
UPMAIL Technical Report No. 1065 May, 1995ISSN 1100{0686
Meta-programming with Theory SystemsJonas BarklundKatrin BobergPierangelo Dell'AcquaMargus VeanesUppsala UniversityComputing Science DepartmentBox 311, S-751 05 Uppsala, SwedenPhone: +48�18�18 25 00Fax: +46�18�51 19 25AbstractA theory system is a collection of interdependent theories, some ifwhich stand in a meta/object relationship, forming an arbitrary num-ber of meta-levels. The main thesis of this chapter is that theorysystems constitute a suitable formalism for constructing advanced ap-plications in reasoning and software engineering. The Alloy languagefor de�ning theory systems is introduced, its syntax is de�ned and acollection of inference rules is presented. A number of problems suit-able for theory systems are discussed, with program examples given inAlloy. Some current implementation issues and future extensions arediscussed.This paper appears as a chapter in Meta-logics and Logic Program-ming, edited by K. Apt and F. Turini, and published by MIT Press in1995.

1 OutlineA conventional logic program can be seen as the nonlogical axioms of a singletheory. This chapter presents a thesis that we obtain a more powerful tool forapplications in arti�cial intelligence and software engineering if we considersystems of theories, where pairs of theories may stand in an object/metarelationship, rather than single theories.We proceed in 7 steps:1. Arguing that multi-level programming should be a powerful tool formany advanced applications, in particular arti�cial intelligence andsoftware engineering (Sect. 2).2. Introducing theory systems as an approach to multi-level programming(Sect. 3).3. De�ning the formal syntax and one possible inference system of alanguage, Alloy, in which theory systems can be programmed (Sect. 4).4. De�ning the models of Alloy programs (Sect. 5).5. Presenting examples of problem solving using theory systems expressedin Alloy (Sect. 6).6. Discussing self-reference and how to program it in Alloy (Sect. 7).7. Proposing some future extensions, supporting technologies and somecurrent implementation issues (Sects. 8{9).We end with some notes and conclusions.For a general introduction to meta-programming in logic programming,the reader is referred to the overviews by Barklund [3] and Hill & Gallagher[19].2 Arti�cial intelligence and software engineeringThe studies of arti�cial intelligence in general and expert systems in partic-ular make it clear that truly useful problem solvers must be constructed ina quite di�erent way than has been tried in the past. Among the problemswith current approaches are:1. Lack of robustness with respect to domains.2. Low adaptability of problem solving methods.3. Failure to capture \common sense" reasoning.
1

These problems are indeed very di�cult but we believe that the marginalsuccess so far is largely because the attempts at addressing them have beencarried out mostly using single-level architectures (cf. Sterling [31]). Bysingle-level architectures we mean systems without provisions for reasoningabout any part of their own beliefs or procedures and for adapting them-selves according to these observations. The three problems mentioned abovecould be approached as follows:1. Given a program that solves problems in some domain, the systemmight transform this program to adapt it to another domain. Also,given a program that represents a piece of knowledge, together withsome suitably represented new knowledge, the system might createa new program that incorporates both the knowledge present in theold program and the new knowledge, after resolving any discrepanciesbetween them.2. Given a subprogram that carries out a particular form of reasoning,the system might transform it to a similar program that carries out asomewhat di�erent form of reasoning, better adapted to some circum-stances.3. This is the most di�cult problem of these three. McCarthy de�ned aprogram having common sense as one that \automatically deduces foritself a su�ciently wide class of immediate consequences of anythingit is told and what it already knows" [27]. The heuristics for ex-ploring the interesting consequences of new information or �nding theinformation necessary for solving a problem are naturally expressed asmeta-knowledge. These heuristics might need to be revised over time,as they turn out to be more or less successful. This can be seen as ametameta-level problem, indicating that one should not be restrictedto only two levels.All three of these potential solutions involve writing programs that are ca-pable (i) of observing parts of other programs, (ii) of examining those pro-grams' conclusions and perhaps also the reasoning behind these conclusions,and (iii) of creating new programs, presumably starting from existing pro-grams.The reader should note that the preceding sentence could just as wellhave been a statement about advanced software engineering; the same basicoperations seem to be useful in both application areas. Our thesis is thata useful methodology for building correct software is one where a programis constructed \implicitly" by writing a meta-program that takes a numberof \standard programs", transforming and combining them to produce aprogram that performs the desired task. The \standard programs" would2

be of various kinds, some of them simple program pieces that perform variouskinds of recursion, for example, but some of them might be sophisticatedand complex programs that carry out a computation for the same domainas the program to be produced.The meta-programs may in some cases be very simple, merely compos-ing and transforming the given programs in certain ways. However, if theproduced programs must satisfy particular criteria, for example, real-timeconstraints, then the meta-programs may have to do a much more detailedanalysis or perhaps even run the generated programs as a step in their con-struction.The advantage with the outlined approach is that if the standard pro-grams are completely understood, the produced programs will be as well.Moreover, all future modi�cations to the produced programs are done bychanging the program that generated them, which is likely to lead to fewermistakes than manual work. This programming paradigm could truly becalled \high-level programming".Although the main body of work on arti�cial intelligence, reasoning andexpert systems has been spent on single-level formalisms, we are certainlynot alone in observing that a multilevel formalism should provide a bettertool for attacking the fundamental problems. We mention some relatedformalisms at the end of this chapter; further references can be found in theremainder of this book.3 Logic Programming with multiple theoriesFormally, a theory is a set of sentences in some language, including thelogical axioms of the language, that is closed under the inference rules of thelanguage. Once the language is �xed, any set of sentences in that languagede�nes a theory, obtained by adding the logical axioms of the language andclosing it under inference. In logic programming, the language might bethat of de�nite clauses with SLD-resolution and the logical axioms thoseconcerning (Herbrand) equality. A program is then a set of de�nite clausesde�ning a single theory.In applications that involve reasoning it is often appropriate to computewith more than one theory. For example, we could write a program that sim-ulates the reasoning of a collection of agents, representing the beliefs of eachagent as a theory (if we employ the \sentential" view of beliefs, perhaps �rstused explicitly by McCarthy [28]). If the language prevents us from havingmore than one theory in our program, then these \internal" theories haveto be represented in some other way, perhaps as data structures with theprogrammer writing an ad hoc interpreter to simulate inference. There isa large class of applications in \reasoning" and software engineering, per-haps also in other areas, that are naturally written using multiple theories;therefore multiple theories ought to be supported directly in the language.3

t1 � u1	 t1 � uj�t1pu1 ` 	q puj ` �q ti[�]reection coincidence
Figure 1: A generic theory system.Theory systems constitute a useful formalism for writing these kinds ofprograms, because the theories in a theory system are suitable for repre-senting reasoning agents or parts of them, programs to be manipulated,programs that manipulate them, etc. The meta/object relationship betweentheories provides the inspection and control facilities needed in both kindsof applications.3.1 Theory systemsWe propose now a simple structure for theory systems that appears to beadequate for our purposes. A theory system is a mapping from (ground)theory terms to theories. Any theory � contains theorems about theoriesnamed � � � � � ('�' is a distinguished function symbol that we write usingin�x notation). In fact, the restriction of a theory system to theory termsof the form � � � � �, for some � , is a theory system in itself. Such a theorysystem can be thought of being de�ned by � .It is convenient to say that a theory t1 is a meta-theory of any theoryidenti�ed as t1 � t2 � � � � � tk, where k > 1. Conversely we say that thosetheories are object theories with respect to t1.We use the symbol ``' for relating theory terms and sentences. A the-oremhood statement t1 ` pu1 ` 	q says that pu1 ` 	q is a theorem oft1. We mentioned that theories may contain theorems about other theories,and pu1 ` 	q in t1 expresses that 	 is a theorem in the theory t1 � u1 (cf.Fig. 1). Note that a subset of the theorems of t1, namely those on the formpu1 ` � � � q (the left shaded area in the �gure), have a one-to-one correspon-dence with the theorems of t1 � u1, and similarly for another subset of t1(the right shaded area) and t1 � uj .The other kind of statement that we use for de�ning theory systems iscalled a coincidence statement. If the program de�ning the theory system inFig. 1 contains a coincidence statement t1 � uj � ti, then the theories t1 � uj4

