
Tracking and Viewing Changes on the Web�

Fred Douglis Thomas Ball
AT&T Bell Laboratories

1996 USENIX Technical Conference.

Abstract

We describe a set of tools that detect when World-
Wide-Web pages have been modified and present the
modifications visually to the user through marked-
up HTML. The tools consist of three components:
w3newer, which detects changes to pages; snapshot,
which permits a user to store a copy of an arbitrary Web
page and to compare any subsequent version of a page
with the saved version; and HtmlDiff, which marks up
HTML text to indicate how it has changed from a pre-
vious version. We refer to the tools collectively as the
AT&T Internet Difference Engine (AIDE). This paper
discusses several aspects of AIDE, with an emphasis on
systems issues such as scalability, security, and error
conditions.

1 Introduction

Use of the World-Wide-Web (W 3) has increased dra-
matically over the past couple of years, both in the
volume of traffic and the variety of users and content
providers. The W 3 has become an information distri-
bution medium for academic environments (its origi-
nal motivation), commercial ones, and virtual commu-
nities of people who share interests in a wide variety
of topics. Information that used to be sent out over
electronic mail or USENET, both active media that go
to users who have subscribed to mailing lists or news-
groups, can now be posted on a W 3 page. Users in-
terested in that data then visit the page to get the new
information.

The URLs of pages of interest to a user can be saved
in a “hotlist” (known as a bookmark file in Netscape),
so they can be visited conveniently. How does a user
find out when pages have changed? If users know
that pages contain up-to-the-minute data (such as stock
quotes), or are frequently changed by their owners,
they may visit the pages often. Other pages may be ig-

�Copyright to this work is retained by the authors. Permission is
granted for the noncommercial reproduction of the complete work
for educational or research purposes.

nored, or browsed by the user only to find they have not
changed.

In recent months, several tools have become avail-
able to address the problem of determiningwhen a page
has changed. The tool with perhaps the widest distribu-
tion is “Smart Bookmarks,” from First Floor Software,
which has been incorporated into Netscape for Win-
dows as “Netscape SmartMarks.” Users have items
in their bookmark list automatically polled to deter-
mine if they have been modified. In addition, content
providers can optionallyembed bulletins in their pages,
which allow short messages about a page to be dis-
played in a page that refers to it. Other tools for learn-
ing about modifications are discussed in the next sec-
tion.

Each of the current tools suffers from a significant
deficiency: while they provide the user with the knowl-
edge that the page has changed, they show little or
no information about how the page has changed. Al-
though a few pages are edited by their maintainers to
highlight the most recent changes, often the modifi-
cations are not prominent, especially if the pages are
large. Even pages with special highlighting of recent
changes (including bulletins) are problematic: if a user
visits a page frequently, what is “new” to the main-
tainer may not be “new” to the user. Alternatively, a
user who visits a page infrequently may miss changes
that the maintainer deems to be old. Changes deemed
uninteresting by a document’s author and omitted from
a change summary or bulletin actually may be of great
interest to readers. Finally, the really major change
might be the item that was deleted or modified, rather
than added. Such items are unlikely to be found on a
“What’s New?” page.

We have developed a system that efficiently tracks
when pages change, compactly stores versions on
a per-user basis, and automatically compares and
presents the differences between pages. The AT&T In-
ternet Difference Engine (AIDE) provides “personal-
ized” views of versions of W 3 pages with three tools.
The first, w3newer, is a derivative of one of the exist-
ing modification tracking tools, w3new, discussed in
the next section. It periodically accesses the W3 to

Tracking and Viewing Changes on the Web 2

find when pages on a user’s hotlist have changed. The
second, snapshot, allows a user to save versions of a
page and later use a third tool, HtmlDiff, to see how
it has changed. HtmlDiff automatically compares two
HTML pages and creates a “merged” page to show the
differences with special HTML markups.

While AIDE can help arbitrary users track pages of
interest, it can be of particular use in a collaborative
environment. One example of a collaborative envi-
ronment on the W 3 is the WikiWikiWeb [3], which al-
lows multiple users to edit the content of documents
dynamically. There is a RecentChanges page that
sorts documents by modification date. Typically con-
tent is added to the end of a page and it is not diffi-
cult to determine visually what changes occurred since
the last visit. However, content can be modified any-
where on the page, and those changes may be too sub-
tle to notice. Within AT&T, a clone of WikiWikiWeb,
called WebWeaver, stores its own version archive and
uses HtmlDiff to show users the differences from ear-
lier versions of a page. While the differences are not
currently customized for each user, that would be a nat-
ural and simple extension. Similarly, integrating the
RecentChanges page into the AIDE report of what’s
new would avoid having to query multiple sources to
determine what has recently changed.

The rest of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 elaborates on
our extensions to w3new, Section 4 describes the snap-
shot versioning tool, and Section 5 describes HtmlDiff
in detail. Section 6 describes the integration of the
three tools into AIDE. Section 7 relates early experi-
ences with the system. Section 8 discusses other ex-
tensions and uses of AIDE, and Section 9 concludes.

2 Related Work

2.1 Tracking Modifications

There has been a great deal of interest lately in find-
ing out when pages on the W 3 have changed. As men-
tioned above, Smart Bookmarks checks for modifica-
tions and also supports an extension to HTML to allow
a description of a page, or recent changes to it, to be
obtained along with other “header” information such
as the last modification date. These bulletins may be
useful in some cases but will not help in others. For in-
stance, W3 Virtual Library pages contain many links to
other pages within some subject area and have a num-
ber of links added at a time; a bulletin that announces
that “10 new links have been added” will not point the
user to the specific locations in the page that have been
edited. Also, it suffers from the problem of timeliness
mentioned in the introduction.

