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ABSTRACT

Automatically extracting semantic content from audio streams can
be helpful in many multimedia applications. Motivated by the
known limitations of traditional supervised approaches to content
extraction, which are hard to generalize and require suitable training
data, we propose in this paper an unsupervised approach to discover
and categorize semantic content in a composite audio stream. In our
approach, we first employ spectral clustering to discover natural
semantic sound clusters in the analyzed data stream (e.g. speech,
music, noise, applause, speech mixed with music, etc.). These clus-
ters are referred to as audio elements. Based on the obtained set of
audio elements, the key audio elements, which are most prominent
in characterizing the content of input audio data, are selected and
used to detect potential boundaries of semantic audio segments de-
noted as auditory scenes. Finally, the auditory scenes are catego-
rized in terms of the audio elements appearing therein. Categoriza-
tion is inferred from the relations between audio elements and audi-
tory scenes by using the information-theoretic co-clustering scheme.
Evaluations of the proposed approach performed on 4 hours of di-
verse audio data indicate that promising results can be achieved,
both regarding audio element discovery and auditory scene categori-
zation.

Categories and Subject Descriptors

H.5.5 [Information Interfaces and Presentation]: Sound and Mu-
sic Computing — signal analysis, synthesis and processing; Systems;
H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing — Indexing methods; 1.5.3 [Pattern Recognition]: Cluster-
ing — Algorithms; Similarity measures.

General Terms
Algorithms, Design, Experimentation, Management, Theory.

Keywords
Content-based audio analysis, unsupervised approach, key audio
element, auditory scene, spectral clustering, information-theoretic
co-clustering.
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1. INTRODUCTION

An automation of semantic content extraction from digital audio
streams can be beneficial to many multimedia applications, such as
context-aware computing [10][21] and video content parsing, in-
cluding highlight extraction [2][24][25] and video abstraction and
summarization [12][16]. To detect and categorize semantic content
in audio signals, considerable research effort has been invested in
developing the theories and methods for content-based audio analy-
sis to bridge the “semantic gap” separating the low-level audio fea-
tures and the high-level audio content semantics.

A typical approach to content-based audio analysis can be repre-
sented by the general flowchart shown in Fig. 1 [14]. There, the
input audio stream is first segmented into different audio elements
such as speech, music, various audio effects and any combination of
these. Then, the key audio elements are selected, being the audio
elements that are most characteristic for the semantics of the ana-
lyzed audio data stream [5][25]. In the next step, the auditory scenes
[23], which are the temporal segments with coherent semantic con-
tent, are detected and classified based on the (key) audio elements
they contain. For example, in [2][25], the elements such as ap-
plause, cheer, ball-hit, and whistling, are used to detect the high-
lights in sports videos; and in film indexing [5][6][17], humor and
violence scenes are categorized by detecting the key audio elements
like laughter, gun-shot, and explosion.
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Fig. 1. A unified approach to content-based audio analysis.

Previous attempts of realizing the scheme in Fig. 1, either as a whole
or in parts, usually adopted supervised data analysis and classifica-
tion methods. For instance, hidden Markov models (HMMs) [2][6]
and support vector machines (SVMs) [25] are often used to model
and identify audio elements in audio signals. As for auditory scene
categorization, heuristic rules such as “if double whistling, then Foul
or Offside” are widely employed to infer the events in soccer games
[25], while in [6] and [17] Gaussian mixture models (GMMs) and
SVMs are used to statistically learn the relationships between the
key audio elements and the higher-level semantics of auditory
scenes.

Although the supervised approaches have proved to be effective in
many applications, they show some critical limitations. First, the
effectiveness of the supervised approaches relies heavily on the
quality of the training data. If the training data is insufficient or
badly distributed, the system performance drops significantly. Sec-
ond, in most real-life applications, it's difficult to list all audio ele-
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ments and semantic categories that are possible to be found in data.
For example, in the applications like pervasive computing [10] and
surveillance [22], both the audio elements and the semantic scenes
are unknown in advance. Thus it is impossible to collect training
data and learn proper statistical models in these cases.

In view of the described disadvantages of the supervised methods, a
number of recent works introduced unsupervised approaches into
multimedia content analysis. For example, an approach based on
time series clustering is presented in [22] to discover “unusual”
events in audio streams. In [10], unsupervised analysis of personal
audio archive is performed to create an “automatic diary”. For the
purpose of video summarization and abstraction, unsupervised ap-
proaches have also shown promising results. For instance, affective
video content characterization and highlights extraction can be per-
formed using the theory and methods proposed in [12]. Also in
many other existing approaches (e.g. [16][19][24]), the techniques
like clustering and grouping are utilized for semantic analysis, in-
stead of supervised classification and identification. However, these
existing methods are not meant to provide generic content analysis
solutions, as they are either designed for specific applications
[12][16][19][24], or only address some isolated parts of the scheme
in Fig. 1 [10][22].
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Fig. 2. (a) The flowchart of the proposed approach to unsuper-
vised audio content analysis, which consists of two major parts:
(I) audio element discovery and key element spotting; and (II)
auditory scene categorization. (b) A comparable process of the
topic-based document categorization.

Working towards a more generic and robust realization of the sys-
tem in Fig.1, we propose in this paper a novel unsupervised ap-
proach to audio content analysis, which is capable of dealing with
arbitrary composite audio data streams. The detailed flowchart of the
proposed approach is given in Fig. 2 (a). It consists of two major
steps: I) audio elements discovery and key audio element spotting,
and II) auditory scenes categorization. Both steps are unsupervised
and domain- and application-independent. It also facilitates audio
content discovery in different semantic levels, such as mid-level
audio elements and high-level auditory scenes. Our proposed ap-
proach can also be seen as an analogy to the topic-based text docu-
ment categorization [1], as shown in Fig.2 (b). Here, audio elements
are similar to words, while key audio elements correspond to key-
words.

In the proposed scheme, the input is an arbitrary composite audio
stream. After feature extraction, an iterative spectral clustering
method is proposed to decompose the audio stream into audio ele-
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ments. Spectral clustering [18] has proved to be successful in many
complicated clustering problems, and is also very suitable in our
case as well. To improve the clustering performance in view of the
inhomogeneous distribution densities of various sounds in the fea-
ture space, we adjust the standard spectral clustering scheme [18] by
using the context-dependent scaling factors. Using this clustering
method, the segments with similar low-level features in the audio
stream are grouped into natural semantic clusters that we adopt as
audio elements. Then, a number of importance measures are defined
and employed to filter the obtained set of audio elements and select
the key audio elements.

