Tracking and Viewing Changes on the Web*

Fred Douglis

Thomas Ball

AT& T Bell Laboratories

1996 USENIX Technical Conference.

Abstract

We describe a set of tools that detect when World-
Wide-Web pages have been modified and present the
modifications visually to the user through marked-
up HTML. The tools consist of three components:
w3newer, which detects changes to pages; snapshot,
which permitsauser to storeacopy of an arbitrary Web
page and to compare any subsequent version of a page
with the saved version; and Htmi Diff, which marks up
HTML text to indicate how it has changed from a pre-
vious version. We refer to the tools collectively as the
AT&T Internet Difference Engine (AIDE). This paper
discusses several aspects of AIDE, with an emphasison
systems issues such as scalability, security, and error
conditions.

1 Introduction

Use of the World-Wide-Web (173) has increased dra-
matically over the past couple of years, both in the
volume of traffic and the variety of users and content
providers. The W3 has become an information distri-
bution medium for academic environments (its origi-
nal motivation), commercial ones, and virtual commu-
nities of people who share interests in a wide variety
of topics. Information that used to be sent out over
electronic mail or USENET, both active mediathat go
to users who have subscribed to mailing lists or news-
groups, can now be posted on a W? page. Usersin-
terested in that data then visit the page to get the new
information.

The URLs of pages of interest to auser can be saved
ina“hotlist” (known as a bookmark file in Netscape),
so they can be visited conveniently. How does a user
find out when pages have changed? If users know
that pages contain up-to-the-minutedata (such as stock
guotes), or are frequently changed by their owners,
they may visit the pages often. Other pages may beig-

*Copyright to thiswork is retained by the authors. Permission is
granted for the noncommercial reproduction of the complete work
for educational or research purposes.

nored, or browsed by the user only tofind they have not
changed.

In recent months, severa tools have become avail-
ableto addressthe problem of determiningwhen apage
has changed. Thetool with perhapsthewidest distribu-
tionis" Smart Bookmarks,” from First Floor Software,
which has been incorporated into Netscape for Win-
dows as “Netscape SmartMarks.” Users have items
in their bookmark list automatically polled to deter-
mine if they have been modified. In addition, content
providerscan optionally embed bulletinsin their pages,
which allow short messages about a page to be dis-
played in apage that refers to it. Other toolsfor learn-
ing about modifications are discussed in the next sec-
tion.

Each of the current tools suffers from a significant
deficiency: whilethey providethe user withthe know!-
edge that the page has changed, they show little or
no information about how the page has changed. Al-
though a few pages are edited by their maintainers to
highlight the most recent changes, often the modifi-
cations are not prominent, especialy if the pages are
large. Even pages with special highlighting of recent
changes (including bulletins) are problematic: if auser
visits a page frequently, what is “new” to the main-
tainer may not be “new” to the user. Alternatively, a
user who visits a page infrequently may miss changes
that the maintainer deems to be old. Changes deemed
uninteresting by adocument’sauthor and omitted from
achange summary or bulletin actually may be of great
interest to readers. Finaly, the realy major change
might be the item that was deleted or modified, rather
than added. Such items are unlikely to be found on a
“What'sNew?’ page.

We have developed a system that efficiently tracks
when pages change, compactly stores versions on
a per-user basis, and automatically compares and
presents the differences between pages. The AT& T In-
ternet Difference Engine (AIDE) provides “personal-
ized” views of versions of 1773 pages with three tools.
The first, w3newer, is a derivative of one of the exist-
ing modification tracking tools, w3new, discussed in
the next section. It periodically accesses the W? to

Tracking and Viewing Changes on the Web

find when pages on a user’s hotlist have changed. The
second, snapshot, allows a user to save versions of a
page and later use a third tool, HtmIDiff, to see how
it has changed. HtmIDiff automatically compares two
HTML pages and creates a“ merged” page to show the
differences with special HTML markups.

While AIDE can help arbitrary users track pages of
interest, it can be of particular use in a collaborative
environment. One example of a collaborative envi-
ronment on the 173 is the WikiWikiWeb [3], which al-
lows multiple users to edit the content of documents
dynamically. There is a RecentChanges page that
sorts documents by modification date. Typically con-
tent is added to the end of a page and it is not diffi-
cult to determine visually what changes occurred since
the last visit. However, content can be modified any-
where on the page, and those changes may be too sub-
tle to notice. Within AT& T, a clone of WikiVMki\\eb,
called WebWeaver, stores its own version archive and
uses HtmIDiff to show users the differences from ear-
lier versions of a page. While the differences are not
currently customized for each user, that would be anat-
ural and simple extension. Similarly, integrating the
RecentChanges page into the AIDE report of what's
new would avoid having to query multiple sources to
determine what has recently changed.

The rest of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 elaborates on
our extensionsto w3new, Section 4 describes the snap-
shot versioning tool, and Section 5 describes HtmIDiff
in detail. Section 6 describes the integration of the
three tools into AIDE. Section 7 relates early experi-
ences with the system. Section 8 discusses other ex-
tensions and uses of AIDE, and Section 9 concludes.

2 Related Work

2.1 Tracking Modifications

There has been a great deal of interest lately in find-
ing out when pages onthe 1¥2 have changed. As men-
tioned above, Smart Bookmarks checks for modifica
tionsand also supportsan extensionto HTML to allow
a description of a page, or recent changes to it, to be
obtained along with other “header” information such
as the last modification date. These bulletins may be
useful in some cases but will not helpin others. For in-
stance, 172 Virtual Library pages contain many linksto
other pages within some subject area and have a num-
ber of links added at a time; a bulletin that announces
that “ 10 new links have been added” will not point the
user to the specific locationsin the page that have been
edited. Also, it suffers from the problem of timeliness
mentioned in the introduction.

Smart Bookmarks have the advantage of being inte-
grated directly with auser’shotlist, making avisual in-
dication of what has changed available without resort-
ing to aseparate page. Several other toolsread auser’s
hotlist and generate a report, in HTML, of recently
changed pages. Examples include webwatch [16], a
product for Windows; w3new [4], a public-domain
Perl script that runson UNIX; and Katipo[13], which
runs on the Macintosh.

