
An FPTAS for Bargaining Networks with Unequal Bargaining

Powers

Yashodhan Kanoria∗

Department of Electrical Engineering

Stanford University

Email: ykanoria@stanford.edu

Abstract

Bargaining networks model social or economic situations in which agents seek to form the
most lucrative partnership with another agent from among several alternatives. There has been
a flurry of recent research studying Nash bargaining solutions (also called ‘balanced outcomes’)
in bargaining networks, so that we now know when such solutions exist, and also that they can
be computed efficiently, even by market agents behaving in a natural manner.

In this work we study a generalization of Nash bargaining, that models the possibility of
unequal ‘bargaining powers’. This generalization was introduced in [KB+10], where it was shown
that the corresponding ‘unequal division’ (UD) solutions exist if and only if Nash bargaining
solutions exist, and also that a certain local dynamics converges to UD solutions when they exist.
However, the bound on convergence time obtained for that dynamics was exponential in network
size for the unequal division case. This bound is tight, in the sense that there exists instances on
which the dynamics of [KB+10] converges only after exponential time. Other approaches, such as
the one of Kleinberg and Tardos, do not generalize to the unsymmetrical case. Thus, the question
of computational tractability of UD solutions has remained open.

In this paper, we provide an FPTAS for the computation of UD solutions, when such solutions
exist. On a graph G = (V,E) with weights (i.e. pairwise profit opportunities) uniformly bounded
above by 1, our FPTAS finds an ǫ-UD solution in time poly(|V |, 1/ǫ). We also provide a fast local
algorithm for finding ǫ-UD solution, providing further justification that a market can find such a
solution.

∗Part of this work was done while the author was visiting Microsoft Research New England. The author is supported
by a 3Com Corporation Stanford Graduate Fellowship.

1 Introduction

Bargaining networks serve as a model for various social or economic interactions where agents seek
to form pairs for mutual benefit (e.g. [CY92, Wil99, LY+01]). Situations which can be modeled as
such include a housing market with buyers and sellers, a job market with job seekers and employers,
or individuals seeking to form relationships and pair up. Bargaining networks are also referred to in
the literature as ‘assignment markets’ [Ro84] or ‘exchange networks’ [SW93, KT08].

A bargaining network is an undirected graph, with weights on the edges representing potential
profits if the corresponding pair of agents ‘trade’ with each other (see Section 1.1 for formal defi-
nitions). Profit from a trade is split between the participating agents as per a mutual agreement.
Agents are constrained on the number of trades they can participate in. A natural postulate in this
setting is that an outcome should be stable, i.e. no pair of agents should be able to do better by
each abandoning a current partner and trading with each other instead. The solution concept of
‘balanced outcomes’ [Ro84, CY92, KT08] postulates further that each pair of agents that trade must
play the pairwise Nash bargaining solution [Nas50], given the behavior of the rest of the network.
Thus, the ‘edge surplus’ (cf. Eq. (1)), or the excess over the sum of ‘best alternatives’ for each of
the two parties, is postulated to be split equally. This is called the balance condition.

However, it is natural to expect that such symmetry is rare in practice, and that some players
tend to have greater ‘bargaining power’ than others. Such bargaining power can arise due to a variety
of reasons. For example, a more patient player has more bargaining power, all else being equal. This
phenomenon is well known in the Rubinstein game [R82] where nodes alternately make offers to each
other until an offer is accepted – the node with less time discounting earns more in the subgame
perfect Nash equilibrium.

Empirical findings confirm this. A recent experimental study of such networks [CJ+10] found
that individual differences played a part in determining outcomes, including the observation that
patience correlated positively with earnings. A previous study even estimates and ‘corrects’ for the
effects of particular subject pairs to better uncover network structure effects [SW93]. This leads
us to ask if the concept of ‘balanced outcomes’ can be suitably generalized to account for such
asymmetry. It turns out that there is, in fact a simple generalization to the unsymmetrical case.
Our previous work [KB+10] introduced the generalized concept of unsymmetrical ‘unequal division’
(UD) solutions, and also characterized the existence of such solutions.

Somewhat surprisingly, the various algorithms devised to compute solutions in the symmetric
setting fail to generalize to the unequal division setting (see also Section 1.2.1). For example, the
algorithm of Kleinberg and Tardos [KT08] proceeds via a sequence of linear programs that maximize
the minimum ‘slack’. This does not seem to have a simple generalization to the asymmetric case.
Thus, the question of computational tractability of solutions for the unsymmetrical case in bargaining
networks has been open.

Besides computational tractability, another important question is “Can a market find the solution
concept on its own?” In this line of work, one looks for simple, local mechanisms that converge to a
solution concept. Azar et al [AB+09] proposed such a local mechanism for the bargaining networks
problem. The convergence result in that work showed an exponential bound on convergence time
for the symmetric case. Also, it does not generalize to the unsymmetrical case. Our recent work on
local dynamics in bargaining networks [KB+10] introduced a new analysis technique that provides
a proof of convergence even for the unsymmetrical case, and a polynomial bound on convergence to
an approximate solution for the symmetrical case. However, a crucial issue (see Section 4 of this
paper) led to a worst case exponential time to convergence in the unsymmetrical case. In this paper
we resolve this issue, providing a new efficient local algorithm for the unsymmetrical case.

1

Contributions. This work makes the following contributions in the context of bargaining networks:

• We establish computational tractability for bargaining networks with unequal bargaining pow-
ers by providing the first FPTAS for the corresponding ‘unequal division’ solutions.

• We provide a simple local algorithm and show that it converges fast to approximate unequal
division solutions. Specifically, it is a two phase algorithm: (i) The first phase consists of finding
the maximum weight matching and a stable allocation using belief propagation [BSS05]. (ii)
The second phase consists of unsymmetrical edge balancing of the allocation, converging to an
approximate solution in polynomial time.

We note that the local algorithm we provide is similar to the one given by Azar et al [AB+09]
for the symmetrical case. In that work also there is a phase of matching using belief propagation,
followed by a phase of edge balancing. However, several critical differences in both the design and
the analysis of the algorithm enable us to overcome limitations of their approach.

1.1 Model

A bargaining network consists of an undirected graph G = (V,E) with positive weights on the edges,
denoted by (we, e ∈ E) ∈ (0,W]|E| (where W > 0 denotes an arbitrary bound on weights). Edges
represent potential ‘trades’, and weights are the corresponding ‘profits’. Players are constrained on
the number of trades they are allowed to participate in. For simplicity, we will work with the one
exchange rule, i.e. each player is allowed to participate in at most one trade. All our results easily
generalize to the case of arbitrary integral constraints on number of trades for each player.

If a pair of players trade with each other, the profit must be divided between them. Thus, a trade

outcome or just an outcome consists of a matching M between players, and an allocation γ ∈ R
|V |
+

such that γi + γj = wij for each pair (i, j) ∈ M , and for each node k ∈ V that is unmatched under
M , γk = 0.