and ti have exactly the same theorems. (The relation denoted by `�' is anequivalence relation, i.e., it is reexive, symmetric and transitive.) Moreimportantly, that statement ensures a one-to-one correspondence between asubset of t1 (the right shaded area) and ti. In absence of such a coincidencestatement, there is no connection whatsoever between theories, unless oneis a meta-theory of the other. In particular, proving pti ` �q in t1 in orderto determine in t1 whether � is a theorem of ti requires that t1 � ti � ti.3.2 RepresentationWe will assume that all theories use the same de�nite clause language butthat the set of terms of this language is rich enough that for any variable,function or predicate symbol �, there is some unique constant �0 whichrepresents, or names, �. Similarly, for each well-formed expression �, theremust be some unique ground term �0 that represents �.Our �nal requirement on the de�nite clause language is that for any theo-remhood statement and coincidence statement there is some unique groundatom representing it.We can now de�ne precisely the relationship between a meta-theory andan object theory. Consider a theory system and a pair of theories identi�edby some theory terms �1 and �1 � �2; the �rst is thus a meta-theory of thesecond. Our theoremhood reection principle states that�1 ` p�2 ` �q, �1 � �2 ` �and can be seen as a correctness statement for interaction between a meta-theory and an object theory.Our coincidence reection principle states that�1 ` p�2 � �3q, �1 � �2 � �1 � �3and can be seen as a correctness statement for coincidence of internal theo-ries.Both these principles are valid for every theory system.The traditional local reection principle for a single theory T in mathe-matical logic [30] reads PrT (p�q)) �and states the correspondence between a provability statement and what isto be proved, namely that if the provability predicate holds for an encodingof a formula �, then � holds as well. We call our statements reection princi-ples by analogy, as they state correspondences between names of statementsand what these statements are about.These implications and equivalences should not be confused with the in-ference rules sometimes referred to as \reection principles" but for which5

t1 � t2 � t3�t1 � t2pt3 ` �q	t1pt2 ` pt3 ` �qqpt2 ` 	q
Figure 2: Three meta-levels of theories.a better name is \reection rules" or \linking rules" (cf. the discussions byGiunchiglia, Sera�ni & Simpson [18] and Costantini, Dell'Acqua & Lan-zarone [15]). However, in Sect. 4.3 we will present two reection rules cor-responding to the two implications of the theoremhood reection principle.Fig. 2 depicts part of a theory system in which a theory t contains atheorem pu ` pv ` �qq. The reection principle requires that the theoryt � u contains the theorem pv ` �q and thus that t � u � v contains �. The�gure thus illustrates that theory systems may be arbitrarily deep and thatthe theoremhood reection principle applies at any level.Finally, the following is an example of a program de�ning a simple theorysystem. Tim ` p _x ` Tasty(_x)q Cannibal (y) ^ x Names y (1)Tim ` Cannibal (Tom) (2)Tim � Tom � Tom (3)The theoremhood statements 1 and 2 specify two axioms of the theory Tim.According to the theoremhood reection principle, statement 1 also sayssomething about theories named Tim � � � �. One such theory is Tim �Tom ,which coincides with Tom, according to statement 3. When the theories arethought of as representing the beliefs of agents, we can read the statementsas saying \Tim believes that all cannibals �nd themselves tasty", \Timbelieves that Tom is a cannibal" and \Tim's view of Tom's beliefs is correct",respectively. From this reading we can deduce that Tom �nds himself tasty,and in Sect. 4.3 we will show how to derive this conclusion using an inferencesystem.4 SyntaxWe will now de�ne the syntax, inference rules and informal semantics ofAlloy, a language for computing with theory systems. What we de�ne in thissection can be seen as the \core" syntax of Alloy: the language of de�niteclauses extended with name terms, name atoms, theoremhood statementsand coincidence statements.The language, at this stage, does not contain negation, except that de-nials are introduced as part of proving goals (as usual in SLD-resolution).6

In Sect. 6.2 we use negation in some examples, which are therefore notmeaningful until Alloy is extended with negation.4.1 Formal syntaxThe Alloy language has two components: the system component for de�ningtheory systems and the theory component for de�ning individual theories.Alphabet. Besides punctuation symbols, the part of the alphabet thatis common to both components of the language consists of a class of variablesand, for each n � 0, a class of function symbols and a class of predicatesymbols of arity n. Collectively, function and predicate symbols are referredto as functors. As usual, function and predicate symbols of arity 0 arereferred to as constants and propositional constants, respectively. The classof predicate symbols include the binary symbols `=' and `Name', two binarysymbols that will be denoted by ``0' and `�0', and the propositional constants`True' and `False'. The function symbols include the binary symbol `�'.The alphabet has also a collection of connectives ` ', `^' and `?', andnaming symbols `p', `q', `_' (\dot") and `j'. A dot is used in combinationwith variables only. If x is a variable, then _x is called a variable with a dot,__x a variable with two dots, etc., in general a variable with one or more dotsis called a dotted variable.In addition, the system component of the language has the binary oper-ators ``' and `�'.We will use letters P , Q and R to stand for predicate symbols, F and Gto stand for function symbols, x, y and z to stand for variables.1Theory component. In the following we de�ne the expressions of thetheory component. We will do so by a simultaneous inductive de�nition ofterms, atoms, queries and sentences as separate subclasses and refer to themcollectively as theory expressions.In the de�nition of terms and atoms we will make use of the notion ofan expression being a schema of another. Intuitively, E is a schema of anexpression e whenever some (or none) subexpression occurrences of e havebeen replaced by dotted variables (\holes") in E. In general, we say that Eis a k-level schema of e if one of the following conditions holds.1. e = E,2. e is not a connective and E is a variable with k dots,3. e = e0(e1; : : : ; en) and� E = E0(E1; : : : ; En), or1The letters may also be subscripted. 7

� E = E0(E1; : : : ; Ej jX) for some j, 0 � j < n,where each Ei is a k-level schema of ei, 0 � i � n, and X a variablewith k dots.4. e = pdq and E = pDq, where D is a (k + 1)-level schema of d.By simply schema we mean a 1-level schema. It is an immediate consequenceof the de�nition that if E is a schema of e and a subexpression of e has beenreplaced by a variable with k dots in E, then this dotted variable occursnested within k�1 pairs of `p' and `q'. For example, if F is a binary functor,then _x(y; pG(__z)q) is a schema of F (y; pG(_z)q).Terms. The class of terms is the least class satisfying the followingconditions.1. Each variable and constant is a term.2. If F is a function symbol of arity n and t1; t2; : : : ; tn are terms, thenF (t1; t2; : : : ; tn) is a term.3. If X is a schema of a functor or a theory expression, then pXq is aterm, called a name term.Letters t and u will be used for terms.Atoms. The class of atoms is the least class satisfying the followingconditions.1. If P is a predicate symbol of arity n and t1; : : : ; tn are terms, thenP (t1; : : : ; tn) is an atom, called a predication.2. If T is a schema of a term t and S a schema of a sentence s, then`0(pT q; pSq) is an atom, called a name atom.3. If T is a schema of a term t and U a schema of a term u, then�0(pT q; pUq) is an atom, called a name atom.Letters A and B will be used for atoms. We will use the shorthand pT ` Sqfor `0(pT q; pSq) and pT � Uq for �0(pT q; pUq).2It follows easily from the de�nitions of terms and atoms that a variablewith n dots is embedded within k, k � n, nested levels of naming. For avariable with n dots, the lowest dot makes a \hole" in the innermost pairof `p' and `q', the next dot in the next pair and so on. If k = n, then the2We could let `0 be Demo, in which case pT ` Sq would be shorthand for the familiarDemo(pTq; pSq). 8