Another similar tool, URL-minder [19], runs as a
service on the W2 itself and sends email when a page
changes. Unlike the tools that run on the user’s host
and use the “hotlist” to determine which URLSs to
check, URL-minder acts on URLSs provided explicitly
by auser viaan HTML form. Centralizing the update
checks on a W? server has the advantage of polling
hosts only once regardless of the number of users in-
terested. However, the need to send URLSs explicitly
through aform is cumbersome.

There are two basic strategies for deciding when a
page has changed. Most tools use the HTTP HEAD
command to retrieve the Last-Modified field from a
W3 document, either returning asorted list of all modi-
fication times or just those timesthat are different from
the browser’shistory (the timestamp of the version the
user presumably last saw). URL-minder uses a check-
sum of the content of a page, so it can detect changes
in pages that do not provide a Last-Modified date,
such as output from Common Gateway Interface (CGI)
scripts. W3new (and therefore w3newer) requests the
Last-Modified dateif available; otherwise, it retrieves
and checksums the whole page.

These tools also vary with respect to frequency of
checking and where the checks are performed. Most of
thetoolsautomatically run periodically fromthe user’s
machine. All URLs are checked each time the tools
run, with the possibl e exception of URL-minder, which
runson an Internet server and checks pages with an ar-
bitrary frequency that is guaranteed to be at least as of -
ten as some threshold, such asaweek. (URL-minder’s
implementation is hidden behind a CGl interface.)

2.2 Version Repositories

As discussed below, we use the Revision Control Sys-
tem (RCS) [18] to compactly maintain ahistory of doc-
uments, addressed by their URLs. A CGI interface to
RCSallowsauser torequest aURL at aparticular date,
from anywhere on the W3. This is similar in spirit
to the “time travel” capability of file systems such as
3DFS [5] that transparently allow access to files at ar-
bitrary dates. A dlight twist on the versioning is that
we wish to track the times at which each user checked
in a page, even if the page hasn't changed between

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

check-ins of that page by different users. Thisis ac-
complished outside of RCS by maintaining a per-user
control file, allowing quick access to a user’s access
history.

2.3 HTML Differencing

We know of no existing tools that compare HTML
pages and present the comparison asHTML. However,
thereismuch closely related work on heuristicsfor par-
allel document alignment and similarity measures be-
tween documents [2] that we benefit from. Line-based
comparison utilities such as UNIX diff [10] clearly
are ill-suited to the comparison of structured docu-
ments such as HTML. Most modern word processing
programs have a “revision” mode that track additions
and deletions on-line as an author modifies a docu-
ment, graphically annotating the differences. Html-
Diff graphically annotatesdifferencesinasimilar man-
ner but operates off-lineafter document creation, using
heuristicsto determine the additions and deletions.

3 Tracking Modifications

To our knowledge, the tools described in Section 2.1
poll every URL with the same frequency. We modified
w3new! to make it more scalable, as well as to inte-
grate it with the other components of AIDE. Figure 1
gives an example of the report generated by w3newer;
the meaning of the links on the right-hand sideis dis-
cussed in Section 6.

W3newer runs on the user’s machine, but it omits
checks of pages aready known to be modified sincethe
user last saw the page, and pages that have been viewed
by the user within some threshold. The time when the
user hasviewed the page comes fromthe 173 browser’s
history. The “known modification date” comes from
avariety of sources: a cached modification date from
previousruns of w3newer ; amodificationdate storedin
a proxy-caching server’s cache; or the HEAD informa-
tion provided by httpd (the HTTP server) for the URL.
If either of thefirst two sources of the modification date
indicate that the page has not been visited since it was
modified, then HTTPisused only if thetime the modi-
fication informationwas obtai ned was |ong enough ago
to be considered “stale” (currently, the thresholdisone
week).

In addition, there is a threshold associated with each
page to determine the maximum frequency of direct
HEAD requests. If the page was visited within the
threshold, or the modification date obtained from the

TW3new was selected becauseit ran on UNIX and becauseit was
available before the others. If Smart Bookmarkshad been available
at the time, it would have provided a better starting point.

Comments start with a sharp sign.
perl syntax requires that “.” be escaped
Default is equivalent to ending the file with

@ ko

Default 2d
file: . * 0
http://www\.yahoo\.com/.* 7d
http://.*\.att\.com/.* 0

http://www\.ncsa\.uiuc\.edu/SDG/Software/- 12h
Mosaic/Docs/whats-new\.html

http://snapple\.cs\.washington\.edu:600/- 1d
mobile/

this is in my hotlist but will be different every day
http://www\.unitedmedia\.com/- never
comics/dilbert/

Table 1: An example of the thresholds specified to
w3newer. The table is explained in the text.

proxy-caching server is current with respect to the
threshold, the page is not checked. The threshold can
vary depending on the URL, with per| pattern match-
ing used to determine what thresholdto apply. Thefirst
matching pattern is used.

Table 1 gives an example of a w3newer configura-
tion file. Thresholds are specified as combinations of
days (d) and hours (h), with 0 indicating that a page
should be checked on every run of w3newer and never
indicating that it should never be checked. In this ex-
ample, URLSs are checked every two days by default,
but some URLsareoverridden. Local filesare checked
upon every execution, since a stat call is cheap, and
anythinginthe att.com domainischecked upon every
execution as well. Things on Yahoo are checked only
every seven days in order to reduce unnecessary load
on that server, since the user doesn’t expect to revisit
Yahoo pagesdaily evenif they change. Dilbertisnever
checked because it will always be different.