In the auditory scene categorization step, the potential auditory
scenes are first detected by investigating the co-occurrences among
various key audio elements in the input audio stream. Then, these
auditory scenes are grouped into semantic categories by using the
information-theoretic co-clustering algorithm [7], which exploits the
relationships among various audio elements and auditory scenes.
Moreover, we propose a strategy based on the Bayesian Information
Criterion (BIC) for selecting the optimal cluster numbers for co-
clustering.

The rest of this paper is organized as follows. Section 2 presents the
algorithms for audio element detection, including feature extraction,
audio stream decomposition, and key audio elements selection. In
Section 3, the procedure for auditory scene detection and categoriza-
tion is described. Experiments and discussions can be found in Sec-
tion 4, and Section 5 concludes the paper.

2. AUDIO ELEMENT DISCOVERY

2.1 Feature Extraction

We first divide the audio data stream into frames of 25ms with 50%
overlap. Then, we compute a number of audio features to character-
ize each audio frame.

Many audio features have been proposed in previous works on con-
tent-based audio analysis [2][6][15], and have been proved to be
effective in characterizing various audio elements. Inspired by these
works, we extract both the temporal and spectral features for each
audio frame. The set of temporal features consists of short-time
energy (STE) and zero-crossing rate (ZCR), while the spectral fea-
tures include sub-band energy ratios (BER), brightness, bandwidth,
and 8-order Mel-frequency cepstral coefficients (MFCCs). More-
over, to provide a more complete description of audio elements and
to be able to discern a greater diversity of audio elements, two new
spectral features proposed in our pervious works [3][5], including
the Sub-band Spectral Flux and the Harmonicity Prominence, are
also extracted for each audio frame. In our experiments, the spectral
domain is equally divided into 8 sub-bands in Mel-scale and then
the sub-band features are extracted. All the above features are col-
lected into a 29-dimensional feature vector per audio frame.

In order to reduce the computational complexity of the proposed
approach, we choose to group audio frames into longer temporal
audio segments of the length ¢, and to use these longer segments as
the basis for the subsequent audio processing steps. For this pur-
pose, a sliding window of ¢ seconds with A¢ seconds overlap is used
to segment the frame sequence. In order to balance the detection
resolution and the computational complexity, we choose ¢ as 1.0
second and 4t as 0.5 seconds. At each window position, the mean
and standard deviation of the frame-based features are computed
and used to represent the corresponding audio segment.



2.2 Audio Stream Decomposition

The decomposition of audio streams is carried out by grouping au-
dio segments into the clusters corresponding to audio elements.
Audio elements to be found in complex composite audio streams,
such as sound tracks of movies, usually have complicated and ir-
regular distributions in the feature space. However, traditional clus-
tering algorithms such as K-means are based on the assumption that
the cluster distributions in the feature space are Gaussians [9], and
such assumption is usually not satisfied in complex cases. As a
promising alternative, spectral clustering [18] recently emerged and
showed its effectiveness in a variety of complex applications, such
as image segmentation [26][27] and the multimedia signal clustering
[10][19][22]. We therefore choose to employ spectral clustering to
decompose audio streams into audio elements. To further improve
the robustness of the clustering process, we adopt the self-tuning
strategy [27] to set context-based scaling factors for different data
densities, and build an iterative scheme to perform a hierarchical
clustering of input data.

2.2.1 Spectral Clustering Algorithm

For a given audio stream, the set U = {u,, ..., u,} of feature vectors

u, is obtained through the feature extraction described in Section 2.1.

Each element u; of the set U represents the feature vector of one
audio segment. After specifying the search range [k, ko] for the
most likely number of audio elements existing in the stream, the
standard spectral clustering algorithm is carried out, which consists
of the following steps [18]:

Algorithm I: Spectral_Clustering (U, k., kyax)

1. Form an affinity matrix 4 defined by 4; = exp(-d(u;, uj)2/202) if
i #J, and 4; = 0. Here, d(u;, u;) = |lu-uj| is the Euclidean dis-
tance between the feature vectors u; and u;, and o is the scaling
factor. The selection of o will be discussed later in this section.

2. Define D to be a diagonal matrix whose (i, i) element is the
sum of A's i" row, and construct the normalized affinity matrix
L=D"4p"2.

3. Suppose (1, ..., Xy,.+1) are the k,,,+1 largest eigenvectors of L,
and (4, ..., 4,.+1) are the corresponding eigenvalues. The
optimal cluster number £ is estimated based on the eigen-gaps
between adjacent eigenvalues [18], as:

k=argmax; o o (=4, 1 4) )

Then, form the matrix X = [x;x,...x;]€ R"* by stacking the
first k eigenvectors in columns.

4.  Form the matrix Y by renormalizing each of X's rows to have
unit length, that is:

Y, = X, (X" 2

5. Treat each row of Y as a point in R, cluster them into k clusters
via the cosine-distance based K-means. The initial centers in
the K-means are selected to be as orthogonal to each other as
possible [26].

6.  Assign the original data point u; to cluster ¢; if and only if the
row i of the matrix Y is assigned to ¢;.

‘min

The clustering is followed by smoothing of possible discontinuities
between audio segments assigned to the same cluster. For example,
if the consecutive audio segments are assigned to clusters A and B
as “A-A-B-A-A”, they will be smoothed to “A-A-A-A-A”. Each
obtained series of audio segments that belong to the same cluster is
considered as one instance (occurrence) of the corresponding audio
element in the input audio data stream.
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2.2.2 Context-based Scaling Factors

In the spectral clustering algorithm, the scaling factor ¢ affects how
rapidly the similarity measure A4; decreases when the Euclidean
distance d(u;, w;) increases. In this way, it actually controls the value
of 4 at which two audio segments are considered similar. In the
standard spectral clustering algorithm, ois set uniformly for all data
points (for example, the average Euclidean distance in the data),
based on the assumption that each cluster in the input data has a
similar distribution density in the feature space. However, such as-
sumption is usually not satisfied in composite audio data, which
often contain clusters with different cluster densities. Fig. 3 (a) illus-
trates an example affinity matrix of a 30-second audio stream com-
posed of music (0-10s), music with dense applause (10-20s), and
speech (20-30s), with a uniform scaling factor. From Fig. 3 (a), it is
noticed that the density of speech is sparser than those of other ele-
ments, and music and music with dense applause are close to each
other and hard to be distinguished. Thus the standard spectral clus-
tering can not properly estimate the number of clusters based on the
eigenvalues and eigen-gaps shown at the bottom of Fig. 3 (a).
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Fig. 3. The similarity matrices, with top 10 eigenvalues and the
eigen-gaps, of a 30-second audio stream, which consists of music
(0-10s), music with dense applause (10-20s), and speech (20-30s):
(a) using a uniform scaling factor, (b) using the context-based

scaling factors.

