence, we have exactly n
iterations. [

We note, however, that we do not know whether the mechanism achieves
a bad approximation for multi-minded players—only that our arguments for

10The optimal allocation can choose at most min(m, n) winners. Therefore, its value is at most
min(m, n) times the largest value. Since the sum of values of the winners in the auction is at least the
largest value, the ratio will be at most min(m, n).

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:13

the single-minded case do not follow through for the multi-minded case. For
multi-minded players we therefore continue in a slightly different trail, that will
also enable the shift to the “unknown” case.

4. An Approximation Mechanism for Single-Value Players

The General Iterative Wrapper mechanism for single-value players (formally de-
fined below as Mechanism 2) is an adaptation of the Iterative Wrapper (Mechanism 1
of Section 3), for the case where each player desires many different bundles, and
his set of desired bundles is private information. Given a procedure that outputs
an approximately optimal allocation, we use the iterative wrapper in order to turn
it to an algorithmic implementation in undominated strategies. Since players are
now multi-minded, and we do not know their desired bundles, we introduce two
differences: First, a player has an “active bundle”, si’ , which contains all possible
items that a player may receive at the end of the auction. It is initialized to the
entire set of items, €2, and is gradually shrunken by the given procedure. Second,
the given procedure now interacts with the players in order to decide how to shrink

the active bundle, in each step j, from sij to s/

i

Mechanism 2 The General Iterative Wrapper

1: initialize j = 0, W; = §, L; = {. initialize v) = 1 and 5s? = Q Vi

30 (Wigq, s/t < 1-CA-SUB(v/, s/, W)).
\\ 1-CA-SUB is defined below as Procedure 3
4: fori ¢ Wiy, do
5: i chooses v/ ™' = 2v/ or v/ = 0 (retire)
6: end for
70 L =i € N/ =0},j=j+1
8: end while
9:J=j

Output: Each winner i € W, receives his final active bundle s; and pays his final bid v;. All other
players get nothing and pay 0.

Procedure 3 formally defines the 1-CA-SUB procedure, it is followed by an
informal description. We first present some notation.

Notation. For a set of players X and an allocation s = (s{ S, s,{), we denote
by Free(X, s7) the set of goods that are not allocated to any player in X, that is, the
items that are not in U;cxs; .

This procedure is essentially a modification of the 1-CA algorithm of Mu’alem
and Nisan [2002]. However, while the original 1-CA is truthful only for known
single-minded players, we construct a procedure that is suitable for unkonown
multi-minded players by using our wrapping technique and the new notion of
algorithmic implementation.

Atiteration j+ 1, 1-CA-SUB receives the current players’ values and bundles, as
well as the previous allocation W; (Input), and constructs two allocations, MAX;

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:14 M. BABAIOFF ET AL.

and GREEDY ; ;. The allocation GREEDY ; | holds only players with active sets of
size at most 4/m. It is constructed by going over all such players from the highest
value to the lowest value, inserting a player to the allocation if and only if her
chosen bundle does not intersect some other bundle of a player that already belongs
to GREEDY ;. The allocation MAX 1 holds the player with the maximal current
value (line 1), plus perhaps some other players, to make it Pareto efficient (we give
more details below). The construction of the two allocations is done by iterating
over all non-retired players in descending order of values (line 2), and performing
two steps for each player, as follows.

In the first step (lines 3—6), a player that was previously a loser is given an option
to “shrink” her bundle. If a player chooses to shrink her bundle, the new bundle
must be: (1) contained in the old bundle, (2) of size at most \/m, and (3) disjoint
from the bundles of players that were already added to GREEDY ;. This ensures
that a player that actually shrinks her bundle will be added to GREEDY ;. (the
actual addition is done in line 9).

Procedure 3 The 1-CA-SUB procedure:

Input: vectors of values v/ and of bundles s/ (with one element for each player), and a set of winners
W; such that the allocation (W, s7) is valid.
1: initialize MAX,, < argmax, y{ v,.j }, GREEDY ;| <— ¥,and Vi € N, s,:’url <~ S;f.
2: for all player i with vl.j > 0 in descending order of the values v;i do
3: // Shrinking the active set:
4: ifi ¢ W, then
5: allow i to update sij o any bundle s that satisfies s € Free(GREEDY ;. , sTHN s,j and
Is| < /m.
6 end if
7: // Updating the current winners and ensuring a Pareto allocation:
8 if|s/™"| < /m then
9 add i to any of the allocations W € (W,, MAX;,\, GREEDY;.) for which s/ ¢
Free(Ws/*1).
10: end if
11: end for
Output: The vector of bundles s/™!' and an allocation W € {W;, MAX;.,, GREEDY .} with
maximal value of 3", _,, v/.

In the second step (lines 7-10), the player is added to any of the allocations
W;, MAX 1, GREEDY;,, for which no existing player’s bundle intersects the
new player’s bundle. While approximation considerations require the player to be
added only to GREEDY ; ;, the player may also be added to W; and/or to MAX; | 1,
to ensure that all allocations W;, MAX; 1, GREEDY ;. are Pareto efficient with
respect to the new active bundles of the players. As a result, a losing player cannot
be added to the output set of winners, since there exists a winner with a new active
set that intersects that losing player’s new active set.

Once all players have been considered, the procedure outputs the allocation with
maximal value out of the three allocations W;, MAX; 1, GREEDY ;. as the new
set of winners W, ;. It also outputs the updated active sets. At the end of a call to
1-CA-SUB, we have:

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:15

(1) The new allocation W, has value at least as large as:
(a) The player with the maximal value (since we compare value with MAX ;).
(b) The greedy construction that chooses winners by going over all players in
decreasing order of values, announcing each player to be a winner if the
previous winners’ bundles do not intersect her bundle (since we compare
value with GREEDY ;).
(c) The value of the old allocation (since we compare value with W;).

(2) The new allocation is Pareto efficient with respect to the new active sets of the
players, that is, no losing player can be added to the set of winners.

Note that the procedure relies on the assumption that a player can answer the
following query in polynomial time: Given a set of items, return a desired bundle
contained in this set, of size at most 4/m, if such a bundle exists. The query in
line 5 presents the set Free(GREEDY 11, s’™') N's] to the player as the input set
to this query. For example, in the Edge-Disjoint-Paths problem, this query can be
answered in polynomial time since it is equivalent to finding a shortest path of
length at most /m in a given graph.

We give the full analysis in Section 6 below, but since the transition to the new
solution concept of algorithmic implementation is a bit subtle, we first give some
intuition. Consider the case of EDP, being solved with the Iterative Wrapper and
the 1-CA-SUB. Each edge is an item, and the entire set of edges is to be allocated to
the different source-target players. As we go over players, for example, in the first
iteration, each player is asked to specify a desired subset of edges. Suppose that
the player has two edge disjoint paths of length at most +/m in the original graph,
but some edges in the first path are not available when the player is reached, while
the second path is available. At this point, the player may shrink his active subset,
removing the currently occupied edges, or she may choose not to shrink the active
set. By the first alternative, she is included in GREEDY ; ;, and possibly avoids the
need to double her price. However this also limits her choices in future iterations,
as she will no longer be able to win the other desired path. The second option will
cause her to double her winning payment. Losing players face such a decision in
every iteration. A mechanism with dominant strategies implies that the player has
a specific optimal choice, no matter what the other players choose. In our case, we
do not rule out either of these choices. Instead, we show that the approximation
ratio will be maintained in either case.