3.1 System Issues
Cache Consistency

Determining when HTTP pages have changed is anal-
ogousto caching afile in a distributed file system and
determining when the file has been modified. While
file systems such as the Andrew File System [9] and
Sprite[12] provide guarantees of cache consistency by
issuing call-backs to hosts with invalid copies, HTTP
access is closer to the traditional NFS approach, in
which clients check back with servers periodicaly for
each file they access. Netscape can be configured to
check the modification date of a cached page each time
it is visited, once each session, or not at all. Caching

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

File

Edit View Go Bookmarks Options Directory

Help

The following URLs have changed:

June 95

What's Mew With NCSA Mosaic {Friday, June 23) | Remember | Diff | History
Fred Douglis { Thursday, June 22) | Remember | Diff | History
Mac Internet Applications {Wednesday, June 21) | Remnember | Diff | History

Perl5 Information, Announcements, and Discussion — pl5.000 (Tuesday, June 20) | Eemember | Diff | History
Virtual Library/CyberWeb: Whats New (Sunday, June 18) | Remernber | Diff | History

Virtual Libr: CyberWeb: WWW Development {Friday, June 16} | Remember | Diff | History

The following URLs were checked recently and not polled:

Unix and Unix Utiliies for the Macintosh | Remember | Diff | History

Welcome to Specter, Inc. | Remember | Diff | History
Usenix Associaion Home Page | Rernember | Diff | History

The following URLs have not changed:

June 95

o ATET Bell Laboratories Computing Science Research Center (Thursday, June 15) | Remember | Tiff | History

o Thomas I, Ball (Thursday, June 8) | Remnember | Diff | History
o An ATET Bell Laboratories Research World—Wide Web Server (Monday, June 5) | Remember | Diff | History

]

[¥=s] Document: Done.

[= |

Figure 1: Output of w3newer showing a number of anchors (the descriptivetext comes from the hotlist). The ones that
are marked as “ changed” have modification dates after the time the user’s browser history indicatesthe URL was seen.
Some URLs were not checked at all, and others were checked and are known to have been seen by the user.

servers check when a client forces a full reload, or af-
ter atime-to-livevalue expires.

Here the problem is complicated by the target envi-
ronment: onewishestoknow not only whenacurrently
viewed page has changes, but also when a pagethat has
not been seen in awhile has changed. Fortunately, un-
like with file systems, HTTP data can usualy tolerate
some inconsistency. In the case of pagesthat are of in-
terest to a user but have not been seen recently, find-
ing out within some reasonable period of time, such as
aday or aweek, will usually suffice. Even if servers
had a mechanism to notify all interested partieswhen a
page has changed, immediate notification might not be
worth the overhead.

Instead, one could envision using something like
the Harvest replication and caching services [1] to
notify interested parties in a lazy fashion. A user
who expresses an interest in a page, or a browser that
is currently caching a page, could register an inter-
est in the page with its local caching service. The
caching service would in turn register an interest with
an Internet-wide, distributed service that would make
a best effort to notify the caching service of changes
in a timely fashion. (This service could potentialy
archive versionsof HTTP pagesaswell.) Pageswould
already be replicated, with server load distributed, and

the mechanism for discovering when a page changes
could be l€ft to a negotiation between the distributed
repository and the content provider: either the con-
tent provider notifies the repository of changes, or the
repository pollsit periodically. Either way, therewould
not be a large number of clients polling each interest-
ing HTTP server. Moving intelligence about HTTP
caching to the server has been proposed by Gwertzman
and Seltzer [7] and others.

Onecould a so envisionintegratingthe functionality
of AIDE into file systems. Tools that can take actions
when arbitrary files change are not widely available,
though they do exist [15]. Users might like to have a
unified report of new filesand 1373 pages, and w3newer
supports the “file:” specification and can find out if a
local file has changed. However, snapshot has no way
toaccess afileontheuser’s (remote) file system. Mov-
ing functionality into the browser would alow indi-
vidual users to take snapshots of files that are not al-
ready under the control of a versioning system such as
RCS; thismight be an appropriate use of abrowser with
client-side execution, such as HotJava [17] or recent
versions of Netscape.

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

Error Conditions

When a periodic task checks the status of alarge num-
ber of URLS, a number of things can go wrong. Local
problems such as network connectivity or the status of
aproxy-caching server can cause all HTTP requests to
fail. Proxy-caching servers are sometimes overloaded
to the point of timing out large numbers of requests,
and a background task that retrieves many URLs in
a short time can aggravate their condition. W3newer
should therefore be able to detect cases when it should
abort and try again later (preferably intimefor the user
to see an updated report).

At the same time, a number of errors can arise with
individual URLs. A URL can move, with or with-
out leaving a forwarding pointer. The server for a
URL can be deactivated or renamed. Its site may
disallow retrieval of this URL by “robots,” meaning
that the administrator for its site has created a spe-
cia file, robots.txt, and requested that automated pro-
grams such as “web crawlers’ not retrieve the URL.
Currently, programs only voluntarily follow the “robot
exclusion protocol” [14], the convention that defines
the use of robots.txt. Although w3newer currently
obeysthisprotocoal, itisnot clear that it should, at |east
for URL s the user would other wise access directly pe-
riodicaly.

Finally, automatic detection of modifications based
on information such as modification date and check-
sum can lead to the generation of “junk mail” as
“noisy” modificationstrigger change notifications. For
instance, pages that report the number of times they
have been accessed, or embed the current time, will
look different every time they are retrieved.

W3newer attemptsto addresstheseissues by thefol-
lowing steps:

e If a URL is inaccessible to robots, that fact is
cached so the page is not accessed again unless a
specid flag is set when the script isinvoked.

o Another flag can tell w3newer to treat error con-
ditions as a successful check as far as the URL's
timestamp goes, so that a URL with some prob-
lem will be checked with the same frequency as
an accessible one. In general, however, it seems
that errors are likely to be transient, and checking
the next time w3newer isrunisreasonable.

e WhenaURL isinaccessible, an error message ap-
pears in the status report, so the user can take ac-
tion to remove a URL that no longer exists or re-
peatedly hitserrors.

In addition, w3newer could be modified to keep a
running counter of the number of times an error is en-
countered for a particular URL, or to skip subsequent

URLSs for a host if a host or network error (such as
“timeout” or “network unreachable”) has aready oc-
curred. Addressing the problem of “noisy” modifica
tionswill require heuristics to examine the differences
at a semantic level.

4 Snapshots

In addition to providing a mechanism for determining
when W3 pages have been modified, there must be a
way to access multiple versions of a page for the pur-
poses of comparison. This section describes methods
for maintaining version historiesand several issuesthat
arise from our solution.

