
A Uniform Approach to Accelerated
PageRank Computation

Frank McSherry
Microsoft Research, SVC

1065 La Avenida
Mountain View, CA, USA 94043

mcsherry@microsoft.com

ABSTRACT
In this note we consider a simple reformulation of the tradi-
tional power iteration algorithm for computing the station-
ary distribution of a Markov chain. Rather than commu-
nicate their current probability values to their neighbors at
each step, nodes instead communicate only changes in prob-
ability value. This reformulation enables a large degree of
flexibility in the manner in which nodes update their values,
leading to an array of optimizations and features, includ-
ing faster convergence, efficient incremental updating, and
a robust distributed implementation.

While the spirit of many of these optimizations appear in
previous literature, we observe several cases where this uni-
fication simplifies previous work, removing technical compli-
cations and extending their range of applicability. We imple-
ment and measure the performance of several optimizations
on a sizable (34M node) web subgraph, seeing significant
composite performance gains, especially for the case of in-
cremental recomputation after changes to the web graph.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
PageRank, web graph, link analysis, random walks

1. INTRODUCTION
Motivated largely by the success and scale of Google’s

PageRank ranking function, much research has emerged on
efficiently computing the stationary distributions of web-
scale Markov chains, the mathematical mechanism under-
lying PageRank. The main challenge is that the web graph
is so large that its edges typically only exist in external mem-
ory and an explicit representation of its stationary distribu-
tion just barely fits in to main memory. The time required
to compute the stationary distribution is on the order of tens

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

of hours to days, and constant factor improvements in run-
ning times can save substantial time and money. Even for
the common researcher with interests in ranking research,
computing and recomputing vectors of ranks is a time con-
suming processes that greatly limits research throughput.

As such, much work has been done on accelerating the
performance of PowerIteration, the traditional approach to
computing stationary distributions. These optimizations
cover a spectrum of techniques, ranging from transforma-
tions to the Markov chain that accelerate mixing to efficient
heuristic updates that behave like PowerIteration to clever
reuse of previously computed solutions. Most of these tech-
niques are developed and evaluated in isolation, and it is
unclear to what degree they can be effectively combined,
both in terms of implementation and performance.

1.1 Notation and Terminology
Throughout this note we will frequently refer to vectors,

matrices, and the scalars they comprise. For clarity, we
consistently use lowercase letters (x) for vectors and capital
letters (A) for matrices. For each, subscripted quantities
(xu and Auv) are used to reference the scalar values at the
indexed coordinates.

1.2 PageRank and PowerIteration
PageRank [2] is a system of scoring nodes in a directed

graph based on the stationary distribution of a random walk
on the directed graph. Conceptually, the score of a node
corresponds to the frequency with which the node is visited
as an individual strolls randomly through the graph. For
technical reasons, the random walk is also encouraged to
occasionally reset to a prespecified distribution, overcoming
issues of weakly connected components in which a random
surfer might get stuck and accelerating the rate at which a
random walk approaches the stationary distribution.

A random walk on n nodes can be described by a n × n
matrix P , where entry Pvu is the probability that from node
u the walk next arrives at node v. Starting from a distri-
bution x over the nodes (x is a vector of n entries that
are non-negative and sum to one), after one step the dis-
tribution becomes Px, and more generally after i steps the
distribution becomes P ix.

We can decompose P into those transitions due to travers-
ing a web link, and those transitions due to random reseting.
Let the sparse matrix A have entries Avu equal to the prob-
ability that from node u the walk traverses the link (u, v) to
node v. Additionally, we define the vector r with each coor-

dinate ru = 1 −
P

v
Avu, equal to the probability that the

that the walk chooses not to follow an arc from node u and
instead resets randomly to a node v chosen with probability
proportional to dv. P can then be written as P = A + drT ,
capturing both of the types of transitions.

PowerIteration is the traditional manner of computing the
stationary distribution of P , explicitly simulating the dis-
semination of probability mass by repeatedly applying P
to a supplied initial distribution x. Under modest assump-
tions, e. g. that all entries of d and r are positive, for any
initial distribution x, P ix converges to a unique stationary
distribution as i increases.