Given a trade outcome (γ,M), we define implicit offers on all edges not in M . Let (x)+ ≡
max(x, 0). For any (i, j) ∈ E\M , node i offers node j an amount (wij − γi)+, the idea being that i
should be willing to switch partners if she can earn even slightly more. Thus, each node has a set
of well defined ‘alternatives’ to its current partner in M . A natural postulate is that an outcome
should be stable, i.e. for each node i, γi should be no smaller than the best alternative of node i
(if i is unmatched under M , she should receive no non-zero offers). The stability condition can be
concisely written as γi + γj ≥ wij for all (i, j) ∈ E\M .

Let ∂i denote the set of neighbors of node i in G. For each edge (ij) ∈ M , we define the ‘edge
surplus’ as the excess of wij over the sum of best alternatives, i.e.,

Surpij(γ) = wij − max
k∈∂i\j

(wik − γk)+ − max
l∈∂j\i

(wjl − γl)+ . (1)

We can think of each node in the network as having an inherent ‘bargaining power’, such that Surpij
should be split in a manner determined by the bargaining powers of i and j. We adopt a general
model where the surplus is postulated to be split as per a fraction rij ∈ (0, 1) for each matched edge
(ij) ∈ M . We call this correct division. Each rij can be an arbitrary number in the interval (0, 1),
independently for all edges.

Definition 1.1. A problem instance I consists of an undirected graph G = (V,E), with positive
weights (we)e∈E and split fractions (rij)(ij)∈E ∈ (0, 1)|E|. An arbitrary direction is chosen on each
edge for purposes of specifying the split fraction. If rij is specified, then it is implicit that rji = 1−rij .

2

Definition 1.2 (Correct division). An outcome (γ,M) is said to satisfy correct division if, for all
(ij) ∈M ,

γi = max
k∈∂i\j

(wik − γk)+ + rijSurpij (2)

where rji = 1− rij and Surpij is defined by Eq. (1).

Note that it follows from Eq. (2) and Eq. (1) that γj = wij − γi = maxl∈∂j\i (wjl − γl)+ + rjiSurpij .

Definition 1.3. An outcome (γ,M) is said to be an unequal division (UD) solution if it is stable
and satisfies correct division (cf. Definition 1.2).

1.2 Related work

We present here a short review of relevant related work.
Recall the linear programming relaxation of the maximum weight matching problem

maximize
∑

(i,j)∈E

wijxij ,

subject to
∑

j∈∂i

xij ≤ 1 ∀i ∈ V, xij ≥ 0 ∀(i, j) ∈ E . (3)

The dual problem to (3) is:

minimize
∑

i∈V

yi,

subject to yi + yj ≥ wij ∀(i, j) ∈ E, yi ≥ 0 ∀i ∈ V (4)

Sotomayor [Sot05] characterized the existence of stable outcomes in exchange networks.

Lemma 1.4 ([Sot05, KT08]). Stable outcomes exist if and only if the LP (3) has an integral optimum.
Further, if (γ,M) is a stable outcome, then γ is an optimum solution of the dual LP (4) and M
is a maximum weight matching. Conversely, if the LP (3) has an integral optimum, then for any
maximum weight matching M∗ and any optimum y∗ of the dual LP (4), (y∗,M∗) is a stable outcome.

The above lemma follows from the stability condition γi + γj ≥ wij for all (ij) ∈ M . It implies,
in particular, that all instances on bipartite graphs possess stable outcomes.

There have been several recent works on the symmetrical ‘balanced outcome’ solution concept
(corresponding to rij = 1/2 for all (ij) ∈ E), following a paper by Kleinberg and Tardos [KT08,
AB+09, BH+10, KB+10].

Though our previous work [KB+10] focuses on the symmetrical case, it also introduces unequal
division solutions. Further, it shows that unequal division solutions exist if and only if Nash bar-
gaining solutions exist.

Theorem 1.5 ([KB+10]). A problem instance admits a UD solution if and only if it admits a stable
outcome (which occurs iff the LP (3) has an integral optimum).

This generalizes a result of Kleinberg and Tardos for existence of balanced outcomes [KT08].
[KB+10] also shows that a certain local dynamics converges to UD solutions, when such solutions

exist. However, the bound on time to convergence is exponential in the network size (in contrast to
the symmetrical case), and this bound turns out to be tight in worst case (see Section 4). Here, we
resolve this issue, providing a new FPTAS for computing approximate UD solutions.

3

1.2.1 Relationship to Cooperative games

Recent work by Bateni et al [BH+10] shows that the bargaining network setting can be viewed as
a cooperative game, making this problem susceptible to a large body of literature (see also [Ro84]).
This literature defines various solution concepts such as nucleolus, kernel and prekernel, and also
investigates means to compute these solutions for various classes of games.1 It is noteworthy that
all the solution concepts studied are symmetric in the players. Whereas such concepts may form a
reasonable predictive framework in the absence of player specific information, we also want to ask
“Can the players reach an appropriate ‘solution’ when there is asymmetry?” To this end, we would
like to establish computational tractability in the asymmetric case.

However, a little investigation reveals that the approaches devised to compute various (symmetric)
solution concepts rely heavily on the symmetry in their respective definitions. For instance, the
polynomial time algorithm in Faigle et al [FKK01] for finding a point in the least core intersection
prekernel uses two components –a transfer scheme and a linear programming based update– neither
of which work in the unsymmetrical case.

The situation is similar with regard to simple ‘transfer schemes’ that converge to a solution
concept. For the general cooperative game problem, Maschler proposed a simple transfer scheme to
approximate points in the prekernel. A version of this scheme was shown to converge by Stearns,
and a simpler proof of convergence was provided by Faigle et al [FKK01], in the general cooperative
game setting. However, both proofs suffer from two drawbacks: (a) they depend on the symmetry
of the solution concepts, (b) the bound on convergence time (if any) is exponential in network size.
Essentially the same transfer scheme was used in Azar et al [AB+09] for bargaining networks (see
[BH+10] for the connection), and the proof of convergence suffered from the same drawbacks.

The current work addresses computational tractability for the asymmetric case in the bargaining
network setting, where an appropriate asymmetric solution concept can be readily defined.

1.3 Outline of the paper

We present our FPTAS in Section 2, along with a proof that it returns an ǫ-UD solution in polynomial
time. We present a fast local algorithm for this problem in subsection 2.1. Each of the algorithms
involve an iterative ‘rebalancing’ phase. Section 3 contains proofs of some key Lemmas used. In
Section 4, we demonstrate the importance of ensuring that we stay within the subset of stable
allocations in our iterative updates. This insight is critically used in our construction of an FPTAS.
Appendix B shows a polynomial time local ‘reduction’ from the problem of finding an ǫ-UD solution
to the problem of finding a maximum weight matching.

2 Main results

First we define an approximate version of correct division, asking that Eq. (2) be satisfied to within
an additive ǫ, for all matched edges.

