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Abstract

This paper presents a novel statistical
model for automatic identification of
English baseNP. It uses two steps: the N-
best Part-Of-Speech (POS) tagging and
baseNP identification given the N-best
POS-sequences. Unlike the other
approaches where the two steps are
separated, we integrate them into a unified
statistical framework. Our model also
integrates lexical information. Finally,
Viterbi algorithm is applied to make global
search in the entire sentence, allowing us to
obtain linear complexity for the entire
process. Compared with other methods
using the same testing set, our approach
achieves 92.3% in precision and 93.2% in
recall. The result is comparable with or
better than the previously reported results.

1 Introduction
Finding simple and non-recursive base Noun
Phrase (baseNP) is an important subtask for many
natural language processing applications, such as
partial parsing, information retrieval and machine
translation. A baseNP is a simple noun phrase
that does not contain other noun phrase
recursively, for example, the elements within [...]
in the following example are baseNPs, where
NNS, IN VBG etc are part-of-speech tags [as
defined in M. Marcus 1993].

[Measures/NNS] of/IN [manufacturing/VBG
activity/NN] fell/VBD more/RBR than/IN [the/DT

overall/JJ measures/NNS] ./.
Figure 1: An example sentence with baseNP

brackets
A number of researchers have dealt with the
problem of baseNP identification (Church 1988;
Bourigault 1992; Voutilainen 1993; Justeson &
Katz 1995). Recently some researchers have
made experiments with the same test corpus
extracted from the 20th section of the Penn
Treebank Wall Street Journal (Penn Treebank).
Ramshaw & Markus (1998) applied transform-
based error-driven algorithm (Brill 1995) to learn
a set of transformation rules, and using those
rules to locally updates the bracket positions.
Argamon, Dagan & Krymolowski (1998)
introduced a memory-based sequences learning
method, the training examples are stored and
generalization is performed at application time by
comparing subsequence of the new text to
positive and negative evidence. Cardie & Pierce
(1998 1999) devised error driven pruning
approach trained on Penn Treebank. It extracts
baseNP rules from the training corpus and prune
some bad baseNP by incremental training, and
then apply the pruned rules to identify baseNP
through maximum length matching (or dynamic
program algorithm).
 Most of the prior work treats POS tagging and
baseNP identification as two separate procedures.
However, uncertainty is involved in both steps.
Using the result of the first step as if they are
certain will lead to more errors in the second step.
A better approach is to consider the two steps
together such that the final output takes the



uncertainty in both steps together. The
approaches proposed by Ramshaw & Markus and
Cardie&Pierce are deterministic and local, while
Argamon, Dagan & Krymolowski consider the
problem globally and assigned a score to each
possible baseNP structures. However, they did
not consider any lexical information.
This paper presents a novel statistical approach to
baseNP identification, which considers both steps
together within a unified statistical framework. It
also takes lexical information into account. In
addition, in order to make the best choice for the
entire sentence, Viterbi algorithm is applied. Our
tests with the Penn Treebank showed that our
integrated approach achieves 92.3% in precision
and 93.2% in recall. The result is comparable or
better that the current state of the art.
In the following sections, we will describe the
detail for the algorithm, parameter estimation and
search algorithms in section 2. The experiment
results are given in section 3. In section 4 we
make further analysis and comparison. In the
final section we give some conclusions.

2 The statistical approach
In this section, we will describe the two-pass
statistical model, parameters training and Viterbi
algorithm for the search of the best sequences of
POS tagging and baseNP identification. Before
describing our algorithm, we introduce some
notations we will use

2.1 Notation
Let us express an input sentence E  as a word
sequence and a sequence of POS respectively as
follows:

nn wwwwE 121 ... −=

nn ttttT 121 ... −=
Where n  is the number of words in the sentence,

it  is the POS tag of the word iw .
Given E, the result of the  baseNP identification is
assumed to be a sequence, in which some words
are grouped into baseNP as follows