PowerIteration(P, x)

1. While (not converged)

(a) Set x = Px

While P itself is a dense matrix, every node can reset to
any other node, we can efficiently compute Px by viewing it
as Ax+drTx. We assume that A is stored on disk in a sparse
format, perhaps as a list of (source, target, value) triples,
though there are more compact representations. Ax is then
computed using sparse matrix-vector multiplication: since
(Ax)v =

P

v
Avuxu, we can populate the result vector by

scanning the edge file, for each non-zero Avu adding Avuxu

to coordinate v of the result. We can produce the vector
drT x by determining rT x in a pass over r and x, and scaling
d appropriately before adding it to Ax.

For acceptable performance, we may only perform sequen-
tial access to the edge file, which is too large to fit into main
memory. Generally speaking, the number of non-zero entries
in A is the limiting performance factor, both because of our
need to scan over the edge file to read these entries, and also
the random accesses to x each entry requires. The other op-
erations, vector addition, scaling, and inner product, can all
be done using sequential access to main memory.

2. AN UPDATE-BASED ALGORITHM
Oddly, we start our generalization of PowerIteration by

restricting the problem we address. There are many vectors
satisfying x = Px; any solution x can be multiplied by an
arbitrary scalar value and still satisfy the equality. Typically
we focus our attention on finding the vector x with ‖x‖1 =
1. Let us instead focus on finding the vector x for which
rT x = 1, and for which

x = Px = Ax + drT x = Ax + d .

As we will see in Theorem 1, if x = Ax + d, then x = Px.
Normalized, this vector is the stationary distribution of P .

Consider an analog of PowerIteration in which we repeat-
edly set x = Ax + d. As with PowerIteration, this iterative
process will converge, and it converges to a vector satisfy-
ing x = Ax + d. We can monitor convergence through the
vector y = Ax − x + d: so long as y is non-zero, x has not
yet converged. But, y also tells us the direction to update
x; we advance to the next iterate of x by adding y, yielding
Ax+d. This first role is crucial, we must bring y to zero, but
we needn’t be so rigid as to only ever add y to x. We might
instead add other vectors to x that yield forward progress,
maintaining y both as a convergence criteria, but also for
guidance in choosing updates to x.

Consider an algorithm that monitors y = Ax− x + d, but
is free to choose an arbitrary update vector z at any step,
advancing from x to x + z. It is not hard to appropriately
update y, as its new value satisfies

A(x + z) − (x + z) + d = y + Az − z .

For any update vector z, we can update y by passing z
through the matrix A, adding the result to y, and subtract-
ing z. Intuitively, z is extracted from y and propagated
across the links in A, informing nodes of changes in their
parent’s values and insisting that they now update in turn.

Operationally, this is exactly the algorithmic framework
that we will consider. However, it will be useful not to fix
y in terms of a particular A, x, and d, but rather let it be
specified as an input parameter, properly determined before
the method is invoked.

UpdateIteration (A, x, y)

1. While (updates y remain):

(a) Choose an update vector z.

(b) Set x = x + z.

(c) Set y = y + (Az − z).

While this framework is presently little more than a system
of bookkeeping, we will solidify how one might choose z to
shrink ‖y‖1, and which choices lead to efficient algorithms.

We now state two theorems regarding the limit and rate of
convergence of UpdateIteration(A,x, y). The proofs, while
short, are rote and unilluminating, and are defered to Ap-
pendix A. We first argue that choosing y = Ax − x + d
leads to a stationary vector of P = A + drT , but also, in a
rather oblique manner, describe where x ends up if we start
UpdateIteration(A, x, y) with an arbitrary y.

Theorem 1. For vectors x, y, d and substochastic matrix

A, if y = Ax − x + d and d is a non-negative vector, then

defining the stochastic matrix P = A + drT /‖d‖1,

‖Px − x‖1 ≤ 2‖y‖1 and ‖x‖1 ≥ ‖d‖1 − ‖y‖1 .

To reiterate, Theorem 1 not only describes the correct initial
value of y to arrive at a stationary vector of P = A + drT ,
but also says that for any A, x, y, if the vector d satisfying
y = Ax − x + d is non-negative, then x arrives as the sta-
tionary distribution of a random walk on A that resets to a
distribution proportional to d.

While the limit of x is well defined, choosing z arbitrarily
clearly need not result in rapid, or any, convergence to this
limit. Much as y leads x to its limit, vectors z whose coor-
dinates agree with those of y also exhibit brisk convergence
of ‖y‖1 to zero.