Definition 2.1 (ǫ-Correct division). An outcome (γ,M) is said to satisfy ǫ-correct division if, for
all (ij) ∈M ,

|γi − max
k∈∂i\j

(wik − γk)+ − rijSurpij(γ)| ≤ ǫ (5)

where Surpij(·) is defined by Eq. (1).

1[BH+10] shows that stable, balanced outcomes in bargaining networks correspond to the core intersection prekernel.

4

We define approximate UD solutions as follows:

Definition 2.2. An outcome (γ,M) is an ǫ-UD solution for ǫ ≥ 0 if it is stable and it satisfies
ǫ-correct division (cf. Definition 2.1).

This is analogous to the definition of ǫ-Nash equilibrium (see, e.g. [DP09]).
It follows from Lemma 1.4 that ǫ-UD solutions exist iff the LP (3) admits an integral optimum.

This is the same as the requirement for existence of UD solutions (see Theorem 1.5). Our main result
is the following:

Theorem 2.3. There is a Poly(|V |, 1/ǫ) algorithm such that for any problem instance with weights
uniformly bounded by 1, i.e. (we, e ∈ E) ∈ (0, 1]|E|:

• If the instance admits a UD solution, the algorithm finds an ǫ-UD solution.

• If the instance does not admit a UD solution the algorithm returns a message unstable.

Our approach to finding an ǫ-UD solution consists of two main steps:

1. Find a maximum weight matching M∗ and a dual optimum γ (solution to the dual LP (4)) .
Thus, form a stable outcome (γ,M∗). Else certify that the instance has no UD solution.

2. Iteratively update the allocation γ without changing the matching. Updates are local, and
are designed to converge fast to an allocation satisfying the ǫ-correct division solution while
maintaining stability. Thus, we arrive at an ǫ-UD solution.

As mentioned earlier, this is similar to the approach of [AB+09]. The crucial differences (enabling
our results) are: (i) we stay within the space of stable outcomes, and (ii) our analysis of convergence.

First let us focus on obtaining an FPTAS using the steps above. Later we describe how to make
the algorithm local.

Step 1 can be carried out by finding a maximum weight matching M∗ (e.g. [GT91]) and also
solving the the dual linear program (4). For the dual LP, let V be the optimum value and let γ be
an optimum solution. We now use Lemma 1.4. If the weight of M∗ is smaller than V, we return
unstable, since we know that no stable outcome exists, hence no UD solution (or ǫ-UD solution)
exists. Else, (γ,M∗) is a stable outcome. This completes step 1! The computational effort involved
is poly(|V |).

In step 2, we fix the matching M∗, and rebalance the edges iteratively. It turns out to be crucial
that our iterative updates preserve stability. Section 4 demonstrates that the rebalancing procedure
can take an exponentially large time to reach an approximate UD solution if stability is not preserved.

We motivate the rebalancing procedure briefly, before we give a detailed description and state
results. Imagine an edge (i, j) ∈M∗. Since we start with a stable outcome, the edge weight wij is at
least the sum of the best alternatives, i.e. Surpij ≥ 0. Suppose we change the division of wij into γ′i,
γ′j so that the Surpij is divided as per the prescribed split fraction rij . Earnings of all other nodes
are left unchanged. Since rij ∈ (0, 1), γ′i is at least as large as the best alternative of i, as was the
case for γi. This leads to γ′i + γk ≥ wik for all k ∈ ∂i\j. A similar argument holds for node j. In
short, stability is preserved !

It turns out that the analysis of convergence is simpler if we analyze synchronous updates, as
opposed to asynchronous updates as described above. Moreover, we find that simply choosing an
appropriate ‘damping factor’ allows us to ensure that stability is preserved even with synchronous
updates. We use a powerful technique introduced in our recent work [KT08] to prove convergence.

5

Table 1: Local algorithm that converts stable outcome to ǫ-UD solution

Edge Rebalancing(Instance I, Stable outcome (γ,M), Damping factor κ, Error target ǫ)

1: Check κ ∈ (0, 1/2], ǫ > 0, (γ,M) is stable outcome

2: If (Check fails) Return error

3: γ0 ← γ

4: t← 0

5: Do

6: ForEach (i, j) ∈M

7: γreb

i ← maxk∈∂i\j(wik − γtk)+ + rijSurpij(γt)
8: γreb

j ← maxl∈∂j\i (wjl − γtl)+ + rjiSurpij(γt)

9: End ForEach

10: ForEach i ∈ V that is unmatched under M

11: γreb

i ← 0

12: End ForEach

13: If
(
‖γreb − γt‖∞ ≤ ǫ

)
Break Do

14: γt+1 = κγreb + (1− κ)γt

15: t← t+ 1

16: End Do

17: Return (γt,M)

Table 1 shows the algorithm Edge Rebalancing we use to complete step 2. Note that each
iteration of the loop can requires O(|E|) simple operations.

Correctness of Edge Rebalancing:

A priori, it is not clear that γt computed by Edge Rebalancing is a stable allocation (or even an
allocation) corresponding to M , for t > 0. The following lemma eliminates this concern.

Lemma 2.4. If Edge Rebalancing is given a valid input satisfying the ‘Check’ on line 1, then
(γt,M) is a stable outcome for all t ≥ 0.

This guarantees that Edge Rebalancing returns an ǫ-UD solution if it terminates (unless it
returns error). The lemma is a straightforward consequence of the constraint κ ≤ 1/2 (proof in
Section 3).
Convergence of Edge Rebalancing:

Next we need to show that the rebalancing algorithm terminates fast at an ǫ-UD solution. Note that
the termination condition ‖γreb − γt‖∞ ≤ ǫ on Line 13 is equivalent to ǫ-correct division.

Lemma 2.5. For any instance with weights bounded by 1, i.e. (we, e ∈ E) ∈ (0, 1]|E|, if Edge

Rebalancing is given a valid input, it terminates in T iterations, where

T ≤
⌈

1

πκ(1− κ)ǫ2

⌉
, (6)

and returns an outcome satisfying ǫ-correct division (cf. Definition 2.1). Here π = 3.14159 . . .

6

The proof is in Section 3.
Using Lemmas 2.4 and Lemmas 2.5, we immediately obtain our main result, Theorem 2.3.

Proof of Theorem 2.3. We showed that step 1 can be completed in time poly(|V |). If the instance
has no UD solutions then the algorithm returns unstable. Else we obtain a stable outcome and
proceed to step 2.

Step 2 is performed using Edge Rebalancing. The input is the instance, the stable outcome
obtained from step 1, κ = 1/2 (for example) and the target error value ǫ > 0. Lemmas 2.4 and 2.5
show that Edge Rebalancing terminates after at most ⌈1/(πκ(1 − κ)ǫ2)⌉ iterations, returning a
outcome that is stable and satisfies ǫ-correct division, i.e. an ǫ-UD solution. Moreover, each iteration
requires O(|E|) simple operations. Hence, step 2 is completed in O(|E|/ǫ2) simple operations.

The total number of operations required by the entire algorithm is thus poly(|V |, 1/ǫ).