...]...[... 111 ++− jjiii wwwww
The corresponding tag sequence is as follows:
(a)

mjjiijjiii nnntbttttttB ............]...[... 211,1111 === +−++−

In which jib ,  corresponds to the tag sequence of a

baseNP: ]...[ 1 jii ttt + . jib ,   may also be

thought of as a baseNP rule. Therefore B is a
sequence of both POS tags and baseNP rules.
Thus ∈≤≤ innm ,1 (POS tag set ∪  baseNP
rules set), This is the first expression of a
sentence with baseNP annotated. Sometime, we
also use the following equivalent form:
(b)

njjjjiiiiii qqqbmtbmtbmtbmtbmtQ ...)...,(),()...,(),(),...( 21111111 == ++++−−

Where each POS tag it  is associated with its

positional information ibm  with respect to
baseNPs. The positional information is one of

},,,,{ SOEIF . F, E and I mean respectively
that the word is the left boundary, right boundary
of a baseNP, or at another position inside a
baseNP. O means that the word is outside a
baseNP. S marks a single word baseNP. This
second expression is similar to that used in
[Marcus 1995].
For example, the two expressions of the example
given in Figure 1 are as follows:
(a)  B= [NNS] IN [VBG NN] VBD RBR IN [DT JJ NNS]
(b)  Q=(NNS S) (IN O) (VBG F) (NN E) (VBD O) (RBR O)

(IN O) (DT F) (JJ I) (NNS E) (. O)

2.2 An ‘integrated’ two-pass
procedure
The principle of our approach is as follows. The
most probable baseNP sequence *B  may be
expressed generally as follows:

))|((maxarg* EBpB
B

=

We separate the whole procedure into two passes,
i.e.:

)),|()|((maxarg* ETBPETPB
B

×≈         (1)

In order to reduce the search space and
computational complexity, we only consider the
N best POS tagging of E, i.e.

))|((maxarg)(
,...,1

ETPbestNT
NTTT=

=−        (2)

Therefore, we have:

)),|()|((maxarg
,...,,

*

1

ETBPETPB
NTTTB

×≈
=

        (3)

Correspondingly, the algorithm is composed of
two steps: determining the N-best POS tagging
using Equation (2). And then determining the
best baseNP sequence from those POS sequences



using Equation (3). One can see that the two steps
are integrated together, rather that separated as in
the other approaches. Let us now examine the two
steps more closely.

2.3 Determining the N best POS
sequences
The goal of the algorithm in the 1st pass is to
search for the N-best POS-sequences within the
search space (POS lattice). According to Bayes’
Rule, we have

)(
)()|(

)|(
EP

TPTEP
ETP

×
=

Since )(EP  does not affect the maximizing

procedure of )|( ETP , equation (2) becomes

))()|((maxarg))|((maxarg)(
,...,,..., 11

TPTEPETPbestNT
NN TTTTTT

×==−
==

 (4)

We now assume that the words in E are
independent. Thus

∏
=

≈
n

i
ii twPTEP

1

)|()|(                            (5)

We then use a trigram model as an approximation
of )(TP , i.e.:

∏
=

−−≈
n

i
iii tttPTP

1
12 ),|()(                          (6)

Finally we have
))|((maxarg)(

,...,1

ETPbestNT
NTTT=

=−

)),|()|((maxarg 12
1,...,1

−−
==

×= ∏ iii

n

i
ii

TTT
tttPtwP

N

 (7)

In Viterbi algorithm of N best search, )|( ii twP
is called lexical generation (or output) probability,

and ),|( 12 −− iii tttP  is called transition probability
in Hidden Markov Model.