4.1 Alternative Approaches

There are three possible approaches for providing ver-
sioning of W3 pages. making each content provider
keep a history of al versions, making each user keep
this history, or storing the version histories on an ex-
ternal server.

Server-side support Each server could storeahistory
of its pages and provide a mechanism to use that
history to produce marked-up pages that highlight
changes. This method requires arbitrary content
providersto provide versioning and differencing,
soitisnot practical, althoughitisdesirableto sup-
port thisfeature when the content provider iswill-
ing. (See Section 8.1.)

Client-side support Each user could run a program
that would store items in the hotlist locally, and
run HtmIDIff against a locally saved copy. This
method requires that every page of interest be
saved by every user, which is unattractive as the
number of pages in the average user’s hotlist in-
creases, and it also requires the ability to run
HtmIDiff on every platform that runs a W3
browser. Storing the pages referenced by the
hotlist may not be too unreasonable, since pro-
gramslike Netscape may cache pageslocally any-
way. There are other external tools such as warm+-
list [20] that provide thisfunctionality.

External service Our approachistorunaservice that
is separate from both the content provider and
the client, and uses RCS to store versions. Pages
can be registered with the service viaan HTML
form, and differences can be retrieved in the same
fashion. Once a page is stored with the service,
subsequent requests to remember the state of the
page result in an RCS “check-in" operation that
saves only the differences between the page and

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

its previously checked-in version. Thus, except
for pagesthat changein many respectsat once, the
storage overhead is minimal beyond the need to
save a copy of the page in the first place.

Drawbacks to the “external service” approach are
that the service must remember the state of every page
that anyone who uses the service hasindicated an inter-
est in and must know which user has seen which ver-
sion of each page. The first issue is primarily one of
resource allocation, and is not expected to be a signif-
icant issue unless the service is used by a great many
clients on a number of large pages. The second issue
is addressed in our initial prototype by using RCS's
support for datestamps and requesting a page as it ex-
isted at a particular time. In the next version of the
system, a set of version numbers is retained for each
<user,URL> combination. This removes any confu-
sion that could arise if the timestamps provided for a
page do not increase monotonically and also makes it
easier to present the user with a set of versions seen by
that person regardless of what other versions are also
stored.

Relative links become a problem when a page is
moved away from the machine that originally provided
it. If the source were passed along unmodified, thenthe
W3 browser would consider linksto be relative to the
CGil directory containing the snapshot script. HTML
supportsaBASE directivethat makesrelative linksrel-
ative to a different URL, which mostly addresses this
problem; however, Netscape 1.1N treats internal links
within such a document to berelative to the new BASE
as well, which can cause the browser to jump between
the HtmIDiff output and the original document unex-
pectedly.

4.2 System |ssues

The snapshot facility must address four important is-
sues. useof CGl, synchronization, resource utilization,
and security/privacy.

CGil is aproblem because there is no way for snap-
shot to interact with the user and the user’s browser,
other than by sendingHTML output. (The system does
not currently assume the ability of a browser to sup-
port Java [11], although moving to Java in the future
is possible and might help address some of these is-
sues.) When a CGI script is invoked, httpd sets up a
default timeout, and if the script does not generate out-
put for a full timeout interval, httpd will return an er-
ror to the browser. This was a problem for snapshot
because the script might have to retrieve a page over
the Internet and then do a time-consuming compari-
son against an archived version. The server does not
tell snapshot what a reasonable timeout interval might

be for any subsequent retrievals; instead thisis hard-
coded into the script. In order to keep the HTTP con-
nection alive, snapshot forksachild processthat gener-
ates one space character (ignored by the 12 browser)
every several seconds while the parent is retrieving a
page or executing HtmIDiff .

Synchronization between simultaneous users of the
facility is complicated by the use of multiple files for
bookkeeping. The system must synchronize access
to the RCS repository, the locally cached copy of the
HTML document, and the control files that record the
versions of each page a user has checked in. Cur-
rently thisis done by using UNIX file locking on both
aper-URL lock file and the per-user control file. 1de-
ally the locks could be queued such that if multiple
users request the same page simultaneously, the sec-
ond snapshot process would just wait for the page and
then return, rather than repeating the work. This is
not so important for making snapshots, inwhich case a
proxy-caching server can respond to the second request
quickly and RCS can easily determine that nothing has
changed, but there is no reason to run HtmIDiff twice
on the same data.

The latter point relates to the general issue of re-
source utilization. Snapshot has the potential to use
large amounts of both processing and disk space. The
need to execute HtmIDIff on the server can result in
high processor loads if the facility is heavily used.
These loads can be aleviated by caching the output
of HtmIDiff for a while, so many users who have
seen versions V and V + 1 of a page could retrieve
HtmIDiff (page i, pagen+1) With a single invocation
of HtmIDiff. The facility could also impose alimit on
the number of simultaneous users, or replicate itself
among multiple computers, as many W services do.

Lastly, security and privacy are important. Because
the CGI scripts run with minimal privileges, from an
account to which many people have access, the datain
the repository is vulnerable to any CGI script and any
user with access to the CGI area. Data in this reposi-
tory can be browsed, altered, or deleted. Inorder to use
the facility one must give an identifier (currently one's
email address, which anyone can specify) that is used
subsequently to compare version numbers. Browsing
the repository can therefore indicate which user has an
interest in which page, how often the user has saved a
new checkpoint, and so on.

By moving to an authenticated system on a secure
machine, one could break some of these connections
and obscureindividuals’ activitieswhile providingbet-
ter security. The repository would associate imper-
sonal account identifierswithaset of URLsand version
numbers, and passwords would be needed to access
one of these accounts. Whoever administers this fa-

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

cility, however, will still have information about which
user accesses which pages, unless the account creation
can be done anonymously.

5 Comparison of HTML pages

In our experience, only asmall fraction of pagesonthe
W3 contain information that allows users to ascertain
how the pages have changed—examples include icons
that highlight recent additions, alink to a“ changelog”,
or a special “What's New” page. As was mentioned
in the introduction, these approaches suffer from defi-
ciencies. They are intended to be viewed by al users,
but users will visit the pages at different intervals and
have different ideas of “what’s new”. In addition, the
maintainer must explicitly generate the list of recent
changes, usually by manually marking up the HTML.