2.1 A Fast Local Algorithm

Our algorithm Edge Rebalancing for step 2 is local/distributed, with each matched edge in the
graph being updated according to the same, time invariant rule. This rule is a simple function
of the edge parameters (weight, split fraction), and the current earnings of nodes in the 1-hop
neighborhood. Only the termination condition is centrally computed, but even that can be replaced
with fixed time T∗ =

⌈
1/(πκ(1 − κ)ǫ2

⌉
at which to terminate (cf. Section 3, Remark 3.1). Note that

T∗ is independent of network size. It is also worth mention that since stability is preserved, no player
ever has incentive to change her partner. Thus, Edge Rebalancing constitutes a plausible model
for behavior of market participants, after they have attained a stable outcome. Damping can be
interpreted as inertia to change in the status quo.

We now show that step 1 can also be accomplished by a fast local algorithm, when the LP (3)
has a unique optimum (this condition is generic, see Remark A.1, Appendix A).

The local algorithm we use is belief propagation for maximum weight matching [BSS05, BB+07,
SMW07, HuJ07]. This is a message passing algorithm with iterative updates of a ‘message’ vector
m ∈ [0,W]2|E|. There are two messages on each edge (i, j), denoted by mi→j and mj→i, one in each
direction. The algorithm performs iterative updates according to

mt+1
i→j =

(
wij − max

k∈∂i\j
mt

k→i

)

+

(7)

The initialization is the all-zero message vector m0 = 0. We denote this algorithm by BP-MWM.

Lemma 2.6 ([BSS05, BB+07, SMW07]). Suppose LP (3) has a unique optimum. BP-MWM con-
verges iff the optimum is integral. Further, if LP (3) has an integral optimum corresponding to

matching M∗, then the messages converge in
⌈
2|V |W

g

⌉
iterations to a fixed point m∗ satisfying the

following. For any i ∈ V , if i is matched under M∗ to j, then argmaxk∈∂im
∗
k→i = {j} and m∗

j→i > 0.
If i is unmatched under M∗ then mk→i = 0 for every k ∈ ∂i.

Note how the condition for convergence of BP-MWM is the same as that for the existence of UD
solutions! Here g is difference in the weights of the heaviest and next heaviest corner of the matching
polytope (given by the constraints of LP (3)). We call it the LP gap.

In the case that LP (3) has a unique optimum, BP-MWM thus answers “Does the LP (3) have
an integral optimum?” If yes, it also finds the maximum weight matching.

In fact, one also can find an optimum solution to the dual LP (4) from m∗, when BP-MWM
converges (see also [KB+10, Appendix F.1]). Consider any i ∈ V . Sort the messages (m∗

k→i, k ∈ ∂i)

7

is non-increasing order. Denote the value of the first item in the sorted list by µi(1) and the next
value by µi(2). Define y∗i ≡ (µi(1) + µi(2))/2. The following is proved in Appendix A.

Proposition 2.7. The construction above produces y∗, an optimal solution to the dual LP (4).

Thus, we obtain a stable outcome (y∗,M∗) from the BP fixed point m∗ (see Lemma 1.4).
We mention here that BP-MWM can be interpreted as a bargaining process [AB+09, Appx A].

Remark 2.8. The performance of BP-MWM seems to be lacking in two respects. First, it fails
when the LP (3) has an integral optimum that is not unique. Second, the bound on convergence time
depends inversely on LP gap g which may be arbitrarily small (in fact the bound is tight in worst
case). We make three comments on this issue:

(i) These ‘flaws’ appear to be inevitable. We are not aware of any local algorithm for maximum
weight matching that overcomes them.

(ii) For any instance on a bipartite graph, the LP gap g is larger than inverse polynomial in |V | with
probability close to 1 under small random perturbations [KB+10, Lemma 1]. Thus, BP-MWM
is likely to converge in time poly(|V |) on bipartite graphs as per this ‘smoothed analysis’.

(iii) Appendix B shows that if we are given a maximum weight matching M∗ for an instance pos-
sessing a UD solution, then we can locally construct a stable outcome in poly(|V |) operations.
Using this, we obtain a local polynomial time reduction from the problem of finding an ǫ-UD
solution to the sub-problem of finding a maximum weight matching.

3 Proofs of Lemmas 2.4 and 2.5

Proof of Lemma 2.4. We prove this lemma by induction on time t. Clearly (γ0,M) is a stable
outcome, since the input is valid. Suppose (γt,M) is a stable outcome.

Consider any (i, j) ∈ M . It is easy to verify that γreb

i + γreb

j = wij , for γ
reb computed from γt in

Lines 8-11 of Edge Rebalancing. Also, we know that γti+γtj = wij . It follows that γ
t+1
i +γt+1

j = wij

as needed. For i ∈ V unmatched under M , γti = 0 by hypothesis and γreb

i = 0 ⇒ γt+1
i = 0 as needed.

Consider any (i, k) ∈ E\M . We know that γti + γtk ≥ wik. We want to show the corresponding
inequality at time t+ 1. Define σt

ik ≡ γti + γtk − wik ≥ 0.
Claim: γreb

i ≥ γti − σt
ik

If we prove the claim, it follows that a similar inequality holds for γreb

k , and hence γreb

i + γreb

k ≥
γti + γtk − 2σik = wik − σt

ik. It then follows from the definition in Line 14 that γt+1
i + γt+1

k ≥ wik, for
any κ ∈ (0, 1/2]. This will complete our proof that (γt+1,M) is a stable outcome.

Let us now prove the claim. Suppose i is matched under M . Using the definition in Line 7 (Line
8 contains a symmetrical definition), γreb

i ≥ maxk′∈∂i\j(wik′ − γtk′)+ since Surpik(γt) ≥ 0. Hence,

γreb

i ≥ (wik − γtk)+ ≥ (wik − γtk) = γti − σt
ik

as needed. If i is not matched under M , then γti = γreb

i = 0, so the claim follows from σt
ik ≥ 0.

Proof of Lemma 2.5. This result is proved using the powerful technique introduced in our recent
work [KB+10]. We show that the iterative updates of Edge Rebalancing can be written as

γt+1 = κTγt + (1− κ)γt (8)

where T is a non-expansive self mapping of a bounded convex subset of a normed linear space.