In particular, we will show in Section 6 that all we need in order to guarantee
the approximation is that in the iteration at which the player actually retires, she
discloses one of her true paths, if such a path is still available. More concretely,
in the actual mechanism, a player will be forced to retire at some iteration if the
player is not included in the set of winners, and cannot (subsequently) double her
value, as it will be higher than her true value. A player can recognize that she faces
such a situation already in line 5 of 1-CA-SUB: If the player does not belong to
W; nor to MAX; 1, and her current active set intersects previous winners in all
three allocations W;, MAX i, GREEDY ., then the player will have to retire if
she does not shrink her active set. We term this situation a “loser-if-silent’:

Definition 4.1 (Loser-if-Silent). Player i is a “loser-if-silent” at iteration j if,
when she is asked to shrink her bundle at line 5 of the 1-CA-SUB procedure, all

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:16 M. BABAIOFF ET AL.

the following hold:

(1) (Retires if losing) vij > \7,-(si])/2.
(2) (Notincluded previously) i ¢ W; andi ¢ MAX; .
(3) (Loses at the end) si] N (U,-ijsi) # 0, si] N (UieMAX,+lsi) # (), and si]ﬂ
(UieGREEDY,,,5i) # ¥
In words, i is a loser-if-silent if she will lose unless she will shrink her active
set when she is approached at line 5, no matter what the others will declare. Our
approximation analysis depends on the fact that a loser-if-silent player will indeed
shrink her active set, if she can. Intuitively and informally, the player will indeed do
this—*“what does she have to lose”? If she will not shrink the set, she is guaranteed
to lose, and if she shrinks the set she might win. Phrasing this informall explanation
using a formal game-theoretic reasoning involves the statement that choosing a
strategy in which a loser-if-silent will not shrink her set is a dominated strategy. Note
that there are many strategies in which a loser-if-silent shrinks her set, and so we do
not highlight one particular dominating strategy. We just rule out some dominated
strategies, and argue that all remaining strategies lead to a good approximation.
The next section discusses more formally the game-theoretic definitions, and the
subsequent section will continue with the formal analysis.

5. Algorithmic Implementation in Undominated Strategies

Requiring that players have dominant strategies limits the family of allocation
algorithms that can be used [Archer and Tardos 2001; Babaioff et al. 2005; Lavi
et al. 2003]. As stated in the introduction, it is clear that this requirement is not the
real essence, but rather a tool to obtain the underlying goal: reaching approximately
optimal outcomes in the presence of selfish behavior. For the case of the general
wrapper with the 1-CA-SUB, we obtain this goal although we leave in several
“reasonable” strategies for the players to choose from. The basic assumption is
that a player prefers not to choose a dominated strategy, since this means that there
exists another strategy that always performs at least as well. Thus, any rational
player will move from a given strategy to another strategy that dominates it. Our
notion of algorithmic implementation captures this intuition, even if players are
computationally bounded:

Definition 5.1. A mechanism M is an algorithmic implementation of a c-
approximation (in undominated strategies) if there exists a set of strategies, D,
with the following properties:

(1) M obtains a c-approximation for any combination of strategies from D, in
polynomial time.

(2) For any strategy that does not belong to D, there exists a strategy in D that
dominates it. Furthermore, we require that this “improvement step” can be
computed in polynomial time.

It seems trivial to assume that players will not play any strategy outside of D, since
there exists a strategy in D that dominates it, and that can be obtained using a
“short” (polynomial-time) calculation. When players play any tuple of strategies
from D, the outcome is a c-approximation. Note that the definition does not simply
require the ability to compute some undominated strategy in polynomial time. This

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:17

will not suffice, as it might be rational to play a different, dominated strategy, that is
not dominated by the calculated strategy. Instead, the definition requires that given
any strategy not in D, we can compute a strategy in D that dominates the given
strategy, in polynomial time. This stronger requirement does ensure that players
will restrict themeselves to playing only strategies that belong to D.

Thus, algorithmic implementation shares all the important properties of truthful-
ness in dominant strategies:

—Both concepts do not require any form of coordination among the players (unlike,
e.g., Nash equilibrium)

—Both concepts do not require that players have any assumptions on the rationality
behavior of the others (unlike, e.g., “iterative deletion of dominated strategies”).

—The only assumption underlying both concepts is that players do not play a
strategy that is clearly dominated.

Our specific mechanism also ensures “individual rationality”: the resulting utility
is non-negative, thus players have no risk in participating.

However, two differences do exist, and should be explicitly mentioned: (1) in our
case, a player might regret his chosen strategy, realizing in retrospect that another
strategy from D would have performed better (it is an implementation concept,
not an equilibrium concept), and (2) while in dominant strategies it is a straight-
forward task for a player to find a strategy to play, here finding the strategy to play
is not straightforward, as there are many strategies in D to choose from. Both these
differences are not important for the mechanism designer. The designer should not
care which tuple of strategies in D is chosen, since the approximation is obtained
for any such tuple.

Two further remarks about the general notion are important:

(1) Algorithmic implementation generalizes the well-known game-theoretic con-
cept of “implementation in undominated strategies”, since all undominated
strategies must belong to D.!! Algorithmic implementation adds the aspect
of computationally bounded players, emphasizing that, for such players, the
transition from a dominated strategy to the strategy that dominates it must be
computed efficiently.

(2) Algorithmic implementation only requires the mechanism to choose a close to
optimal outcome for every tuple of pure strategies from D. However even if
the players randomize over pure strategies (i.e., forming a mixed strategy so
as to maximize their expected utility), the approximation guarantee still holds,
since the support of any rational choice of a mixed strategy should contain pure
strategies only from D.

6. Analysis

With the new notion of algorithmic implementation, we can formally state our main
result:

""More accurately, if an undominated strategy st does not belong to D then there exists a different
strategy st' € D that always yield the same utility as sz, so both strategies are completely equivalent
for the player.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:18 M. BABAIOFF ET AL.

THEOREM 6.1. Suppose all players are single valued, where the set of desired
bundles of each player is private information to him. Then the Iterative Wrapper
with the 1-CA-SUB procedure is an algorithmic implementation in undominated
strategies of an O (108> (Vpax) - /m)-approximation.

We prove this in three parts. We first define the set D in Section 6.1. We then
analyze the approximation that these strategies produce. We give general condi-
tions on the procedure used inside the wrapper, that lead to an approximation, in
Section 6.2. Finally, in Section 6.3, we show that the 1-CA-SUB indeed satisfies
these conditions.

6.1. ANALYSIS OF STRATEGIES. The first step of the proof defines the set D of
strategies:

Definition 6.2 (The Set D of Dominating Strategies). Let D be all strategies
that satisfy the following, in every iteration j:

(D) Vi(sl.j) > v;i, and, if 7 retires at iteration j, then vij > Vi(sij)/Z.

) If player‘i is a loser-if-silent (Definition 4.1), then i will declare some desired
bundle s; ! that satisfies the conditions of line 5 of Procedure 3 if such a bundle
exists.!?

We note that any strategy in D is ex-post individually rational — a player cannot
obtain a negative utility, no matter what are the actions of the other players, if she
chooses a strategy in D. This follows from the first requirement of D.

To show that our mechanism is an algorithmic implementation with respect to the
set D, we have to show two things: (1) that any tuple of strategies from D results
ina 0(10g2(17nm) - /m)-approximation, and (2) that there exists a polynomial-
time algorithm that receives any strategy st ¢ D and finds a strategy s’ € D that
dominates s¢. We start by showing the latter requirement:

LEMMA 6.3. There exists a polynomial time algorithm to find a strategy st' € D
that dominates a given strategy st.'>

PROOF. Consider the following algorithm that checks, at each played decision
point of the strategy s¢, if the two conditions of Definition 6.2 are satisfied.