variable is called free in the corresponding term or atom. For example z isthe only free variable of the name termppF (x; _y; __z)qq:A name term or name atom is said to be proper if it is ground. Considerfor example pF (_x1) ` _x2(_x1; y; A) _zq:This name atom is not proper because it contains four free variable occur-rences of three di�erent variables. Only for proper names can we tell whichexpression they name.Queries. The class of queries is the least class satisfying the followingconditions.1. An atom is a query; True is called the empty query.2. If C and D are queries, then C ^D is a query.Letters C and D will be used for queries.Sentences. The class of sentences is the least class satisfying the fol-lowing conditions.1. If A is an atom and C is a query, then A C is a sentence, called aprogram clause.2. If C is a query, then C? is a sentence, called a goal.3. If C is a query, then C (shorthand for False C) is a sentence,called a denial.The variables of a program clause and a denial are universally quanti�ed.A goal, on the other hand, is the negation of a denial and thus existentiallyquanti�ed::(C), :(8(False C)), :(False 9C), 9C , C?:System component. The language of the system component has twokinds of expressions: theoremhood statements and coincidence statements.� If t is a term (called a theory term in this context) and s is a sentence,then t ` s is a theoremhood statement.� If t1 and t2 are (theory) terms, then t1 � t2 is a coincidence statement.Collectively they are referred to as system expressions.9

4.2 Normalized languageIn order to be able to handle terms conventionally, we want each term tohave a normal form, where the naming symbols `p', `q', `_' and `j' have beeneliminated. We call the elimination process normalization and the result anormalized term. In this context p � q is a function mapping expressionsto expressions; p � q is required to be compositional in order to enhancethe expressive power of the language. This means that if e is a compoundexpression e0(e1; : : : ; en), then peq can be expressed as a composition of allpeiq, 0 � i � n. In addition, p _vq = v.Clearly there exist several di�erent normalizations. Probably the mostgeneral approach is to have a binary function symbol `�', denoting a com-position function that produces the name of a compound expression fromthe name of a functor or a connective and a list of names of expressions.Using this approach, the notion of lists is needed; this can be accomplishedby using a binary function symbol `�' and a constant `�' to represent theempty list. (We will use the less cumbersome notation [e1; e2; : : : ; enjx] for�(e1; �(e2; � � � �(en; x) � � �)).)The alphabet is assumed to have a unique name e0 for each symbol e, insuch a way that the mapping e 7! e0 is injective.3 If these names are allterms, then the normalization can be described by the following transfor-mations. p _eq �! epeq �! e0 if e is a symbolpe0(e1; : : : ; enj _x)q �! �(pe0q; [pe1q; : : : ; penqjx])pe0(e1; : : : ; en)q �! �(pe0q; [pe1q; : : : ; penq])We can however take advantage of the restriction that we imposed on thede�nition of schemas, namely disallowing holes for connectives, and make thefollowing modi�cations to the above transformations. For each connectivec, the alphabet has a corresponding function symbol c0 of the same arity asc. If e0 in the last case above is for example `^', thenpe1 ^ e2q �! ^0(pe1q; pe2q):We get similar transformations for the other connectives. For example, usingthis normalization, the normal form of ppF (x; _y; __z)qq is obtained as follows.ppF (x; _y; __z)qq ��! p�(F 0; [x0; y; _z])q��! �(�0; [F 00; p[x0; y; _z]q])��! �(�0; [F 00; �(�0; [x00; p[y; _z]q])])3If e0 itself is a symbol it has a name e00, etc.10

��! �(�0; [F 00; �(�0; [x00; �(�0; [y0; p[_z]q])])])��! �(�0; [F 00; �(�0; [x00; �(�0; [y0; �(�0; [z;�0])])])])Unnecessary naming of `�', `�' and `�' can be avoided by de�ning the trans-formation so that `�', `�' and `�' become \transparent" with respect tonaming, i.e., p�q �! �, p�(e1; e2)q �! �(pe1q; pe2q) and p�(e1; e2)q �!�(pe1q; pe2q). Note that this does not violate the injectivity of the namingfunction. Assuming this modi�cation then, for example,ppF (x; _y; __z)qq ��! �(F 00; [x00; y0; z]):4.3 Inference systemEquality, naming and uni�cation. Before normalizing the language ofa program, we extend each of its theories with every axiom on the formptq Names t, where t is a term.After normalizing, as described in Sect. 4.2, the usual Herbrand equalitytheory, as axiomatized by Clark [14], can be used. (However, computationof the naming relation ought to be integrated with uni�cation in order todelay computation of names of nonground terms.)As all correct normalizations will behave in the same way, with respect toequality of the normalized expressions, it would alternatively be conceivableto extend Herbrand equality to name expressions without normalization.Inference rules. The inference system that we are to explain here is byno means the only possible inference system for Alloy, in fact, it is not evencomplete. We choose this inference system for presentation because it issimple and because it is complete for propositional programs. For an actualimplementation we are presently developing a more goal-oriented inferencesystem, outlined in Sect. 9.The main purpose of the inference system is to be able to prove statementsof the form � ` C?, i.e., that a goal C? is a theorem of some theory � .This can either be accomplished by a refutation, i.e., by assuming � ` Cand proving � ` (inconsistency in �), or by a proof that may includerefutations as subproofs. A successful refutation of a denial � ` C isalways ended by cancelling � ` C and concluding � ` C? (through theapplication of the RR rule described below).We shall present seven inference rules. The �rst rule is ordinary SLD-resolution within a theory. Let 4C denote the atom selected from a queryC and 5C the rest of the query. It is assumed that the predicate symbol ofthe selected atom is not Names.RS � ` C � ` A D� ` (5C ^D)� � = mgu(A;4C)11

The second rule is a \Relativized RAA" rule, allowing us to make sub-proofs that are refutations. [� ` C]i...� ` RR cancel i� ` C?The third and fourth rules are the reection rules, justi�able from the the-oremhood reection principle (Sect. 3.2). They make use of the meta/objectrelationship between a pair of theories in both directions: If a theory �Mreasons that its internal theory �O contains some sentence �, then �M � �Oindeed contains �, and vice versa.TD �M ` p�O ` �q�M � �O ` � �M � �O ` ��M ` p�O ` �q TUThe �fth and sixth rules are similar to the third and fourth, but are insteadjusti�able from the coincidence reection principle. They express that if atheory has as a theorem stating that two of its internal theories coincide,then we may infer that these theories do coincide, and vice versa.CD � ` p�1 � �2q� � �1 � � � �2 � � �1 � � � �2� ` p�1 � �2q CUThe seventh rule uses a coincidence between two theories to transfer a the-orem of one of them to the other.�1 � �2 �1 ` ��2 ` � CEFrom these inference rules one could derive others, for example, an indirectSLD-resolution inference.�M ` p�O ` Cq �M ` p�O ` A Dq�M ` p�O ` (5C ^D)�q � = mgu(A;4C)This derived inference rule can be justi�ed:TD �M ` p�O ` Cq�M � �O ` C �M ` p�O ` A Dq�M � �O ` A D TD�M � �O ` (5C ^D)��M ` p�O ` (5C ^D)�q TU RSAnother useful derived rule is for indirect reasoning with coinciding theories,� ` p�1 � �2q � ` p�1 ` �q� ` p�2 ` �q ;12