Smart Bookmarks have the advantage of being inte-
grated directly with a user’s hotlist, making a visual in-
dication of what has changed available without resort-
ing to a separate page. Several other tools read a user’s
hotlist and generate a report, in HTML, of recently
changed pages. Examples include webwatch [16], a
product for Windows; w3new [4], a public-domain
Perl script that runs on UNIX; and Katipo [13], which
runs on the Macintosh.

Another similar tool, URL-minder [19], runs as a
service on the W 3 itself and sends email when a page
changes. Unlike the tools that run on the user’s host
and use the “hotlist” to determine which URLs to
check, URL-minder acts on URLs provided explicitly
by a user via an HTML form. Centralizing the update
checks on a W3 server has the advantage of polling
hosts only once regardless of the number of users in-
terested. However, the need to send URLs explicitly
through a form is cumbersome.

There are two basic strategies for deciding when a
page has changed. Most tools use the HTTP HEAD

command to retrieve the Last-Modi�ed field from a
W 3 document, either returning a sorted list of all modi-
fication times or just those times that are different from
the browser’s history (the timestamp of the version the
user presumably last saw). URL-minder uses a check-
sum of the content of a page, so it can detect changes
in pages that do not provide a Last-Modi�ed date,
such as output from Common Gateway Interface (CGI)
scripts. W3new (and therefore w3newer) requests the
Last-Modi�ed date if available; otherwise, it retrieves
and checksums the whole page.

These tools also vary with respect to frequency of
checking and where the checks are performed. Most of
the tools automatically run periodically from the user’s
machine. All URLs are checked each time the tools
run, with the possible exception of URL-minder, which
runs on an Internet server and checks pages with an ar-
bitrary frequency that is guaranteed to be at least as of-
ten as some threshold, such as a week. (URL-minder’s
implementation is hidden behind a CGI interface.)

2.2 Version Repositories

As discussed below, we use the Revision Control Sys-
tem (RCS) [18] to compactly maintain a history of doc-
uments, addressed by their URLs. A CGI interface to
RCS allows a user to request a URL at a particular date,
from anywhere on the W 3. This is similar in spirit
to the “time travel” capability of file systems such as
3DFS [5] that transparently allow access to files at ar-
bitrary dates. A slight twist on the versioning is that
we wish to track the times at which each user checked
in a page, even if the page hasn’t changed between

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 3

check-ins of that page by different users. This is ac-
complished outside of RCS by maintaining a per-user
control file, allowing quick access to a user’s access
history.

2.3 HTML Differencing

We know of no existing tools that compare HTML
pages and present the comparison as HTML. However,
there is much closely related work on heuristics for par-
allel document alignment and similarity measures be-
tween documents [2] that we benefit from. Line-based
comparison utilities such as UNIX diff [10] clearly
are ill-suited to the comparison of structured docu-
ments such as HTML. Most modern word processing
programs have a “revision” mode that track additions
and deletions on-line as an author modifies a docu-
ment, graphically annotating the differences. Html-
Diff graphically annotates differences in a similar man-
ner but operates off-line after document creation, using
heuristics to determine the additions and deletions.

3 Tracking Modifications

To our knowledge, the tools described in Section 2.1
poll every URL with the same frequency. We modified
w3new1 to make it more scalable, as well as to inte-
grate it with the other components of AIDE. Figure 1
gives an example of the report generated by w3newer;
the meaning of the links on the right-hand side is dis-
cussed in Section 6.

W3newer runs on the user’s machine, but it omits
checks of pages already known to be modified since the
user last saw the page, and pages that have been viewed
by the user within some threshold. The time when the
user has viewed the page comes from theW3 browser’s
history. The “known modification date” comes from
a variety of sources: a cached modification date from
previous runs of w3newer; a modification date stored in
a proxy-caching server’s cache; or the HEAD informa-
tion provided by httpd (the HTTP server) for the URL.
If either of the first two sources of the modification date
indicate that the page has not been visited since it was
modified, then HTTP is used only if the time the modi-
fication informationwas obtained was long enough ago
to be considered “stale” (currently, the threshold is one
week).

In addition, there is a threshold associated with each
page to determine the maximum frequency of direct
HEAD requests. If the page was visited within the
threshold, or the modification date obtained from the

1W3new was selected because it ran on UNIX and because it was
available before the others. If Smart Bookmarks had been available
at the time, it would have provided a better starting point.

Comments start with a sharp sign.

perl syntax requires that \." be escaped

Default is equivalent to ending the �le with \.*"

Default 2d

�le:.* 0

http://wwwn.yahoon.com/.* 7d

http://.*n.attn.com/.* 0

http://wwwn.ncsan.uiucn.edu/SDG/Software/-

Mosaic/Docs/whats-newn.html

12h

http://snapplen.csn.washingtonn.edu:600/-
mobile/

1d

this is in my hotlist but will be di�erent every day

http://wwwn.unitedmedian.com/-

comics/dilbert/

never

Table 1: An example of the thresholds speci�ed to

w3newer. The table is explained in the text.

proxy-caching server is current with respect to the
threshold, the page is not checked. The threshold can
vary depending on the URL, with perl pattern match-
ing used to determine what threshold to apply. The first
matching pattern is used.

Table 1 gives an example of a w3newer configura-
tion file. Thresholds are specified as combinations of
days (d) and hours (h), with 0 indicating that a page
should be checked on every run of w3newer and never
indicating that it should never be checked. In this ex-
ample, URLs are checked every two days by default,
but some URLs are overridden. Local files are checked
upon every execution, since a stat call is cheap, and
anything in the att.com domain is checked upon every
execution as well. Things on Yahoo are checked only
every seven days in order to reduce unnecessary load
on that server, since the user doesn’t expect to revisit
Yahoo pages daily even if they change. Dilbert is never
checked because it will always be different.