If the player is a “loser-if-silent” and does not shrink her bundle, check if there
exists a desired subset that can be declared in line 5 (this can be done in polynomial
time by our assumption on the query capabilities). If such a desired bundle exists,
we change the strategy to a strategy that ensures non-negative utility (while the
original strategy will yield zero utility). Instead, the player shrinks the active set to
some arbitrary desired set that does satisfy the requirement. In the changed strategy,
the player never increases her value in later iterations. Since a player receives her

12 That is, if i is a loser-if-silent and there exists a desired bundle s € Free(GREEDY .1, s’*") N s/
such that |s| < /m, then i will choose to shrink her active subset to such an s.

3Note that the algorithm does not take a strategy and explicitly outputs another strategy that dominates
the first, as this is not poly-time—it needs to handle exponentially many decision points. Rather, at
each decision point the player actually faces, the algorithm checks to see if the strategy is taking a
dominated action, and if it does, replaces the action and changes the strategy to fit the new action, in
a rather straightforward way.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:19

last active bundle, this will change the utility from zero to a nonnegative utility,
hence this creates a strategy that dominates the former.

‘When a player shrinks her active subset, check if the new set has value at least
v/ . If not, this strategy always results with non-positive utility, and we change it to
exactly the same strategy that was used in the previous paragraph.

When st decides to double the value v/, check if the new value is lower than
the true value of the currently active bundle. If not, change st so that it will instead
decide to retire. When st decides to retire and not to double the value, check
if twice the value is higher than the true value of the currently active bundle. If
not, change st so that it will instead decide to double the value (after that, keep
increasing the value up to the true value of the active set, and when “loser-if-silent”
follow the procedure above). Since a winner pays her last reported value, and can
only gain by not retiring at a lower value (has no risk if she stays active), this again
creates a strategy that dominates the former one. [

This implies the second requirement of the algorithmic implementation defini-
tion. The next two sections handle the first requirement: showing that if all players
play strategies in D then the approximation holds.

6.2. ANALYSIS OF THE ITERATIVE WRAPPER. We next describe sufficient con-
ditions such that, when plugging any sub-procedure that satisfies them inside the
iterative wrapper, the result will be a c-approximation. In the subsequent section
we show that the 1-CA-SUB procedure indeed satisfies the conditions that we give
here.

Notation. Given a set of players, W, and a vector of player subsets, s =
(s1, ..., Sn), we say that (W, s) is a valid allocation if s; Ns;; = @ forany i, i’ € W
such that i # i’

Recall that the subprocedure receives as input (1) the players’ current values
v/, (2) the players’ active subsets s/, and (3) a subset of the players, W;, such that
(W;, s/)is avalid allocation. The output of the procedure is a set of winning players,
W41, and a set of active sets, s/t such that (Wit1, s7t1) is a valid allocation.
We list six properties that we require from this procedure, whenever players play
strategies in D. The first three properties are parallel to the properties discussed in
Section 3:

; j+1 j+1

(Pareto) Forany i ¢ Wi 1,5/ N (Uew,.,s{") # 0.
(Improvement) 3, v) > Diew, vy
(Value bounds) \7,-(s1/+1) > v/, and, if i retires at j then also \7,~(sij+l) <2yl

As in Section 3, the Pareto property requires that no loser can be added to the set
of winners, the improvement property requires the value of the tentative winning
allocation to always increase between iterations, and the value-bounds property
implies that a player retires if and only if the declared value is approximately equal
to the true value of the current active set.

Two additional properties are introduced since the subprocedure handles the

issue of shrinking the active subsets, in contrast to the setting of Section 3 were the
desired subsets were assumed to be known.

(Shrinking sets) For every player i, sij e sij .

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:20 M. BABAIOFF ET AL.

(First time shrink) Let FIRST-SHRINK; = {i : |s/| =m & |s/"'| < m}. Then
for any iy, i, € FIRST-SHRINK; such that i; # i, it holds that s/ ' n's/"' = 0.

The shrinking-sets property simply requires the updated active set of each player
to be contained in the previous active set, so that active sets “shrink™ as the wrapper
advances. The first-time-shrink property examines FIRST-SHRINK;, which is the
set of players that shrink their active set for the first time at iteration j, and requires
the allocation (FIRST-SHRINK ;, s/*1) to be valid.

The last property concerns the approximation guarantee that the subprocedure
provides. The definition here is a bit subtle, since the subprocedure does not “‘see the
real valuations”. There are two differences between the actual valuation of a player
and the valuation that the 1-CA-SUB procedure observes: (1) Inside the procedure
the player is restricted to bid only on desired bundles that are contained in s, and
not on all his true desired bundles, and (2) inside the procedure a player’s value is
fixed to be v/, which in general is different than the player’s true value.

To capture these two differences, we define the following two concepts: First,
we define a restricted valuation v;| () to be:

1_/i|sj(S) = ﬁi(s ﬂsij)

forevery s € Q.In words aplayer with a value function v; | ,() values only bundles
that are contained in s/, and each such bundle is valued by its true Value Note that
Vila() = V(). Second we define a rounded and restricted valuation v | /() to be:

y N _ =
V; vl(s ﬂsi) =V;
0 otherwise

V;’.IS; (s) = {

for every s € Q. In words, the rounded and restricted value V; | i(s) of a bundle s
is v/ if the restricted value of s is positive; otherwise, the rounded and restricted
value of s is zero.

After this preparation, we can now define the last property that we need. Let
RRV; be the set of all the restricted and rounded valuations of players that retired
at iteration j, that is,

RRV; = {v{ | (-) | for all players i that retired at iteration j}. (1)

The last property that we require captures the fact that the result of the sub-procedure
is only an approximation with respect to rounded and restricted valuations:

(c-local-approximation) At any iteration j, OPT(RRV;) <c-) .y

i Vi

In other words, the property of a c-local-approximation requires that the winners
at the jth iteration (players in the set W,) have total value at least 1/c of the
optimal allocation for the rounded and restricted valuations of players that retire at
iteration j.

We have listed six properties, and we now prove that any subprocedure that
satisfies these properties can be used in the wrapper, to obtain a O (10g>(¥ax) - €)-
approximation. The main difficulty is to translate the local approximation to a global
approximation. Specifically, we are given that that OPT(RRV;) < c-) .y, - v
for any iteration j, and we wish to prove that OPT(true valuations) =
OPT(W1, ..., 9y) < O(c-J?) - Y iy, v . We will then show that J = O (Vyax),

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:21

which will yield the desired result. Let
RV = {iily (), ..., Vnlyy (O}

that is, RV contains all the final restricted valuations. We will show that OPT
Pryeny V) < O(c- J?) - ZieW/ vij in two parts. First, we show OPT(Vy, ...,
V) <(J+1)-OPT(RV). Second, we show OPT(RV)<2-J-c- ZieW, vl.].
The two inequalities imply the global approximation.

CLAM 6.4. OPT(Vy,...,vy) <(J +1)- OPT(RV).