Theorem 2. If each zu lies between zero and yu, then

‖y + Az − z‖1 ≤ ‖y‖1 −
X

u

ru|zu| .

When all ru are equal, the exponential convergence of
PowerIteration is a special case of Theorem 2: processing
z = y each round reduces ‖y‖1 by a factor of 1 − ru. More-
over, when r is not uniform Theorem 2 gives a tighter char-
acterization of progress than eigenvalue bounds, which are
generally in terms of the smallest ru value. Finally, and
critically, Theorem 2 describes progress made when we pro-
cess an update z 6= y, and informs us as to where in y the
progress is being made.

3. ACCELERATION TECHNIQUES
In this section we consider several manners of choosing

the vector z in UpdateIteration that give rise to various
acceleration techniques. Most have occurred in some form
previously in the literature, and we will discuss the often
significant differences between their current and previous
incarnations. In each case we will find shortcomings of pre-
vious techniques that are resolved by casting them in our
common framework. Additionally, a significant advantage
is the simple manner in which the techniques now compose,
both from an algorithmic and performance perspective.

We also present experimental data detailing the perfor-
mance of the acceleration techniques and compositions we
discuss on a 34M page crawl from 2002 containing roughly
800M edges. The pages are organized first by host, where
hosts are sorted by crawl discovery order, and within each
host by crawl discovery order. Several benefits of such an
ordering are discussed in Kamvar et al. [6], who use a more
thorough sorting within each host. We choose to order pages
by hosts, independent of the significant performance gains
noted in [6], because one of our optimizations relies on it,
and we require a consistent experimental framework.

For each approach, we plot the total error ‖Px−x‖1/‖x‖1

against computational effort, measured in units of 800M
edges processed, corresponding to the effort required by a
single pass of PowerIteration. The normalization by ‖x‖1 is
required because our vector x need not remain at unit norm,
and it would be unfair for a vector to achieve small ‖Px−x‖1

simply by virtue of a small x. In reading the graphs, the ac-
celeration can be seen by in the ratios of effort along a fixed
(horizontal) level of error.

3.1 Sequential Updates
In choosing an update vector z, each coordinate makes

a commitment to the update zu it intends, at which point
each update is applied to x and propagated through A in
parallel. However, in most implementations these updates
will be processed serially, typically reading and propagating
each zu in turn. As the zu may be chosen arbitrarily, there
is no need for a node to commit to a particular value until
it is needed. Rather, we can delay the choice of zu until
it is needed, conceptually processing a long series of single
coordinate updates of the form z = (0, . . . 0, zu, 0, . . . 0).

Sequential updating allows us to base zu on a value of yu

that reflects all updates applied thus far, even those applied
in the current iteration, allowing us to propagate the effect of
a single update multiple times in a single pass over the edge
file. Even if the nodes are ordered randomly, roughly half
of the edges will point forward in the node order. Updates
passed along these edges will be processed again before we
complete a pass over the edge file. Well organized graphs
can benefit even more, with updates pushed along entire
acyclic subgraphs in one pass.

Sequential updating is based on a specific ordering of
nodes, and clearly some orderings are better than others.
The ordering we use is based on crawl order, which has the
peculiar property that 80% of the edge point backwards;
crawling very quickly discovers pages with many incoming
links, and placing them early reverses the direction of the
bulk of their links. As any ordering can easily be run in
both orders, forwards or backwards or both, we will also
consider the sequential updating in reverse order. Exper-
imentally, alternating direction, forwards then backwards,

performs more poorly than either unidirectional approach.
This is peculiar, and merits further investigation.

Figures 1 and 2 compare traditional PowerIteration (PI)
against sequential updating (SU) and sequential updating
applied in reverse order (R-SU). It should be stressed that
these techniques exhibit exactly the same data access pat-
terns as traditional PowerIteration, passing linearly over the
edge file and probing u in main memory for each edge Auv.
The approaches differ only in what they do for each Auv

(and the direction of scan, for R-SU). Their running times
are effectively identical to PowerIteration.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5 10 15 20

T
ot

al
 E

rr
or

800M Edges Processed

PI
SU

R-SU

Figure 1: Sequential Updates: Total Error

We see acceleration of nearly 2x and 3x for sequential up-
dates on the crawl ordered and reverse crawl ordered graphs,
respectively, with the gap between SU and R-SU diminish-
ing with time.