justi�ed as follows. CD � ` p�1 � �2q� � �1 � � � �2 � ` p�1 ` �q� � �1 ` � TD� � �2 ` �� ` p�2 ` �q TU CEAs an example, consider again the cannibal example of Sect. 3.1. Here ishow to prove the statement Tom ` Tasty(Tom)?.(2) (1) [Tim ` pTom ` Tasty(Tom)q]1 RSTim ` Cannibal (y) ^ pTomq Names y RS(3) Tim ` pTomq Names Tom NMTim ` True RR cancel 1Tim ` pTom ` Tasty(Tom)q? TDTim � Tom ` Tasty(Tom)? CETom ` Tasty(Tom)?We mentioned above that this inference system is incomplete. What mustbe done in order to increase the number of provable statements is taking careof proofs that involve improper names. See Sect. 9 for a further discussionof how this can be done.5 SemanticsLet I be the set of theory terms andM = fM�g�2I a family of (arbitrary�rst order4) structures for the language of theory expressions under a givennormalization. The elements of M are called theory structures. A systemstructure is a pair hM;�i, where � is an elementary equivalence relationon M. (Two �rst order structures are said to be elementarily equivalentwhenever they have the same set of logical consequences.)Let P be an Alloy program, i.e., a set of system expressions, and lethM;�i be a system structure. If the theory structures are Herbrand inter-pretations, we can assume without loss of generality that P is ground; Pcould then be a Herbrand instantiation (possibly in�nite) of an underlyingnonground program. We say that hM;�i is a model of P if the followinghold: � ` ' 2 P) M� j= '; (4)�1 � �2 2 P) M�1 �M�2 ; (5)M�1 j= `0(p�2q; p'q) , M�1��2 j= '; (6)4Here we need not restrict ourselves to Herbrand interpretations only.13

M�1 j= �0(p�2q; p�3q) , M�1��2 �M�1��3 ; (7)M�1�(�2��3) �M(�1��2)��3 (8)t is a ground term) M� j= ptq Names t: (9)Conceptually, the set of theoremhood statements of P is partitioned by thetheory terms. Each part is identi�ed by a theory term, the denotation ofwhich is a model for that part (4). A coincidence statement between any twotheory terms enforces the structures they denote to be elementarily equiv-alent (5). The theoremhood and coincidence reection principles must besatis�ed by the theory structures (6, 7). Furthermore, � must be associativewith respect to elementary equivalence between the denoted structures (8).From formulas 6 and 8 we can easily deduce thatM�1 j= p�2 � �3 ` 'q,M�1 j= p�2 ` p�3 ` 'qq:Finally, the Names predicate symbol must denote a naming relation (re-stricted to terms), i.e., one that relates any ground term with its name (9).It is also clear that the set of logical consequences of any theory structureis closed under SLD-resolution, as the set of theorems of any �rst orderstructure is complete.Considering the special case when P is just a Horn clause program, i.e.,when all the sentences of P are of the the form � ` ' where ' is a Horn clauseand � is the only theory term, then the notion of system structure collapsesto that of a �rst order structure. In that case conditions 5{7 are triviallysatis�ed. The only extra requirement, not part of a standard de�nition of amodel of P , would be (9).In our approach we have not altered the notion of logical consequence,as was done for example by Jiang [20], in order to handle meta-reasoning.Instead we introduce the notion of system structure, following closely theinformal semantics, giving us a notion of semantics which is a modest ex-tension of a �rst order semantics in the sense that the basic building blocks,theory structures, are still �rst order structures. A more thorough investi-gation of the semantics of Alloy will be the subject of a future publication.6 Applications using theory systemsIn this section we shall present a number of useful applications of meta-programming with theory systems, some of them commonly known, someof them new. We shall show how fragments of these applications can beprogrammed elegantly in Alloy. Our ambition is twofold. Firstly, we wishto convince the reader of the strength and versatility of meta-programmingwith theory systems, continuing and extending the work by Bowen & Kowal-ski [8], Sterling [31], Bowen [7], Brogi & Turini [12] and others. Secondly,we hope to illustrate programming in Alloy and how many problems can14

be programmed in a much more straightforward and concise way than insingle-level programming or single-theory meta-programming.6.1 Reasoning AgentsMany forms of reasoning for arti�cial agents have been proposed, such asabductive reasoning, inductive reasoning, non-monotonic reasoning, casebased reasoning, temporal reasoning and so on. A favourite approach ofmany philosophers and other researchers in arti�cial intelligence is to inventa new specialized logic for each one of these forms of reasoning. Thereare many problems with this approach. One is that it is not clear at allthat these logics can be combined to build arti�cial agents capable of morethan one form of reasoning. Another is that there are often no e�cientimplementation techniques known for these new logics.A more sensible method is to employ a single logic, with known properties,which can be implemented; such as some subset of classical logic. However,many of the forms of reasoning mentioned above cannot be mapped straight-forwardly to classical logic. (This has even been used as an argument againstusing logic at all for reasoning agents.)Fortunately, there is a partial solution. If we go from using single-levellogic languages to meta-logic languages for theory systems, we obtain a mod-est extension of classical logic in terms of semantics but we get a substantialextension in terms of reasoning capabilities, because we can express variousforms of reasoning in the logic itself. This approach becomes even moresensible when one recognizes that many forms of reasoning actually containa substantial element of meta-level reasoning. For example, default reason-ing involves observing that some question cannot be decided and making ahypothesis (although it is not always recognized as such) about the answer.In Alloy we can represent an agent's beliefs by a theory, which internallyde�nes a system of theories. Some of these theories might represent (cor-rectly or incorrectly) the agent's view of other agents' beliefs, ambitions andmotives; cf. Fig. 3. Other theories might represent the agent's beliefs aboutthe surroundings and about various domains. Presumably, there are alsotheories that encode various problem solving strategies and tactics.This approach has several advantages.� Modularity. An agent's mind is internally structured.� Multiple levels. It is possible to represent beliefs and procedures atvarious meta-levels, e.g., theories synthesizing problem solving proce-dures to be used in speci�c domains represented by \lower" theories.� No parapsychology. As the theory representing the beliefs of an agentis clearly separated from the theory representing another agent's be-liefs about the �rst agent's beliefs, our formalism does not create\mind-reading" and confusion (unless explicitly programmed).15

t1
t2t1 � t2reection

Figure 3: An agent t1, which has a (distorted) view of the beliefs of anotheragent t2, constituting a theory t1 � t2.
N