PROOF. For each iteration 0<j<J—1, let P;={w() : |s/|=m,
and|sj] | < m}, thatis, P; contains all players who first shrank their bundles at iter-
ation j, with their true value function. By the first-time-shrink property, all players
in P; have disjoint bundles s1nce they all shrank there bundles for the first time in
1terat10n Jj. In other words, s 'n s T @ for every i1,i2 € Pjsuchthati; # i.
Since active sets only shrmk we also have s{ N s = (). Every playerl in P; corre-
sponds to a player in RV, and the above 1mphes that all these players have dlSJOlnt
bundles in RV. Therefore, OPT(RV) > .. P Vi (s)foreveryO < j <J —1.

In the other direction, we trivially have OPT(P)= Diep, Vi(Q) =D icp,
¥;(s{), where the right equality follows since the value bounds property imply
;(s7) > 0 and since players are single valued.

Putting these two inequalities together we get, for any j, OPT(P;) < OPT(RV).
Let P = U;P;, and P = { %;(") : |s/| = m}, thatis, P contains all players that
did not shrink their bundle at all. Thus, {vy, ..., v,} = P U P. For any player i in
Pwehavev()|1_v()smces SZThus P C RV. We get:

OPT(vy, ..., ¥,) < OPT(UI_) P;) + OPT(P)
J—1
<Y OPT(P))+ OPT(RV)
j=0
< J-OPT(RV)+ OPT(RV)

and the claim follows. [
CLAIM 6.5. OPT(RV)<2-J-c- ZieWJ Vi(sij).

PROOF. Let RV, contain all players from RV that retired at iteration j, for
0 < j < J —1.Consider OPT(RV;) versus OPT(RRV). Suppose that the optimal
allocation for RVj is sy, ..., s,. For any player i,

_ _ IN = d '
Vilgs(si) < wilsi Ns7) < Vils;) =2 v/,

where the last inequality follows from the value bounds property, since player i
retires at iteration j. Thus,

OPT(RV)) =) ¥ily(si) =2

vl =2 > ¥/|g(s:) <2 OPT(RRV;)

i
i Vi\SJ(si)>O i \7,»|S_J(s,-)>0
13 1

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:22 M. BABAIOFF ET AL.

where the last equallty follows since, if ;| /(s,) > 0, then ¥;(s; N sJ) > 0, and
therefore V; 7 J(Sl) = v

By the c-local- approx1matlon and improvement properties, we have
OPT(RRV;) < ¢ icw, - vl <c- Diew, Vi /. For every i € Wy, v;i(s/) > v/ by
value- bounds We conclude that

OPT(RV;) <2-c- Y i(s)).

ieW,

Let W contain all players in RV that did not retire. By definition, these players
are the winners, hence OPT(W) =), W, Vi(siJ). We get

OPT(RV) = OPT(W U (U;RV;)) < OPT(W)
+ZOPT(RV)<(2 Joc+ 1)) wis)

ieW;
and the claim follows. [

CLAIM 6.6. If the subprocedure satisfies the properties: pareto, shrinking set,
and value bounds, then the number of iterations of the General Iterative Wrapper
of Definition 2 is at most 210 V4 + 1.

PROOF. Consider iteration j = 2-1og(V,,4x)+ 1, and some i; ¢ Wj+1 UL; that
(by contradlctlon) doubles his value. By the pareto property, there exists i € Wj+1
such that s/ s ;é ?. By the shrlnklng sets property, in every iteration j' < j
their w1nn1ng bundles intersect, hence, at j’ at least one of them was not a winner,
and doubled his value. But then, at least one of the players doubled his value more
that log(¥,,4,) times, hence, his tentative value is more than v,,,,, a contradiction
to the property of value-bounds. [

By all the above claims, we conclude the following corollary:

COROLLARY 06.7. Suppose that players are single valued and that the six prop-
erties: Pareto, improvement, value bounds, shrinking sets, first time shrink, and
c-local-approximation, are satisfied. Then, the General Iterative Wrapper obtains
an 0(log2(17max) - ¢)-approximation.

6.3. ANALYSIS OF THE 1-CA-SUB. It now only remains to show that the 1-CA-
SUB satisfies the above six properties whenever players play any tuple of strategies
from D. It is straightforward to verify the first five properties: Line 9 verifies that
all three allocations W;, MAX; |, GREEDY ;. are pareto with respect to the active
bundles of the players, hence, the pareto requirement is satisfied. The improvement
requirement is taken care of by the output step, where it is explicitly verified that
the new allocation has value not less than W}, the previous allocation. The value-
bounds requirement is immediate from the first requirement of the definition of
D. Line 5 explicitly verifies the shrinking-sets requirement by requiring the new
active set to be contained in the old one. The first-time-shrink requirement holds
since any two players that shrink their subsets at iteration j must both belong to the
GREEDY ; allocation; hence, their active subsets are disjoint. The only nontrivial
property is the local approximation:

CLAIM 6.8. The 1-CA-SUB procedure is an O(\/m)-local-approximation
when players play any tuple of strategies from set D of Definition 6.2.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:23

PROOF. Fix an 1terat1on J» and recall that we need to show that OPT(RRV;) <
o(Jm)-3y_, Wy v/, where RRV; is the set of rounded and restricted valua—
tions of all players that retire at 1terat10n j, as deﬁned in Eq. (1). For any
W e {MAX 1, GREEDY; .1, W;}, > .cw vl <> v/ by the improvement
property.

Let X; contains all valuations in RRV; that correspond to players that do not
belong to MAX; {1 U GREEDY ;| U W;, that is,

1€Wji

X; ={\7ij | ()|Vi & MAX;,1 UGREEDY; 1 UW; and i retires at iteration j}.
Claim 6.9 below shows that OPT(X;) <2-/m-)_; W, vij . We conclude that
OPT(RRV) < > v/ +OPT(X)) < 3+2-vm) Y v,

i€eW;UMAX; \UGREEDY ;| ieW;i
and the claim follows. [

CLAIM 6.9. OPT(X;) <2-y/m-Y ,cw

Jj+l i

PROOF. Letsy, ..., s, beanoptimal allocation for X ;. Assume, without loss of
generality, that for every player z it holds that s; does not contarn any smaller set of
the same value with respect to v; | i) (mrnrmal to contarnment) As the valuations
in X ; are the rounded and restricted valuations, s;* C s/ for all players i, and every
player that receives a nonempty bundle has p0s1t1ve value for it.

Let Xy = {i : |s]| > /m} contain all players that receive a desired bundle of
size at least \/m in OPT(X ;). We present a mapping f : X» — MAX;;; such
that f is o/m to 1, and forany i € Xy, v} < v}(l.): simply map i to the player with
highest value in MAX ;. ;. There can be at most /m players in Xy, since each player
receives a bundle of size at least ./m and these bundles do not intersect. Thus, the
first property of f holds. The second property holds since the player with maximal
value in MAX; has the highest value among all players (according to v/). The
mapping f shows that

V(X v)) < m - v(MAX 1, v).

Next, let Xg ={i : 0 <|sf| < /m}. We show a mapprng f : X —
GREEDYJH such that f is J_to 1,and foranyi € Xg, v/ < vf(We claim that
if player i is in X then he is loser-if-silent (Definition 4. l) since player i retired at
iteration j it follows that v/ > ¥;(s/)/2, hence the retires-if-losing condition holds.
By the definition of X; it also holds thati ¢ W; and i ¢ MAX;_, hence the not-
included- previously condition holds. The definition of 1-CA-SUB (Line 9) implies
thats/ N Uiew;si) # 0, s N (Viemax;,,51) # 9, ands N (Yiecreepy;,,8i) # ¥, oth-
erwise we would had i ¢ MAX i+1UGREEDY; U W,, and i would not have been
included in X ;. Therefore, the loses-at-the-end condition at the end holds. There-
fore, indeed player i is loser-if-silent at iteration j.