Automatic comparison of HTML pages and gener-
ation of marked-up pages frees the HTML provider
from having to determine what's new and creating new
or modified HTML pages to point to the differences.
There are many ways to compare documents and many
ways to present the results. This section describes var-
ious models for the comparison of HTML documents,
our comparison algorithm, and issues involved in pre-
senting the results of the comparison.

5.1 What'sin aDiff?

HTML separates content (raw text) from markups.
While many markups (such as <P>, <I>, and
<HR>) simply change the formatting and presenta-
tion of the raw text, certain markups such as images
() and hypertext references (>) are “content-defining.” Whitespace in
a document does not provide any content (except
perhaps inside a <PRE>), and should not affect
comparison.

At one extreme, one can view an HTML document
as merely a sequence of words and “ content-defining”
markups. Markups that are not “ content-defining” as
well aswhitespaceareignored for the purposes of com-
parison. The fact that the text inside <P>...</P> is
logically grouped together as a paragraph is lost. As
aresult, if one took the text of a paragraph comprised
of four sentences and turned it into alist () of
four sentences (each starting with), no differ-
ence would be flagged because the content matches ex-
actly.

At the other extreme, one can view HTML as a hi-
erarchical document and compare the parse tree or ab-
stract syntax tree representations of the documents, us-
ing subtree equality (or some weaker measure) as aba-
sisfor comparison. In thiscase, a subtree representing

a paragraph (<P>...</P>) might be incomparable
with a subtree representing a list (...).
The example of replacing a paragraph with alist would
be flagged as both a content and format change.

We view an HTML document as a sequence of
sentences and “sentence-breaking” markups (such as
<P>, <HR>, , or <H1>) where a"“ sentence”
is a sequence of words and certain (non-sentence-
breaking) markups (such as or <A>). A “sen-
tence” contains at most one English sentence, but may
be afragment of an English sentence. All markupsare
represented and are compared, regardless of whether or
not those markups are “ content-defining” (however, as
described |ater, certain markups may not be highlighted
as having changed). In the paragraph-to-list example,
the comparison would show no change to content, but
a change to the formatting.

We apply Hirshberg's solution to the longest com-
mon subsequence (LCS) problem [8] (with severa
speed optimizations) to compare HTML documents.
This is the well-known comparison algorithm used by
the UNIX diff utility [10]. The LCS problemisto find
a (not necessarily contiguous) common subsequence
of two sequences of tokens that has the longest length
(or greatest weight). Tokens not in the LCS represent
changes. InUNIX diff, atokenisatextual lineand each
linehasweight equal to 1. In HtmIDiff, atokeniseither
a sentence-breaking markup or a sentence, which con-
sists of asequence of wordsand non-sentence-breaking
markups. Note that the definition of sentenceisnot re-
cursive; sentences cannot contain sentences. A sim-
plelexical analysis of an HTML document creates the
token sequence and converts the case of the markup
name and associated (variable,value) pairs to upper-
case; parsing is not required.

We now describe how the weighted LCS algorithm
compares two tokens and computes a non-negative
weight reflecting the degree to which they match (a
weight of 0 denotes no match). Sentence-breaking
markups can only match sentence-breaking markups.
They must be identical (modulo whitespace, case, and
reordering of (variable,value) pairs) in order to match
(see section 5.3 for a discussion of the ramifications of
this). A match has weight equal to 1. Sentences can
match only sentences, but sentences need not be iden-
tical to match one another. We use two steps to de-
termine whether or not two sentences match. The first
step uses sentence length as a comparison metric. Sen-
tence length is defined to be the number of words and
“content-defining” markups such as or <A >
in a sentence. Markups such as or <I> are not
counted. If the lengths of two sentences are not “ suf-
ficiently close,” then they do not match. Otherwise,
the second step computesthe L CS of the two sentences

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

(where words matching exactly against words are as-
signed weight 1, and markups match exactly against
markups, as before). Let W be the number of words
and content-defining markups in the LCS of the two
sentences and let L bethe sum of thelengthsof thetwo
sentences. |If the percentage (2 «+ W)/ L is sufficiently
large, then the sentences match withweight 1. Other-
wise, they do not match.

5.2 Presentation of the differences

The comparison algorithm outlined above yields a
mapping from the tokens of the old document to the to-
kens of the new document. Tokensthat have amapping
are termed “common”; tokensthat are in the old (new)
document but have no counterpart in the new (old) are
“old” (“new”). Werefer tothe“old” and “new” tokens
as “differences’.

We investigated three basic ways to present the dif-
ferences by creating HTML documents:

Side-by-Side A side-by-sidepresentation of the docu-
ments with common text vertically synchronized
isavery popular and pleasing way to display the
differences between documents (see, for example,
UNIX sdiff or SGI'sgraphical diff tool gdiff). Un-
fortunately, there is no good mechanism in place
with current HTML and browser technology that
allows such synchronization.

Only Differences Show only differences (old and
new) and eliminate the common part (as done in
UNIX diff). This optimizes for the “common”
case, where there is much in common between
the documents. Thisis especially useful for very
large documents but can be confusing because
of the loss of surrounding common context.
Another problem with this approach is that an
HTML document comprised of an interleaving
of old and new fragments might be syntactically
incorrect.

Mer ged-page Createan HTML pagethat summarizes
all of the common, new, and old material. This
has the advantage that the common material isdis-
played just once (unlikethe side-by-side presenta-
tion). However, incorporating two pagesinto one
again rai ses the danger of creating syntactically or
semantically incorrect HTML (consider convert-
ing alist of itemsinto atable, for example).