To obtain a more reliable similarity measure and improve the clus-
tering robustness, the self-tuning strategy [27] is employed to select
context-based scaling factors in our approach. That is, for each data
point u;, the scaling factor is set based on its context data density, as:

0; = zj\ujsclose(u[)d(ui’uj)/nb (3)

where close(u;) denotes the set containing 7, nearest neighbors of u;,
and n, is experimentally set to 5 in our approach. Then the affinity
matrix is re-defined as:

A =exp(—d(u;,u ;) (20,0 ,)) )
Fig. 3 (b) shows the corresponding affinity matrix computed with
the context-based scaling factors. It is noticed that the three blocks
on the diagonal are more distinct than those in Fig. 3 (a). In Fig. 3
(b), speech segment shows more concentrated in the similarity ma-
trix, while music and music with dense applause are more apart.
According to equation (1), it is also noted the prominent eigen-gap
between the 3™ and 4" eigenvalues can appropriately predict the
correct number of clusters.



2.2.3 An lterative Clustering Scheme

In order to prevent audio segments of different types to be merged
into the same cluster, we also propose an iterative clustering scheme
to verify whether a cluster can be divided any further. That is, at
each iteration, each cluster obtained from previous iteration is fur-
ther clustered using the spectral clustering scheme. A cluster is con-
sidered to be inseparable if the spectral clustering returns only one
cluster. Although some clusters may be inseparable in the similarity
matrix of the previous iteration (a global scale), they may become
separable in the new similarity matrix during the next iteration (a
local scale). The iterative scheme is described by the following
pseudo code:

Iterative_Clusteirng(U, Kmin, Kmax) 1
[k, {c1, ..., ¢;}] = Spectral_Clusteing(U, Kpin, kimax);
if (k== 1) return;
for(G=1;j<k j++)
Iterative_Clusteirng(c;, 1, kmax);

i
2.3 Key Audio Element Spotting

After we discovered the audio elements in the input audio stream,
we wish to spot those audio elements that are most characteristic for
the semantic content conveyed by the stream. For example, while an
award ceremony typically contains the elements such as speech,
music, applause and their different combinations, the audio ele-
ments of applause can be considered as a good indicator of the high-
lights of the ceremony. To spot the key audio elements, we draw an
analogy to keyword extraction in text document analysis, that is,
some similar criteria are proposed to compute the “importance” of
each audio element.

As a first importance indicator, we consider the occurrence fre-
quency of an audio element, which is a direct analogy to the term
frequency in text [1]. However, the difference to text analysis is that
keywords in text usually have higher occurrence frequency than
other words, while key audio elements may not. This can be drawn
from the following analysis. For example, the major part of the
sound track of a typical action movie segment consists of “usual”
audio elements, such as speech, music, speech mixed with music and
some “standard” background noise (car-engine, opening/closing a
door, etc.), while the remaining smaller part includes audio elements
that are typical for action, like gun-shots or explosions. As the usual
audio elements can be found in any other (e.g. romantic) movie
segment as well, it is clear that only this small set of temporal seg-
ments containing specific audio elements is the most important to
characterize the content of a particular movie segment.

We apply the similar reasoning as above to extend our “importance”
measure by other relevant indicators. The total durations and the
average lengths of each occurrence of an audio element are, typi-
cally, very different for various sounds in a stream. Background
sounds are usually majorities in streams while key audio elements
are minorities. For instance, in a situation comedy, both the total
duration and the average length of the speech are considerably
longer than that of the laughter. Further, different sounds usually
have different variations of their occurrence lengths. Key elements
usually have relatively consistent length in each occurrence, as op-
posed to the strongly varying lengths of the segments of background
sounds. For example, the sound of applause in a tennis game usu-
ally has similar length in each of its occurrences. The same holds for
the large majority of gunshots and explosions in action movies.
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Based on the above observations, we propose four heuristic impor-
tance indicators for spotting key audio elements. One of these indi-
cators is the occurrence frequency related, and the other three are
designed to capture the observations made regarding element dura-
tion. For a given audio element ¢; in the stream S, these indicators
are defined as follows:

e Element Frequency is used to take into account the occurrence

frequency of ¢; in S:
ofrq(c;»S) = exp(~(n; =0 n,,)* (207,) (5.1

Here, n; is the occurrence number of the audio element ¢;, and
Tayg and ny, are the corresponding mean and standard deviation
of the occurrence numbers of all the audio elements. The factor
o adjusts the expectation of how often the key elements can
likely occur. By this indicator, the audio elements that appear
far more or far less frequently than the expectation a-n,, are
punished.

o Element Duration takes into account the total duration of ¢; in
the stream:

edur(c;,S) = exp(—(d; — -d,,, )" 1(2d?))) (5.2)

Here, d; is the total duration of ¢;, and d,,, and d,,, are the cor-
responding mean and standard deviation. The factor # adjusts
the expectation of key audio element duration, and has a simi-
lar effect as a.
e Average Element Length takes into account the average seg-
ment length of ¢; over all its occurrences, as:
elen(c;,S) = exp(=(l; = ¥ 1,g)* 1212,)) (53)
Here, /; is the average segment length of ¢;, and /,,, and [, are
the corresponding mean and standard deviation of all the ele-
ments. The factor y is similar to « and £ and adjusts the expec-
tation of the average segment length of key audio elements.
e Element Length Variation evaluates the constancy of the seg-
ment lengths of the audio element ¢; in S:
evar(c;,S) =exp(—v; (J-1,)) (5.4)
Here, v; is the standard deviation of the segment lengths of ¢,
and ¢ adjusts the tolerance of v; related to /..