8

The linear space we consider is simply R
|V |
+ . Let AM ⊆ [0,W]|V | be the set of allocations

corresponding to matching M . It is easy to see that AM is a bounded convex set. We define
T : AM → AM as the product of two operators, ‘rebalancing’ operator Treb : AM → Aext

M and a
‘thresholding’ operator Tthr : Aext

M → AM . Here Aext

M ⊇ AM is set of allocations corresponding to
matching M , with the non-negativity constraint relaxed. We define Treb as follows. For each i ∈ V
that is unmatched under M , (Trebγ)i ≡ 0. For each (i, j) ∈M ,

(Trebγ)i ≡ max
k∈∂i\j

(wik − γk)+ + rijSurpij(γ) (9)

(Trebγ)j ≡ wij − (Trebγ)i = max
l∈∂j\i

(wjl − γl)+ + rjiSurpij(γ) (10)

Note that γreb as defined in Lines 6-12 of Edge Rebalancing is exactly Trebγt. Also note that
Trebγ ∈ Aext

M as required.
We define Tthr as follows. For each i ∈ V that is unmatched under M , (Tthrγ)i ≡ 0. For each

(i, j) ∈M , there are three cases.
γi < 0: (Tthrγ)i ≡ 0, (Tthrγ)j ≡ wij

γj < 0: (Tthrγ)i ≡ wij, (T
thrγ)j ≡ 0

γi ≥ 0, γj ≥ 0: (Tthrγ)i ≡ γi, (T
thrγ)j ≡ γj

Note that γi < 0 and γj < 0 cannot occur simultaneously since γi + γj = wij . Also note that the
result of operating with Tthr is in AM .

Consider the composite operator T ≡ TthrTreb. If T operates on a stable outcome, the output
of operator Treb is a non-negative allocation (since Surpij ≥ 0 for every (i, j) ∈ M) with earnings
of unmatched nodes being 0, and Tthr acts simply as an identity operator. It follows (using Lemma
2.4) that Lines 6-12 define γreb = Tγt. Thus, we have verified that the iterative updates of Edge
Rebalancing (Line 14) correspond to Eq. (8).

Next, we show that T is non expansive in sup norm, i.e. for any γa, γb ∈ AM ,

‖Tγa − Tγb‖∞ ≤ ‖γa − γb‖∞ (11)

We prove this by showing that each of Treb and Tthr is non-expansive in sup norm.
Consider Treb. Take any (i, j) ∈M . Rewriting Eq. (9) using Eq. (1), we have

(Trebγ)i = rijwij + (1− rij) max
k∈∂i\j

(wik − γk)+ − rij max
l∈∂j\i

(wjl − γl)+

Now x 7→ (w − x)+ is non-expansive, and the ‘max’ operator is non-expansive. Hence, using the
triangle inequality we obtain

|(Trebγa)i − (Trebγb)i| ≤ ‖γa − γb‖∞
and similarly for j. For each k that is unmatched under M , (Trebγ)k = 0. It follows that Treb is
non-expansive in sup norm.

Next consider Tthr. For each k that is unmatched under M , (Tthrγ)k = 0. For any (i, j) ∈M , we
can write (Tthrγ)i = max(min(γi, wij), 0). Since the ‘max’ and ‘min’ operators are non-expansive, it
follows that Tthr is non-expansive in sup norm.

Thus, we have shown that T is a non-expansive self mapping of a bounded convex set of diameter
1 (since W = 1). Also, γt is obtained via iterative updates as per Eq. (8). The main theorem in
[BB96] tells us that

‖Tγt − γt‖∞ ≤
1√

πκ(1 − κ)t
(12)

Eq. (6) follows. Also, ‖TrebγT − γT ‖∞ = ‖γreb− γT ‖∞ ≤ ǫ implies ǫ-correct division for (γT ,M).

9

Remark 3.1. In light of Eq. (12), we could have simply used a fixed termination time of T∗ =
⌈1/(πκ(1 − κ)ǫ2)⌉, instead of the termination condition in Line 13. Eq. (12) guarantees that γT∗

satisfies the ǫ-correct division condition.

Remark 3.2. It we remove the termination condition on Line 13 of Edge Rebalancing (and
iterate forever), [I76, Corollary 1] tells us that we converge to some γ∗ such that Tγ∗ = γ∗, i.e. we
reach an exact UD solution. (Note that Lemma 2.4 gives stability of the iterates, and stability of the
limit point γ∗ follows.) As a corollary, we recover Theorem 1.5 on existence of UD solutions.

4 Stability is Critical

This section demonstrates that our approach of starting with a stable allocation, and ensuring that
stability is preserved, plays a critical role in our construction of an FPTAS using iterative edge
rebalancing.

Let n ≡ |V |. Appendix C shows the following. There is a sequence of instances (In, n ≥ 8), such
that for each instance in the sequence the following holds. (a) The instance admits a UD solution.
(b) There is an outcome (γ,M∗) on a maximum weight matching M∗ such that:

1. The outcome satisfies ǫ-correct division for ǫ = 2−cn.

2. (Stability violation) There is a ‘bad’ edge (i, j) /∈M∗ such that γi + γj ≤ wij − 1

where c > 0 is a constant. Split fractions are bounded within [r, 1−r] for arbitrary desired r ∈ (0, 1/2)
(c depends on r). Also, the weights are uniformly bounded by a constant W (r).

We now describe the implications of such a construction. Suppose we perform edge balancing
on the example outcome (as per Eq. (8), using operator T defined there), i.e. γ0 ≡ γ. We know
that ‖Tγ0 − γ0‖∞ ≤ ǫ, since γ0 satisfies ǫ-correct division. Define Tκ ≡ κT + (1 − κ)I, where I is
the identity operator. Eq. (8) simply corresponds to iterating with Tκ, i.e. γt = Tt

κγ
0. Clearly,

‖Tκγ
0 − γ0‖∞ ≤ ǫ. Also, it follows from non-expansivity of T (as per Eq. (11)) that Tκ is non-

expansive in sup norm. As a consequence ‖Tκγ
t − γt‖∞ ≤ ǫ for all t ≥ 0. Thus, successive iterates

differ by at most ǫ in sup norm, meaning that no coordinate changes by more than ǫ per iteration.
Suppose we want to reach a configuration that satisfies both (1/2)-stability (γk + γl ≥ wkl − 1/2 for
each (k, l) ∈ E) and the (1/2)-correct division condition. One of γi and γj must change by at least
1/4 for the ‘bad’ edge (i, j) to satisfy (1/2)-stability, i.e. γi + γj ≥ wij − 1/2. But this will take at
least 1/(4ǫ) = 2Ω(n) iterations!

Thus, it can take exponential time to reach an approximate UD solution if we do not stay within
the space of stable outcomes while rebalancing.

Remark 4.1. Essentially the same construction and reasoning shows that the dynamics of [KB+10]
can take exponential time to reach an ǫ-UD solution.

Further directions. It remains open whether there is a polynomial algorithm that finds an exact
UD solution.

Second, it would be interesting to identify other classes of games where solution concepts that are
not symmetrical in the players can be naturally defined and motivated. Various classes of cooperative
games seem like particularly suitable candidates.

Third, though we have found a fast local algorithm for finding ǫ-UD solutions, it does not con-
stitute a natural description of market behavior of the type proposed in [KB+10]. However, as
discussed in Section 4, there are instances where that dynamics does not quickly reach a solution in
the unsymmetrical case. So it is unclear how to resolve this question.

10

Acknowledgements. The author would like to thank Andrea Montanari, Mohsen Bayati, R.
Ravi and Mohammad Hossein Bateni for helpful discussions.

References

[AS] B. Aspvall and Y. Shiloach, “A polynomial time algorithm for solving systems of linear in-
equalities with two variables pre inequality,” 20th IEEE Symposium Foundations of Computer
Science, Puerto Rico, October 1979.