3.1 System Issues

Cache Consistency

Determining when HTTP pages have changed is anal-
ogous to caching a file in a distributed file system and
determining when the file has been modified. While
file systems such as the Andrew File System [9] and
Sprite [12] provide guarantees of cache consistency by
issuing call-backs to hosts with invalid copies, HTTP
access is closer to the traditional NFS approach, in
which clients check back with servers periodically for
each file they access. Netscape can be configured to
check the modification date of a cached page each time
it is visited, once each session, or not at all. Caching

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 4

Figure 1: Output of w3newer showing a number of anchors (the descriptive text comes from the hotlist). The ones that
are marked as “changed” have modification dates after the time the user’s browser history indicates the URL was seen.
Some URLs were not checked at all, and others were checked and are known to have been seen by the user.

servers check when a client forces a full reload, or af-
ter a time-to-live value expires.

Here the problem is complicated by the target envi-
ronment: one wishes to know not only when a currently
viewed page has changes, but also when a page that has
not been seen in a while has changed. Fortunately, un-
like with file systems, HTTP data can usually tolerate
some inconsistency. In the case of pages that are of in-
terest to a user but have not been seen recently, find-
ing out within some reasonable period of time, such as
a day or a week, will usually suffice. Even if servers
had a mechanism to notify all interested parties when a
page has changed, immediate notification might not be
worth the overhead.

Instead, one could envision using something like
the Harvest replication and caching services [1] to
notify interested parties in a lazy fashion. A user
who expresses an interest in a page, or a browser that
is currently caching a page, could register an inter-
est in the page with its local caching service. The
caching service would in turn register an interest with
an Internet-wide, distributed service that would make
a best effort to notify the caching service of changes
in a timely fashion. (This service could potentially
archive versions of HTTP pages as well.) Pages would
already be replicated, with server load distributed, and

the mechanism for discovering when a page changes
could be left to a negotiation between the distributed
repository and the content provider: either the con-
tent provider notifies the repository of changes, or the
repository polls it periodically. Either way, there would
not be a large number of clients polling each interest-
ing HTTP server. Moving intelligence about HTTP
caching to the server has been proposed by Gwertzman
and Seltzer [7] and others.

One could also envision integrating the functionality
of AIDE into file systems. Tools that can take actions
when arbitrary files change are not widely available,
though they do exist [15]. Users might like to have a
unified report of new files and W 3 pages, and w3newer
supports the “�le:” specification and can find out if a
local file has changed. However, snapshot has no way
to access a file on the user’s (remote) file system. Mov-
ing functionality into the browser would allow indi-
vidual users to take snapshots of files that are not al-
ready under the control of a versioning system such as
RCS; this might be an appropriate use of a browser with
client-side execution, such as HotJava [17] or recent
versions of Netscape.

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 5

Error Conditions

When a periodic task checks the status of a large num-
ber of URLs, a number of things can go wrong. Local
problems such as network connectivity or the status of
a proxy-caching server can cause all HTTP requests to
fail. Proxy-caching servers are sometimes overloaded
to the point of timing out large numbers of requests,
and a background task that retrieves many URLs in
a short time can aggravate their condition. W3newer
should therefore be able to detect cases when it should
abort and try again later (preferably in time for the user
to see an updated report).

At the same time, a number of errors can arise with
individual URLs. A URL can move, with or with-
out leaving a forwarding pointer. The server for a
URL can be deactivated or renamed. Its site may
disallow retrieval of this URL by “robots,” meaning
that the administrator for its site has created a spe-
cial file, robots.txt, and requested that automated pro-
grams such as “web crawlers” not retrieve the URL.
Currently, programs only voluntarily follow the “robot
exclusion protocol” [14], the convention that defines
the use of robots.txt. Although w3newer currently
obeys this protocol, it is not clear that it should, at least
for URLs the user would other wise access directly pe-
riodically.

Finally, automatic detection of modifications based
on information such as modification date and check-
sum can lead to the generation of “junk mail” as
“noisy” modifications trigger change notifications. For
instance, pages that report the number of times they
have been accessed, or embed the current time, will
look different every time they are retrieved.

W3newer attempts to address these issues by the fol-
lowing steps:

� If a URL is inaccessible to robots, that fact is
cached so the page is not accessed again unless a
special flag is set when the script is invoked.

� Another flag can tell w3newer to treat error con-
ditions as a successful check as far as the URL’s
timestamp goes, so that a URL with some prob-
lem will be checked with the same frequency as
an accessible one. In general, however, it seems
that errors are likely to be transient, and checking
the next time w3newer is run is reasonable.

� When a URL is inaccessible, an error message ap-
pears in the status report, so the user can take ac-
tion to remove a URL that no longer exists or re-
peatedly hits errors.

In addition, w3newer could be modified to keep a
running counter of the number of times an error is en-
countered for a particular URL, or to skip subsequent

URLs for a host if a host or network error (such as
“timeout” or “network unreachable”) has already oc-
curred. Addressing the problem of “noisy” modifica-
tions will require heuristics to examine the differences
at a semantic level.

4 Snapshots

In addition to providing a mechanism for determining
when W 3 pages have been modified, there must be a
way to access multiple versions of a page for the pur-
poses of comparison. This section describes methods
for maintainingversion histories and several issues that
arise from our solution.

4.1 Alternative Approaches

There are three possible approaches for providing ver-
sioning of W 3 pages: making each content provider
keep a history of all versions, making each user keep
this history, or storing the version histories on an ex-
ternal server.

Server-side support Each server could store a history
of its pages and provide a mechanism to use that
history to produce marked-up pages that highlight
changes. This method requires arbitrary content
providers to provide versioning and differencing,
so it is not practical, although it is desirable to sup-
port this feature when the content provider is will-
ing. (See Section 8.1.)