B

A

C

S

W E

Figure 4: \Can the driver in car C, coming from south, pass the crossing?"� Generality. Various properties of knowledge and beliefs (see the fol-lowing section) can be programmed into the system but they are notautomatically present.As an example of programming multiple agents that reason about eachother, consider the tra�c problem illustrated in Fig. 4.Three cars are simultaneously approaching a four-way crossing. Thereare no other signs or tra�c lights, so the rule is that drivers should giveway to cars coming on their right side. Using a simple application of thisrule, we obtain that car A can pass, while cars B and C must wait, becausethey give way to some car on their right side. However, the driver of car Ccould instead reason that car B must wait, because the driver of car B willsee car A on her right entering the crossing and give way to it. Hence, the16

driver of car C might conclude that he can safely pass.Our purpose here is not to argue whether it would be legal or not for thedriver of car C to pass, based on the argument above5, but to show thatsuch multiagent reasoning can be programmed straightforwardly in Alloy.The following statement encodes the problem of the driver of car C.Tra�c ` pD(C;South) ` Pass([D(A;North);D(B;East);D(C;South)])?q(10)The theory Tra�c is where our reasoning about the drivers will take place.Each theory Tra�c � D(x; y) represents (our view of) the beliefs of thedriver of car x, coming from direction y. Each theory Tra�c � D(x1; y1) �D(x2; y2) represents (our view of) the beliefs that the driver of car x1, comingfrom direction y1 has about the beliefs of the driver of car x2, coming fromdirection y2 has, etc.A theorem Pass(z) in a theory � � � �D(x; y) would mean that the driverin question would believe that she can pass a crossing in which she sees thecars listed in z. Similarly, a theorem Wait(x) would mean that she wouldbelieve she has to stop.The �rst two clauses are interesting, because they help us to encode aform of group belief.Tra�c ` Driver(D(x; y);D(x; y))Tra�c ` Driver(D(x; y) � p; d) Driver(p; d)Every atom on the form Driver(D(x1; y1)�� � ��D(xn; yn);D(xn; yn)) is a the-orem in Tra�c. For example, we can derive Tra�c ` Driver(D(C;South);D(C;South)) and Tra�c ` Driver(D(C;South)�D(B;East)�D(A;North);D(A;North)). Note that each such theorem is about a theory term encodingsome driver's view of some driver's view of : : : some driver's beliefs, and theultimate driver in such a chain. We can use the predicate Driver in Tra�cfor expressing that something should be believed by every driver and thatevery driver should believe that other drivers believe so, etc., arbitrarilydeep.5It is easy to observe that many real drivers seem to reason exactly this way.

17

The following three clauses de�ne the actual reasoning.Tra�c ` p _t1 ` Pass(c) Not-in-crossing(_x1; c)q Driver(t; d) ^ t1 Names t ^ x1 Names x ^Gives-way-to(d; x)Tra�c ` p _t1 `Wait(c) In-crossing(_x1; c)^x2 Names x1 ^ c1 Names c^p _x2 ` Pass(_c1)?qq Driver(t; d) ^ t1 Names t ^ x1 Names x ^Gives-way-to(d; x)Tra�c ` p _t1 ` Pass(c) In-crossing(_x1; c)^x2 Names x1 ^ c1 Names c^p _x2 `Wait(_c1)?qq Driver(t; d) ^ t1 Names t ^ x1 Names x ^Gives-way-to(d; x)The �rst clause says that any driver will reason: if there is no car approach-ing from such a direction that I must give way to it, then I may pass.The second clause says that any driver will reason: if there is a car ap-proaching from such a direction that I must give way to it, and I believethat driver will reason that he can pass, then I must wait.The third clause says that any driver will reason: if there is a car ap-proaching from such a direction that I must give way to it, but I believethat driver will reason that he must wait, then I can pass anyway.The next four clauses of Tra�c simply determine who must yield to whom.Tra�c ` Gives-way-to(D(;North);D(;West))Tra�c ` Gives-way-to(D(;West);D(;South))Tra�c ` Gives-way-to(D(;South);D(;East))Tra�c ` Gives-way-to(D(;East);D(;North))The predicates In-crossing and Not-in-crossing are list membership/non-membership predicates; these predicates are here part of the group belief ofdrivers (alternatively we could have placed them in every theory Tra�c�� � �).Tra�c ` p _t1 ` In-crossing(x; [xj])q Driver(t; d) ^ t1 Names tTra�c ` p _t1 ` In-crossing(x; [jc]) In-crossing(x; c)q Driver(t; d) ^ t1 Names tTra�c ` p _t1 ` Not-in-crossing(x; [])q Driver(t; d) ^ t1 Names tTra�c ` p _t1 ` Not-in-crossing(x; [yjc]) x 6= y ^Not-in-crossing(x; c)q Driver(t; d) ^ t1 Names tA full proof of the original statement 10 is rather long, but involves proving18

the following statements, among others.Tra�c �D(C;South) �D(B;East) �D(A;North) `Pass([D(A;North);D(B;East);D(C;South)])?Tra�c �D(C;South) �D(B;East) `Wait([D(A;North);D(B;East);D(C;South)])?Tra�c �D(C;South) ` Pass([D(A;North);D(B;East);D(C;South)])?Tra�c ` pD(C;South) ` Pass([D(A;North);D(B;East);D(C;South)])?q6.2 Properties of KnowledgeSome formalisms intended for knowledge representation, reasoning and meta-reasoning (such as Konolige's modal logic of knowledge [22]) build variousproperties of knowledge or belief into the formalism. Five well-known prop-erties of this kind are (using the notation of Konolige, where bel(S) is the setof beliefs of an agent S, while [S]� is the proposition that agent S believes �):Saturation (K). Reasoners are closed under inference, so bel(S) is satu-rated.Knowledge (T). For knowledge, beliefs must be true, so � 2 bel(S))� is true.Consistency (D). Reasoners are supposed to be consistent in their knowl-edge, so � 2 bel(S)) :� 62 bel(S).Positive introspection (4). If reasoners believe something, they also be-lieve that they believe it, so � 2 bel(S)) [S]� 2 bel(S).Negative introspection (5). If reasoners do not believe something, theyalso believe that they do not believe it, so � 62 bel(S)) :[S]� 2bel(S).Alloy is intended, among other things, for applications of this kind, but onlythe �rst property has been built into the language. Instead, we might ex-press these properties as part of our meta-programs. This makes it possibleto model also reasoning agents that do not have these properties, or whohave quite di�erent properties. Let us show how these properties could berepresented in a suitably extended version of Alloy, one by one. We willassume that there is a theory A which de�nes an internal theory system, inwhich the beliefs of some agent is represented by a theory identi�ed as B inA (and thus as A � B outside A).Saturation (K) This property is built in, as Alloy theories are closed underinference. This means that Alloy can only represent directly agentswhose beliefs are closed under inference.19

Knowledge (T) This postulate can be expressed for some particular bi-nary predicate P as a theoremhood statementA ` P (x; y) pB ` P (_u; _v)?q ^ u Names x ^ v Names y:If we would like to express the T postulate for any predicate symbolwe should do it in a meta-theory of A.A variant of the T postulate can be expressed asA ` pW ` P (_u; _v)q pB ` P (_u; _v)?q;in which A has an internal theory W which contains A's view of theworld. This statement says that if A believes that B believes some Patom, then that atom is also contained in A's beliefs about the world.Consistency (D) Consistency of the reasoner B could be expressed as anintegrity constraint A ` pB ` _pq ^ pB ` not _pq(However, Alloy currently has no inference rules that take integrityconstraints or negation into account.)Positive introspection (4) This is straightforward:A ` pB ` pB ` __pqq pB ` _qq ^ p Names qNegative introspection (5) If Alloy were to be extended with negation,then negative introspection is also easy:A ` pB ` not pB ` __pqq not pB ` _qq ^ p Names q6.3 Program Composition OperatorsBrogi, Mancarella, Pedreschi and Turini have proposed an algebra of oper-ators for composing logic programs [9]. The operators are P [Q, P \Q, P �and P / Q, for union, intersection, encapsulation and import of programs,respectively. Their meta-interpretive de�nition can be coded elegantly inAlloy, provided that we choose one unary and three binary function sym-bols for constructing theory terms that stand for the theories resulting fromthese operations.We let all the theories of a logic program with theory operators constitutea theory system internal to a theory M . The de�nition of M contains�ve theoremhood statements that de�ne the theorems of theories named20