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 0 5 10 15 20

M
ax

im
um

 E
rr

or

800M Edges Processed

PI
SU

R-SU

Figure 2: Sequential Updates: Maximum Error

Here we see again a lead of reverse crawl ordering, but the
lead is less initially, growing after several iterations.

Related Work: Sequential updating is similar to the Gauss-
Seidel approach described by Arasu et al. [1], in which one
sequentially sets xu =

P

v
Puvxv, using the most current

values of xv rather than those of the previous iteration. In
contrast with UpdateIteration, the Gauss-Seidel approach
requires the graph’s edges to be grouped by destination,
rather than source, which can substantially complicate data
maintenance.

3.2 Reiterated Updates
A large fraction of links in the web graph are intra-host,

and as such it is common to group pages by host for local-
ity benefits, discussed in [6]. Given such a grouping, after
processing the nodes associated with a host, a large frac-
tion of the propagated update z will return to nodes on that
host. While this may seem frustrating at first, recall that
Theorem 2 says that ‖y‖1 decreases by at least ru|zu|, in-
dependent of where Az ends up. Moreover, various caches
will retain the data used to process this group, making re-

processing it very efficient. Rather than process the next
group, reading sequential edge data from disk and probing
yv in main memory, we can reprocess the current group,
reading sequential edge data from main memory and prob-
ing yv in the L3 cache. The latter is substantially faster
than the former, and represents a good payoff so long as
substantial updates remain in the group. As the intra-host
edge density is high, we might perform several iterations on
a group before its y updates dissipate to other groups.

Another popular grouping is by strongly connected com-
ponent. Ordered topologically, there is no reason to advance
from a component until it has satisfactorily converged, as
there are no edges along which updates from subsequent
components may return. This approach has the decided ad-
vantage that the working set of edges and nodes at any point
in time is only as large as the associated strongly connected
component, each of which is visited only once. The main
disadvantage is that computing strongly connected compo-
nents is difficult in external memory, and an approximation
should probably be used instead. Notice that we do not ac-
tually require that the grouping have no back edges, but the
fewer that exist, the fewer updates return upstream and the
more effective each pass is. Strongly connected components
ensure that one pass suffices, but groupings that simply have
low reverse edge density are highly effective as well.

There are other interesting groupings that one can imag-
ine (we will discuss some more in Sections 3.3 and 3.4) and
the question quickly emerges of which one should be used.
In fact, we can use several. Our main constraint is that we
access the edge file sequentially, and therefore we must col-
locate edges from nodes in the same group. If we have the
disk space to maintain multiple edge files, we can produce
an edge file for each grouping, and choose to use a partic-
ular edge file based on our needs at the time. In reading
the edge file, we process the collocated nodes in a group,
and can easily make multiple passes over this data without
tripping over the intervening edges in the original edge file.
This approach does not give us locality of reference in the y
vector, as we have not actually changed node indices.

Figures 3 and 4 examine the performance benefits of group-
ing by host and processing each one, two, and three times.
We also examine 10x reiteration, though only to demon-
strate its limit. As we count operations instead of mea-
sure execution time, we will need to make some assump-
tions about the execution time of subsequent passes. For
presentation reasons, we will assume that subsequent iter-
ations are free, which is clearly false. However, the 2x and
3x reiterations result in acceleration of nearly 2x and 3x, re-
spectively, so acceleration clearly exists for more pessimistic
assumptions. Actual runtimes suggest that subsequent iter-
ations are cheap, with 2x and 3x reiteration taking roughly
1.25 and 1.50 times as long, respectively, in a not especially

well controlled environment. Also, we only need to process
the intra-group edges while reiterating, propagating updates
along inter-group edges only once finished.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5 10 15 20

T
ot

al
 E

rr
or

800M Edges Processed

PI
SU

2x SU
3x SU

10x SU

Figure 3: Reiteration: Total Error

The acceleration for total error is almost 2x and 3x over
SU, suggesting that reiterated updates can be nearly as ef-
fective as multiple passes over the matrix. Of course, there
are diminishing returns, visible as 3x and 10x converge.

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 0 5 10 15 20

M
ax

im
um

 E
rr

or

800M Edges Processed

PI
SU

2x SU
3x SU

10x SU

Figure 4: Reiteration: Maximum Error

Additional iterations help maximum error as well, but the
diminishing returns are even more pronounced.