Client-side support Each user could run a program
that would store items in the hotlist locally, and
run HtmlDiff against a locally saved copy. This
method requires that every page of interest be
saved by every user, which is unattractive as the
number of pages in the average user’s hotlist in-
creases, and it also requires the ability to run
HtmlDiff on every platform that runs a W 3

browser. Storing the pages referenced by the
hotlist may not be too unreasonable, since pro-
grams like Netscape may cache pages locally any-
way. There are other external tools such as warm-
list [20] that provide this functionality.

External service Our approach is to run a service that
is separate from both the content provider and
the client, and uses RCS to store versions. Pages
can be registered with the service via an HTML
form, and differences can be retrieved in the same
fashion. Once a page is stored with the service,
subsequent requests to remember the state of the
page result in an RCS “check-in” operation that
saves only the differences between the page and

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 6

its previously checked-in version. Thus, except
for pages that change in many respects at once, the
storage overhead is minimal beyond the need to
save a copy of the page in the first place.

Drawbacks to the “external service” approach are
that the service must remember the state of every page
that anyone who uses the service has indicated an inter-
est in and must know which user has seen which ver-
sion of each page. The first issue is primarily one of
resource allocation, and is not expected to be a signif-
icant issue unless the service is used by a great many
clients on a number of large pages. The second issue
is addressed in our initial prototype by using RCS’s
support for datestamps and requesting a page as it ex-
isted at a particular time. In the next version of the
system, a set of version numbers is retained for each
<user,URL> combination. This removes any confu-
sion that could arise if the timestamps provided for a
page do not increase monotonically and also makes it
easier to present the user with a set of versions seen by
that person regardless of what other versions are also
stored.

Relative links become a problem when a page is
moved away from the machine that originallyprovided
it. If the source were passed along unmodified, then the
W 3 browser would consider links to be relative to the
CGI directory containing the snapshot script. HTML
supports a BASE directive that makes relative links rel-
ative to a different URL, which mostly addresses this
problem; however, Netscape 1.1N treats internal links
within such a document to be relative to the new BASE

as well, which can cause the browser to jump between
the HtmlDiff output and the original document unex-
pectedly.

4.2 System Issues

The snapshot facility must address four important is-
sues: use of CGI, synchronization, resource utilization,
and security/privacy.

CGI is a problem because there is no way for snap-
shot to interact with the user and the user’s browser,
other than by sending HTML output. (The system does
not currently assume the ability of a browser to sup-
port Java [11], although moving to Java in the future
is possible and might help address some of these is-
sues.) When a CGI script is invoked, httpd sets up a
default timeout, and if the script does not generate out-
put for a full timeout interval, httpd will return an er-
ror to the browser. This was a problem for snapshot
because the script might have to retrieve a page over
the Internet and then do a time-consuming compari-
son against an archived version. The server does not
tell snapshot what a reasonable timeout interval might

be for any subsequent retrievals; instead this is hard-
coded into the script. In order to keep the HTTP con-
nection alive, snapshot forks a child process that gener-
ates one space character (ignored by the W3 browser)
every several seconds while the parent is retrieving a
page or executing HtmlDiff .

Synchronization between simultaneous users of the
facility is complicated by the use of multiple files for
bookkeeping. The system must synchronize access
to the RCS repository, the locally cached copy of the
HTML document, and the control files that record the
versions of each page a user has checked in. Cur-
rently this is done by using UNIX file locking on both
a per-URL lock file and the per-user control file. Ide-
ally the locks could be queued such that if multiple
users request the same page simultaneously, the sec-
ond snapshot process would just wait for the page and
then return, rather than repeating the work. This is
not so important for making snapshots, in which case a
proxy-caching server can respond to the second request
quickly and RCS can easily determine that nothing has
changed, but there is no reason to run HtmlDiff twice
on the same data.

The latter point relates to the general issue of re-
source utilization. Snapshot has the potential to use
large amounts of both processing and disk space. The
need to execute HtmlDiff on the server can result in
high processor loads if the facility is heavily used.
These loads can be alleviated by caching the output
of HtmlDiff for a while, so many users who have
seen versions N and N + 1 of a page could retrieve
HtmlDiff (pageN; pageN+1) with a single invocation
of HtmlDiff . The facility could also impose a limit on
the number of simultaneous users, or replicate itself
among multiple computers, as many W3 services do.

Lastly, security and privacy are important. Because
the CGI scripts run with minimal privileges, from an
account to which many people have access, the data in
the repository is vulnerable to any CGI script and any
user with access to the CGI area. Data in this reposi-
tory can be browsed, altered, or deleted. In order to use
the facility one must give an identifier (currently one’s
email address, which anyone can specify) that is used
subsequently to compare version numbers. Browsing
the repository can therefore indicate which user has an
interest in which page, how often the user has saved a
new checkpoint, and so on.

By moving to an authenticated system on a secure
machine, one could break some of these connections
and obscure individuals’ activities while providingbet-
ter security. The repository would associate imper-
sonal account identifiers with a set of URLs and version
numbers, and passwords would be needed to access
one of these accounts. Whoever administers this fa-

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 7

cility, however, will still have information about which
user accesses which pages, unless the account creation
can be done anonymously.

5 Comparison of HTML pages

In our experience, only a small fraction of pages on the
W 3 contain information that allows users to ascertain
how the pages have changed—examples include icons
that highlight recent additions, a link to a “changelog”,
or a special “What’s New” page. As was mentioned
in the introduction, these approaches suffer from defi-
ciencies. They are intended to be viewed by all users,
but users will visit the pages at different intervals and
have different ideas of “what’s new”. In addition, the
maintainer must explicitly generate the list of recent
changes, usually by manually marking up the HTML.