avg

The heuristic importance indicators defined above can be tuned
adaptively for different applications, based on the available domain
knowledge. For example, to detect unusual sounds in surveillance
videos, the factor a, f, and y could be set relatively small, since such
sounds are not expected to occur frequently and are of a relatively
short duration. On the other hand, to detect the more repetitive key
sounds like laughter in situation comedies, we may decrease ¢ cor-
respondingly, as the segments of such sounds typically have a more-
or-less constant length. Assuming the above four indicators are in-
dependent with each others, in our system the following “impor-
tance” score is proposed to measure the importance of each audio
element:

score(c;,S) = efiq(c;,S) - edur(c;,S)-elen(c;,S) - evar(c;,S) (6)

The key elements are finally selected as the first K audio elements
with the highest importance scores, while the remaining audio ele-
ments are further referred to as background elements. The number of
key audio elements, K, is chosen as:

K =argmax, {Zfﬁd; <m-Lg} 7

where d'; denotes the duration of the i" audio element on the list of
audio elements ranked in the descending order based on the score



(6), Ly is the total duration of S, and # is a tuning parameter that can
be set depending on the target applications. For instance, # can be
set to a relatively small value when detecting unusual sounds in a
surveillance video, as the total duration of unusual sounds compared
to Lg is expected to be small. In our experiments, 7 is set to 0.25, as
we assume that the key audio elements will not cover more than
25% of the whole input audio signal.

3. AUDITORY SCENE CATEGORIZATION

Having localized the audio segments containing the key- or back-
ground audio elements, we now use this information to detect and
classify higher-level auditory scenes based on the type of audio
elements they contain. For both of these tasks, we exploit the co-
occurrence phenomena among audio elements, and in particular, of
the key audio elements. In general, some (key) audio elements will
rarely occur together in the same semantic context. This is particu-
larly useful in detecting possible brakes (boundaries) in the semantic
content coherence between consecutive auditory scenes. On the
other hand, the auditory scenes with similar semantics usually con-
tain similar sets of typical key audio elements. For example, many
action scenes will contain gunshots and explosions, while a scene in
a situation comedy is typically characterized by a combination of
applause, laughter, speech and light music. In this sense, the rela-
tion between the co-occurrence of audio elements and the semantic
similarity of auditory scenes can be exploited for scene categoriza-
tion.

3.1 Key Element-based Scene Detection

Fig. 4 illustrates an example audio element sequence, where the
shaded segments are the key element segments and the white seg-
ments are the background segments. To locate the boundaries be-
tween auditory scenes in such a continuous audio stream, an intui-
tive idea is to measure the semantic affinity between two adjacent
key-element segments in the audio stream. If this affinity is low,
then there is a potential auditory scene boundary between these
segments. However, it is usually difficult to measure the semantic
affinities among key elements from the low-level features. In our
approach, the affinity measure is based on the following assump-
tions: i) there is a high affinity between two segments if the corre-
sponding key audio elements usually occur together, and ii) the
larger the time interval between two adjacent key element segments,
the lower their affinity.

Based on the above assumptions, we define the affinity between the
" and (1+1)" key element segments as:

a; 41 = exXp(—Ey gy lug)-exp(=ty 4/ T,) ®)

where k(/) is the label of the /" key element segment in the stream.
Ej; is the average occurrence interval between the i" key element and
the j”’ key element, u is the mean of all the £y, 1., is the time inter-
val between the two key element segments, and 7, is a scaling factor,
which is set to 16 seconds in our experiments, following the discus-
sions on human memory limit [23]. In equation (8), we use expo-
nential function to simulate the affinity distribution; and its two
parts actually reflect the two assumptions we made above.

Using (8), an affinity curve can be obtained, as illustrated in Fig. 4.
Thresholding the obtained curve will result in coarse auditory scenes,
indicated by the intervals S, S5 and S in Fig. 4. We set this
threshold experimentally as u,+o,, where y, and o, are the mean and
standard deviation of the affinity curve, respectively.
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Fig. 4. An illustration of the key audio element-based auditory
scene detection, where the shaded and white segments represent
the key- and background audio elements, respectively. The
scenes are first located by measuring the affinities between adja-
cent key element segments, as shown by the intervals S, 8% and
S";. Then, the scene boundaries are further revised by merging
the surrounding background segments, as shown by the intervals
Sl’ SZ’ and S3.

The boundaries of the coarsely located auditory scenes are defined
by the key elements. To determine these boundaries more precisely,
we need to find out whether the surrounding segments of back-
ground elements could be merged into the corresponding auditory
scene, so we can adjust the boundaries accordingly. In our approach,
a background segment is merged into an auditory scene if its affinity
with the key element on the scene boundary is large enough (larger
than a threshold). Moreover, if a background segment has a suffi-
cient affinity to both surrounding scenes, it is merged with the scene
whose key element on the corresponding scene boundary has a lar-
ger affinity value with the background element.

In the implementation of the above mechanism, the affinity between
the key element and the background element is based on the crite-
rion similar to equation (8) that evaluates the average occurrence
interval between them. Again, a pre-defined threshold, set experi-
mentally, is used to evaluate the affinity, in the same way as the
threshold in Fig. 4. After the boundary refinement, the coarse audi-
tory scenes are updated, as the intervals Sy, S, and S5 show in Fig. 4.

As stated above, we base the detection of auditory scene boundaries
on the comparison of two subsequent key audio elements, which
may be a little strict. A more intuitive approach would be to allow
more flexibility in the ordering of key audio elements, as long as
their mutual distance remains acceptable. In this way we would
come close to the classical video scene segmentation approaches,
such as those based on fast-forward linking [11] or content recall
[13]. In our approach, we choose to stick to the strict criterion (8) in
order to prevent that two semantically different auditory scenes are
seen as one. Clearly, the proposed method will most likely result in
an over-segmentation of the input audio stream. This, however, is
not a problem as the semantically similar scenes will be grouped
together in the following step.