Our preference is to present the differences in the
merged-page format to provide context and use inter-
nal hypertext referencesto link the differencestogether

in a chain so the user can quickly jump from differ-
ence to difference. We currently deal with the syntac-
tic/semantic problem of merging by eliminating all old
markups from the merged page (note that this doesn’t
mean all markups in the older document, just the ones
classified as“old” by the comparison algorithm). Asa
result, old hypertext references and images do not ap-
pear in the merged page (of course, since they were
deleted they may not be accessible anyway). However,
by reversing the sense of “old” and “new” one can cre-
ate a merged page with the old markups intact and the
new deleted. A more Draconian option would be to
leave out all old material. Inthiscase, thereare no syn-
tactic problems given that the most recent page is syn-
tactically correct to beginwith; themerged pageissim-
ply the most recent page plus some markupsto point to
the new material. We are exploring other ways to cre-
ate amerged page.

An example of HtmlIDiff’s merged-page output ap-
pears in Figure 2. Markups are used to highlight old
and new material as follows. Two small arrow images
are used to point to areas in the document that have
changed. A red arrow pointsto old content and agreen
arrow pointsto new content. The arrows are also in-
ternal hypertext references to one another, linked in a
chain to allow quick traversal of the differences. A
banner at the front of the document contains a link to
the first difference. Old text is displayed in “struck-
out” font using <STRIKE>, which in our experi-
ence is rarely used in HTML found on the 173, Un-
fortunately, there is no ideal font for showing “new”
text. We currently use <I>. |deally, we
wouldliketobe ableto color codethetext to highlight,
but this capahility is not provided by all browsers.

Modified “content-defining” markups are high-
lighted, while changes to other markups (such as
<P>) are not. Consider the example of changing the
URL in an anchor but not the content surrounded by
<A>... Inthis case, an arrow will point to
the text of the anchor, but the text itself will be in its
original font.

5.3 Issues and Extensions

Since HtmIDiff can parse an HTML document and rec-
tify certain syntactic problems, such as mismatched or
missing markups, the only real problem it islikely to
encounter isaset of changes that are so pervasive asto
make the resulting merged HTML unreadable. For in-
stance, if every other line were changed, then the mix-
ture of unrelated struck-out and emphasized text would
be muddled. We are experimenting with methods for
varying the degree to which old and new text can be
interspersed, as well as thresholdsto specify when the

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web 9

HitmlDiff: Here is the first difference. There are 8 differences on this page.is-eld:t i mew.

USENIX

The Advanced Computing Systems Professional and Technical Association
SAGE

The Systermn A dministrators Guild

What's New

. Sale on DSENTX Conference Proceedings
o Letterto SAGE Members about the " Gorton—Exon Amendment”

ol far Papers USENIE 1996

1996 Ca¥ for Papers

Technical Conference, Tanuary, 1996

s [ElSecond Conference on Object—Oriented Technologics and Systems (COOTS), Jure
& Fourth Annual Tel/Tk Workshop, July, 1996 Call for Papers

o Sizth UMIX Security Symposiam, Tuly, 1994 Call for Papers

o ElTent Svstem Administration Conference, September, 1996 Call for Papers

» For USENIX members: Online Library of Blioo4 100511993 1995 USENIX Proceedings

Program & Registration

Figure 2: Output of HtmIDiff showing the differences between a subset of two versions of the USENIX Association
home page (as of 9/29/95 and 11/3/95). Small arrows point to changes, with bold italics indicating additions and with
deleted text struck out. The banner at the top of the page was inserted by HtmIDiff.

changes are too numerous to display meaningfully.

Currently, HtmIDiff is neither “version-aware” nor
“web-aware”. That is, HtmIDiff only compares the
text of two HTML pages. It does not compare ver-
sionsof the entitiesthat the pages refer to, access them,
or invoke itself recursively on other referenced pages.
This has a number of consequences. The good news
isthat HtmIDiff does not incur the overhead of pulling
versions from a repository or sending requests over
the W3 for information. This cost is consumed by
w3newer and snapshot. The bad newsisthat some dif-
ferences may be ignored. For example, if the contents
of an image file are changed but the URL of the file
does not, then the URL in the page will not be flagged
as changed. To support such comparison would re-
guiresome sort of versioning of referenced entitiesand
would also require HtmIDiff to have access to the ver-
sion repositories. Full versioning of all entitieswould
allow interesting comparisons to be done, but would

dramatically increase storage requirements. A cheaper
alternative would be to store a checksum of each entity
and use the checksums to determine if something has
changed. We are exploring how to efficiently perform
such “smarter” comparisons.

6 Integratingthetools

There are two entry points to AIDE, one through
w3newer and one through snapshot.

Currently, w3newer is invoked directly by the user,
probably by a crontab entry, and generates an HTML
document indicating which pages have changed. As
showninFigure 1, w3newer associates threelinkswith
each document in the hotlist:

Remember Send the URL to the snapshot facility, to
save a copy of the page. Though the page is re-
trieved, the RCS ci command ensuresthat it isnot

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

10

saved if it is unchanged from the previoustime it
was stored away.

Diff Have the snapshot facility invoke HtmIDiff to
display the changes in a page since it was last
saved away by the user.

History Have snapshot display a full log of versions
of this page, with the ability to run HtmIDiff on
any pair of versionsor to view aparticular version
directly.

Thus, each pagethat isreported as“ new” canimme-
diately be passed to HtmIDiff, and any page in the list
can be “remembered” for future use. A user may also
interface with snapshot directly, viaaform, to check-in
pages, view differences, or view the version history.

One disadvantage of the current approach is that
there is no direct interaction between w3newer, snap-
shot, and the 1¥3 browser. Viewing a page with Html-
Diff does not cause the browser to record that the page
has just been seen; instead, the browser records the
URL that was used toinvokeHtmIDiff inthefirst place.
Subsequently, w3newer uses the obsolete datestamp
from the browser and continues to report that the page
has been modified more recently than the browser has
seen it. Asaresult, the user must view a page directly
aswell asviaHtmIDiff in order to both remove it from
thelist of modified pagesand see theactual differences.

7 Experiences

In the approximately half-year since AIDE was built,
we have been using the system regularly ourselves
and have attempted to build a user community within
AT&T. Persona use has been successful: one of us
has recorded over 250 URL s and the other nearly 100.
Adoption by others has been harder, and the reason we
hear back from prospective usersis nearly aways the
same: it istoo time-consuming to install w3newer on
one’'sownmachine. Thisreluctanceisthe primary mo-
tivation for moving the functionality of w3newer into
the AIDE server.