Automatic comparison of HTML pages and gener-
ation of marked-up pages frees the HTML provider
from having to determine what’s new and creating new
or modified HTML pages to point to the differences.
There are many ways to compare documents and many
ways to present the results. This section describes var-
ious models for the comparison of HTML documents,
our comparison algorithm, and issues involved in pre-
senting the results of the comparison.

5.1 What’s in a Diff?

HTML separates content (raw text) from markups.
While many markups (such as <P>, <I>, and
<HR>) simply change the formatting and presenta-
tion of the raw text, certain markups such as images
() and hypertext references () are “content-defining.” Whitespace in
a document does not provide any content (except
perhaps inside a <PRE>), and should not affect
comparison.

At one extreme, one can view an HTML document
as merely a sequence of words and “content-defining”
markups. Markups that are not “content-defining” as
well as whitespace are ignored for the purposes of com-
parison. The fact that the text inside <P>...</P> is
logically grouped together as a paragraph is lost. As
a result, if one took the text of a paragraph comprised
of four sentences and turned it into a list () of
four sentences (each starting with), no differ-
ence would be flagged because the content matches ex-
actly.

At the other extreme, one can view HTML as a hi-
erarchical document and compare the parse tree or ab-
stract syntax tree representations of the documents, us-
ing subtree equality (or some weaker measure) as a ba-
sis for comparison. In this case, a subtree representing

a paragraph (<P>...</P>) might be incomparable
with a subtree representing a list (...).
The example of replacing a paragraph with a list would
be flagged as both a content and format change.

We view an HTML document as a sequence of
sentences and “sentence-breaking” markups (such as
<P>, <HR>, , or <H1>) where a “sentence”
is a sequence of words and certain (non-sentence-
breaking) markups (such as or <A>). A “sen-
tence” contains at most one English sentence, but may
be a fragment of an English sentence. All markups are
represented and are compared, regardless of whether or
not those markups are “content-defining” (however, as
described later, certain markups may not be highlighted
as having changed). In the paragraph-to-list example,
the comparison would show no change to content, but
a change to the formatting.

We apply Hirshberg’s solution to the longest com-
mon subsequence (LCS) problem [8] (with several
speed optimizations) to compare HTML documents.
This is the well-known comparison algorithm used by
the UNIX diff utility [10]. The LCS problem is to find
a (not necessarily contiguous) common subsequence
of two sequences of tokens that has the longest length
(or greatest weight). Tokens not in the LCS represent
changes. In UNIX diff, a token is a textual line and each
line has weight equal to 1. In HtmlDiff, a token is either
a sentence-breaking markup or a sentence, which con-
sists of a sequence of words and non-sentence-breaking
markups. Note that the definition of sentence is not re-
cursive; sentences cannot contain sentences. A sim-
ple lexical analysis of an HTML document creates the
token sequence and converts the case of the markup
name and associated (variable,value) pairs to upper-
case; parsing is not required.

We now describe how the weighted LCS algorithm
compares two tokens and computes a non-negative
weight reflecting the degree to which they match (a
weight of 0 denotes no match). Sentence-breaking
markups can only match sentence-breaking markups.
They must be identical (modulo whitespace, case, and
reordering of (variable,value) pairs) in order to match
(see section 5.3 for a discussion of the ramifications of
this). A match has weight equal to 1. Sentences can
match only sentences, but sentences need not be iden-
tical to match one another. We use two steps to de-
termine whether or not two sentences match. The first
step uses sentence length as a comparison metric. Sen-
tence length is defined to be the number of words and
“content-defining” markups such as or <A>
in a sentence. Markups such as or <I> are not
counted. If the lengths of two sentences are not “suf-
ficiently close,” then they do not match. Otherwise,
the second step computes the LCS of the two sentences

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 8

(where words matching exactly against words are as-
signed weight 1, and markups match exactly against
markups, as before). Let W be the number of words
and content-defining markups in the LCS of the two
sentences and letL be the sum of the lengths of the two
sentences. If the percentage (2 �W)=L is sufficiently
large, then the sentences match with weightW . Other-
wise, they do not match.

5.2 Presentation of the differences

The comparison algorithm outlined above yields a
mapping from the tokens of the old document to the to-
kens of the new document. Tokens that have a mapping
are termed “common”; tokens that are in the old (new)
document but have no counterpart in the new (old) are
“old” (“new”). We refer to the “old” and “new” tokens
as “differences”.

We investigated three basic ways to present the dif-
ferences by creating HTML documents:

Side-by-Side A side-by-side presentation of the docu-
ments with common text vertically synchronized
is a very popular and pleasing way to display the
differences between documents (see, for example,
UNIX sdiff or SGI’s graphical diff tool gdiff). Un-
fortunately, there is no good mechanism in place
with current HTML and browser technology that
allows such synchronization.

Only Differences Show only differences (old and
new) and eliminate the common part (as done in
UNIX diff). This optimizes for the “common”
case, where there is much in common between
the documents. This is especially useful for very
large documents but can be confusing because
of the loss of surrounding common context.
Another problem with this approach is that an
HTML document comprised of an interleaving
of old and new fragments might be syntactically
incorrect.

Merged-page Create an HTML page that summarizes
all of the common, new, and old material. This
has the advantage that the common material is dis-
played just once (unlike the side-by-side presenta-
tion). However, incorporating two pages into one
again raises the danger of creating syntactically or
semantically incorrect HTML (consider convert-
ing a list of items into a table, for example).

