The BT-Tree: A Branched and Temporal Access Method

Linan Jiang, Betty Salzberg *
College of Comp. Sc., Northeastern Univ.
Boston, MA 02115

{linan, salzberg}@ccs.neu.edu

David Lomet
Microsoft Research
One Microsoft Way Bldg 9
Redmond, WA 98052

Manuel Barrena
Universidad de Extremadura
Céceres, Spain

barrena@Qunex.es

lomet@microsoft.com

Abstract

Temporal databases assume a single line of time
evolution. In other words, they support time-
evolving data. However there are applications
which require the support of temporal data with
branched time evolution. With new branches cre-
ated as time proceeds, branched and temporal
data tends to increase in size rapidly, making the
need for efficient indexing crucial. We propose a
new (paginated) access method for branched and
temporal data: the BT-tree. The BT-tree is both
storage efficient and access efficient. We have im-
plemented the BT-tree and performance results
confirm these properties.

1 Introduction

There are many database applications that require the sup-
port of time-evolving data. Temporal database systems
model explicitly the temporal behavior of data, thus pro-
viding the ability to store and query temporal data effi-
ciently [9].

Conventional temporal databases assume a single line
of time evolution. As an example, consider an architect’s
design of a new house (say Joe’s house). The house design
starts from scratch and evolves over time. Figure 1 shows
the design of Joe’s house along a single line of time evolu-
tion starting from January. A temporal database captures
the evolution of this design. Queries such as “Find Joe’s
house design in February” are supported by the database.

While conventional temporal databases work well for
many temporal database applications, they are not suffi-

*This work was partially supported by NSF grant IRI-93-
03403 and IRI-96-10001 and by a grant for hardware, software
and research from Microsoft Corp.

TThis work was partially supported by DGES grant PR95-
426.

0 Permission to copy without fee all or part of this material
is granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

OProceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

January

version tree:

February

March

Joe’s house, over time

Figure 1: House design with a single line of time evolution.

January

version tree:
February

March

Joe’s house, over time

7 May (Joe’s house design in February)

Paul’s house, over time

Figure 2: House design with branched time evolution.

cient for applications that require the support of tempo-
ral data with branched time evolution, called branched-
and-temporal data. Branched and temporal data arises
in several important areas, such as software configuration
control and engineering design. An example application
is given in [4]. In our running example, consider the case
where, at some time in May, the architect begins a new
house design (say Paul’s house). Instead of starting from
scratch, the architect may choose to start from Joe’s house
design in February, which is already stored in the database.
Joe’s house design in February is modified to suit Paul’s re-
quirement later on. As time proceeds, Paul’s house design
can be viewed as a new time evolution branch which starts
in May with Joe’s house design in February as its initial
design. Figure 2 captures the process of temporal house
design with branched time evolution. Graphs as shown
in Figure 1 and Figure 2 describing the evolution of the
history of different branches are called version trees.

A branched and temporal database, such as the house
design database, has three dimensions: data space, branch,
and time. In our example, the data space contains different
parts of a house such as the kitchen and the bedroom. The
branch corresponds to the full design product, say “Joe’s
house”. Time reflects the changes made in the design as it

evolves. This is illustrated in Figure 3. A (Branch, Time)
pair, say Joe’s house in February, noted as (Joe’s house,
Feb.), is called a version.

branch
Joe
N\
N\
\\ Joe’s kitchen
® in February
February

time

Figure 3: Design database dimensions.

Given a specific branch B, branches that are derived
from branch B are called descendent branches of B. For
example, “Paul’s house” is a descendent branch of “Joe’s
house”. Analogously, for a specific version (B, T), versions
that are derived from (B,T) are called descendent ver-
sions of (B,T). For example, (Paul’s house, June) is de-
scendent version of (Paul’s house, May). If a branch Bl
(version (B1,T1)) is a descendent branch (descendent ver-
sion) of branch B2 (version (B2,72)), we say that branch
B2 (version (B2,T2)) is an ancestor branch (ancestor ver-
sion) of branch B1 (version (B1,T1)).