Related Work: Arrangement by strongly connected com-
ponents has appeared several times in various forms. Eiron
et al. [4] note that pages with no outlinks form a large frac-
tion of the web and describe how to infer their ranks from the
stationary probabilities of a modified graph with these nodes
removed. More generally, Arasu et al. [1] and Langville and
Meyer [10] view the problem as a block upper triangular
linear system, processing strongly connected components in
turn. Their techniques focus on decomposing the Markov
chain, and require a strict topological order.

These approaches are captured by reiteration over the
equivalent grouping. Moreover, UpdateIteration can take
advantage of groupings that are only mostly topological.
This flexibility addresses concerns of the substantial effort
needed for data organization and maintenance, and enables
grouping by host/domain, which was not possible in the
more rigid block triangular techniques.

3.3 Selective Updates
While zu = yu is clearly one effective choice, an alternate

choice is zu = 0. In effect, we can choose not to update node
u. Clearly if yu = 0 we need not expend effort to propagate
yu through A, as we will simply be adding zero to several
locations in y. Even when yu is non-zero but small, we may
want to defer the update until the gains are more in line
with the typical entry. With this in mind, there are various
predicates we could use to decide if we should process yu.
We will specifically consider:

Effort : Set zu = yu iff
|ruyu|

degu

≥ avg
v



|rvyv|

degv

ff

,

selecting entries with the highest anticipated progress |ruyu|
per expended effort degu. There are other predicates that
could be used, each resulting from a different view of which
entries are important to process. Examples include choosing
those entries with largest relative error |(Px − x)u|/|xu| or
those entries whose range of possible ordinal ranks is largest.

Selective updating has some interesting interaction with
sequential and reiterated updates. As we run a pass of se-
quential updates the average value of |rvyv|/degu will change,
and while we could maintain the average exactly by carefully
watching the changes in y, we can also do a more efficient
approximation by assuming that ‖y‖1 decreases by exactly
ru|zu|. Reiteration is similar, in that each reiteration lowers
the weight in a group markedly, by a factor of at least 1−ru,
but not the average value over all of y. We could base our
decisions on the group’s average, shrinking with the values
we consider, or on the entire average over y.

While the gains of selective updating in terms of compu-
tation and memory accesses are clear, savings in terms of
disk accesses are less so. It is not possible to skip entries
on disk at no cost; data is read from disk in blocks, and the
cost is amortized over all entries in the block. Likewise, disk
prefetching will prepare subsequent blocks cheaply, and it is
unclear that we gain anything by ignoring edge data passed
to us. To address this somewhat, it is certainly possible to
apply selective updating at a coarser scale than the node
level. One could skip entire groups of entries at a time, per-
mitting a volume of edges to be passed over at once and
resulting entire disk blocks skipped.

Alternately, Kamvar, Haveliwala, and Golub note in [5]
that some pages converge more slowly than others, deter-
mining which these are at runtime by observing their relative
change in ranks each round. While they use converged val-
ues to cull edges associated with converged nodes, we might
base a grouping scheme (a la Section 3.2) on convergence
rate, determined in a similar manner at run time. Emitting
an appropriately grouped edge file can be done efficiently in
a single pass so long as the number of groups is not terri-
bly large. This organization of the edge file allows efficient
passes over prefixes of the edge file, letting us efficiently
process each group at an arbitrary rate. Understanding and
experimenting with coarse-grained selective updating and
grouping is interesting future research.

Figures 5 and 6 examine the Effort predicate applied to
previous schemes (denoted in the figures labels by “E+”).
The acceleration we see here is substantial, as selective up-
dating takes advantage of the initially high variability of
magnitudes in y. We stress that actual acceleration will be
less, although some may be recouped via clever grouping.

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0 5 10 15 20

T
ot

al
 E

rr
or

800M Edges Processed

PI
3x SU

E + SU
E + 3x SU

Figure 5: Selective Updating: Total Error

We see substantial acceleration in terms of edges pro-
cessed, which is, admittedly, a somewhat suspect measure.
The message is that the work that needs to be done is less.

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

 0 5 10 15 20

M
ax

im
um

 E
rr

or

800M Edges Processed

PI
3x SU

E + SU
E + 3x SU

Figure 6: Selective Updating: Maximum Error

Initial acceleration is especially pronounced here, as the
selective updates immediately leap two orders of magnitude.