In using AIDE ourselves, we realized another diffi-
culty with the present arrangement: information over-
load. Merely sorting URLS by most recent modifica-
tion dates is not satisfactory when the number of URLs
grows into the hundreds. Instead, we are moving to-
ward a user-specified prioritization of URLs along the
lines of the Tapestry system, which prioritizes email
and NetNews automatically [6].

Sofar, disk usage has not been aproblem. Thereare
over 500 URLSs archived (many of these are for fixed
collectionsof pages asdescribed below in Section 8.2),
and the archive uses under 8 Mbytes of disk storage

(an average of 14.3 Kbytes/lURL). Three files account
for 2.7 Mbytes of that total, and each file is a URL
that changes every 1-3 days and isbeing automatically
archived upon each change.

8 Extensions

This section describes some possible extensions to the
work already presented. Sections 8.1 and 8.2 discuss
some interfaces that are already implemented, while
Sections 8.3 and 8.4 presents unimplemented exten-
sionsto integrate tracking modificationsinto the server
and to invoke scripts viathe HTTP POST protocaol.

8.1 Server-sideVersion Control

The tools described above do not require any changes
to arbitrary servers or clients on the 3. Existing
GET and POST protocolsare used to communicate with
specific servers that save versions of documents and
provide marked-up versions showing how they have
changed. However, if aserver runsHtmIDiff and some
perl scripts, it can provide a direct version-control in-
terface and avoid the need to store copies of itsHTML
documents elsewhere.

The perl scripts we have written provide an inter-
face to RCS[18]. A CGlI script (/cgi-bin/rlog) con-
verts the output of rlog into HTML, showing the user
a history of the document with links to view any spe-
cific version or to see the differences between two ver-
sions. Another script (/cgi-bin/co) displaysaversion
of a document under RCS control, while still another
(/cgi-bin/resdiff) displaysthedifferences. If thefile's
name endsin .html then HtmIDiff isused to display the
differences, rather than the rcsdiff program.

As an example, one might set up a Last-Modified
field at the bottom of an HTML document tobealink to
the rlog script, with the document name specified as a
parameter. After clicking on thisunobtrusivefield, the
user would be able to see the history of the document.

8.2 Fixed Pages

In addition to permitting individuals to archive URLs
of interest to them and find out about modifications to
those URLS, AIDE can provide a community of users
with specialized “What's New” pages that report when
any of afixed set of URLSs has been changed. Rather
than having users specify when to archive a new ver-
sion, each page is automatically archived as soon as a
change is detected. Then users can easily see the most
recent changes to a page using Html Diff, and they can
also use the History feature to see earlier versionsthey
may have missed.

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

1

Automatic archival of new versionsis useful in this
context, but it has the disadvantage of increasing disk
space dramatically when the entire contents of the page
changes (such as the “What's New in Mosaic” page).
When the entire contents are replaced, there is no use
for HtmIDiff. Automatic archival would still be useful
in cases when one wants a way to go back to arbitrary
old versions, but in many cases (including this exam-
ple), the content provider has itsown archive.

8.3 Server-side URL Tracking

Currently, w3newer runs on the user’'s machine, so
multiple instantiations of the script may perform the
same work. Although it runs a related daemon on the
same machine as an AT& T-wide proxy-caching server,
which returns information about pages that are cur-
rently cached onthe server and may €eliminate some ac-
cesses over the Internet, thereisinsufficient locality in
that cache for it to eliminate a significant fraction of re-
quests.

Alternatively, w3newer could be run on the set of
pages that have been saved by the snapshot daemon.
Regardless of how many users haveregistered aninter-
est inapage, it need only be checked once; if changed,
the new version could be saved automatically. Then
a user could request a list of all pages that have been
saved away, and get an indication of which pages have
changed since they were saved by the user.

Adding this functionality would be useful, since it
would offer economies of scale. In fact, it could be
further extended to be integrated with a“web crawler”
and track modifications to pages pointed to by pages
specified by the user. Following links recursively is
inappropriate for tools run by every user individually
but would be feasible for a centralized service. It
would have the advantage of handling multiple styles
of pages, for example:

Virtual Library pages Pages with pointers to many
other pages scattered throughout the 1¥3 could
have each link followed to indicate when the ref-
erenced pages have been modified, thus eliminat-
ing the need for a user to include many pages of
interest separately.

Collectionsof related pages Many times, a “home
page” refers to a number of other pages, both
within the same namespace and external. By fol-
lowing the internal pages automatically, a single
entry in one’s hotlist could result in notification
whenever any of those pages is modified. Html-
Diff could in turn be invoked recursively, as de-
scribed above in Section 5.3.

On the other hand, centralized tracking of modifica-
tionswould have the disadvantage of being decoupled
from a given user’'s W3 browser history; i.e., if auser
views a page directly, the snapshot facility would have
no indicationof thisand might present the page as hav-
ing been modified. Java might be suitable for convey-
ing that information to the server.

Modifications to support server-side tracking of
modifications, including hierarchical tracking, are
nearly complete.

8.4 Interactionswith CGI scripts

Because AIDE can handle arbitrary URLS, it can inter-
act with CGlI scriptsthat use the GET protocol by pass-
ing arguments to the script as part of the URL. How-
ever, services that use POST cannot be accessed, be-
cause the input to the services is not stored.

Both w3newer and snapshot would have to be mod-
ified to support the POST protocol, in order to invoke
a service and see if the result has changed, and then
to store away the result and display the changes if it
has. The interface to AIDE to support POST isunclear,
however. A user could manually save the source to an
HTML form and change the URL the form invokesto
be something provided by AIDE. It, inturn, would have
to make a copy of its input to pass along to the actual
service.

Instead, the browser could be modified to have better
support for forms:

o It should store the filled-out version of aformin
its bookmark file, so the user could jump directly
to the output of a CGI script.

¢ It should be able to pass a form directly to AIDE,
along with the URL specified in the FORM tag,
so that the output could be stored under RCS.