Our preference is to present the differences in the
merged-page format to provide context and use inter-
nal hypertext references to link the differences together

in a chain so the user can quickly jump from differ-
ence to difference. We currently deal with the syntac-
tic/semantic problem of merging by eliminating all old
markups from the merged page (note that this doesn’t
mean all markups in the older document, just the ones
classified as “old” by the comparison algorithm). As a
result, old hypertext references and images do not ap-
pear in the merged page (of course, since they were
deleted they may not be accessible anyway). However,
by reversing the sense of “old” and “new” one can cre-
ate a merged page with the old markups intact and the
new deleted. A more Draconian option would be to
leave out all old material. In this case, there are no syn-
tactic problems given that the most recent page is syn-
tactically correct to begin with; the merged page is sim-
ply the most recent page plus some markups to point to
the new material. We are exploring other ways to cre-
ate a merged page.

An example of HtmlDiff ’s merged-page output ap-
pears in Figure 2. Markups are used to highlight old
and new material as follows. Two small arrow images
are used to point to areas in the document that have
changed. A red arrow points to old content and a green
arrow points to new content. The arrows are also in-
ternal hypertext references to one another, linked in a
chain to allow quick traversal of the differences. A
banner at the front of the document contains a link to
the first difference. Old text is displayed in “struck-
out” font using <STRIKE>, which in our experi-
ence is rarely used in HTML found on the W3. Un-
fortunately, there is no ideal font for showing “new”
text. We currently use <I>. Ideally, we
would like to be able to color code the text to highlight,
but this capability is not provided by all browsers.

Modified “content-defining” markups are high-
lighted, while changes to other markups (such as
<P>) are not. Consider the example of changing the
URL in an anchor but not the content surrounded by
<A>.... In this case, an arrow will point to
the text of the anchor, but the text itself will be in its
original font.

5.3 Issues and Extensions

Since HtmlDiff can parse an HTML document and rec-
tify certain syntactic problems, such as mismatched or
missing markups, the only real problem it is likely to
encounter is a set of changes that are so pervasive as to
make the resulting merged HTML unreadable. For in-
stance, if every other line were changed, then the mix-
ture of unrelated struck-out and emphasized text would
be muddled. We are experimenting with methods for
varying the degree to which old and new text can be
interspersed, as well as thresholds to specify when the

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 9

Figure 2: Output of HtmlDiff showing the differences between a subset of two versions of the USENIX Association
home page (as of 9/29/95 and 11/3/95). Small arrows point to changes, with bold italics indicating additions and with
deleted text struck out. The banner at the top of the page was inserted by HtmlDiff .

changes are too numerous to display meaningfully.

Currently, HtmlDiff is neither “version-aware” nor
“web-aware”. That is, HtmlDiff only compares the
text of two HTML pages. It does not compare ver-
sions of the entities that the pages refer to, access them,
or invoke itself recursively on other referenced pages.
This has a number of consequences. The good news
is that HtmlDiff does not incur the overhead of pulling
versions from a repository or sending requests over
the W 3 for information. This cost is consumed by
w3newer and snapshot. The bad news is that some dif-
ferences may be ignored. For example, if the contents
of an image file are changed but the URL of the file
does not, then the URL in the page will not be flagged
as changed. To support such comparison would re-
quire some sort of versioning of referenced entities and
would also require HtmlDiff to have access to the ver-
sion repositories. Full versioning of all entities would
allow interesting comparisons to be done, but would

dramatically increase storage requirements. A cheaper
alternative would be to store a checksum of each entity
and use the checksums to determine if something has
changed. We are exploring how to efficiently perform
such “smarter” comparisons.

6 Integrating the tools

There are two entry points to AIDE, one through
w3newer and one through snapshot.

Currently, w3newer is invoked directly by the user,
probably by a crontab entry, and generates an HTML
document indicating which pages have changed. As
shown in Figure 1, w3newer associates three links with
each document in the hotlist:

Remember Send the URL to the snapshot facility, to
save a copy of the page. Though the page is re-
trieved, the RCS ci command ensures that it is not

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 10

saved if it is unchanged from the previous time it
was stored away.

Diff Have the snapshot facility invoke HtmlDiff to
display the changes in a page since it was last
saved away by the user.

History Have snapshot display a full log of versions
of this page, with the ability to run HtmlDiff on
any pair of versions or to view a particular version
directly.

Thus, each page that is reported as “new” can imme-
diately be passed to HtmlDiff, and any page in the list
can be “remembered” for future use. A user may also
interface with snapshot directly, via a form, to check-in
pages, view differences, or view the version history.

One disadvantage of the current approach is that
there is no direct interaction between w3newer, snap-
shot, and the W 3 browser. Viewing a page with Html-
Diff does not cause the browser to record that the page
has just been seen; instead, the browser records the
URL that was used to invoke HtmlDiff in the first place.
Subsequently, w3newer uses the obsolete datestamp
from the browser and continues to report that the page
has been modified more recently than the browser has
seen it. As a result, the user must view a page directly
as well as via HtmlDiff in order to both remove it from
the list of modified pages and see the actual differences.

7 Experiences

In the approximately half-year since AIDE was built,
we have been using the system regularly ourselves
and have attempted to build a user community within
AT&T. Personal use has been successful: one of us
has recorded over 250 URLs and the other nearly 100.
Adoption by others has been harder, and the reason we
hear back from prospective users is nearly always the
same: it is too time-consuming to install w3newer on
one’s own machine. This reluctance is the primary mo-
tivation for moving the functionality of w3newer into
the AIDE server.

In using AIDE ourselves, we realized another diffi-
culty with the present arrangement: information over-
load. Merely sorting URLs by most recent modifica-
tion dates is not satisfactory when the number of URLs
grows into the hundreds. Instead, we are moving to-
ward a user-specified prioritization of URLs along the
lines of the Tapestry system, which prioritizes email
and NetNews automatically [6].