[AB+09] Y. Azar, B. Birnbaum, L. Elisa Celis, N. R. Devanur and Y. Peres, “Convergence of Local
Dynamics to Balanced Outcomes in Exchange Networks,” 50th IEEE Symposium Foundations
of Computer Science, Atlanta, November 2009.

[BB96] J. Baillon and R. E. Bruck, “The rate of asymptotic regularity is O(1/
√
n),” in: A.G.

Kartsatos (ed.), Theory and applications of nonlinear operators of accretive and monotone
type, Lecture Notes in Pure and Appl. Math. 178, Marcel Dekker, Inc., New York, 1996, 51-81.

[BH+10] M. Bateni, M. Hajiaghayi, N. Immorlica and H. Mahini, “The cooperative game the-
ory foundations of network bargaining games,” Intl. Colloquium on Automata, Languages and
Programming, 2010.

[BSS05] M. Bayati, D. Shah and M. Sharma, “Max-Product for Maximum Weight Matching: Con-
vergence, Correctness, and LP Duality,” IEEE Trans. Inform. Theory, 54 (2008) 1241-1251

[BB+07] M. Bayati, C. Borgs, J. Chayes, R. Zecchina, “On the exactness of the cavity method
for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs,”
arXiv:0807.3159, (2007)

[B88] D. P. Bertsekas, “The Auction Algorithm: A Distributed Relaxation Method for the Assign-
ment Problem,” Annals of Operations Research, Vol. 14, pp. 105-123, 1988.

[CJ+10] T. Chakraborty, S. Judd, M. Kearns, J. Tan, “A Behavioral Study of Bargaining in Social
Networks,” to appear in Proc. EC, 2010.

[CKK09] T. Chakraborty, M. Kearns and S. Khanna, “Network Bargaining: Algorithms and Struc-
tural Results” 10th ACM Conference on Electronic Commerce, Stanford, July 2009.

[CY92] K. S. Cook and T. Yamagishi, “Power exchange in networks: A power-dependence formula-
tion,” Social Networks, 14 (1992) 245-265

[DP09] C. Daskalakis, C. Papadimitriou, “On oblivious PTAS’s for nash equilibrium,” Proc. STOC
2009.

[EOB78] M. Edelstein and R.C. O’Brien, “Nonexpansive mappings, asymptotic regularity, and suc-
cessive approximations,” J. London Math. Soc. 1 (1978), 547-554

[FKK01] U. Faigle, W. Kern, and J. Kuipers, “On the computation of the nucleolus of a cooperative
game,” International Journal of Game Theory, 30 (2001), pp. 79-98.

[GS62] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” Amer. Math.
Monthly 69 (1962), 9-15.

11

[GT91] H. N. Gabow and R. E. Tarjan, “Faster scaling algorithms for general graph-matching prob-
lems,” J. ACM, 38(4):815853, 1991.

[I76] S. Ishikawa, “Fixed points and iteration of a nonexpansive mapping in a Banach space,” Proc.
American Mathematical Society, Vol. 59, No. 1, 1976.

[HuJ07] B. Huang, T. Jebara, “Loopy belief propagation for bipartite maximum weight b-matching,”
Artificial Intelligence and Statistics (AISTATS), March, 2007.

[KB+10] Y. Kanoria, M. Bayati, C. Borgs, J. Chayes, and A. Montanari, “Fast Convergence of
Natural Bargaining Dynamics in Exchange Networks,” arXiv:1004.2079 (April 2010).

[KT08] J. Kleinberg and E. Tardos, “Balanced outcomes in social exchange networks,” in STOC,
2008.

[K01] U. Kohlenback, “A Quantitative Version Of A Theorem Due To Borwein-Reich-Shafrir,” Nu-
merical Functional Analysis and Optimization, Vol. 22, Issue 5-6, August 2001.

[LY+01] J.W. Lucas, C.W. Younts, M.J. Lovaglia, and B. Markovsky, “Lines of power in exchange
networks,” Social Forces, 80 (2001) 185-214

[M53] W. R. Mann, “Mean value methods in iteration,” Proc. Amer. Math Soc., 4 (1953), 506–510

[Nas50] J. Nash, “The bargaining problem,” Econometrica, 18 (1950) 155-162

[Ro84] S.C. Rochford, “Symmetric pairwise-bargained allocations in an assignment market,” in J.
Economic Theory, 34 (1984) 262-281.

[R82] A. Rubinstein: Perfect equilibrium in a bargaining model. Econometrica 50, 97-109 (1982).

[SMW07] S. Sanghavi, D. Malioutov, A. Willsky, “Linear Programming Analysis of Loopy Belief
Propagation for Weighted Matching,” Neural Information Processing Systems (NIPS), 2007

[Sot05] M. Sotomayor, “On The Core Of The One-Sided Assignment Game,” 2005,
http://www.usp.br/feaecon/media/fck/File/one_sided_assignment_game.pdf.

[SW93] J. Skvoretz and D. Willer, “Exclusion and power: A test of four theories of power in exchange
networks,” American Sociological Review, 58 (1993) 801-818

[Wil99] D. Willer (ed.) Network Exchange Theory, Praeger, 1999

12

http://www.usp.br/feaecon/media/fck/File/one_sided_assignment_game.pdf

A Appendix to Section 2.1

Remark A.1. Fix a graph G = (V,E) and maximum weight W > 0. We argue that the condition
“LP (3) has a unique optimum” is generic in each of two different cases:

(i) All instances: Let G = (0,W]|E| be the set of all instances. Then the subset of instances with
unique optimum is both open and dense in G.

(ii) Instances with integral optimum: Let GI ⊂ (0,W]|E| be the set of instances having an
integral optimum. Let GUI ⊂ GI be the set of instances having a unique integral optimum. It
turns out that GI has dimension |E| (i.e. the class of instances having an integral optimum is
large) and that GUI is both open and dense in GI.

Proof of Proposition 2.7. Take any edge (i, j) ∈ M∗. From Lemma 2.6, we know that m∗
j→i > 0. It

follows that m∗
j→i = wij−maxl∈∂j\im

∗
l→i. But m

∗
j→i = µi(1) and maxl∈∂j\im

∗
l→i = µj(2) by Lemma

2.6. Thus we obtain

µi(1) = wij − µj(2) (13)

Similarly, we have

µj(1) = wij − µi(2) (14)

Combining Eq. (13),(14), we obtain y∗i + y∗j = wij as required.
Take any edge (i, j) /∈M∗. From Lemma 2.6, we know thatmi→j ≤ µj(2). Also, maxk∈∂i\j mk→i =

µi(1). It follows that (wij − µi(1))+ ≤ µj(2) ⇒ wij ≤ µi(1) + µj(2). Similarly, we obtain
wij ≤ µj(1) + µi(2). Combining, it follows that y∗i + y∗j ≥ wij as required.