Now, player i has a desired bundle s} C s/ with size at most /m, but he was
not included in GREEDY ;. Since player i plays some strategy in D, this implies
that player i could not have shrunken his active bundle to s;. This means that there
exists a player i’ € GREEDY . such that s} Ns} # $andv! <v/. Wemapitoi'.
It remains to show that f is /m to 1: for any iy, i, with i; # i, that were mapped to
i" we have that s N 7 =) since both sets belong to the optimal allocation. Since

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:24 M. BABAIOFF ET AL.

the size of slj is at most /m, it follows that at most /m players can be mapped to i’.
The mapping f shows that v(X¢, v/) < /m - v(GREEDY 1, v/). We conclude:

OPT(X ;) = v(Xu, v') +v(Xg, v))
< Vm -v(MAX;1,v') + /m - v(GREEDY j;, v/)
<2Jm - v(Wjpy,v)),

and the claim follows. [

7. Conclusions

In this article, we have explored the advantages of a simple wrapper technique
that converts algorithms to mechanisms. This technique enables us to provide two
main contributions: a deterministic method to convert algorithms to mechanisms
for CAs with “known” single-value players, and a deterministic mechanism for
“unknown” single-value players. This is the first deterministic mechanism for a
single-value settings. An additional advantage of the wrapper technique is that it
creates ascending auctions, which is a much more realistic auction format than
direct-revelation auctions.

While our main use of the wrapper technique is to design a mechanism for “un-
known” single-value players, the technique can also be extended in other directions,
and in the appendix we give two such examples:

—In Appendix A, we generalize the wrapper technique to the case of “known”
single-value players. Similarly to the “known” single-minded case of Section 3,
we show in the appendix how the wrapper technique can be used to convert
c-approximation algorithms for “known” single-value players to ascending auc-
tions that obtain 0(log2(\7max) - ¢) approximation in dominant strategies. Since
a single-value player may require exponential number of bundles, we have to
require an oracle access to the players, see the formal definitions and the theorem
statement in the appendix.

—In Appendix B, we generalize the wrapper technique to the case of multi-unit
combinatorial auctions with “known” single-minded players: there are B copies
of each item, each player desires a single bundle, and each desired bundle contains
at most one copy of each item. Similarly to the “known” single-minded case of
Section 3, we show in the appendix how the wrapper technique can be used to
convert any c-approximation algorithm for the multi-unit combinatorial auctions
case to an ascending auction that obtains O (B - log(V,,,.) - ¢) approximation in
dominant strategies.

This article also contributes a significant conceptual shift from the “usual” goal of
constructing dominant-strategy mechanisms. We have defined the powerful concept
of “algorithmic implementation in undominated strategies”, and demonstrated its
usefulness. An additional demonstration of its powers is given in Babaioff et al.
[2006]. In this context, we should also mention Lavi and Nisan [2005], which
advocates the similar (though significantly weaker) concept of “Set-Nash”.

The above results and discussion raise several open questions. We wish to high-
light two such questions. First, the limitations of dominant-strategy mechanisms
for CAs are still unclear:

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:25

Open question 1. Does there exist a deterministic polynomial-time dominant-
strategy implementation for single value CAs with O(4/m) approximation?

Second, the power of algorithmic implementations versus dominant-strategy im-
plementations is unclear:

Open question 2. Does there exist a problem domain in which an algorithmic
implementation achieves a better approximation ratio than any dominant strategy
implementation?

Appendixes
A. The Iterative Ascending Wrapper for Known Single-Value Players

In Section 3, we have seen that the Iterative Wrapper can turn algorithms for known
single-minded players into dominant-strategy mechanisms, with only a small loss
in the approximation. In this section, we show that the Wrapper technique can be
extended to the more general case of known single-value players. The basic idea
is to turn a single-value player into a single-minded player, by “fixing” the first
bundle he provisionally receive, as his only desired bundle. By this treatment of the
agents as single-minded agents, we keep the number of iteration to O (log(Vmax)),
and use the six properties of Section 6.2 to show the approximation. In other words,
we show that ignoring all the other subsets incurs an additional approximation loss
of factor of at most O (log(V,4x))-

Since the collection S; of the desired bundles of player i may have exponential
size, we need to assume that the given algorithm is equipped, for each player i,
with an oracle O; that answers queries about S;. A space of valid bundle-collections
S is a family of collections of sets of items, each collection S; includes all sets
that i desires (S; satisfies monotonicity). For example, for the Edge-Disjoint-Paths
domain, each S; is a collection of paths, that includes all paths that will satisfy
a player (each path in S; is a desired set of items), and S includes all such valid
collections of paths. Fixing S; € S, we are given an oracle that answers the queries
that the algorithm-designer determines:

Definition A.1. A “bundles oracle” for a space of valid bundle-collections S,
and an algorithm-dependent query space Q, is a function O : S x Q — 2. That
is, for any fixed type S; € S and for any query ¢ € Q, the oracle outputs a set of
items.

Note that the assumption of “known” players implies that the oracle cannot lie,
that is, it “knows” that S; is the player’s true type, and answers queries accordingly.
The player’s only secret parameter is his value ;. Thus, this definition provides a
decoupling of the player’s type, differentiating between his value and his desired
bundles. This is different from previously considered classes of oracles (e.g., value
oracles and demand oracles [Blumrosen and Nisan 2005]), in which the underlying
“knowledge-base” of the oracle did not model any such difference. For single-value
players, it seems natural to make this decoupling.

Figure 1 describes a subprocedure for the case of known single-value play-
ers, to be placed inside of the wrapper of Section 4, replacing 1-CA-SUB. In
a similar manner to the single-minded players case, this procedure converts any
given c-approximation ALG to a dominant-strategy mechanism that obtains an

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:26 M. BABAIOFF ET AL.

A Sub-Procedure for Known Multi-Minded Players:

Input:
A vector of values v?, a vector of bundles s/ (with one element for each player),
and a vector of oracles {ORACLE;};. An allocation W; which is legal w.r.t. s’.

Allocation:
1: For any player ¢ with sf # Q change ORACLE; to be the oracle that
corresponds to a single-minded player that desires the bundle sf .
2: (W1, outSet’) = ALG(v?,{ORACLE;};)
3: if v(Wj1,v7) > v(W;,v?) then set s/ = outSet; for any i € W41,
else set Wiy = Wj.
4: For any i € N \ Wj41 with v/ > 0 (in an arbitrary order), [Pareto stage].
if S{Jrl M (Ulewj+1 S{+1) = () then Wj+1 = Wj+1 U {Z}
Output:
The vector of bundles s?T! and the allocation Wit1.

FIG. 1. A “subprocedure” for known multi-minded players, to be placed inside the general wrapper
described in Mechanism 2, Section 4, replacing 1-CA-SUB. This subprocedure requires the Wrapper
to pass on the oracles from one iteration to the other (a trivial addition).

0(log2(\7max) - ¢) approximation. We use the analysis of Section 6 to argue about
the approximation, by showing that this subprocedure satisfies the six required
properties.

The basic idea of the subprocedure is similar to the case of single-minded players.
The only important modification is a “freezing” of first-time winners: every player,
from the moment of his first win and later on, is regarded as a single-minded player
with a desired bundle that is the bundle he first received (this is step 1 in Figure 1).
For this modification to perform well, we need to be careful and make sure that
indeed we can replace a player by a single-minded player. We need the space S to
include all such single-minded players, since otherwise it might be the case that a
c-approximation algorithm for a space S will not yield a c-approximation (or will
not even be well defined) if we freeze a bundle of a winner (since we lose some
structure on the bids).