So far, disk usage has not been a problem. There are
over 500 URLs archived (many of these are for fixed
collections of pages as described below in Section 8.2),
and the archive uses under 8 Mbytes of disk storage

(an average of 14.3 Kbytes/URL). Three files account
for 2.7 Mbytes of that total, and each file is a URL
that changes every 1–3 days and is being automatically
archived upon each change.

8 Extensions

This section describes some possible extensions to the
work already presented. Sections 8.1 and 8.2 discuss
some interfaces that are already implemented, while
Sections 8.3 and 8.4 presents unimplemented exten-
sions to integrate tracking modifications into the server
and to invoke scripts via the HTTP POST protocol.

8.1 Server-side Version Control

The tools described above do not require any changes
to arbitrary servers or clients on the W 3. Existing
GET and POST protocols are used to communicate with
specific servers that save versions of documents and
provide marked-up versions showing how they have
changed. However, if a server runs HtmlDiff and some
perl scripts, it can provide a direct version-control in-
terface and avoid the need to store copies of its HTML
documents elsewhere.

The perl scripts we have written provide an inter-
face to RCS [18]. A CGI script (/cgi-bin/rlog) con-
verts the output of rlog into HTML, showing the user
a history of the document with links to view any spe-
cific version or to see the differences between two ver-
sions. Another script (/cgi-bin/co) displays a version
of a document under RCS control, while still another
(/cgi-bin/rcsdi�) displays the differences. If the file’s
name ends in .html then HtmlDiff is used to display the
differences, rather than the rcsdiff program.

As an example, one might set up a Last-Modi�ed

field at the bottom of an HTML document to be a link to
the rlog script, with the document name specified as a
parameter. After clicking on this unobtrusive field, the
user would be able to see the history of the document.

8.2 Fixed Pages

In addition to permitting individuals to archive URLs
of interest to them and find out about modifications to
those URLs, AIDE can provide a community of users
with specialized “What’s New” pages that report when
any of a fixed set of URLs has been changed. Rather
than having users specify when to archive a new ver-
sion, each page is automatically archived as soon as a
change is detected. Then users can easily see the most
recent changes to a page using HtmlDiff, and they can
also use the History feature to see earlier versions they
may have missed.

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 11

Automatic archival of new versions is useful in this
context, but it has the disadvantage of increasing disk
space dramatically when the entire contents of the page
changes (such as the “What’s New in Mosaic” page).
When the entire contents are replaced, there is no use
for HtmlDiff . Automatic archival would still be useful
in cases when one wants a way to go back to arbitrary
old versions, but in many cases (including this exam-
ple), the content provider has its own archive.

8.3 Server-side URL Tracking

Currently, w3newer runs on the user’s machine, so
multiple instantiations of the script may perform the
same work. Although it runs a related daemon on the
same machine as an AT&T-wide proxy-caching server,
which returns information about pages that are cur-
rently cached on the server and may eliminate some ac-
cesses over the Internet, there is insufficient locality in
that cache for it to eliminate a significant fraction of re-
quests.

Alternatively, w3newer could be run on the set of
pages that have been saved by the snapshot daemon.
Regardless of how many users have registered an inter-
est in a page, it need only be checked once; if changed,
the new version could be saved automatically. Then
a user could request a list of all pages that have been
saved away, and get an indication of which pages have
changed since they were saved by the user.

Adding this functionality would be useful, since it
would offer economies of scale. In fact, it could be
further extended to be integrated with a “web crawler”
and track modifications to pages pointed to by pages
specified by the user. Following links recursively is
inappropriate for tools run by every user individually
but would be feasible for a centralized service. It
would have the advantage of handling multiple styles
of pages, for example:

Virtual Library pages Pages with pointers to many
other pages scattered throughout the W 3 could
have each link followed to indicate when the ref-
erenced pages have been modified, thus eliminat-
ing the need for a user to include many pages of
interest separately.

Collections of related pages Many times, a “home
page” refers to a number of other pages, both
within the same namespace and external. By fol-
lowing the internal pages automatically, a single
entry in one’s hotlist could result in notification
whenever any of those pages is modified. Html-
Diff could in turn be invoked recursively, as de-
scribed above in Section 5.3.

On the other hand, centralized tracking of modifica-
tions would have the disadvantage of being decoupled
from a given user’s W 3 browser history; i.e., if a user
views a page directly, the snapshot facility would have
no indication of this and might present the page as hav-
ing been modified. Java might be suitable for convey-
ing that information to the server.

Modifications to support server-side tracking of
modifications, including hierarchical tracking, are
nearly complete.

8.4 Interactions with CGI scripts

Because AIDE can handle arbitrary URLs, it can inter-
act with CGI scripts that use the GET protocol by pass-
ing arguments to the script as part of the URL. How-
ever, services that use POST cannot be accessed, be-
cause the input to the services is not stored.

Both w3newer and snapshot would have to be mod-
ified to support the POST protocol, in order to invoke
a service and see if the result has changed, and then
to store away the result and display the changes if it
has. The interface to AIDE to support POST is unclear,
however. A user could manually save the source to an
HTML form and change the URL the form invokes to
be something provided by AIDE. It, in turn, would have
to make a copy of its input to pass along to the actual
service.

Instead, the browser could be modified to have better
support for forms:

� It should store the filled-out version of a form in
its bookmark file, so the user could jump directly
to the output of a CGI script.

� It should be able to pass a form directly to AIDE,
along with the URL specified in the FORM tag,
so that the output could be stored under RCS.

9 Conclusions

AIDE combines notification, archiving, and differenc-
ing ofW 3 pages into a single cohesive tool. It achieves
economies of scale by avoiding unnecessary HTTP ac-
cesses, saving pages at most once each time they are
modified (regardless of the number of users who track
it), and using RCS as the underlyingversioningsystem.
Automatic generation of differences within the HTML
framework provides users with the ability to see both
insertions and deletions in a convenient fashion.