2.3.1 Determining the baseNPs
As mentioned before, the goal of the 2nd pass is to
search the best baseNP-sequence given the N-
best POS-sequences.
Considering E ,T  and B as random variables,
according to Bayes’ Rule, we have

)|(
),|()|(

),|(
TEP

TBEPTBP
ETBP

×
=

Since 
)(

)()|(
)|(

TP
BPBTP

TBP
×

=  we have,

)()|(
)()|(),|(

),|(
TPTEP

BPBTPTBEP
ETBP

×
××

=       (8)

Because we search for the best baseNP sequence
for each possible POS-sequence of  the given
sentence E, so

constTEPTPTEP =∩=× )()()|( ,
Furthermore from the definition of B, during each
search procedure, we have

∏
=

==
n

i
jiji bttPBTP

1
, 1)|,...,()|( . Therefore, equation

(3) becomes
)),|()|((maxarg

,...,,

*

1

ETBPETPB
NTTTB

×=
=

))(),|()|((maxarg
,...,, 1

BPTBEPETP
NTTTB

××=
=

 (9)

using the independence assumption, we have

∏
=

≈
n

i
iii bmtwPTBEP

1

),|(),|(                   (10)

With trigram approximation of )(BP , we have:

∏
=

−−≈
m

i
iii nnnPBP

1
12 ),|()(                          (11)

Finally, we obtain

)),|(),|()|((maxarg
,1

12
1,..,

*

1

∏∏
=

−−
==

××=
mi

iii

n

i
iii

TTTB
nnnPtbmwPETPB

N

   （12）
To summarize, In the first step, Viterbi N-best
searching algorithm is applied in the POS tagging
procedure, It determines a path probability tf  for
each POS sequence calculated as follows:

∏
=

−−×=
ni

iiiiit tttptwpf
,1

12 ),|()|( .

In the second step, for each possible POS tagging
result, Viterbi algorithm is applied again to
search for the best baseNP sequence. Every
baseNP sequence found in this pass is also
asssociated with a path probability

∏∏
=

−−
=

×=
mi

iii

n

i
iiib nnnpbmtwpf

,1
12

1

),|(),|( .

The integrated probability of a baseNP sequence

is determined by bt ff ×α , whereα  is a

normalization coefficient (α  4.2=  in our
experiments). When we determine the best
baseNP sequence for the given sentence E , we



also determine the best POS sequence of E ,
which corresponds to the best baseNP of E .
Now let us illustrate the whole process through an
example:  “stock was down 9.1 points yesterday
morning.”.  In the first pass, one of the N-best
POS tagging result of the sentence is: T = NN

VBD RB CD NNS NN NN. For this POS
sequence, the 2nd pass will try to determine the
baseNPs as  shown in Figure 2. The details of the
path in the dash line are given in Figure 3, Its
probability calculated in the second pass is as
follows ( Φ  is pseudo variable):

),|(),|(),|(),|(),|( BCDNUMBERpORBdownpOVBDwaspSNNstockpETBP ×××=

).,|(.),|(),|(),|int( OpENNmorningpBNNyesterdaypENNSspop ××××

),|]([)],[|(])[,|(),|]([ RBVBDNNSCDpVBDNNRBpNNVBDpNNp ××Φ×ΦΦ×

])[],[|(.])[,|]([ NNNNNNSCDpNNSCDRBNNNNp ××

Figure 2:  All possible brackets of  "stock was down 9.1 points yesterday morning"

Figure 3:  the transformed form of  the path with dash line for the second pass processing

2.4 The statistical parameter
training
In this work, the training and testing data were
derived from the 25 sections of Penn Treebank.
We divided the whole Penn Treebank data into
two sections, one for training and the other for
testing.
As required in our statistical model, we have to
calculate the following four probabilities:

(1) ),|( 12 −− iii tttP , (2) )|( ii twP ,

(3) )|( 12 −− iii nnnP  and (4) ),|( iii bmtwP . The
first and the third parameters are trigrams of T
and B respectively.  The second and the fourth are
lexical generation probabilities. Probabilities (1)
and (2) can be calculated from POS tagged data
with following formulae:

∑ −−

−−
−− =

j
jii

iii
iii tttcount

tttcount
tttp

)(
)(

),|(
12

12
12

  (13)



)(

)(
)|(

i

ii
ii tcount

ttagwithwcount
twp =  (14)

As each sentence in the training set has both POS
tags and baseNP boundary tags, it can be
converted to the two sequences as B (a) and Q (b)
described in the last section. Using these
sequences, parameters (3) and (4) can be
calculated, The calculation formulas are similar
with equations (13) and (14) respectively.
Before training trigram model (3), all possible
baseNP rules should be extracted from the
training corpus. For instance, the following three
sequences are among the baseNP rules extracted.