by operator expressions. Here we represent the operators by the functionsymbols U , I, E and T , respectively.M ` pU(_p; _q) ` _a _cq p _p ` _a _cqM ` pU(_p; _q) ` _a _cq p _q ` _a _cqM ` pI(_p; _q) ` _a _cq Partition(c; c1; c2) ^ p _p ` _a _c1q ^ p _q ` _a _c2qM ` pE(_p) ` _a Trueq p _p ` _a?qM ` pT (_p; _q) ` _a _c1q p _p ` _a _cq ^ Partition(c; c1; c2) ^ p _q ` _c2?qThis straightforward program, which uses a ground representation, is no lesselegant than the program by Brogi & Contiero [11] that uses a nongroundrepresentation. (We assume that the ternary predicate Partition has beende�ned to compute the partition of a conjunction into a pair of (possiblyempty or unitary) conjunctions.For example, consider a program in the algebra with three \basic" the-ories Rules, Public and Private [10]. In the Alloy program, the clauses ofthese theories should appear as theoremhood statements M � Rules ` � � �,M �Public ` � � �, and M �Private ` � � �, respectively. We can then add a co-incidence statement such as GiveCredits �M �U(T (Rules ;Private);Public)in order to de�ne a theory GiveCredits which can subsequently be queried.Any query to GiveCredits will then be computed in the composed theory(Rules / Private) [Public.6.4 Implicit ProgrammingEssentially all programs today are written manually by programmers. Theprogrammers build on past experience and sometimes even directly on pro-grams written in the past. (Indeed, this happens every time an existingprogram needs modi�cation; we may see it as writing a program that is toperform almost the same computation as an existing program.) This mighthappen in many ways. Sometimes a program piece can be reused as is,when the abstraction it provides is exactly the one sought for. Typicallypieces of the existing program need to be systematically rewritten in someway, for example, an extra argument might need to be added to a procedureor a base case replaced. If the existing program needs extensive rewriting,perhaps only its basic structure remains, such as the recursion pattern.When really done systematically, this is a useful methodology. If the exist-ing program does what is expected from it and each small change transformsit in a known way, then we may have con�dence that the program resultingfrom a sequence of such changes computes what we expect. It is a seriousproblem today that modi�cations of the kind outlined above can rarely becarried out awlessly. The resulting program then does not do what is ex-pected and expensive corrective work is required. We may never know whenthe program becomes error-free. 21

Suppose we could partly automate this process, so the programmer couldinstead take a program or a program fragment and specify exactly whichmodi�cations must be done. The requested transformation would then beapplied and the process continued until the desired program had been cre-ated. Given a collection of generally useful program fragments, the pro-grammer might even build an entirely new program by incorporating andtransforming these components. An alternative, often discussed in the realmof functional programming, is to provide very powerful abstractions so ev-ery problem can be coded in terms of these high-level abstractions. Thisapproach is mathematically very appealing but has not yet turned out tobe a practical approach to programming. The process outlined above iscloser to an approach taken by actual programmers and also seems to beuseful for reasoning exactly about the resulting programs. A more detailedcomparison between these approaches seems necessary in the future.As an example, let us show a simple program that adds an extra argumentto a predicate. The transformation program is in a theory called T .T ` pExtend(_m; _p) ` _b _dq p _m ` _a _cq ^NonoccurringVariable(p _a _cq; v)TransAtom(a; b; p; v) ^TransQuery(c; d; p; v) ^T ` TransAtom(p _p(j _x)q; p _p(_vj _x)q; p; v) TrueT ` TransAtom(p _q(j _x)q; p _q(j _x)q; p; v) p 6= qT ` TransQuery(pTrueq; pTrueq; ;) TrueT ` TransQuery(p _a ^ _cq; p_b ^ _dq; p; v) TransAtom(a; b; p; v) ^TransQuery(c; d; p; v)(We assume that the predicate NonoccurringVariable has been de�ned tocompute (in its second argument) some variable name that does not occurin the name given as the �rst argument.)In order to use this program, we must make T 's view of the inspectedand the de�ned theories coincide with the actual theories that we wish toinspect and de�ne:T � JohnsBrain � JohnsOldBrainT � Extend(JohnsBrain ;Likes) � JohnsNewBrainHenceforth, the theory JohnsNewBrain will be exactly like the theory Johns-OldBrain, except that any clause which contains a predication Likes(� � �) hasbeen replaced by a clause in which these predications have all been replacedby Likes(� � � ; v), where v is some variable that did not occur in the originalclause. 22

7 Self-referenceThe reader may have noted that we have avoided using any circular theories.There is no automatic mechanism which gives a theory access to informationabout its own provability.There are several advantages with systems that do not contain self-refer-ring theories, i.e., theories that do not really reect upon themselves but atmost upon \views" of themselves. For example, there will be no paradoxesand implementation becomes simpler and more e�cient.The disadvantage with prohibiting or avoiding self-reference is, of course, areduced expressivity. It is not possible to de�ne agents that truly introspect.It is an open question at this time how serious a restriction it would be toprohibit self-reference completely, but it is clear that one can often makedo with a su�ciently high tower of theories, each being a meta-theory forthe theories below it. A very close approximation to a single theory whichis a meta-theory for itself is obtained through an in�nite tower of identicaltheories, each being a meta-theory for the theories below it. Such a towercan be expressed in Alloy.If we wished to make an Alloy theory T � U truly self-referential, e.g.,through a theory I in T � U , we could add one of the two equivalent state-ments T � U � I � T � U and T ` pU � I � Uq to the program. It is easyto show that with either statement, in any model hM;�i of the program,we will have that MT�U�I � MT�U . That is, whatever T � U \observes"in the theory it calls I, is really also in T � U itself. This is a \two-way"self-reference: T � U may query itself by querying the theory it calls I, orit may compute clauses and add them to itself if it contains clauses such aspI ` _pq � � � p � � �.One could allow T � U to query itself but not add clauses to itself byinstead adding here are three simple (and equivalent) ways: a theoremhoodstatement T ` pU � I ` _pq pU ` _pq;to the program. It is easy to show that MT�U �MT�U�I, i.e., that whateveris satis�ed by MT�U is also satis�ed by MT�U�I, so T � U � I includes an\image" of T � U .However, note that there is no clause that could be added to T � U inorder to achieve this e�ect. The rationale is simply that self-reference mustbe \sanctioned" from outside a theory.8 AbductionAbduction is a form of reasoning with a purpose to determine hypothesesthat explain an observation, typically in the context of knowledge assimila-tion [23, 26]. Abductive reasoning seems particularly interesting in combi-nation with meta-reasoning. Suppose the beliefs of John are represented by23