It is also noted that, with this scheme, some background elements
may not belong to any auditory scene, or, in other words, each of
these background elements could also be considered as an individ-
ual auditory scene. For these scenes, the categorization can be sim-
ply based on (or the same as) their element label. Therefore, in the
following scene categorization and evaluations, we don't consider
the auditory scenes which contain only a background element, and
just consider those auditory scenes which contain both key- and
background audio elements.



3.2 Co-clustering based Scene Categorization
In the proposed approach, audio elements are used as mid-level
representations of the auditory scene content. Thus, for the auditory
scene categorization, the semantic similarity between auditory
scenes can be measured based on the audio elements they contain.
Although previous works usually use key audio elements to infer the
semantics of auditory scenes [6][25], in our approach, all the audio
elements are used in the auditory scene categorization, since those
background elements can be considered as the context of the key
elements, and thus can also provide extra useful information in the
semantic grouping.

In scene categorization, it is useful to consider the “grouping” ten-
dency among audio elements [4]: some audio elements usually oc-
cur together in the scenes of similar semantics, such as the co-
occurrence of gun-shots and explosions in war scenes, and of cheer
and laughter in humor scenes. Clearly, in a reliable similarity meas-
ure of auditory scenes, the “distance” between two audio elements in
a same “group” should be smaller than those among different ele-
ment “groups” [4]. Therefore, to obtain reliable results of auditory
scenes categorization, audio elements also need to be grouped ac-
cording to their co-occurrences in various auditory scenes. Essen-
tially, the processes of clustering auditory scenes and revealing
likely co-occurrences of audio elements can be considered depend-
ent on each other [4]. That is, the information on semantic scene
clusters can help reveal the audio elements co-occurrence and vice
versa.

An analogy to the above can again be found in the domain of text
document analysis, where a solution in the form of a co-clustering
algorithm was recently proposed for unsupervised topic-based
document clustering, which exploits the relation between document
clusters and the co-occurrences of keywords. Unlike traditional one-
way clustering such as k-means, co-clustering is a two-way cluster-
ing algorithm. With this algorithm, the documents and keywords are
clustered simultaneously based on the concept of mutual informa-
tion.

In our approach, the information-theoretic co-clustering [7] is
adopted to co-cluster the auditory scenes and audio elements. More-
over, we also extend the algorithm with the Bayesian Information
Criterion (BIC) to automatically select the cluster numbers for both
auditory scenes and audio elements.

3.2.1 Information-Theoretic Co-clustering Algorithm
The information-theoretic co-clustering can effectively exploit the
relationships among various audio elements and auditory scenes,
based on the mutual information theory [7]. Following the work
introduced in [7], we suppose there are m auditory scenes and n
audio elements, and all the auditory scenes could be considered as
being generated by a discrete random variable S, whose value s is
taken from the set {sy, ..., sp,}; and similarly, all the audio elements
are generated by another discrete random variable £, whose value e
is taken in the set {ej, ..., e,}. Let p(S, E) be a matrix, with each
element p(s, e) representing the co-occurrence probability of an
audio element e and the auditory scene s. Then, the mutual informa-
tion I(S; E) is calculated as:

I(S;E) =3 >, p(s,e)log, (p(s.e)/ p(s)p(e)) ©)
It was proved in [7] that an optimal co-clustering should minimize
the loss of mutual information after the clustering, i.e. the optimal
clusters should minimize the difference:
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I(S;E)~1(S"3E") = KL(p(S. E),q(S, E)) (10)
where S'={s"}, ..., s} and E'={e’,, ..., €'}} are k and [ disjoint
clusters formed from the elements of S and E. KL(*) is the Kullback-
Leibler (K-L) divergence, and ¢(S.E) is also a distribution in the
form of an m xn matrix, given as:

(11)

After some transformations, equation (10) can be further expressed
in a symmetrical manner [7]:

KL(p,q)=Y. Y+ P(KL(P(E|5),q(E|s")) (12.1)

KL(p.q) =2 2o POKL(P(S|).q(S|e")  (122)
Expressions (12.1) and (12.2) show that the loss of mutual informa-
tion can be minimized by minimizing the K-L divergence between
p(Els) and g(E|s"), or between p(Sle) and ¢(Sle”). This leads to the
following iterative four-step co-clustering algorithm, which was
proved to monotonically reduce the loss of mutual information and
converge to a local minimum [7]:

q(s,e) =p(s*,e*)p(s|s*)p(e|e*), wherese s ,ec e

Algorithm II: Co_Clustering (p, &, I)
1) Initialization: Group all auditory scenes into & clusters, and the
audio elements into / clusters. These initial clusters are formed
such that their centroids are “maximally” far apart from each
other [8]. Then calculate the initial value of the g matrix.
Updating row clusters: First, for each row s, find its new cluster
index i as:

i =argming KL(p(E | s).q(E|s,)) (13)
Thus the K-L divergence of p(Els) and g(Els") decreases in this
step. With the new cluster indices of rows, update the g matrix
according to equation (11).
Updating column clusters: Based on the updated ¢ matrix in
step 2, find a new cluster index j for each column e as:

J=argmin, KL(p(S |€),q(S|¢))) (14)
Thus the K-L divergence of p(Sle) and g(Sle") decreases in this
step. With the new cluster indices of columns, update the g ma-
trix again.
Re-calculate the loss of mutual information using equation
(10). If the change in the loss of mutual information is smaller
than a pre-defined threshold, stop the iteration process and re-
turn the clustering results; otherwise go to step 2 to start a new
iteration. To increase the quality of the local minimum, the lo-
cal search strategy is applied [8].

2)

3)

4

Since what we know about the input audio stream is the presence
and duration of discovered audio elements per each detected audio
scene, the occurrence probability of the audio element ¢; and the
auditory scene s; is approximated in our implementation simply by
the duration percentage occry; of e; in s;. If an audio element doesn't
occur in the scene, its duration percentage is set to zero. Finally, to
satisfy the requirement that the integral (sum) of the co-occurrence
distribution is equal to one, the co-occurrence matrix p(S, E) is nor-
malized across the whole matrix, that is:

p(s;,e;) = occry /Z:’i1 z;zloccrﬁ (15)
3.2.2 BIC-based Cluster Number Estimation

In the above co-clustering algorithm, the row cluster number & and
the column cluster number / are assumed to be known. However, in
an unsupervised approach, it's not possible to specify the cluster
numbers beforehand.