Note also that for any i ∈ V not matched under M∗, it follows from Lemma 2.6 that y∗i = 0.
Thus, we have shown that y∗ is a feasible point for the dual LP (4), which also satisfies

∑
i∈V y∗i =

weight of M∗, i.e. it achieves the value of the primal LP (3). Hence, y∗ is a optimum solution to the
dual LP (4).

B Local polynomial time ‘reduction’ to maximum weight matching

In this section we prove the following:

Claim B.1. Given a maximum weight matching M∗ for an instance possessing a UD solution, an
ǫ-UD solution can be constructed by a local algorithm with computational effort poly(|V |, 1/ǫ).

Our definition of ǫ-UD solutions retains a strict version of stability while relaxing the balance
requirement to ǫ balance (cf. Definition 1.3). We use max-product belief propagation to find a stable
allocation, given a maximum weight matching M∗. This is achieved locally and in polynomial time.

Consider the standard undamped synchronous BP updates given by:

mt
i→j = (wij − αt

i\j)+

αt+1
i\j = max

k∈∂i\j
mt

k→i (15)

This is equivalent to the update rule Eq. (7).

13

We use a carefully chosen initialization (different from the usual all-zero) to achieve our objective:

m0
i→j =

{
wij if (ij) ∈M∗

0 otherwise
(16)

Let the version of max-product BP message passing defined by (15) and (16) be denoted by A.
Our key result on A is the following:

Claim B.2. Algorithm A converges to an exact fixed point in 2|E| iterations.

The fixed points of update rule (15) can be characterized similarly to the fixed points of the
‘natural dynamics’ in our previous work [KB+10, Section 3].

Lemma B.3. Consider an instance having an integral optimum to LP (3), corresponding to matching
M∗. The update rule (15) has at least one fixed point. Let (α∗,m∗) be a fixed point. Then

wij − α∗
i\j − α∗

j\i ≥ 0 ∀ (ij) ∈M∗

wij − α∗
i\j − α∗

j\i ≤ 0 ∀ (ij) /∈M∗

Also, for every (ij) /∈M∗, we have α∗
i\j = m∗

k→i, where (i, k) ∈M∗.

The above lemma follows directly from the arguments in ([KB+10], Appendix F.1).
We now show how Claim B.2 implies Claim B.1.

Proof of Claim B.1. Using Lemma B.3, we can show that for any fixed point m∗ of Eq. (15) for an
instance such that LP (3) has an integral optimum M∗, the following holds: For any i ∈ V , if i is
matched under M∗ to j then j ∈ argmaxk∈∂im

∗
k→i and m∗

j→i = wij−α∗
j\i, whereas if i is unmatched

under M∗ then m∗
k→i = 0 for every k ∈ ∂i. We use the construction for y∗ described in Section 2.1,

and essentially the same proof of Proposition 2.7 goes through. A stable allocation (y∗,M∗) thus
follows from any fixed point m∗ of A, where M∗ is the given maximum weight matching.

Starting from a stable allocation, an ǫ-UD solution can be constructed with effort O(|E|/ǫ2) using
Edge Balancing as described in Section 2. The claim follows.

We devote the rest of this subsection to the proof of Claim B.2.
Next, we define a useful partial ordering on message vectors m.

Definition B.4. We say m � m̂ if the following hold:

mi→j ≥ m̂i→j ∀ (ij) ∈M∗

mi→j ≤ m̂i→j ∀ (ij) /∈M∗

Lemma B.5. Let m∗ be a fixed point of update rule (15). Algorithm A satisfies

mt � mt+1 � m∗ ∀ t ≥ 0 . (17)

Also, for all (ij) /∈M∗, we have

αt+1
i\j = mt

k→i ∀ t ≥ 0 ,

where (i, k) ∈M∗.

14

Proof. It is trivial to check validity for t = 0. Suppose the result is true up to t− 1. Take any fixed
point m∗. Then

mt � m∗ (18)

Now consider any unmatched edge (ij) /∈ M∗. If i is matched, say (i, k) ∈ M∗, it follows from
Eq. (18) and Lemma B.3 that αt+1

i\j
= mt

k→i as needed. Further, m
t
k→i ≤ mt−1

k→i = αt
i\j , leading to

αt+1
i\j ≤ αt

i\j

⇒ mt+1
i→j ≥ mt

i→j.

as needed. Else if i is unmatched underM∗, mt
k→i ≤ m∗

k→i = 0 for all k ∈ ∂i. Hence, αt+1
i\j = αt

i\j = 0,

leading to mt+1
i→j = mt

i→j = wij. This suffices.
On the other hand, for every matched edge (i, k),

αt+1
i\k = max

j∈∂i\k
mt

j→i ≥ max
j∈∂i\k

mt−1
j→i = αt

i\k

⇒ mt+1
i→k ≤ mt

i→k.

as needed.
The second inequality mt+1 � m∗ can be established similarly.
Induction completes the proof.

Next, we present a key construction leading to a proof of Claim B.2 for the case that LP (3) has
a unique optimum:

Choose a fixed point m∗. A critical path P leading to a message m∗
i1→i0

is constructed as follows:

Critical Path(Instance G, BP-fixed point m∗)

1: k ← 1
2: While m∗

ik→ik−1
> 0

3: Find ik+1 ∈ argmaxj∈∂ik\ik−1
m∗

j→i1
.

4: k ← k + 1
5: If (ik, ik−1) = (il, il−1) for some l < k then
6: Break While;
7: End If
8: End While
9: Return (ik, ik−1, . . . , i0)

It is easy to see that a critical path can have at most 2|E| + 1 directed edges since the path is
terminated if a directed edge repeats, and there are 2|E| distinct directed edges in the graph.

Proof of Claim B.2: Unique LP optimum case. Take a fixed point m∗. Consider any edge (i1, i0).
Let its critical path be (ik, ik−1, . . . , i0). There are two cases:
Case (i): m∗

ik→ik−1
= 0

This is the case where no directed edge repeats. In this case, we claim that mk−1
i1→i0

= m∗
i1→i0

.
We simply start with the evident m0

ik→ik−1
= m∗

ik→ik−1
and move sequentially along the critical

path. Lemmas B.3 and B.5 ensure that α1
ik−1\ik−2

= m0
ik→ik−1

, α2
ik−2\ik−3

= m1
ik−1→ik−2

and so

on. The monotonicity established plays a key role here. This leads to m1
ik−1→ik−2

= m∗
ik−1→ik−2

,

m2
ik−2→ik−3

= m∗
ik−2→ik−3

and so on, leading to the result.

15

Case (ii): (ik, ik−1) = (il, il−1) for some l < k
In this case we know that all messages along the critical path are strictly positive on unmatched
edges, and hence are not thresholded at 0. It follows, going around the directed alternating cycle,
C = (ik, . . . , il) that for any directed edge (ℓ, ℓ− 1) ∈ C

m∗
ℓ→ℓ−1 ≤ m∗

ℓ→ℓ−1 +wt. of unmatched edges in C − wt. of matched edges in C < m∗
ℓ→ℓ−1

since we have assumed that LP (3) has a unique solution. This is a contradiction.
Thus, Case (ii) never arises. Case (i) implies that k ≤ 2|E|. Hence all messages converge to

values at m∗ in 2|E| iterations.