a theory Beliefs(John), which internally de�nes a theory system in whichthere is a theory Beliefs(Mary), representing John's beliefs about Mary'sbeliefs. Suppose further thatBeliefs(John) `SmilesAt(a; b) pBeliefs(_u) ` Likes(_u; _v)q ^ u Names a ^ v Names b;i.e., a statement that those who believe they like him smile at him. If Johnnotices Mary smiling at him, we can assume that a belief SmilesAt(Mary ;John) appears among John's beliefs, calling for an explanation. By perform-ing abductive reasoning, the hypothesis pBeliefs(Mary) ` Likes(Mary ; John)qappears as a good candidate for inclusion in Beliefs(John) because it wouldimply the observation. John therefore might assume that Mary believes shelikes him.This is of course merely a simple example but the area of agents perform-ing meta-reasoning about each other's actions, beliefs, motives and ambi-tions is clearly one where abductive reasoning needs to be carried out aspart of the meta-reasoning.Abductive reasoning can be carried out in many ways. One way is toadd inference rules for abductive reasoning, obtaining new abductive proofprocedures [21]. However, it is also possible to realize abductive reasoningthrough meta-level deduction, as suggested by Bowen & Kowalski [8]. Suchachievement of abductive reasoning through meta-reasoning is a topic thatought to be explored further using theory systems.9 Implementation and language extensionsIn our implementation e�orts, we are extending Luther [5], an instance ofWarren's abstract Prolog machine [32]. The idea is that the generalizedSLD-resolution rule should be essentially as e�cient as in Prolog, regardlessof the number of \indirection" levels. This can be made possible by rep-resenting the clauses of all theories, also those that only exist as a \view"in some other theory, by ordinary abstract machine code. An interestingdi�culty is when a program clause is not an explicit axiom in a theory butis obtained through some computation in a meta-theory of the current the-ory. This we intend to solve by never actually creating the program clausebut rather use directly the parts of the program clause that are explicit inthe meta-theory and then carry out a computation in the meta-theory. Thefollowing example should illustrate the technique. Consider the followingprogram fragment.TM � TO � TOTM ` pTO ` P (_x; F (_y)) Q(_y) ^ _zq R(_x; _y; _z)If we were to prove a P atom in TO (or in TM �TO), we could �rst carry outa computation in TM of the complete name of some clause P (� � � ; F (� � �)) 24

Q(� � �) ^ � � � where the dotted parts were �lled in by the R atom in TM .However, computing the whole clause could well be a waste of resources, asis easy exempli�ed: Suppose that the goal atom is actually P (42; G(54)).Uni�cation of the goal atom with the head of the generated program clausewill always fail immediately and the computation in TM of the programclause would be worthless. What we do instead is to compile as part of thecode reachable from TO a clauseP (x1; F (y1)) x Names x1 ^ y Names y1 ^R(x; y; z) ^Q(y1) ^ �[z]:We see that all parts of the clause that were explicitly given in the meta-level clause are present in this clause. The two Names atoms constrain thevariables x and y so that any value they obtain must be a name of somethingthat can be uni�ed with x1 and x2, respectively. The expression �[z] canbest be described as a call to whatever becomes the value of z. In the worstcase, this might require using an interpreter but it seems to us that in thissituation, the value of z is usually taken from some context where there ismachine code available for the named query. In this case, that code can beused (with some care). If we consider again the goal atom P (42; G(54)) wesee that this clause will fail before computing any part of the body.As mentioned before, the style of computation described above realizesa di�erent inference system from the one described in Sect. 4.3. In thissystem, computations in various theories can be interleaved, as shown bythe example. The idea is to be as goal-directed as possible.It is clear that negation of some kind must be added to the language, eitherexplicit negation, negation as failure or both. If we incorporate negationas failure in Alloy, we will investigate the merits of a monotonic versionof negation as failure, where the theory in which a �nitely failed proof isobtained is given explicitly.It would also be very interesting to incorporate some form of abductiveprocedure in Alloy, because of the natural links between meta-reasoning andabduction pointed out in Sect. 8. Denials are already formally present inthe language and would then function as integrity constraints when givenas part of a program [26].10 Notes and related workThere have been a few changes in the de�nition of Alloy since our previouspublication [4].1. Theory terms now include expressions on the form � � � � � � �.2. In addition to program clauses, Alloy now has goals and denials.3. What used to be called a tagged program clause is now called a theo-remhood statement and may contain any sentence.25

4. Representation statements have been generalized to coincidence state-ments (a representation statement t . u can be written as t � u � u).This allowed us to generalize the reection rules and simplify the in-ference system considerably.5. There is an SLD-resolution style inference rule instead of an inferencerule for program clauses.It should be obvious for the knowledgeable reader that the development ofAlloy is very much inspired by work of Kowalski [25, 26], and by ReectiveProlog of Costantini & Lanzarone [16].There have recently appeared some proposals for systems for meta-reason-ing with a similar philosophy as ours. Attardi & Simi [1] use what they call\relativized truth" but obtain a system quite similar to ours. One signi�cantdi�erence is that they choose to duplicate their inference system (a naturaldeduction system): the rules are present once for the object level and againfor the meta-level. Moreover, among their basic axioms for the meta-level,there is one which ensures positive introspection. We have preferred tohave no such epistemic bias, except for saturation. Giunchiglia et al. [18]have de�ned a multilevel deduction system with distinct levels, called MK.There is only one theory per meta-level but the communication betweenmeta-levels is similar to that in Alloy. This seems to be the basis for thereasoning part of GETFOL, a system that is also capable of code introspectionand revision [17].Our proposal for a meta-programming based software engineering meth-odology is related to the proposal by Kowalski about using meta-languagefor assembling programs [24] and the work by Brogi et al. about using the-ory operators for building programs, which is discussed in more detail inSect. 6.3.Bowen & Weinberg [6] and Bacha [2] have investigated compilation ofpartially known clauses in a context similar to ours.Sato [29] proposes an approach to meta-programming through a completetruth predicate tr in three valued logic. Sato's de�nition of tr is self refer-ential, and gives in the general case an inconsistent de�nition of tr in twovalued logic by being paradoxical. As a slight modi�cation of the de�nitionof tr he introduces a three valued complete demo predicate.The language is fully amalgamated, like the theory part of Alloy to whichit corresponds. (Note, however, that the system part and the theory part ofAlloy are clearly separated both syntactically and semantically.)The main similarity with our approach to meta-programming is the abil-ity to reason with several levels, which is made possible by tr being self-referential; thus making it possible to express tr (p : : : tr(: : : ; : : :) : : : q; : : :)(the nesting can be of arbitrary depth). Furthermore, like naming in Alloy,26

the structural coding makes it possible to decompound terms and formulasto their least parts and look, for example, at codes of functors.Jiang [20] proposes an ambivalent approach to meta-reasoning, by in-troducing a language called AL where syntactically no distinction is madebetween terms, formulas or functors. Jiang takes a radically di�erent ap-proach from ours by de�ning what he calls a \Herbrand-based" semantics,which does not build upon the standard notion of logical consequence in �rstorder model theory. It is hard to form a de�nitive opinion of the proposedsemantics because as it is presented, it is not well-de�ned and thus cannot beunderstood without having to guess the intentions. Neither does he presentan inference system, nor hint at any possible implementation of the pro-posed ideas. (It should be noted, however, that AL to some extent capturesmeta-programming as it is often done in Prolog, which has an operationalsemantics.)Syntactically, the main similarity with our approach is the possibilityto express reasoning across several meta-levels. The main distinction isthat there is no naming or coding involved, formulas can occur directly assubexpressions in other formulas. The program clause 1 could for examplebe expressed asBel(Tim;8x(Cannibal (x)! Bel(x;Tasty(x))):The idea is that whether an expression is to be interpreted as a function ora relation is determined by the context where it appears.Christiansen has proposed an amalgamated language in which there aretwo levels of reasoning [13]. The operational semantics of the language isbased on instance predicates, relating names of formulas such that one isan instance of the other. As was shown by Kowalski [25, 26] and furtherdeveloped by Hill & Gallagher [19], such instance predicates can be usedwith meta-variables replacing names of subexpressions in a way which turnsout to be operationally similar to the way in which variables are representedusing nonground representations.11 ConclusionAs can be seen from this article, Alloy is a language still under development.We can already conclude, however, that it allows a direct way of expressingmultilevel knowledge, in particular recursive beliefs.The main di�erence between Alloy and the mainstream of meta-logic pro-gramming lies in the support for arbitrary many meta-levels and in thatself-reference is the exception rather than the rule.One may certainly doubt that a language claimed to be so powerful ise�ciently implementable and this can only be proved by an actual imple-mentation, which is under way. One reason for hope is the belief that much27