With new branches created as time proceeds, branched
and temporal data tends to increase in size rapidly, mak-
ing the need for efficient indexing crucial. A branched-and-
temporal index method not only needs to support version
slice queries, such as “show me the design for Joe’s house in
March.”, but also needs to support historical queries [4], in-
cluding horizontal queries and vertical queries, which arise
because of branching. A typical horizontal query is “Find
all the house designs for a given branch, say “Joe’s house”,
or one of its descendent branches, in June”. This shows
what has evolved from Joe’s house. A typical vertical
query is “Find all the house designs for a given branch, say
“Paul’s house”, or one of its ancestor branches, in July.”
This shows how Paul’s house has evolved differently from
its ancestors.

Simply concatenating branch and key, and using tem-
poral access methods for branched-and-temporal data does
not consider the ancestor descendent relationship among
versions, hence won’t be able to support historical queries
efficiently. Even for version slice queries the data would not
be clustered efficiently with concatenation since ancestor
branches contribute to the version slices of their descen-
dent branches. For example, some of Joe’s house design is
shared by Paul’s house in May.

Our perspective on how to index a branched and tem-
poral house design database is motivated by (1) keeping
the total amount of disk space small and (2) making the
number of disk accesses for typical queries, such as version
slice query and historical query, minimal. Therefore in de-
signing the BT-tree, we focus on exploiting the sharing
property of data records across different versions to save
space, meanwhile clustering data records according to ver-
sions (for version slice queries) and versions with ancestor
descendent relationship (for historical queries) to achieve

kitchen

dataspace

query efficiency. Our solution to the problem provides a
reasonable trade-off between space and access time.

To save space, we exploit how data is shared between
versions. Data records consist of a invariant part (usually
called the key), which describes the part of the data space
they cover, and a varying part which contains the branch
identifier, a time stamp, and the rest of the data (in a house
design, this might include the type and size of cabinets or
the color of the paint.) When Joe’s house design in Febru-
ary did not change the kitchen design from its January’s
version, we say that the data record with key “kitchen”
and version (Joe’s house, Jan.) is shared between two ver-
sions (Joe’s house, Jan.) and (Joe’s house, Feb.). Later on
if Paul’s house design in May created from Joe’s house de-
sign in February also did not change the kitchen design, the
same data record will be shared by version (Paul’s house,
May) as well.

Disk pages which contain data records are called data
pages. Data records in a data page are shared among
different versions as much as possible. Data page splitting
policies will cause some copying of data records, requiring
some extra space for duplication, but resulting in more
efficient search. Other pages, which direct searches, are
called index pages.

Assuming that our house only consists of a kitchen and
a bedroom, an example of the structure capturing the
branched evolution in Figure 2 is shown in Figure 4. The
index page in Figure 4 indicates that if you are searching
for any data derived from version (Paul’s house, June) you
look in data page 2, otherwise you look in data page 1.

index page

(Paul’s house, June)

data page 1 '/ \

data page 2

Joe's bedroom in Jan. []
Joe’s bedroom in Feb. R

Paul's bedroom in May [l

Paul's bedroom in Maylll
Paul's bedroom in Jul.
Paul’s kitchen in June [[1]

Joe’s kitchen in Jan.
Joe’s kitchen in March

Figure 4: Data pages and index pages in the proposed
structure;
connected component 1 of version t(elata page 1)

iy

7 ~
/ January N
/ ~
/ February \\\
/
/ March \
/ \
/ \
N \
\ Joe’s house, over time \\
\ § May (Joe’s house design in February)
N\ e ——
\
July
connected) ;
component 2 Paul’'s house, over ti
of version tree .
(data page 2) \ —
—

Figure 5: A version tree is divided into subtrees.

To efficiently support typical queries, the version tree is
divided into connected components, each of which is rooted

at a certain version. For example, Figure 5 shows that
the version tree in Figure 2 is divided into two connected
components with one rooted at version (Joe’s house, Jan.)
and another one rooted at version (Paul’s house, June).
The data space is divided into key ranges. Each disk page
in our structure, whether an index page or a data page,
will corresponds to a connected component of the version
tree and a key range. For example, data page 1 in Figure
4 corresponds to the connected component 1 in Figure 5
and the entire data space [bedroom, kitchen], data page
2 in Figure 4 corresponds to the connected component 2
in Figure 5 and the entire data space [bedroom, kitchen],
while the index page in Figure 4 corresponds to the entire
version tree and the data space.