There are more than 6,000 baseNP rules in the
Penn Treebank. When training trigram model  (3),
we treat those baseNP rules in two ways. (1) Each
baseNP rule is assigned a unique identifier (UID).
This means that the algorithm considers the
corresponding structure of each baseNP rule.  (2)
All of those rules are assigned to the same
identifier (SID). In this case, those rules are
grouped into the same class. Nevertheless, the
identifiers of baseNP rules are still different from
the identifiers assigned to POS tags.
We used the approach of Katz (Katz.1987) for
parameter smoothing, and build a trigram model
to predict the probabilities of parameter (1) and
(3). In the case that unknown words are
encountered during baseNP identification, we
calculate parameter  (2) and (4) in the following
way:

2)),((max

),(
),|(

ij
j

ii
iii tbmcount

tbmcount
tbmwp =  (15)

2))((max

)(
)|(

j
j

i
ii tcount

tcount
twp =      (16)

Here, jbm  indicates all possible baseNP labels

attached to it , and jt  is a POS tag guessed for the

unknown word iw .

3 Experiment result
We designed five experiments as shown in Table
1. “UID” and “SID” mean respectively that an
identifier is assigned to each baseNP rule or the
same identifier is assigned to all the baseNP rules.
“+1” and “+4” denote the number of beat POS
sequences retained in the first step. And
“UID+R” means the POS tagging result of the
given sentence is totally correct for the 2nd step.
This provides an ideal upper bound for the system.
The reason why we choose N=4 for the N-best
POS tagging can be explained in Figure 4, which
shows how the precision of POS tagging changes
with the number N.

96.95
97.00

97.05

97.10

97.15
97.20

97.25

97.30

97.35
97.40

97.45

1 2 3 4 5 6

Figure 4:  POS tagging precision with respect to
different number of N-best

In the experiments, the training and testing sets
are derived from the 25 sections of Wall Street
Journal distributed with the Penn Treebank II,
and the definition of baseNP is the same as
Ramshaw's, Table 1 summarizes the average
performance on both baseNP tagging and POS
tagging, each section of the whole Penn Treebank
was used as the testing data and the other 24
sections as the training data, in this way we have
done the cross validation experiments 25 times.



Precision
( baseNP %)

Recall
( baseNP %)

F-Measure
( baseNP %)

2

RP +

( baseNP %)
Precision
(POS %)

UID+1 92.75 93.30 93.02 93.02 97.06
UID+4 92.80 93.33 93.07 93.06 97.02

SID+1 86.99 90.14 88.54 88.56 97.06
SID+4 86.99 90.16 88.55 88.58 97.13

UID+R 93.44 93.95 93.69 93.70 100
Table 1  The average performance of the five experiments
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Figure 5:  Precision under different training sets
and different POS tagging results
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Figure 6:  Recall under different training sets and

different POS tagging results
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Figure 7:  POS tagging precision under different
training sets

Figure 5 -7 summarize the outcomes of our
statistical model on various size of the training
data, x-coordinate denotes the size of the training
set, where "1" indicates that the training set is
from section 0-8th of Penn Treebank, "2"
corresponds to the corpus that add additional
three sections 9-11th  into "1" and so on. In this
way the size of the training data becomes larger
and larger. In those cases the testing data is

always section 20 (which is excluded from the
training data).
From Figure 7, we learned that the POS tagging
and baseNP identification are influenced each
other. We conducted two experiments to study
whether the POS tagging process can make use of
baseNP information. One is UID+4, in which the
precision of POS tagging dropped slightly with
respect to the standard POS tagging with Trigram
Viterbi search. In the second experiment SID+4,
the precision of POS tagging has increase slightly.
This result shows that POS tagging can benefit
from baseNP information. Whether or not the
baseNP information can improve the precision of
POS tagging in our approach is determined by the
identifier assignment of the baseNP rules when
training trigram model of ),|( 12 −− iii nnnP . In
the future, we will further study optimal baseNP
rules clustering to further improve the
performances of both baseNP identification and
POS tagging.