Definition A.2. A type space S “includes the single-minded players exten-
sion” if for any S; € S and any s; € S;, {s;} € S (where {s;} is a collection of
bundles that contains one element which corresponds to a single-minded player with
bundle s;).

For example, for the EDP domain, if there exists some S € S that contains all
paths from a node s to a node 7 then for any path P € § there must also exist S’ € S
that contains only the path P. This enables us to convert the single-value player,
that desires any one of the paths from s to ¢, so a single-minded player that desires
only the specific path P.

When we freeze the bundle of a player, we essentially ignore his original oracle,
and answer the queries that the algorithm presents by ourself. Since we would like
our mechanism to run in polynomial time, we need:

Definition A.3. An oracle O is “polynomially computable for single-minded
players” if for every S; € S with |S;| = 1 (i.e. S; = {s;} for some s; € 2%) and

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:27

for every g € Q, O(q, S;) can be computed in polynomial time in the number of
items.

Note that we do not assume anything on the complexity of O for multi-minded
bidders (this is an oracle access). With these definitions, we have:

THEOREM A.4. Assume that ALG is a c-approximation algorithm for the type
space S that includes the single-minded players extension. Then the General Iter-
ative Wrapper with the sub-procedure of Figure 1 implements an O(log*(¥pax) - €)
approximation in dominant strategies.

Furthermore, if ALG has polynomial running time and uses an oracle access
which is polynomially computable for single-minded players then the created mech-
anism has polynomial running time.

PROOF. In a similar manner to the known single-minded case, the dominant
strategy of a player is to double his value (whenever he is a loser) if and only if the
doubled value will not be higher than his true value. We show that when the player
plays this dominant strategy the six properties of Section 6.2 are satisfied, which
proves the claim. Line 4 verifies Pareto. Line 3 verifies Improvement. The value-
bounds requirement is exactly the dominant strategy. The shrinking-sets property

follows from the method of freezing the desired set of a player, since if the set s/
does not contain all items, it never changes. The first-time-shrink requirement holds
since players that shrink their subsets (Line 2) must be declared provisional winners
by ALG. The c-local-approximation property holds since ALG is a c-approximation
with respect to the oracles that it receives and with respect to the vector of values
v/, and these exactly represent the valuations in the set RRV;. [

One may consider plugging randomized algorithms to this procedure. Since all
the above holds for any fixed realization of the random string that ALG uses,
our construction follows through for randomized algorithms as well, and produces
a dominant-strategy mechanism for every realization of the random string (a.k.a
“universal truthfulness”).

B. Multi-Unit Combinatorial Auctions

All the above assumes that we have one copy of each item. In fact, it is possible
to generalize the above results to the case of Multi-Unit Combinatorial Auctions,
where we have B copies of each item, and a player desires at most one copy of each
item. For the sake of simplicity, we conduct the discussion for “known” single-
minded players, but it is not hard to verify that this generalization holds for the
known single-value case as well.

Recall that the crucial point that enabled the Iterative Wrapper of Section 3 to
obtain a good approximation was that the number of iterations was low. More
accurately, Lemma 3.3 shows that, if ALG is a c-approximation, and the Iterative
Wrapper performs J iterations, then it obtains an (2 - J - ¢ + 1)-approximation.

We next give a generalization to the condition that enables the Iterative Wrapper
to achieve a small number of iterations, and discuss its implications for Multi-Unit
Combinatorial Auctions.

We say that a set of players T C N get along if there exists an allocation in
which all players in T receive one of their desired subsets.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:28 M. BABAIOFF ET AL.

Definition B.1 (A d-Wise Domain). A combinatorial auction domain is “d-
wise” if for any set of players T that get along, with |T| > d — 1,and any i ¢ T
T U{i} getalongifand only if X U{i} getalong forany X € T suchthat|X|=d—1.

LEMMA B.2. If a given combinatorial auctions domain is d-wise then the It-
erative Wrapper of Figure 1 performs at most d - 10g v, + 1 iterations.

PROOF. Consider iteration number d - log v,,, + 1. Suppose by contradiction
that there exists a loser, i, who is willing to double his value. Since the algorithm
is Pareto this implies that i does not get along with the set of winners. Therefore,
there exists a set of players X of size at most d — 1 such that X U {i} do not get
along. Thus, in any previous iteration, at least one player out of X U {i} doubled his
value. Since we had all together d - log ¥,,,,, such value doublings, it follows that
all players in X U {i} have value ¥,,,,, contradicting the fact that i is now willing
to increase his value. [

COROLLARY B.3. Given any c-approximation algorithm for a d-wise com-
binatorial auction domain, the Iterative Wrapper obtains an O(d - 10g(Vyay) -
c)-approximation in dominant strategies for known single-minded players, in
polynomial time.

It is not hard to verify that the single-minded CA domain is a 2-wise domain.'#

This can be generalized to multi-unit combinatorial auctions with single-minded
players. If there are B copies of each item, we get a (B + 1)-wise domain. By the
following proposition we conclude that given any c-approximation algorithm for a
multi-unit combinatorial auction with B copies of each good, the Iterative Wrapper
obtains an O(B - log(V,,4x) - ¢)-approximation in dominant strategies for known
single-minded players, in polynomial time.

PROPOSITION B.4. Combinatorial auctions with single-minded players and
d — 1 copies of each item, such that any player desires at most one copy of every
item, is a d-wise domain.

PROOF. Fix a set of players T with |T| > d — 1 that get along, and any i* ¢ T.
We have to show that 7" U {i*} get along if and only if X U {i*} get along for any
X C T suchthat |[X| =d — 1. If T U {i*} get along then clearly for any subset X
of T, X U {i*} get along. Now suppose T" U {i*} do not get along. Let 51, ..., 5|7
be the desired subsets of the players of 7. Since T get along then for any item, g,
Dg)=I{ieT : ges;}|] <d-—1.Since T U {i*} do not get along this implies
that there exists an item g* € s;« (where s;+ is the desired subset of i*) such that
D(g*) =d —1(d — 1 agents in T desire the item g* that i * also desires). Thus, if
we take X to be all players i € T such that g* € s; we have a set X of size d — 1
such that the agents X U {i*} do not get along. [

C. On the Tightness of the Analysis of Section 3

In this section, we show that our analysis of the Iterative Wrapper for known
single-minded players is tight, up to a constant. To help clarifying the proof, we

Proposition 3.5 actually shows that for double-minded players, the CA domain is not a d-wise
domain for any d < n.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:29

Name Val Gl G2 G3 G4 Iteration | R1 | R2 | R3 | R4 [D1 [D2 | D3 | D4
R1 2 — 1 1 1 1 1 1 (1 [1 1
R2 4 2 21212121 111 1
R3 8 3 2 141414121 1 1
R4 16 4 4 [8|8 1421 1
D1 8 5 8 |16 8 | 4] 2 1
D2 8 -_ 6 16 8 | 4 2
D3 8 -_ 7 16 8 4
D4 8 _— 8 16 8

9 16

FIG. 2. Example for the proof of Proposition C.1. Left table describes the players’ valuations; the
right table describes the sequence of iterations of the wrapper on this instance. The entries are the
bids of the players in the corresponding iteration, and the winners’ bids are shaded.

first shows this when the wrapper uses an algorithm that always outputs the optimal
allocation Following that we prove that for any constant ¢ > 1 and large enough
Vmax there exists a c-approximation algorithm such that the Iterative Wrapper only
gets Q(c - log(V,,4x))-approximation.