The index page in Figure 4 only contains one version
node (Paul’s house, June) and two pointers. The right
pointer channels all the searching for data records in ver-
sion (Paul’s house, June) and its descendent versions. The
left pointer channels all the searching for data records in
the set of versions that are not descendents of version
(Paul’s house, June), say (Joe’s house, Jan.).

Data records of versions that are not descendents of
version (Paul’s house, June) are all stored in data page 1.
From the version tree shown in Figure 2 or Figure 5, we
know that these versions include three versions of Joe’s
house in January, February and March separately, and
Paul’s house in May. Considering the assumption that each
house contains only two keys: bedroom and kitchen, data
page 1 should store information about 8 data records in to-
tal. However only 5 data records are stored in data page 1.
This is because some of the data records are shared among
different versions. For example, Joe’s kitchen in January
is shared among three versions: (Joe’s house, Jan.), (Joe’s
house, Feb.) and (Paul’s house, May).

Data page 2 contains data records in two versions of
Paul’s house in June and July. June’s version has the bed-
room of Paul’s house in May which is a record that is copied
to data page 2 from data page 1 through data page split-
ting policies, while data record “Paul’s kitchen in June”
is shared between two versions (Paul’s house, June) and
(Paul’s house, July).

Figure 4 shows a simple case of our structure where
only version information is needed inside the index page.
We will also need to distinguish the different key ranges
covered by data pages.

The access structure with data pages and index pages
as outlined above is called a BT-tree (Branched and
Temporal Tree). The rest of the paper describes the
BT-tree in detail.

1.1 Background and Previous Work

Branched-and-temporal indexing is a relatively unexplored
area. However, many access methods (for example, [3], [1],
[6], [10] and [7]) have been proposed for temporal data.
A survey and comparison of these access methods can be
found in [8]. These methods have effectively solved the
problem of providing access to versioned record sets where
the versioning is actually linear, i.e, no branching.

Other approaches to managing versioned data are less
closely related. Work on “version management,” for exam-
ple, in software engineering, does not consider efficient use
of disk pages. The paper [4] does not consider pagination

and, although the structure is “branched,” only a current
version can be split into branches. Old versions can not be
modified. Driscoll et al. [2] develop techniques for mak-
ing linked data structures (e.g. binary search trees) fully
persistent (all versions can be read and updated).
Perhaps closest to our work is that of Lanka and Mays
[6], which is based on ideas from [2]. Lanka and Mays’
“fully persistent B+-tree” maintains multiple versions of
B—+-trees. The Fully persistent B-+-tree is a branched-only
access method. Branched-only data structures can be used
for branched-and-temporal data if the versions are made to
correspond to a branch and a timestamp. Lanka and Mays
did not suggest this. There is no access method in the liter-
ature explicitly proposed for branched-and-temporal data.
In addition, fully persistent B+-trees have extra “version
block” nodes in the search path making them less efficient
than our BT-tree. Their data nodes also store some re-
dundant information, making the total space usage greater
than ours. Furthermore we provide an ancestor determina-
tion method which exploit the lesser amount of branching
found in a branched-and-temporal database. The paper
[6] maintains a full version tree for ancestor determination.
This is too space-and-compute expensive for our case.

1.2 Organization of This Paper

The rest of the paper is organized as follows. Section 2 con-
tains the description of the BT-tree including the ancestor
determination method, the structure of data pages and in-
dex pages, the splitting algorithm and the consolidation
algorithm. Performance results are presented in section 3.

2 The BT-tree

For the purpose of this paper, time is assumed to be dis-
crete, described by a succession of nonnegative integers.
Each branch is assigned a unique branch id, which is rep-
resented by a positive integer. A combination (B,T) of a
branch identifier B and a time stamp 7 is called a version.
A branch typically has a large number of versions, one for
each time stamp when a change was made in that branch.