Related Work: Selective updating can be seen in the work
of Kamvar, Haveliwala, and Golub [5], who describe a power
iteration process wherein entries xu that appear to have con-
verged are frozen, saving them the recomputation of these
entries every iteration. Moreover, edges associated with the
frozen nodes are trimmed from the edge file, reducing disk
IO required. Freezing is analogous to the non-transmission
of an update, and the edge trimming is clearly the basis of
the grouping discussed previously, though more final.

The main difference between [5] and UpdateIteration is
that in the former the recipient decides whether an update
will be propagated, and it is conceivable that significant up-
dates may be ignored. This is particularly evident during
incremental changes to the web graph. As the matrix A
changes over time, previous stationary distributions prove
good starting points for converging to the new stationary
distribution. But if only a few links change, entries of xu

not incident to a changed edge will remain stationary after
an iteration and will be frozen and never updated.

3.4 Incremental Updates
Over time the adjacency structure of the web changes,

and we will want to compute the stationary distribution of
a new chain that differs from the old in a relatively small
number of locations. The stationary distribution of the old
chain is generally viewed as a good first approximation, and
indeed it is easy and intelligent to restart PowerIteration on
a new chain using the old x.

Restarting UpdateIteration from a specific x appears non-
trivial, as we must compute y = Ax−x+d, involving a ma-
trix multiplication. In fact, the process is much simpler: Let
A and B describe the old and new edge transition matrices,
and consider the two associated update vectors yA and yB,

yA = Ax − x + d and yB = Bx − x + d .

We can relate the update vector yB to its antecedent yA as

yB = yA + (B − A)x .

This equivalence shows how to efficiently update yA to yB ,
allowing us to efficiently reinvoke UpdateIteration(B,x, yB).
The effort required in this matrix-vector multiplication is
proportional to the number of non-zero entries in B − A,
corresponding to the number of changed edge weights.

Several approaches to personalization of PageRank are
based on personalization of the reset distribution [8, 9], shift-
ing influence to those sites that the distribution favors, and
the site linked by them. Recall from Theorem 1 that x
converges to the stationary distribution of the chain with
reset distribution d = y − (Ax − x). Personalization of the
reset distribution is easily performed by incorporating any
changes to d into y instead, changing x’s limit appropri-
ately. It is worth stressing that x’s limit is defined by the
distribution proportional to d, and we need not worry about
renormalizing d if we only make a few changes.

Finally, much of research into Markov chain based rank-
ing research is exploratory: the best setting of weights in A
and vectors d and r are not known. Uniform weights seem
natural as defaults, but are clearly primitive choices. Ex-
ploring link weighting schemes based on content analysis or
resetting policies based on content quality require efficient
recomputation of ranks. Each of these explorative choices:
updating Avu, ru, and du values, are easy in UpdateItera-
tion, corresponding to simple updates to y.

In these three cases above, the changes to the Markov
chain often result in sparse updates to y: most of the edges
in the graph are stable between recrawls, and much of per-
sonalization of reset distributions is localized (upweighting
a few trusted/bookmarked pages, for example). In this con-
text, selective updating of Section 3.3 is well suited to effi-
ciently process just those substantial entries, and leave the
converged regions of the graph untouched. Of course to ac-
commodate this properly, it makes sense to maintain an edge
file of those parts of the graph that experience frequent edge
churn, so that we needn’t pass over the entire graph.

The fine granularity of sequential updates also allows a
very smooth incremental update: we can decompose any
update to the adjacency matrix into a set of small updates
to the links of each node, which we apply as we visit each
node. We need not pause the system to compute (B −A)x,
but can apply the implications of changes at each node in
turn. This becomes all the more relevant in a distributed
setting where such pauses could destroy parallelism.

Figure 7 compares various techniques applied to a con-
verged vector y that has had 1000 random positions up-
dated randomly by ±1/n, emulating either a change in the
link structure or reset distribution. For small initial ‖y‖1,
the scale of the updates does not affect the shape of the
curves, so the choice 1/n is arbitrary.