9 Conclusions

AIDE combines notification, archiving, and differenc-
ing of W3 pagesinto asinglecohesivetool. It achieves
economies of scale by avoiding unnecessary HTTP ac-
cesses, saving pages at most once each time they are
modified (regardless of the number of users who track
it), and using RCS as the underlying versioning system.
Automatic generation of differences withinthe HTML
framework provides users with the ability to see both
insertions and deletionsin a convenient fashion.

In the general setting of the W3 and document re-
trieval, AIDE benefits two communities: users of the
W3 no longer have to browse to find pages of interest
that have changed; HTML providersno longer have to
create suitably marked-up pagesto show “what’snew”.

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

12

While such automation is clearly helpful in this gen-
eral context, we expect that AIDE will beacritical part
of more focused uses of the 1773, especialy in areasin-
volving collaborative and distributed work.

Several issues still need to be addressed. In par-
ticular, many of the complications of AIDE could be
avoided by better integration with 1473 browsers and
servers. The increasing availability of distributed, hi-
erarchical HTTP repositories such as Harvest [1] will
also be both an opportunity and achallengefor scalable
notification mechanisms and version archives.

For more information on AIDE, see URL
http://www.research.att.com/orgs/ssr/people/doug-
lis/aide.

Acknowledgments

Robin Chen, Steve Crandall, John Ellson, P. Krish-
nan, Mark Rajcok, Herman Rao, and the USENI X ref-
erees provided comments on earlier drafts of this pa
per. Brooks Cutter wrote the version of w3new from
which the w3newer script is derived. Thanks also to
David Ladd for numerous discussions about HtmIDiff;
to Rich Brandwein, Robin Chen, John Ellson, and Her-
man Rao for discussions about HTTP and HTML ; and
to the many colleagues who tried out AIDE and pro-
vided feedback. Finally, Charles Babbageinvented the
first computer and called it the “ Difference Engine,” a
term we appropriated for a new context.

Javaisatrademark of Sun Microsystems. Netscape
isatrademark of Netscape Communications. UNIX is
aregistered trademark of X/Open. Windowsisatrade-
mark of Microsoft Corporation.

References

[1] C. MicBowmanet al. Harvest: A scalable,
customizable discovery and access system. Technical
Report CU-CS-732-94, Dept. of Computer Science,
University of Colorado—Boulder, March 1995.

[2] K. Church. Char_align: A program for aligning
parallel texts at the character level. In Association for
Computational Linguistics, pages 1-8, 1993.

[3] Ward Cunningham. WikiWikiWeb.
http://c2.com/cgi-bin/wiki.

[4] B.B. Cutter I1l. w3new.

http://www.stuff.com/"bcutter/pro-
grams/w3new/w3new.html.

[5] RoomeW. D. 3DFS: A time-oriented file server. In
Proceedingsof the USENIX 1992 Winter Conference,
pages 405418, January 1992.

[6] David Goldberg, David Nichols, Brian M Oki, and
Douglas Terry. Using collaborative filtering to weave

an information tapestry. Communications of the ACM,
35(12):61-70, December 1992.

[7] JamesS. Gwertzman and Margo Seltzer. The casefor
geographical push-caching. In Proceedingsof the
Fifth Workshopin Hot Topicsin Operating Systems
(HOTOSV), pages51-55, Orcas Island, WA, May
1995. |IEEE.

[8] D. S. Hirschberg. Algorithms for the longest common
subsequence problem. Journal of the ACM,
24(4):664-675, October 1977.

[9] J. Howard et a. Scaleand performancein a
distributed file system. ACM Transactionson
Computer Systems, 6(1):51-81, February 1988.

[10] J. W. Hunt and M. D. Mcllroy. An agorithm for
differential file comparison. Technical Report
Computing Science TR #41, Bell Laboratories,
Murray Hill, N.J., 1975.

[11] Java http://www.javasoft.comy/.

[12] M. Nelson, B. Welch, and J. Ousterhout. Cachingin
the Sprite network file system. ACM Transactionson
Computer Systems, 6(1):134-154, February 1988.

[13] M. Newbery. Katipo.
http://www.vuw.ac.nz/"newbery/K atipo.html.

[14] A standard for robot exclusion.
http://web.nexor.co.uk/mak/doc/robots/norobots.html.

[15] David S. Rosenblum and Balachander Krishnamurthy.
Generalized event-action handling. In Balachander
Krishnamurthy, editor, Practical Reusable UNIX
Software, chapter 9. John Wiley & Sons, New York,
1995.

[16] Specter, Inc. Webwatch.

http://www.specter.com/users/janos/webwatch/index.html.

[17] Sun Microsystems. The HotJava Browser: A White
Paper. Available as
http://java.sun.com/1.0al pha3/doc/overview/hot-
javalbrowser-whitepaper.ps.

[18] W. Tichy. RCS: asystem for version control.
Software—Practice & Experience, 15(7):637—654,
July 1985.

[19] Url-minder. http://www.netmind.com/URL-
minder/URL -minder.html.

[20] Warmlist.
http://glimpse.cs.arizona.edu: 1994/ paul /warmlist/.

Author Information

Fred Douglis is a member of technical staff at
AT&T Bell Laboratories. His research interests in-
clude the 173, mobile and distributed computing, and
file systems. He received a B.S. from Yale Univer-
sity (1984) and the M.S. (1987) and Ph.D. (1990) de-
greesfromtheUniversity of California, Berkeley, all in
Computer Science. Email: douglis@research.att.com.

Douglisand Ball

1996 USENI X Technical Conference

Tracking and Viewing Changes on the Web

13

ThomasBall isamember of technical staff at AT& T
Bell Laboratories. His research interests include pro-
gramming languages, softwaretools, techniquesfor ef-
ficiently monitoring system and program behavior, and
software and system performance visualization. Here-
ceived aB.A. from Cornell University (1987) and the
M.S. (1989) and Ph.D. (1993) degreesfrom the Univer-
sity of Wisconsin-Madison, all in Computer Science.
Email: tball @research.att.com.

Douglisand Ball

1996 USENI X Technical Conference