The first problem we encounter in designing such a
branched and temporal index method is that versions
(B, T) in the structure are only partially ordered. The lack
of a linear ordering on versions makes navigation through a
representation of a fully persistent BT-tree structure prob-
lematic. We need to be able to decide whether or not one
version is a descendent or ancestor of another.

2.1 Ancestor Determination

Ancestor determination methods used in [2] and [5] for
branched data use O(n) space. Their methods are not suit-
able for branched-and-temporal case where the number of
timestamps is large (hence the corresponding total number
of the versions is large). Our approach of solving the an-
cestor problem is designed for the case when the number of
branches is small although the number of timestamps may
be large.

To add understanding, we define the version tree first.
Unlike the version tree in the branched case, where every
node corresponds to a branch, every node of the version

tree here corresponds to a pair (B,T). An edge from node
(B,T) to node (B',T") exists if version (B’,T") is obtained
by updating version (B, T). Figure 6 shows an example of

version tree where only one branch exists.
(1L,0) (110 (1,20

Figure 6: An example of version tree where only one

branch exists.
(1,0) (1, 35) (1, 40)

Branch 1 (3,80)

Figure 7: The version tree corresponding to the branch
table in Table 1 below.

The main idea is to use a branch table, which contains
one entry for each branch. Each entry consists of four
items: a branch id, the branch id of its ancestor branch,
the start time of this branch and the share time which is the
time when this branch shares information with its ancestor
branch. For example, the branch table entry for branch 2
is (2,1,60,35). This means that branch 2 is created out
of version (B,T) = (1,35) at time 60. Given the branch
table entry for branch 2, a version (2,T) is valid only if T'
> start_time=60. An example of branch table with three
branches is shown in Table 1.

Branch id Ancestor branch id Start time Share time
1 1 0 0
2 1 60 35
3 1 80 40

Table 1: Branch table for the running example.

When a new branch i is created out of version (j,T') at
time T, a new entry (i, §, 7', T) is generated and appended
at the end of the branch table. Each branch table defines
a subset of a version tree, indicating only the branching.
Not all versions are listed as entries, since a version which
is created as an update of a current version (with the same
branch number, but a new time stamp) is not listed. This
is why the large number of versions in a branched-and-
temporal structure can be captured in a small table. A
version tree containing only branching information corre-
sponding to the branch table in Table 1 can be found in
Figure 7.

Definition 2.1.1 The branch id of the ancestor branch
found in the branch table entry of branch i is called Di-
rect_ancestor(i). The share_time found in the branch
table entry of branch 1 is called Share_time(i). The
start_time found in the branch table entry of branch i is
called Start_time(i).

branch table shown in
Share_time(2)=35 and

For example, given the
Table 1, Direct_ancestor(2)=1,
Start_time(2)=60.

Definition 2.1.2 Given two versions (Bi, Th) and (B,
T>) with By < Ba, (B1, T1) is an ancestor of (B2, T5)
if (B1 = Bz and T\ < T>) or (Bi1, T1) is an ancestor of ver-
sion (Direct_ancestor(Bz), Share_time(B2)). If (B1, Th) is
an ancestor of (Ba, T>), then (Bz, T») is a descendant
Of (Bl, Tl)

This definition is used to develop the following algo-
rithm Ancestor(v1,v2) for ancestor determination. An-
cestor(v1,v2) returns true if v1 = (B1,T1) is an ancestor
of v2 = (B2,T2).

If B1=B2 then { if T2<=T1 then return FALSE
else return TRUE }
If B2<B1 then return FALSE
else return(Ancestor(vi,
(Direct_ancestor (B2), share_time(B2))))

This algorithm requires following the direct ancestor
path of a version (B2, T'2) upwards in the branch table
until it can be determined whether or not (B1, T'1) is an
ancestor. Since the total number of branches is small, the
number of ancestors of a given branch is small and this
search will be fast.

Definition 2.1.3 Ancestor(B,T) is the collection of
versions which are ancestors of version (B, T). i.e, if (B1,
T:) € Ancestor(Bz, T>), then (Bi, Th) is an ancestor of
(Bs, Tb).