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

 0 2 4 6 8 10

T
ot

al
 E

rr
or

800M Edges Processed

PI
SU

E + SU
E + 3x SU

Figure 7: Incremental Updating

It is difficult to characterize the acceleration of the incre-
mental updates by a multiplicative factor, as it is clearly
a different shape than the standard curves. Several orders
of magnitude are gained immediately, with the slope arriv-
ing at the shape of Figure 5 as the initially concentrated y
vector is distributed more uniformly.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

 0 2 4 6 8 10

M
ax

im
um

 E
rr

or

800M Edges Processed

PI
SU

E + SU
E + 3x SU

Figure 8: Incremental Updating

Maximum error exhibits the same behavior as total error,
dropping rapidly as the initially sparse vector is dispersed.
The initial hiccup again reflects the sensitive nature of the
maximum error measure.

Related Work: Chien et al. [3] describe an approach to
incremental updating that is based on the construction and
analysis of a new a Markov chain on nodes within a mod-
est neighborhood of the graph changes, and a supernode
representing nodes outside this horizon. Their approach is
similar in spirit to ours, in that attention is restricted to
the relatively small region where change may occur. How-
ever, rather than fix a region and degree of accuracy, Up-
dateIteration discovers where updates are needed as it goes,
accommodating any degree of accuracy fluidly.

Haveliwala [8] and Jeh and Widom [9] have done work on
efficient personalization, observing that the function map-
ping reset distributions to stationary distributions is linear.
This enables very efficient manners of synthesizing personal-
ized PageRanks from a set of precomputed PageRanks based
on various reset distributions. For example, a page’s du

value can be increased by folding in the stationary distribu-
tion of a random walk that resets to only that page, exactly
analogous to increasing and propagating yu.

3.5 Floating Point Implications
Our ability to choose z arbitrarily has implications for

floating point error. We have the flexibility to always choose
zu to be a power of two, so that its addition to x will result
in nominal floating point loss. This is harder to guarantee
with y, as transmission along weighted edges will change zu

from a power of two. Understanding and improving floating
point behavior has positive implications for the introduction
of strength reduction and low precision arithmetic, of par-
ticular interest in this setting where maintaining all of x or
y in memory is challenging. Additionally, UpdateIteration
propagates and combines updates zu, which are typically of
smaller magnitude than the xu values that PowerIteration
operates with, and the precision maintained is thus higher.

3.6 Distribution and Robustness
If we remove the sequential behavior from sequential up-

dates, we see that updates in UpdateIteration can actually
be totally asynchronous. Moreover, our choices for zu are
made locally with only a modicum of global information.
This allows for a very smooth distributed implementation, in
which the only coordination between compute nodes that is
required is eventual communication of the updates applied.
We can delay and reorder inter-node z transmissions until
the updates are significant, batching and trimming network
overhead. Clearly, the best update schedule is highly de-
pendent on the system topology, and we refrain from giving
explicit suggestions here.

In an extreme case of delay, a compute node may be un-
available for a long period of time or even crash. Other
compute nodes can continue in its absence, functioning un-
der the belief that the PageRanks associated with that com-
pute node simply have not changed. If the node comes on-
line again it simply reenters the computation, transmitting
and receiving updates. As noted for incremental updates,
the granularity of sequential updating is very fine, and the
amount of work needed to roll forward from any checkpoint
can be arbitrarily small.

3.7 Decentralization
The Markov chain we have studied simulates the propaga-

tion of probability mass through a directed communication
network whose nodes happen to be computational agents.
The propagation of updates is easily performed within the
communication network, as updates are only transmitted
along links. The initial values of x = 0 and y = d are easily
chosen, as d needn’t be normalized. As the network changes,
in the incremental fashion suggested by Section 3.4, the nec-
essary updates to y are computable by the source of the edge
that has arrived or departed. Gracefully departing nodes re-
moving their incoming edges using this update mechanism
and apply the update zu = yu − du before departing.

4. CONCLUSIONS AND FUTURE WORK
We have examined an algorithmic reformulation of the

traditional power iteration algorithm based on the propa-
gation of updates rather than values. UpdateIteration en-
ables several algorithmic optimizations that result in more
efficient convergence. Moreover, the optimizations are well
suited to the problems of incremental and personalized up-
dates to the underlying Markov chain, and permit flexible
operation in a distributed setting.