Note that the proof above implies that the fixed point m∗ is unique!

Sketch of proof of Claim B.2: non-unique LP optimum. Claim B.2 holds also for the case where LP
(3) is tight but not pointed. We only briefly sketch the proof in this case. In the non-unique optimum
case, max product may have multiple fixed points. However, there is a unique smallest fixed point
m∗,bot with respect to the partial ordering defined in B.4, and algorithm A converges to this fixed
point by monotone convergence (cf. Eq. (17)).

In fact, we can show that the same bound 2|E| holds on the time to convergence. To prove this
we compare against the special fixed point m∗,bot, whose minimality plays a crucial role. We use
a similar critical path construction as for the unique optimum case. However, we have to be more
careful here: we break ties in selecting an element of argmaxj∈∂ik\ik−1

m∗
j→i1

non-deterministically
(there exists a sequence of tie-breaking choices such that ...). The same cases (i) and (ii) arise in the
proof of message convergence using the critical path (cf. proof for unique LP optimum). Case (i)
goes through as before. For Case (ii), we use the minimality of m∗,bot to arrive at a contradiction.

C An Example showing that Stability is Critical

Let n = |V |. In this section, we construct a sequence of instances (In, n ≥ 8), such that for each
instance in the sequence the following holds. (a) The instance admits a UD solution. (b) There is
an outcome (γ,M∗) on a maximum weight matching M∗ such that:

1. The outcome satisfies ǫ-correct division for ǫ = 2−cn.

2. (Stability violation) There is a ‘bad’ edge (i, j) /∈M∗ such that γi + γj ≤ wij − 1

where c > 0 is a constant. Split fractions are bounded within [r, 1−r] for arbitrary desired r ∈ (0, 1/2)
(c depends on r). Also, the weights are uniformly bounded by a constant W (r).

Such a construction implies that we cannot hope to converge in worst case polynomial time to
an approximate UD solution, if we start the rebalancing process (cf. Table 1) with an arbitrary
allocation corresponding to M∗. This is discussed in Section 4. Thus, our strategy of staying within
the space of stable configurations plays a critical role.

We now define the instance In. Let us first consider n = 8N , where N ∈ Z. Later we show how
to extend the construction to arbitrary n ≥ 8. The graph Gn = (Vn, En) we will consider is a simple
‘ring’. More precisely, Vn = {1, 2, . . . , n} and En = {(1, 2), (2, 3), . . . , (n − 1, n), (n, 1)}. All edges
have the same weight W . This graph has two integral maximum weight matchings (cf. Remark
C.1 below), we pick M∗ = {(1, 2), (3, 4), . . . , (n − 1, n)}. Given any r ∈ (0, 1/2), we define the split
fractions as follows:

r1,2 = r3,4 = . . . = r2N−1,2N = r

r4N,4N−1 = r4N−2,4N−3 = . . . = r2N+2,2N+1 = r

16

Note that the values of the split fractiom on the edges (2, 3), (4, 5), . . . /∈M∗ are irrelevant, given our
choice of matching. As before, ri,i+1 = 1− ri+1,i is implicit.

For l > 4N , we define split fractions in a symmetrical way. Define ‘reflection’ R : {4N +1, 4N +
2, . . . , 8N} → {1, 2, . . . , 4N} as

R(l) = 8N − l + 1 (19)

We set r2i+1,2i+2 = rR(2i+1),R(2i+1) for all i ∈ {2N, 2N + 1, . . . , 4N − 1}.
Note that the allocation in which each node earns W/2, together with matching M∗, constitutes

a UD solution for the instance defined.
Now we show how to construct an outcome (γ,M∗) satisfying properties 1 and 2 above. Let

β ≡ (1− r)/r > 1. Define

ǫ′ =
1

βN−1
.

For 0 ≤ i ≤ N − 1 we choose

γ2(N−i) = γ2(N+i)+1 =
W

2
+

1

2
+

1− β−i

β − 1
(20)

In each case γ2j = W − γ2j−1, since we want a valid outcome. Thus, we have defined γ1, γ2, . . . , γ4N .
The remaining earnings are defined as,

γi = W − γR(i) for i = 4N + 1, 4N + 1, . . . , 8N (21)

It is easy to see that this definition satisfies the fixed sum constraints on all edges in M∗.
Importantly, note that it suffices to have W ≥ 1+2/(β−1) to ensure that this is a valid allocation

with each γi ∈ (0,W). Choose W ≡ 1 + 2/(β − 1) (for example).
See that γ6N + γ6N+1 = W − 1 thus satisfying property 2. We show next that (γ,M∗) satisfies

the ǫ′-correct division condition.
Consider the edge (2(N − i), 2(N − i) + 1) for 1 ≤ i ≤ N − 1. It is easy to see that γ2(N−i) +

γ2(N−i)+1) = W +β−i. Also, γ2N +γ2N+1 = W +1. It follows from a short calculation that the exact
‘correct division’ requirement Eq. (2) is satisfied by the matched edges (3, 4), (5, 6), . . . , (2N−1, 2N).
For the matched edge (1, 2), note that γ1 + γ8N = W , whereas γ2 + γ3 = W + β−(N−1) = W + ǫ′.
It follows that edge (1, 2) satisfies ǫ′-correct division. Similar arguments take care of all the other
matched edges in the other three ‘quarters’ of the ring (in fact, the argument can be completed
using symmetry). Thus, we have an outcome satisfying ǫ′-correct division (cf. Definition 2.1). Since
ǫ′ = β−(N−1) it follows that property 1 above is satisfied provided c is chosen appropriately.

For n ≥ 8, but not a multiple of 8, we simply use the construction above for n′ = 8⌊n/8⌋ and
add a dummy component of size n−n′, disconnected from Gn′ . Further, we fix a UD solution on the
dummy component (any bipartite graph has a UD solution). Since n′ ≥ n/2, it follows that property
1 is satisfied if c is chosen appropriately. (c ≡ (1/4) log2 β works for all n ≥ 8.) Clearly, property 2
is also satisfied.

Note that it was only for the sake of simplicity that the example we gave had multiple maximum
weight matchings.

Remark C.1. Though the example constructed above has multiple maximum weight matchings, this
is not necessary. We can in fact, construct examples (that admit UD solutions) with the same
properties 1 (for appropriate c > 0) and 2 above, and W = O(1), where the weight of the maximum
weight matching is at least 1 more than the weight of the next heaviest matching.

17

	Introduction
	Model
	Related work
	Relationship to Cooperative games

	Outline of the paper

	Main results
	A Fast Local Algorithm

	Proofs of Lemmas 2.4 and 2.5
	Stability is Critical
	Appendix to Section 2.1
	Local polynomial time `reduction' to maximum weight matching
	An Example showing that Stability is Critical