2.2 Overview of the BT-tree

The structure of the BT-tree is a directed acyclic graph of
pages, including index pages and data pages. Fully per-
sistent structures are traditionally called “trees” because
the restriction to one version is a tree. In addition, there
is one distinguished page called the root and a set of leaf
pages which are those pages with no outgoing edges. Leaf
pages are data pages and they are the furthest pages from
the root. Furthermore, all leaves are the same distance
from the root. Hence the BT-tree is balanced.

Data pages contain branched-and-temporal data while
index pages contain a small binary tree channeling search
to lower level pages. Initially the BT-tree starts from one
index page and one data page, where the data page is
empty and the index page contains only one node point-
ing to the data page. As time proceeds, data records are
continuously added to the data page. A some point when
there is no additional space to insert new data into the
data page, a data page overflow happens.

Data page overflow needs special handling: a split is
performed on the overflowed data page. One or two new
data pages will be created and a small portion of data
from the overflowed data page will be copied to the new
data page(s). Information about the data page split will
be posted up to the upper level index page to direct future
searches to either the old overflowed data page or the newly
created page(s).

As new data is added to data pages, more and more
data pages overflow and are therefore split, consequently
more and more information is posted to upper level index
pages to record the splitting history of data pages. At some
point index page overflow happens.

Index page overflow needs special handling: a split is
performed on the overflowed index page. One or two new
index pages will be created from the index page splitting. A
tree will be extracted and copied to the new index page(s).
The tree copied to the new index page(s) points to old
pages as well as new pages therefore making the BT-tree a
directed acyclic graph of pages instead of a tree of pages.

An example will be given in the index page splitting sec-
tion.

As a result of the index split, information will be posted
to upper level index pages to record the split history. The
split may percolate up as needed. A new root will be cre-
ated when the root index page is split.

Now we give a detailed explanation of data pages and
index pages and their splitting algorithms.

2.3 Data Pages

Data pages contain branched-and-temporal data. Our data
consists of record variants. For our purpose a record
variant is characterized by four entries: a time-invariant
part called a key, a branch id, a time stamp and an in-
formation field. For example, (a,3,80,info) is a record
variant with key = a, branch id = 3, time stamp = 80 and
info representing the data content of this record variant.

A page is identified with a key range and a connected
component of version tree. For example, the data page D2
shown in Figure 10 is identified with key range [a,d] and
the connected component of version tree enclosed in the
bigger dotted boundary, denoted as V1 — 20, in the right
side of the figure. Version tree components are named with
the branch (in this case branch 1) and the time stamp (in
this case 20) of their root.

Definition 2.3.1 A record variant (k,b,t,info) is said to
be alive in a connected component of version tree
and a key range if

o k is within the key range and

e cither

— (b,t) is within the connected component of the
version tree or

— Let version (B', T') be the root of the con-
nected component of the wversion tree. Then
(b, t) € Ancestor(B', T'), and ¥ record wvari-
ants (K',b',t' info) with k' = k and (b',t') €
Ancestor(B', T'), t > t'.

The second condition in Def 2.3.1 implies that either the
version (b,t) is contained in the connected component of
the version tree or it is the most recent ancestor of the root
of the connected component of the version tree on a record
variant with the same key. In our example, the connected
component of the version tree is V1-20, from Figure 10.
Let’s consider the only two record variants in the database
with key d: (d,1,2,info) and (d,1,3,info). The root of
V1-20is (1,20). Record variant (d,1,2,info) is not alive
in the connected component of version tree V1-20 and key
range [a, d] because (d, 1, 3,info) has the same key and has
a version which is a more recent ancestor of (1, 20). Record
variant (d, 1, 3,info) is alive in V1-20 and [a, d] because its
version s the most recent ancestor of (1,20) for key = d.
Record variant (a,2,60,info) is alive in V1-20 and [a,d]
because its version is contained in V1-20.