In our proposed approach, the Bayesian Information Criterion (BIC)
is utilized to select the optimal cluster numbers for co-clustering. In
general, the BIC searches for a tradeoff between the data likelihood
and the model complexity, and has been successfully employed to
select the optimal cluster number for K-means clustering [20]. In our
co-clustering scheme, assuming that the model preserving more
mutual information would better fit the data, the data likelihood is
described by the logarithm of the ratio between the mutual informa-
tion after clustering I(S"; E") and the original mutual information
I(S; E). As co-clustering is a two-way clustering, the model com-
plexity here should consist of two parts: the size of the row clusters
(nxk: k cluster centers of dimensionality n) and the size of the col-
umn clusters (mx!/: [ cluster centers of dimensionality m). According
to the definition of BIC [4], these two parts are further modulated by
the logarithm of the numbers in row and column, i.e. logm and logn,
respectively. Thus, the BIC in our algorithm can be formulated as:

BIC(k,l) = Alog(I(S";E")/ I(S;E)) — (nk logm +mllogn)/2 (16)

In our implementation, 4 is set experimentally as mxn, which is the
size of the co-occurrence matrix. The algorithm searches over all the
(k, ) pairs in a pre-defined range, and the model with the highest
BIC score is chosen as the optimal set of cluster numbers.

4. EVALUATION AND DISCUSSION

In this section, we present the evaluation results obtained for the
proposed approach on the basis of several composite audio streams,
and addressing both the audio element discovery and auditory scene
categorization.

4.1 Database Information

The proposed framework was evaluated on sound tracks extracted
from various types of video, including sports, situation comedy,
award ceremony, and movies, and in the total length of about 4
hours. These sound tracks contain an abundance of different audio
elements, and are of different complexity, in order to provide a more
reliable base for evaluating the proposed approach under different
conditions. For example, in the test dataset, the sound track of the
tennis game is relatively simple, as compared to a far more complex
sound track from the war movie “Band of Brothers - Carentan”.

Table 1. Information of the experimental audio data

No. Video category duration
Ax Tennis Game sports 0:59:41
A Friends situation comedy | 0:25:08
As| 59" Annual Golden Globe Awards award ceremony | 1:39:47
As Band of Brothers - Carentan war movie 1:05:19

Detailed information on the sound tracks we used is listed in Table 1.

All the audio streams are in 16 KHz, 16-bit and mono channel for-
mat, and are divided into frames of 25ms with 50% overlap for fea-
ture extraction. To balance the detection resolution and the compu-
tational complexity, the length of the sliding window introduced in
Section 2.1 is chosen as one second, with 0.5 seconds overlap.

4.2 Audio Element Discovering and Key Ele-
ment Spotting

In this section, the performance of the proposed unsupervised ap-
proach to audio element discovery and key element spotting is
evaluated. Due to the page limitation, we do not list all the detailed
performance figures for all test audio streams. Instead, we first pro-
vide an exhaustive performance presentation on the example of one
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test audio stream, and then give a summary of performance figures
obtained on all other audio streams. In each evaluation step, a dif-
ferent test stream is chosen as an example.

4.2.1 Audio Element Discovery

In the spectral clustering for audio element discovery, the bounda-
ries of the search ranges for selecting the numbers of clusters are set
experimentally as k,,;,=2 and £, =20 for all the sound tracks. More-
over, to illustrate the effectiveness of the proposed spectral cluster-
ing scheme with context-based scaling factors, we compare this
scheme with the standard spectral clustering.

Table 2. Comparison of the results of the standard spectral clus-
tering and the spectral clustering with context-based scaling
factors on the sound track of “Friends” (A,) (unit: second)

No. N S A L L&M | M |precision
E & 1 42 2 0.5 0.944
X 2 7 [11325] 1 8 0.986
£2 [ 3 5 1.000
235 4 1 2 215 0.986
5285 3 8 | 315 0.741
- 6 | 05 46.5
5% [7 [ o5 25 | %0
& °  |recall| 0.778 | 0.996 [0.833] 0.929 | 1.000 |1.000| 0.978
1 [505 [ 435 0.537
T 2 1.5 | 5275 4 2
SEE[3 290 | 6 2 1 7 | 0977
§3g| 4 267 1.5
©w 3 5 2 8.5 224 | 285 | 42 | 0734
recall| 0.935 | 0.954 [0.000] 0.968 | 0.000 [0.000] 0.901

Abbr. noise (N), speech (S), applause (A), laughter (L), and music (M)

Table 2 shows the comparison results of the two spectral clustering
algorithms on the sound track of “Friends”. In this experiment, we
obtained 7 audio elements using the spectral clustering with context-
based scaling factors, and only 5 audio elements using the standard
spectral clustering. To enable a quantitative evaluation of the clus-
tering performances, we established the ground truth by combining
the results obtained by three unbiased persons who analyzed the
content of the sound track and the obtained audio elements. This
process resulted in 6 sound classes that we labeled as noise (N),
speech (S), applause (A), laughter (L), music (M), and laughter
with music (L&M). In Table 2, each row represents one discovered
audio element and contains the durations (in seconds) of its occur-
rences in view of the ground truth sound classes. We manually
grouped those audio element occurrences associated to the same
ground truth class (indicated by shaded fields in Table 2), and then
calculated the precision, recall and accuracy (the duration percent-
age of the correctly assigned audio segments in the stream) based on
the grouping results. As shown in Table 2, the accuracies of the two
algorithms are in average 97.8% and 90.1%, respectively, for the
sound track of “Friends” (A,).

Table 2 shows that each class in the ground truth can be covered by
the audio elements discovered with the spectral clustering using
context-based scaling factors. In the standard spectral clustering, the
sounds of applause (A), music (M) and laughter with music (L&M)
were missed and falsely included into other clusters, while speech
(S) is divided over three discovered audio elements. As demon-
strated in Section 2.2.2, this phenomenon may be caused by the
unharmonious distributions of various sound classes in the feature
space. For instance, the feature distribution of speech (S) is rela-
tively sparse and is with large divergence, while those of music (M)



and laughter with music (L&M) are more “tight”. The influence of
unharmonious sound distributions can be reduced by setting differ-
ent scaling factors for different data densities, as done in our ap-
proach.