4 Comparison with other
approaches
To our knowledge, three other approaches to
baseNP identification have been evaluated using



Penn Treebank-Ramshaw & Marcus’s
transformation-based chunker, Argamon et al.’s
MBSL, and Cardie’s Treebank_lex in Table 2, we
give a comparison of our method with other these
three. In this experiment, we use the testing data
prepared by Ramshaw (available at
http://www.cs.biu.ac.il/~yuvalk/MBSL), the
training data is selected from the 24 sections of

Penn Treebank (excluding the section 20). We
can see that our method achieves better result
than the others

.

Transformation-Based
(Training data: 200k)

Treebank_Lex MBSL Unified Statistical

Precision (%) 91.8 89.0 91.6 92.3

Recall (%) 92.3 90.9 91.6 93.2

F-Measure (%) 92.0 89.9 91.6 92.7

2

RP + 92.1 90.0 91.6 92.8

Table 2: The comparison of our statistical method with three other approaches

Transforamtion-Based Treebank_Lex MBSL Unified Statistical

Unifying POS &
baseNP

NO NO NO YES

Lexical Information YES YES NO YES

Global Searching NO NO YES YES

Context YES NO YES YES

Table 3: The comparison of some characteristics of our statistical method with three other approaches

Table 3 summarizes some interesting aspects of
our approach and the three other methods. Our
statistical model unifies baseNP identification
and POS tagging through tracing N-best
sequences of POS tagging in the pass of baseNP
recognition, while other methods use POS
tagging as a pre-processing procedure. From
Table 1, if we reviewed 4 best output of POS
tagging, rather that only one, the F-measure of
baseNP identification is improved from 93.02 %
to 93.07%. After considering baseNP information,
the error ratio of POS tagging is reduced by 2.4%
(comparing SID+4 with SID+1).
The transformation-based method (R&M 95)
identifies baseNP within a local windows of
sentence by matching transformation rules.
Similarly to MBSL, the 2nd pass of our algorithm
traces all possible baseNP brackets, and makes
global decision through Viterbi searching. On the
other hand, unlike MSBL we take lexical
information into account. The experiments show
that lexical information is very helpful to improve
both precision and recall of baseNP recognition.
If we neglect the probability of

∏
=

n

i

iii bmtwP
1

),|(  in the 2nd pass of our model,

the precision/recall ratios are reduced to
90.0/92.4% from 92.3/93.2%. Cardie’s approach
to Treebank rule pruning may be regarded as the
special case of our statistical model, since the
maximum-matching algorithm of baseNP rules is
only a simplified processing version of our
statistical model. Compared with this rule
pruning method, all baseNP rules are kept in our
model. Therefore in principle we have less
likelihood of failing to recognize baseNP types
As to the complexity of algorithm, our approach
is determined by the Viterbi algorithm approach,
or )(nO , linear with the length.

5 Conclusions
This paper presented a unified statistical model to
identify baseNP in English text. Compared with
other methods, our approach has following
characteristics:
(1) baseNP identification is implemented in two
related stages: N-best POS taggings are first
determined, then baseNPs are identified given the
N best POS-sequences. Unlike other approaches
that use POS tagging as pre-processing, our
approach is not dependant on perfect POS-



tagging, Moreover, we can apply baseNP
information to further increase the precision of
POS tagging can be improved. These
experiments triggered an interesting future
research challenge: how to cluster certain baseNP
rules into certain identifiers so as to improve the
precision of both baseNP and POS tagging. This
is one of our further research topics.
(2) Our statistical model makes use of more
lexical information than other approaches. Every
word in the sentence is taken into account during
baseNP identification.
(3) Viterbi algorithm is applied to make global
search at the sentence level.
Experiment with the same testing data used by
the other methods showed that the precision is
92.3% and the recall is 93.2%. To our knowledge,
these results are comparable with or better than
all previously reported results.
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