Each data page contains copies of all the record vari-
ants alive in a connected component of version tree and
a key range. For example, data page D2 in Figure 10
corresponds to the component V1-20 and the key range
[a,d]. D2 contains record variants (d,1,3,info) and not

(d,1,2,info) because (d,1,3,info) is alive in VI-20 and
[a,d] while (d,1,2,info) is not alive in V1-20 and [a, d].

Data pages partition the entire version tree and data
space for which the database is defined. For example, in
Figure 10, both data pages cover the key range [a,d] and
the two connected components of the version tree, VI1-0
(corresponding to page D1) and VI-20 (corresponding to
page D2) are disjoint and cover the version tree.

Record variants in a data page are ordered by key,
branch and time stamp inside a data page. When a new
record with key k is added to the data page at time ¢ (=
current time) by branch 4, a new record variant of the form
(k,1,t,info) is created and inserted in a proper position so
that the all data variants are in order. When a data page
becomes full, a data page splitting occurs.

2.4 Data Page Splitting

We distinguish updates, which create a new record vari-
ant for an existing key and inserts, which create a new
record variant with a new key. When a new update or in-
sertion, say (k,4,T,info) (T is current time,) into a data
page causes the page to become over-full, it will be split at
(7, T) with one or two new data pages allocated. Informa-
tion about the split will be posted to the parent page that
channeled the search to the split data page.

Definition 2.4.1 A record variant (k,j,t,info) in a data
page is said to be alive at version (i,T) with T = cur-
rent time if (4,t) € Ancestor(i,T) and V record variant
(k',j',t',info) in the data page with k' = k, and (§',t")
€ Ancestor(i,T), t > t'.

For example, in Figure 10, record variant (a, 3, 83, info)
in data page D2 is alive at (3,T) (say T is current time 90),
while the same record variant is not alive at (2,T") because
(3,83) is not an ancestor of (2,T).

To split a data page at (i,T), only alive record variants
at (i,T) are copied to the new pages. Copying the alive
record variants into one new page is called a version split.

If there are not many alive record variants in the full
page (because in this page, most of the record variants are
old variants of alive record variants) only one new page is
needed. If there are many alive record variants or (con-
sidering variable-length records) if the space occupied by
alive record variants is too large, two new pages are allo-
cated and a BY-tree-like key split is made among the alive
record variants being copied. This is called a version-
and-key split. We define a threshold utilization U for
alive record variants. When alive record variant utiliza-
tion exceeds U, we do a version-and-key split. When alive
record variant utilization is less than or equal to U, we do
a version split. A typical value for U is about .66, which
guarantees that a new data page will be at least one third
full of current data.

BT-tree data page splitting is illustrated in Figure 8,
Figure 9, Figure 10, and Figure 11. The database starts
with an empty data page D1. Figure 8 shows the insertion
of 6 record variants in data page D1 up to current time T' =
19. Only branch 1 is created so far and data page D1 is full.
At time 20, in order to insert record variant (a, 1, 20, info),
a version split occurs to data page D1. Consequently, data
page D2 is created, as shown in Figure 9. Only those

record variants in data page D1 which are alive at (1,20)
are copied to the new page, data page D2. The new record
variant is also inserted into the new data page D2.

Figure 10 shows that branch 2 is created and a new
record variant (a, 2,60, info) is inserted into data page D2
at time 60. At time 80, branch 3 is created and a new
record variant (a, 3, 80, info) is inserted into data page D2.
At time 83, The insertion of another record variant into
data page D2 by branch 3 makes the data page D2 a full
data page. The version tree grows as new branches are
created.

In Figure 11, as we are trying to insert record variant
(b,3,85,info) into the data page D2 which is already full,
data page D2 has to be split. A version-and-key split at
version (3,85) and key ¢ occurs here generating two new
pages D3 and D4 corresponding to same connected com-
ponent of the version but different key ranges.

A data page could be split more than once if it is already
full and new branches are created from some version in its
version-tree component. This cannot happen in temporal
(not branched) structures.

2.5 Index Pages

Index pages also represent connected components of ver-
sion tree and key ranges, with a full partition of the version-
key space at each level of the tree. Within each BT-tree
index page are index nodes that identify the connected
component of version tree and key range for each child
page, and hence channel searches to its children pages.