of the computation will still be deduction within a single theory (which maybe someone's view of someone's view of : : : a theory) and this should bepossible to support with essentially the e�ciency of an ordinary Prolog sys-tem. The di�culties seem to lie in the meta-programming speci�c parts andin the fact that there are so many ways to use a piece of information in ameta-programming setting. For example, a program clause may be actuallyused for deduction, a name for it may be used as data, so may a name fora name for it, etc. Program clauses computed from names with \holes" islikely to be another (manageable) obstacle to e�cient computation.AcknowledgementsThis research has been inuenced by valuable discussions with our col-leagues, particularly Stefania Costantini, Gaetano Lanzarone, and AndreasHamfelt, and our partners in the Compulog 2 project, particularly AntonioBrogi, Pat Hill, Bob Kowalski and John Lloyd.The research reported herein was supported �nancially by the SwedishNational Board for Technical and Industrial Development (NUTEK) undercontract No. 92{10452 (ESPRIT BRP 6810: Computational Logic 2).J. B. thanks his family for their continuing support.References[1] Attardi, G. and Simi, M., Building Proofs in Context, in: F. Turini(ed.), Proc. META 94, LNCS 883, Springer-Verlag, Berlin, 1994.[2] Bacha, H., Meta-Level Programming: a Compiled Approach, in: J.-L.Lassez (ed.), Proc. 4th Intl. Conf. on Logic Programming, MIT Press,Cambridge, Mass., 1987.[3] Barklund, J., Metaprogramming in Logic, UPMAIL Technical Re-port 80, Uppsala Univ., Computing Science Dept., 1994, to bepublished in encyclopedia of computer science and technology, marceldekker, new york.[4] Barklund, J., Boberg, K. and Dell'Acqua, P., A Basis for a MultilevelMetalogic Programming Language, in: F. Turini (ed.), Proc. META94, LNCS 883, Springer-Verlag, Berlin, 1994.[5] Bevemyr, J., The Luther WAM Emulator, UPMAIL Tech. Rep. 72,Comp. Sci. Dept., Uppsala Univ., Uppsala, 1992.[6] Bowen, K. A. and Weinberg, T., A Meta-Level Extension of Prolog, in:J. Cohen and J. Conery (eds.), Proc. 1985 Symp. on Logic Program-ming, IEEE Comp. Soc. Press, Washington, D.C., 1985.[7] Bowen, K. A., Meta-Level Programming and Knowledge Representa-tion, New Generation Computing, 3:359{383 (1985).28

[8] Bowen, K. A. and Kowalski, R. A., Amalgamating Language and Met-alanguage in Logic Programming, in: K. L. Clark and S.-�A. T�arnlund(eds.), Logic Programming, Academic Press, London, 1982.[9] Brogi, A., Mancarella, P., Pedreschi, D. and Turini, F., CompositionOperators for Logic Theories, in: J. W. Lloyd (ed.), ComputationalLogic, Springer-Verlag, Berlin, 1990.[10] Brogi, A., Program Construction in Computational Logic, Ph.D. The-sis, Dipartimento di Informatica, Universit�a di Pisa, 1993.[11] Brogi, A. and Contiero, S., G�odel as a Meta-Language for Compos-ing Logic Programs, in: F. Turini (ed.), Proc. META 94, LNCS 883,Springer-Verlag, Berlin, 1994.[12] Brogi, A. and Turini, F., Metalogic for Knowledge Representation, in:J. A. Allen, R. Fikes and E. Sandewall (eds.), Principles of KnowledgeRepresentation and Reasoning: Proc. 2nd Intl. Conf., Morgan Kauf-mann, Los Altos, Calif., 1991.[13] Christiansen, H., E�cient and Complete Demo Predicates for De�niteClause Languages, Technical Report 51, Dept. of Computer Science,Roskilde University, 1994.[14] Clark, K. L., Negation as Failure, in: H. Gallaire and J. Minker (eds.),Logic and Data Bases, Plenum Press, New York, 1978.[15] Costantini, S., Dell'Acqua, P. and Lanzarone, G. A., Extending HornClause Theories by Reection Principles, in: C. MacNish, D. Pearceand L. M. Pereira (eds.), Logics in Arti�cial Intelligence, LNAI 838,Springer-Verlag, Berlin, 1994.[16] Costantini, S. and Lanzarone, G. A., A Metalogic Programming Lan-guage, in: G. Levi and M. Martelli (eds.), Proc. 6th Intl. Conf. onLogic Programming, MIT Press, Cambridge, Mass., 1989.[17] Giunchiglia, F. and Cimatti, A., Introspective Metatheoretic Reason-ing, in: F. Turini (ed.), Proc. META 94, LNCS 883, Springer-Verlag,Berlin, 1994.[18] Giunchiglia, F., Sera�ni, L. and Simpson, A., Hierarchical Meta-Logics:Intuitions, Proof Theory and Semantics, in: A. Pettorossi (ed.), Meta-Programming in Logic, LNCS 649, Springer-Verlag, Berlin, 1992.[19] Hill, P. M. and Gallagher, J., Meta-Programming in Logic Program-ming, Technical Report 94.22, School of Computer Studies, Univ. of29

Leeds, 1994, to be published in Handbook of Logic in Arti�cial Intel-ligence and Logic Programming, Vol. 5, Oxford Science Publ., OxfordUniv. Press.[20] Jiang, Y., Ambvivalent Logic as the Semantic Basis of Metalogic Pro-gramming, in: P. Van Hentenryck (ed.), Logic Programming, Proc.11th Intl. Conf, MIT Press, Cambridge, Mass., 1994.[21] Kakas, A. C. and Mancarella, P., Abductive Logic Programming, in:Proc. NACLP90 Workshop on Non-Monotonic Reasoning and LogicProgramming, MCC, Austin, Texas, 1990.[22] Konolige, K., A Deduction Model of Belief, Pitman, London, 1986.[23] Kowalski, R. A., Logic for Problem Solving, North Holland, New York,1979.[24] Kowalski, R. A., The Use of Metalanguage to Assemble Object LevelPrograms and Abstract Programs, Report, Imperial College, London,1982.[25] Kowalski, R. A., Meta Matters, Invited presentation at Second Work-shop on Meta-Programming in Logic, 1990.[26] Kowalski, R. A., Problems and Promises of Computational Logic, in:J. W. Lloyd (ed.), Computational Logic, Springer-Verlag, Berlin, 1990.[27] McCarthy, J., Programs with Common Sense, in: M. Minsky (ed.),Semantic Information Processing, MIT Press, Cambridge, Mass., 1968.[28] McCarthy, J., First Order Theories of Individual Concepts and Propo-sitions, in: B. Meltzer and D. Michie (eds.), Machine Intelligence 9,Edinburgh University Press, Edinburgh, 1979.[29] Sato, T., Meta-Programming through a Truth Predicate, in: K. Apt(ed.), Proc. Joint Intl. Conf. Symp. on Logic Programming 1992, MITPress, Cambridge, Mass., 1992.[30] Smorynski, C., The Incompleteness Theorems, in: J. Barwise (ed.),Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977.[31] Sterling, L. S., Logical Levels of Problem Solving, J. Logic Program-ming, 1:138{45 (1984).[32] Warren, D. H. D., An Abstract Prolog Instruction Set, SRI Tech. Note309, SRI Intl., Menlo Park, Calif., 1983.30