PROPOSITION C.1. Suppose that the wrapper uses an algorithm that outputs
the optimal allocation. Then, for any value of V.., the approximation factor of the
Iterative Wrapper is Q(log(V,nax))-

Before the formal proof, let us give a short intuition. The proof constructs a
scenario in which the optimal welfare is 10g(V,4x) + Vmax/2 while the Iterative
Wrapper outputs an allocation with welfare of v,,,,, which is a factor of log(v,,,4x) /2
smaller, proving the claim. The example in Figure 2 illustrates the proof when
Vmax = 16. There are four items, g1, g2, g3, g4, and there are 8 players. The left
table in the figure shows the players, their values, and their desired bundles. The
first set of players are “row players”: each playerr; (i = 1, ..., 4) desires a bundle
that is composed of items gi, ..., g;. The second set of players are “dot players”:
each playerd; (i =1, ..., 4) desires a bundle that is composed of a single-item, g;.
In the optimal allocation, the winners are the four dot players, with a total welfare
of 32. The Iterative Wrapper, however, will end up choosing player r4 as the sole
winner, and the table to the right shows the sequence of iterations that leads to
this result. Each row in the right table contains the current values declared by the
players, an empty cell denotes the fact that the player already retired, and a cell
with a grey background denotes the fact that the player is a tentative winner in
that iteration. Since the winner is r4 the ratio between the optimal outcome and the
outcome of the iterative wrapper is exactly log(V,,,x)/2 = 2, proving the claim for
this case. The general proof has the same structure:

PROOF. By losing a factor of 2, we can assume that v,,,, is a power of 2. We
run the Iterative Wrapper using the optimal allocation rule (c = 1). We build an
instance in which the optimal allocation has value of 10g(V,,4x) * Vymax /2 While the
Iterative Wrapper outputs an allocation with welfare of ¥,,,,, proving the claim.

The instance has m = log(V,,4,) goods and n = 2 - 1og(V,,4,) bidders. Define
the set of items to be {g1, g2, &3, - . ., Glog¥,.. }- Let the set of players be composed
of two different subsets: (1) Dot players {d, ..., diog5,,, }» Where each player d;
desires the bundle {g;} for value ¥,,,/2, and (2) Row players {ri, ..., Fogs,.. }»
where r; wants the bundle {g, ..., g} for value 2'.

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:30 M. BABAIOFF ET AL.

Note that in any feasible allocation, at most one row player can win, and if
player r; wins, this excludes players di, . . ., d; from winning. Thus, in the optimal
solution, players dy, ..., diogs,,, Win, with a total welfare of log(V,ax) - Vinax /2. We
next show that when running the Iterative Wrapper, the sole winner is rjog5,,., and
as his value is 2!°2Vna) = 3 This implies the claim.

Assume that ties are broken such that players of type d; are preferred. The It-
erative Wrapper runs in a similar manner to the example of Figure 2: The first
allocation has di, . . ., diogy,,, as the provisional winners. In the i’th iteration, for
I < i <10g(Viax) + 1, the winners are r;_1, d;, ..., diogy,,., player r;_ retires,
and the rest double their value. Note that at every such iteration, the set of win-
ners is the optimal one according to their current values. Therefore, at iteration
log(Vyuax) + 1 the sole winner is riogy,,. and rq, ..., Flog@,..)—1 have already re-
tired. The current value of 747, 1S Vnax. The current values of dy, . . ., diog,,, are
Vimax /2 Vmax /4 Vmax /8, - . ., 1, respectively, and the total value of these players is
only V4 — 1 (thus indeed ryog5,,,, Wins).

At this point, player d; retires, and players d, ..., diygy,,, double their val-
ues. Thus, at iteration log(V,,,) + 2 the values of the remaining dot players are
Vimax/2s Vmax /% Vmax /8, - .., 2, that is, the sum of their values is smaller than
the sum of the values of the dot players in the previous iteration. Hence, player
Flog i, Still wins. This continues similarly, the sum of values of the dot players
continues to decrease, and player 7y, remains a winner until the end. Since
his value is v,,4, and the optimal social welfare is 10g(V,;4x) * Vinax/2, the claim
follows. [

As a parallel to Proposition C.1, we next show that the analysis is tight even
when a non-optimal algorithm is used inside the wrapper.

PROPOSITION C.2. For any ¢ > 1 and any v, that is large enough, there
exists a c-approximation algorithm and an instance for which the Iterative Wrapper
mechanism outputs an allocation with welfare that is only O(fmction of
the optimum welfare.

c- logv

PROOF. If ¢ < 2, the claim follows from Proposition C.1 so we proceed as-
suming that ¢ > 2. By losing a constant factor, we can assume that ¢ and v,,,, are
both a power of 2.consider refining to find exact constant.

Let x = V4 /(c/2). Define the set of items to be {g1, g2, g3, . - ., &logx). Let the
set of players be composed of two different subsets: (1) Dot players {dy, ..., diogx},
where each dot player d; desires the bundle {g;} for value v,,,,, (2) Row players
{ri, ..., rogx}, where r; wants the bundle {gi, ..., g;} for value 20

In the optimal solution, the dot players dj, ..., djo» Win, with a total welfare
of Vax - log x. We next show that there exists a c-approximation algorithm such
that when running the Iterative Wrapper with that algorithm it outputs rje, as
the sole winner. As his Value 1S X = V. /(c/2) this implies that we get only

Y(’;“”/ (©/2) fraction of the optimal welfare. If ¥,,,c = ¢’
Vimax g(vmat/(ﬁ/2)) c-(1+10g Viax—log c)
then log v,,,c = 2logc. Thus the mechanism gets a fraction of m and
the claim follows. '

The c-approximation algorithm breaks ties in favor of the dot players (players
of type d;). The Iterative Wrapper runs as follows: The first set of (provisional)
winners are all players of type d;, thatis W; = {d\, ..., diog«}. In the ith iteration,
for 1 < i < log(x) + 1, the winners are W; = {ri_i,d;, ..., digx}, pPlayer r;_»

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

Combinatorial Auctions and Algorithmic Implementation 4:31

retires, and the rest double their value. Note that at every such iteration, the set of
winners is the optimal one according to their current values.

Atiteration log(x) + 1, Wiog(x)+1 = {riogx}, that is, the sole winner is ryog . This
keeps the approximation: at this phase, rq, ..., rogx)—1 have already retired. The
current value of r1og, is x. The current values of di, ..., dipgx are x/2,x/4, ..., 1,
respectively, so even if they all win together the total welfare is only x — 1 (thus
Iogx Wins as he has a bid of x).

Players d, ..., diogxy Will keep increasing their values until their values
are (c/2) - x,(c/2) - (x/2),...,(c/2) - 1 (note that these are the values
Viaxs Vmax /2 Vmax /4, - - ., (¢/2)), this takes log(c/2) + 1 = log(c) iterations. The
approximation algorithm will output player ry,, « as the winner in all these iterations
(i.e., W; = {riogx) for log(x) + 1 < i < log(x) + 1 + log(c)). This is still within
the approximation bound, as the optimal allocation in all these phases is at most
2-(¢c/2) Vmax = € * Vmax-

Let k = log(x) + log(c) + 1. As at this point rjoe . Wins and d; reached his value
Vmax» he is not willing to increase his bid anymore and retires. So at iteration k + i
for I <i < log(x) — 1, the losers that do not retire are d; 11, ..., djogx With bids
(c/2)-x,(c/2) - (x/2),...,(c/2) - 2! respectively. The winner is always Flog x
(his value is within a factor of ¢ of the optimal allocation) and after each round the
agent that reaches his value retires and the other double their bids.