The optimizations presented here are likely just a sam-
pling of what can be done to accelerate computation of
PageRank. These optimizations are intended to take ad-
vantage of particular features of computer systems, and it
seems likely that other features may yet be exploited, both
for performance and potentially quality of ranking. Tech-
niques such as Arnoldi Iteration and unsymmetric Lanc-
zos are tempting targets, as is the power extrapolation ap-
proach of Kamvar et al. [7]. Additionally, there is work to
be node exploring the new possibilities enabled through ef-
ficient PageRank computation.

5. ACKNOWLEDGMENTS
The author would like to thank several people who con-

tributed constructive ideas and observations. Michael Is-
ard, Steve Chien, Kevin McCurley, the participants of the
Workshop on Search and Meta-Search, and the anonymous
reviewers all gave valuable comments which have greatly im-
proved the presentation.

6. REFERENCES
[1] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and

John Tomlin, Pagerank computation and the structure
of the web: Experiments and algorithms. WWW 2002

poster.

[2] Sergey Brin and Lawrence Page, The Anatomy of a
Large-Scale Hypertextual Web Search Engine.
Computer Networks 30(1-7): 107-117 (1998).

[3] Steve Chien, Cynthia Dwork, Ravi Kumar, Dan
Simon, and D. Sivakumar, Link evolution: Analysis
and algorithms. Internet Mathematics: Volume 1, No.
3, pp. 277-304.

[4] Nadav Eiron, Kevin McCurley, and John Tomlin,
Ranking the web frontier. WWW 2004.

[5] Sepandar Kamvar, Taher Haveliwala, and Gene Golub,
Adaptive Methods for the Computation of PageRank.
Stanford University Technical Report, 2003.

[6] Sepandar Kamvar, Taher Haveliwala, Christopher
Manning, and Gene Golub, Exploiting the Block
Structure of the Web for Computing PageRank.
Stanford University Technical Report, 2003.

[7] Sepandar Kamvar, Taher Haveliwala, Christopher
Manning, and Gene Golub, Extrapolation Methods for
Accelerating PageRank Computations. WWW 2003.

[8] Taher Haveliwala, Topic-Sensitive PageRank. WWW

2002.

[9] Glen Jeh and Jennifer Widom, Scaling Personalized
Web Search. WWW 2003.

[10] Amy Langville and Carl Meyer, A Reordering for the
PageRank problem. NCSU CRSC Technical Report
#CRSC-TR04-16. March 2004.

7. APPENDIX A: PROOFS
We now look at the two deferred proofs from Section 2.

Recall that Theorem 1 requires the entries of d be non-
negative.

Proof of Theorem 1. Px−x and y = Ax−x+d differ
only in the amount of d added to Ax−x. We can thus write
their difference as

y − (Px − x) = d − drT x/‖d‖1 . (1)

Summing the coordinates of vectors on both sides of (1), and
noting that

P

u
(Px)u =

P

u
xu and

P

u
du = ‖d‖1, gives

X

u

yu = ‖d‖1 − rT x . (2)

To prove the first stated inequality, we move y to the right
hand side of (1), take norms, and use the triangle inequality.

‖Px − x‖1 ≤ ‖y‖1 + |(‖d‖1 − rT x)| . (3)

Substituting
P

u
yu for ‖d‖1−rT x and then |

P

u
yu| ≤ ‖y‖1,

‖Px − x‖1 ≤ ‖y‖1 + |
X

u

yu| ≤ 2‖y‖1 . (4)

Similarly, the second stated inequality results from the
inequalities

‖x‖1 ≥ rT x = ‖d‖1 −
X

u

yu ≥ ‖d‖1 − ‖y‖1 . (5)

with the inequality ‖x‖1 ≥ rT x following as all |ru| ≤ 1.

The proof of Theorem 2 relies on the assumption that the
coordinates of z lie between zero and the corresponding yu.

Proof of Theorem 2. As each zu lies between zero and
yu, we have that ‖y − z‖1 = ‖y‖1 − ‖z‖1, and starting from
the triangle inequality

‖y + Az − z‖1 ≤ ‖y − z‖1 + ‖Az‖1 (6)

= ‖y‖1 − ‖z‖1 + ‖Az‖1 (7)

Column u of A sums to ru, and thus ‖Az‖1 ≤
P

u
(1−ru)|zu|.

‖y + Az − z‖1 ≤ ‖y‖1 −
X

u

|zu| +
X

u

(1 − ru)|zu| (8)

Collecting the summands yields the claimed bound.