Table 3. Performance comparison between the spectral cluster-
ing with and without context-based scaling factors on all the
sound tracks

. Spectral clustering with con-
No. | #gc Standard spectral clustering l:ext-based scalir;gg factors
#inc /| #miss accuracy #inc / #miss accuracy
A | 6 7/3 0.747 7/0 0.951
Ay | 6 5/3 0.901 7/0 0.978
A3 | 7 8/2 0.814 11/0 0.928
Ay | 6 5/3 0.621 16/0 0.930

The performance of the audio element discovery on all test sound
tracks is summarized in Table 3, which lists the number of ground
truth sounds (#gc), the number of discovered audio elements (#nc),
the number of missed ground truth audio elements (#miss), and the
overall accuracy. Table 3 shows that by using the standard spectral
clustering algorithm, around 44% of sound classes in the ground
truth are not properly discovered, and the average accuracy is only
around 77.1%. The table also shows that the spectral clustering with
context-based scaling factors performs better on all the test sound
tracks, and achieves an average accuracy of around 94.7%. In par-
ticular, no sound classes in the ground truth are missed in the ob-
tained set of audio elements. Hence, the use of context-based scaling
factors in the spectral clustering of complex audio streams can nota-
bly improve the clustering performance.

4.2.2 Key Audio Element Spotting

Based on the discovered audio elements, the heuristic rules pro-
posed in Section 2.4 are employed to automatically spot the key
audio elements. In the experiments, the parameters a, f, y, and J in
equation (5.1)-(5.4) are simply set as 1 without hard tuning, assum-
ing that the key element in the streams has medium occurrence fre-
quency and duration, such as the applause in the tennis game (A,)
and the Jaughter in the situation comedy (A,).

Table 4 contains the results of the key elements spotting in the
sound track of “Tennis” (A,). For 7 discovered audio elements in
the stream, the table lists their total duration (dur), the number of
segments included in the corresponding clusters (nseg), and the
mean and standard deviation of the segment length (avgl and stdl).
Based on these properties, the importance score of each audio ele-
ment is computed and an “educated guess” is made for the most
likely number of key elements using equation (7). In the tennis
soundtrack, we finally obtain two key elements, applause with
speech and pure applause, as indicated by the shaded fields in Table
4.

It is noted that, in Table 4, the cluster 7 which contains ball-hit
sound was not labeled as a key audio element, although one could
expect that ball-hit is also a key element in the case of a tennis se-
quence. Actually, the obtained importance score for this cluster also
shows that it is an excellent candidate for being the key audio ele-
ment. However, due to the finite resolution of the stream decompo-
sition, defined by the sliding-window overlap of 0.5s, in our ap-
proach, the segments of ball-hit usually constrain long-time silence
or noise. Therefore, in audio element clustering, the segments of
ball-hit are mixed with an amount of silence or noise segments in
the obtained cluster 7. Thus, cluster 7 in fact describes background
sounds in tennis match and is not taken as a ground truth key ele-
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ment in this paper. It is also not selected as a key element in the
experiments, since the overall duration of this cluster — when added
to the overall durations of the first two key audio elements — is too
large for the threshold set in equation (7).

Table 4. Key element spotting on the track of “Tennis” (A,)

No Description dur nseg avgl stdl score
1 clean speech 1658.0 | 250 6.632 | 7.984 | 0.020
2 | applause with speech | 341.0 108 3.157 | 1.721 | 0.928
3 pure music 22.0 1 22.00 | 0.000 | 0.008
4 pure applause 319.5 106 3.014 | 1.961 | 0.908
5 silence 837.5 173 | 4.841 | 3.599 | 0.633
6 noise 96.5 32 3.016 | 2.502 | 0.399
7 | silence with ball-hit | 307.5 145 2.121 | 1.278 | 0.820

Table 5. Discovered key elements in all the sound tracks
No.|ko/dury | kidur | rec. / prec.| Key elements (in descending order)
A 2 2 0.926 applause with speech,

' 11:16 [11:01 0.947 pure applause
A 3 4 0.998 laughter, noise’,
21 04:29 |06:10]  0.726 laughter with music, applause
4 5 0.869 applause, .app.lause with light-music1, ap-

As 27:01 |24:49| 0946 plause with hght-must, applause with

dense-music, applause with speech

A 2 1 0.743 gun-shot mixed with explosion,

4114:38 |11:54] 0913 pure gun-shot™

Note: (*) Falsely spotted key elements; (**) Missed key elements

The spotted key audio elements from all test sound tracks are shown
in Table 5. For each sound track, the number of ground truth key
elements (ky) and the total duration of corresponding audio seg-
ments (dury) are listed, as well as the spotted key element number
(k) and their total duration (dur). The ground truth is established
here again by combining the results obtained by three unbiased
persons who analyzed the content of the test sound tracks in the
search for the most characteristic sounds and sound combinations.
Based on these values, the recall and precision are computed. The
table shows that the performance on relatively simple audio streams
(A, and Aj;) is satisfying. All the key elements in the ground truth
are well spotted and no false alarms are introduced. The average
recall and precision are above 90%. On the other hand, for complex
audio streams such as the situation comedy TV (A,) and the war
movie (A,), some false alarms are introduced and some key ele-
ments are missed. For example, the noise in A, is falsely detected as
key element, since it has similar occurrence frequency and duration
as the expected key elements. Also in Ay, some real key elements
such as the pure gunshot are missed, since the characteristics of key
elements in complex audio streams vary too large and are inconsis-
tent. These problems indicate that the heuristic rules proposed in this
paper can not yet give a complete description to all the characteris-
tics of key elements in complex audio streams, and need to be im-
proved in the future works. However, the overall performance of key
element spotting using the proposed rules on our testing audio
streams is still acceptable, and more than 90% (10 out of 11) of the
key elements in the ground truth can be properly spotted.

4.3 Auditory Scene Categorization

To better evaluate the performance of the auditory scene categoriza-
tion with co-clustering algorithm, we first do some minor correc-
tions in the key element spotting based on the available ground truth
information. That is, we delete the noise from the key element list of
A,, and add the pure gunshot to the list of A4. Then, the auditory
scenes are automatically located with the strategy proposed in Sec-
tion 3.1. Finally, we again employed three persons to manually



group these scenes into a number of semantic categories. Based on
this manual grouping, we established the ground truth for further
evaluation.