At iteration log(x) + log(c) + log(x) + 1,1 diog(x) Tetires so now all players
besides player 7,4, have retired, and so ryog . is the sole winner. Since his value is
X = Vyax /(c/2) and the optimal social welfare is v,,,,, -log(x), the claim follows. [

ACKNOWLEDGMENT. We wish to thank the two anonymous referees and the area
editor for many helpful and thoughtful comments. We are grateful to Noam Nisan
for his invaluable help. We also thank Liad Blumrosen, Edith Elkind, Jason Hartline,
Daniel Lehmann, and Chaitanya Swamy, for their many comments.

REFERENCES

AKCOGLU, K., ASPENS, J., DASGUPTA, B., AND KAO, M. 2002. An opportunity-cost algorithm for com-
binatorial auctions. In Applied Optimization: Computational Methods in Decision-Making, Economics,
and Finance, E. J. Kontoghiorghes, B. Rustem, and S. Siokos, Eds. Kluwer Academic.

ARCHER, A., AND TARDOS, E. 2001. Truthful mechanisms for one-parameter agents. In Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Sciences (FOCS). IEEE Computer Society
Press, Los Alamitos, CA, 482-491.

AWERBUCH, B., AZAR, Y., AND MEYERSON, A. 2003. Reducing truth-telling online mechanisms to online
optimization. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York,
503-510.

BABAIOFF, M., LAVL, R., AND PAVLOV, E. 2005. Mechanism design for single-value domains. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), 241-247.

BABAIOFF, M., LAVL, R., AND PAVLOV, E. 2006. Impersonation-based mechanisms. In Proceedings of
the National Conference on Artificial Intelligence (AAAI).

BARTAL, Y., GONEN, R., AND NISAN, N. 2003. Incentive compatible multi-unit combinatorial auctions.
In TARK. 72-87.

BLUMROSEN, L., AND NISAN, N. 2005. On the computational power of iterative auctions. In Proceedings
of 6th ACM Conference on Electronic Commerce (ACM-EC). ACM, New York, 29-43.

BLUMROSEN, L., AND NISAN, N. 2007. Combinatorial auctions. In Algorithmic Game Theory, N. Nisan,
T. Roughgarden, E. Tardos, and V. Vazirani, Eds. Cambridge University press, Cambridge, UK.

SNote that the number of iterations is less than 2 - 10g ¥ + 1, a8 X = P00 /(c/2).

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

4:32 M. BABAIOFF ET AL.

BRIEST, P.,, KRYSTA, P., AND VOCKING, B. 2005. Approximation techniques for utilitarian mechanism
design. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York,
39-48.

CLARKE, E. H. 1971. Multipart pricing of public goods. Public Choice, 17-33.

CRAMTON, P., SHOHAM, Y., AND STEINBERG, R., EDS. 2006. Combinatorial Auctions. MIT Press, Cam-
bridge, MA.

DOBZINSKI, S. 2007. Two randomized mechanisms for combinatorial auctions. In RANDOM-APPROX.

DOBZINSKI, S., AND NISAN, N. 2007. Limitations of vcg-based mechanisms. In Proceedings of the ACM
Symposium on Theory of Computing (STOC). ACM, New York.

DOBZINSKI, S., NISAN, N., AND SCHAPIRA, M. 2005. Approximation algorithms for combinatorial auc-
tions with complement-free bidders. In Proceedings of the ACM Symposium on Theory of Computing
(STOC). ACM, New York, 610-618.

DOBZINSKI, S., NISAN, N., AND SCHAPIRA, M. 2006. Truthful randomized mechanisms for combinatorial
auctions. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York.
DOBZINSKI, S., AND SUNDARARAJAN, M. 2008. On characterizations of truthful mechanisms for combi-
natorial auctions and scheduling. In Proceedings of the 9th ACM Conference on Electronic Commerce.

ACM, New York.

FUJISHIMA, Y., LEYTON-BROWN, K., AND SHOHAM, Y. 1999. Taming the computational complexity of
combinatorial auctions: Optimal and approximate approaches. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’99). Morgan-Kaufmann, San Francisco, CA.

GONEN, R., AND LEHMANN, D.J. 2000. Optimal solutions for multi-unit combinatorial auctions: branch
and bound heuristics. In Proceedings of the ACM Conference on Electronic Commerce. ACM, New York,
13-20.

GROVES, T. 1973. Incentives in teams. Econometrica, 617-631.

HoLzZMAN, R., KFIR-DAHAV, N., MONDERER, D., AND TENNENHOLTZ, M. 2004. Bundling equilibrium
in combinatorial auctions. Games Econ. Beh. 47, 104-123.

JACKSON, M. O. 1992. Implementation in undominated strategies: A look at bounded mechanisms. Rev.
Econ. Stud.

LAvi, R., MU'ALEM, A., AND NISAN, N. 2003. Towards a characterization of truthful combinatorial
auctions. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society Press, Los Alamitos, CA, 574-583.

LAV, R., AND NISAN, N. 2005. Online ascending auctions for gradually expiring items. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA). ACM, New York, 1146-1155.

LAvL, R., AND SWAMY, C. 2005. Truthful and near optimal mechanism design via linear programming.
In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer
Society Press, Los Alamitos, CA, 595-604.

LAvry, R., AND SWAMY, C. 2007. Truthful mechanism design for multidimensional scheduling. In Pro-
ceedings of the 8th ACM Conference on Electronic Commerce (ACM-EC). ACM, New York.

LEHMANN, D., O’CALLAGHAN, L., AND SHOHAM, Y. 2002. Truth revelation in approximately efficient
combinatorial auctions. J. ACM 49, 5, 1-26.

MU’ALEM, A., AND NISAN, N. 2002. Truthful approximation mechanisms for restricted combinatorial
auctions. In Proceedings of the AAAI/IAAL 379-384.

NISAN, N., AND RONEN, A. 2001. Algorithmic mechanism design. Games Econom. Behav. 35, 166—196.

NISAN, N., AND SEGAL, I. 2006. The communication requirements of efficient allocations and supporting
prices. J. Econ. Theory.

NISAN, N., AND ZUREL, E. 2001. An efficient approximate allocation algorithm for combinatorial auc-
tions. In Proceedings of the ACM Conference on Electronic Commerce. 125-136.

PARKES, D. 2005. Iterative combinatorial auctions. In Combinatorial Auctions, P. Cramton, Y. Shoham,
and R. Steinberg, Eds. MIT press, Cambridge, MA.

SANDHOLM, T., SURI, S., GILPIN, A., AND LEVINE, D. 2005. Cabob: A fast optimal algorithm for winner
determination in combinatorial auctions. Manage. Sci. 51, 3, 374-390.

VICKREY, W. 1961. Counterspeculation, auctions and competitive sealed tenders. J. Finance 16, 1, 8-37.

ZUCKERMAN, D. 2006. Linear degree extractors and the inapproximability of max clique and chromatic
number. In Proceedings of the ACM Symposium on Theory of Computing (STOC). ACM, New York,
681-690.

RECEIVED AUGUST 2006; REVISED OCTOBER 2008; ACCEPTED OCTOBER 2008

Journal of the ACM, Vol. 56, No. 1, Article 4, Publication date: January 2009.