In the general setting of the W 3 and document re-
trieval, AIDE benefits two communities: users of the
W 3 no longer have to browse to find pages of interest
that have changed; HTML providers no longer have to
create suitably marked-up pages to show “what’s new”.

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 12

While such automation is clearly helpful in this gen-
eral context, we expect that AIDE will be a critical part
of more focused uses of the W3, especially in areas in-
volving collaborative and distributed work.

Several issues still need to be addressed. In par-
ticular, many of the complications of AIDE could be
avoided by better integration with W 3 browsers and
servers. The increasing availability of distributed, hi-
erarchical HTTP repositories such as Harvest [1] will
also be both an opportunityand a challenge for scalable
notification mechanisms and version archives.

For more information on AIDE, see URL
http://www.research.att.com/orgs/ssr/people/doug-

lis/aide.

Acknowledgments

Robin Chen, Steve Crandall, John Ellson, P. Krish-
nan, Mark Rajcok, Herman Rao, and the USENIX ref-
erees provided comments on earlier drafts of this pa-
per. Brooks Cutter wrote the version of w3new from
which the w3newer script is derived. Thanks also to
David Ladd for numerous discussions about HtmlDiff;
to Rich Brandwein, Robin Chen, John Ellson, and Her-
man Rao for discussions about HTTP and HTML; and
to the many colleagues who tried out AIDE and pro-
vided feedback. Finally, Charles Babbage invented the
first computer and called it the “Difference Engine,” a
term we appropriated for a new context.

Java is a trademark of Sun Microsystems. Netscape
is a trademark of Netscape Communications. UNIX is
a registered trademark of X/Open. Windows is a trade-
mark of Microsoft Corporation.

References
[1] C. Mic Bowman et al. Harvest: A scalable,

customizable discovery and access system. Technical
Report CU-CS-732-94, Dept. of Computer Science,
University of Colorado–Boulder, March 1995.

[2] K. Church. Char align: A program for aligning
parallel texts at the character level. In Association for
Computational Linguistics, pages 1–8, 1993.

[3] Ward Cunningham. WikiWikiWeb.
http://c2.com/cgi-bin/wiki.

[4] B. B. Cutter III. w3new.
http://www.stuff.com/˜bcutter/pro-
grams/w3new/w3new.html.

[5] Roome W. D. 3DFS: A time-oriented file server. In
Proceedings of the USENIX 1992 Winter Conference,
pages 405–418, January 1992.

[6] David Goldberg, David Nichols, Brian M Oki, and
Douglas Terry. Using collaborative filtering to weave

an information tapestry. Communications of the ACM,
35(12):61–70, December 1992.

[7] James S. Gwertzman and Margo Seltzer. The case for
geographical push-caching. In Proceedings of the
Fifth Workshop in Hot Topics in Operating Systems
(HOTOS-V), pages 51–55, Orcas Island, WA, May
1995. IEEE.

[8] D. S. Hirschberg. Algorithms for the longest common
subsequence problem. Journal of the ACM,
24(4):664–675, October 1977.

[9] J. Howard et al. Scale and performance in a
distributed file system. ACM Transactions on
Computer Systems, 6(1):51–81, February 1988.

[10] J. W. Hunt and M. D. McIlroy. An algorithm for
differential file comparison. Technical Report
Computing Science TR #41, Bell Laboratories,
Murray Hill, N.J., 1975.

[11] Java. http://www.javasoft.com/.

[12] M. Nelson, B. Welch, and J. Ousterhout. Caching in
the Sprite network file system. ACM Transactions on
Computer Systems, 6(1):134–154, February 1988.

[13] M. Newbery. Katipo.
http://www.vuw.ac.nz/˜newbery/Katipo.html.

[14] A standard for robot exclusion.
http://web.nexor.co.uk/mak/doc/robots/norobots.html.

[15] David S. Rosenblum and Balachander Krishnamurthy.
Generalized event-action handling. In Balachander
Krishnamurthy, editor, Practical Reusable UNIX
Software, chapter 9. John Wiley & Sons, New York,
1995.

[16] Specter, Inc. Webwatch.
http://www.specter.com/users/janos/webwatch/index.html.

[17] Sun Microsystems. The HotJava Browser: A White
Paper. Available as
http://java.sun.com/1.0alpha3/doc/overview/hot-
java/browser-whitepaper.ps.

[18] W. Tichy. RCS: a system for version control.
Software—Practice & Experience, 15(7):637–654,
July 1985.

[19] Url-minder. http://www.netmind.com/URL-
minder/URL-minder.html.

[20] Warmlist.
http://glimpse.cs.arizona.edu:1994/˜paul/warmlist/.

Author Information

Fred Douglis is a member of technical staff at
AT&T Bell Laboratories. His research interests in-
clude the W 3, mobile and distributed computing, and
file systems. He received a B.S. from Yale Univer-
sity (1984) and the M.S. (1987) and Ph.D. (1990) de-
grees from the University of California, Berkeley, all in
Computer Science. Email: douglis@research.att.com.

Douglis and Ball 1996 USENIX Technical Conference

Tracking and Viewing Changes on the Web 13

Thomas Ball is a member of technical staff at AT&T
Bell Laboratories. His research interests include pro-
gramming languages, software tools, techniques for ef-
ficiently monitoring system and program behavior, and
software and system performance visualization. He re-
ceived a B.A. from Cornell University (1987) and the
M.S. (1989) and Ph.D. (1993) degrees from the Univer-
sity of Wisconsin-Madison, all in Computer Science.
Email: tball@research.att.com.

Douglis and Ball 1996 USENIX Technical Conference