To illustrate the effectiveness of the proposed co-clustering scheme
for scene categorization, we compare it with a traditional one-way
clustering algorithm. Here, the X-means algorithm [20], in which
BIC is also used to estimate the number of clusters, is adopted for
the comparison. We search for the proper cluster number K in the
range of 1<K<10 in the X-means clustering; while in the co-
clustering, we search for the optimal number & of auditory scene
categories and the optimal number / of audio element groups in the
ranges of 1<k<10 and 1</<n (n is the number of audio elements in
the corresponding sound track), respectively.

Table 6. Detailed results comparison between the X-means and
the Co-clustering for auditory scene categorization on the sound
track of the “59™ Annual Golden Globe Awards” (A;)

No. | § S S; | prec. No. | S S, S; [prec.
1 ]2l 1/ 8|1 ]0
2 |26 1.000 2 1401

gl 3 |11 31131 0| 0 [0947
5| 4 33 1000/ 2 4 [17] 0 [0
Zl 5 [ 3 21 (08752 5 [12 ] 1 [0

% [recall|0.951]1.000]1.000[ 0974 ]3¢ 6 | 3 [ 151 0 |, o),
o 7 2 [1B]1
8 | 1|1 ]7

o T 1T T T2 1072

recall|0.885]0.8480.900{0.878

Note: (S1) scenes of hosts or winners coming to or leaving the stage; (Sz)
scenes of audience applauding the winners; (S3) scenes of hosts introducing
the winner candidates.

Table 6 shows the detailed comparison results of the two clustering
algorithms on the example sound track of the “59™ Annual Golden
Globe Awards” (A3). In this stream, there are totally 115 obtained
scenes, which are manually classified into 3 semantic categories: 1)
the scenes of hosts or winners coming to or leaving the stage (Sy),
which are mainly composed of applause and music; 2) the scenes of
audience applauding the winners (S,), and 3) the scenes of hosts
introducing the winner candidates (S3), which are mainly composed
of applause and speech.

In the experiments, we obtained 5 auditory scene categories using
the information-theoretic co-clustering and 9 scene categories by the
X-means. In Table 6, each row represents one obtained cluster and
the distribution of the auditory scenes contained therein across the
ground truth categories. Similar to Table 2, we also manually group
those clusters associated to the same ground truth category (as indi-
cated by the shaded fields in Table 6), and then calculate the corre-
sponding precision and recall per grouped cluster. The results re-
ported in Table 6 show that the co-clustering algorithm can achieve
better performance in auditory scene categorization. First, the num-
ber of auditory categories obtained by co-clustering is closer to the
number of ground truth categories, than that achieved with the X-
means. In other words, the co-clustering can provide a more exact
approximation of the actual semantic content classes existing in
audio streams. Second, co-clustering performs better than the X-
means clustering, both in terms of precision and recall. In average,
around 97.4% of the scenes are correctly clustered with the co-
clustering algorithm, while the accuracy of the X-means is 87.8%.

The performance comparison between the X-means and the co-
clustering on all the sound tracks is summarized in Table 7. Similar

636

to the categorization results on Aj, co-clustering achieves higher
accuracies on all test sound tracks, and also has a closer approxima-
tion of the ground truth categories in all cases.

Table 7. Performance comparison between the X-means and the
Co-clustering on all the sound tracks

Labeled seman- X-means Co-clustering
No.| .

tic group num. | Group num.| Accuracy |Group num.| Accuracy
Ay 3 7 0.900 4 0.930
A, 3 5 1.000 4 1.000
A3 3 9 0.878 5 0.974
As 2 6 0.839 4 0.871

Furthermore, with the co-clustering algorithm we also obtain several
audio element groups for each test audio stream, as shown in Table
8. These clustering results realistically reveal the grouping (co-
occurrence) tendency among the audio elements, as explained in
Section 3.2. For example, in the “59" Annual Golden Globe
Awards” ceremony (Aj), we observed that the sounds of applause
with light-music and applause with dense-music usually occurs
together in the scenes of “the hosts or winners coming to or leaving
the stage”, and they are correctly grouped together with the co-
clustering algorithm.

Table 8. The audio element groups obtained using the co-
clustering algorithm on each sound track

No.|#G audio element groups

4 {clear speech}; {applause with speech, silence}; {pure music};
{pure applause, silence, silence with ball-hit}

3 {noise}; {laughter, laughter with music};

{musicl, music2, speech, applause}

{speechl, speech2, speech3, applause with speech};
{applause}; {music with speech, music}; {noise}

{applause with dense-music, applause with light-musicl, applause
with light-music2};

{speech with sparse gun-shot, gun-shot mixed with explosion, purg
igun-shot }; {heavy noise, noise, speech with noise};
{speechl,speech2, speech3, speech4, silencel, silence2, silence3,|

Ay

Az

A3| 5

lapplause, music with speech}; {music}

5. CONCLUSIONS

In this paper, an unsupervised approach is proposed to discover
semantic auditory content in composite audio streams. In this ap-
proach, a spectral clustering-based scheme is presented to segment
and cluster the input stream into audio elements. By sorting the
obtained elements according to their importance scores, key audio
elements are discovered and then used to locate the potential audi-
tory scenes in audio streams. Finally, an information-theoretic co-
clustering based categorization approach is utilized to group the
auditory scenes with similar semantics, by exploiting the relations
among different audio elements and auditory scenes. It is noted
although in these steps there are a lot of tuning parameters, most of
them can be set simply and adaptively, without hard tuning. It also
indicates the generality of the proposed approach. Experimental
evaluations have shown that the proposed unsupervised approach
can achieve very encouraging results on various audio streams, both
with respect to audio elements discovery and key audio element
spotting, and to auditory scenes categorization.

While the results reported in this paper are promising, the proposed
solution for audio content discovery still leaves considerable room
for further investigation and improvement. For instance, the heuris-
tic rules used for key element spotting and auditory scene location



may not always be capable of handling highly complex content to be
found in some audio streams. We aim at making these rules more
robust and reliable in our future works, for example, by considering
the relationships among various importance indicators in key ele-
ment spotting.
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