A split history tree or sh-tree is used within each
index page. The sh-tree is a small binary tree. The sh-
tree, describing the history of the splits of its children,
contains three types of nodes: vsh nodes, ksh nodes and
leaf nodes. A vsh node contains a branch id and a time
stamp (indicating a wversion), a ksh node contains a key
value while a leaf node contains a disk page address of a
child page in the next lower level of the BT-tree.

Initially the BT-tree only has one index page I, with
one leaf node as shown in Figure 12(a), referencing the
only data page D1 in Figure 11. As new data is added
into the data page D1, D1 becomes full and a data page
split occurs. Whenever a data page split occurs, the sh-
tree in the parent index page is changed so that it reflects
the splitting history of its children.

In case of a version split of a data page at (¢,7) (T
is current time,) the parent’s reference to the old page is
replaced by a new vsh node (¢,7). This node has one
child referencing the old page while the other references
the new page. Figure 12(b) shows that the vsh node (1, 20)
is posted to index page I (which is also root index page of
this BT-tree) when data page D1 is split and data page
D2 is generated as shown in Figure 9.

In case of version-and-key split at (i,T") (T is current
time) and key k, the parent page’s reference to the old page
is also replaced by a new sh-tree vsh node (¢,7'). This node
has its left child referencing the old page while the right
child is a ksh node with key value k referring to the two
new pages. Figure 12(d) shows how posting happens when
data page D2 is version-and-key split at version (3,85) and
key c generating data pages D3 and D4 as shown in Figure
11.

A vsh node (b,t) in an index page divides the lower
level BT-tree rooted at (b, t) into two parts, with the right
subtree of the vsh node containing everything which is a
descendent of (b,t) while the left subtree of the vsh node
contains everything which is not a descendent of (b, t). Sim-
ilarly, a ksh node k divides the lower level BT-tree rooted
at k into two parts, with the right subtree of the ksh node
containing record variants with key value greater than or
equal to k& while the left subtree of the ksh node contains
record variants with key value less than k. The search algo-
rithm for a single point (K, B,T) in a BT-tree is in Figure
13.

1. Start at the root page of the BT-tree.

2. BT-tree index page has been reached: Start at the
root node of the sh-tree in this BT-tree page.

3. Sh-tree node has been reached: Test the type of sh-
tree node.

(a) ksh: If K > key value in ksh, go right, else go
left. Go to step 3.

(b) vsh (B',T"): If (B',T") € Ancestor(B,T), go
right, else go left. Go to step 3.
(c) sh-tree leaf: Fetch the disk page P in the sh-

tree leaf. If P is another index page, go to
step 2. Otherwise continue.

4. BT-tree data page has been reached: Find the
record variant in this data page with key value K
and alive at version (B, T).

o If there is none, return indicating the search
is unsuccessful.

o If this is a deletion record variant, the record
did not exist in the database at time 7' for
version B. Return indicating the search is un-
successful.

e Otherwise, return the record variant and indi-
cate that the search is successful.

Figure 13: Search in the BT-tree for (K, B,T), a record
variant with key K alive at version (B,T).

2.6 Index Page Splitting

An index page records the split history of data pages by
getting one (in case of version-split) or two (in case of
version-and-key split) index node(s) posted whenever a
child data page splits. Index page splitting happens when
an index page overflows. Only disk addresses of children
(leaf nodes) alive at the splitting version and the key
boundaries separating them are copied.

Definition 2.6.1 A child (leaf) of an sh-tree in an index
page is alive at (B, T) (T= current time) if (B, T) is
in the connected component of the version tree associated
with the child page whose disk address recorded in the leaf
node of the sh-tree.

Consider a BT-tree with root index page in Figure 12
(d) and four data pages in Figure 11. Suppose the current
time is 90. To find children (leaves) of the sh-tree in Figure
12 alive at (3, 90), we look at the connected components of
version trees in Figure 11. Since (3,90) is in the connected
component of the version tree corresponding to D3 and

D1 (a 1,1, info)

1, 4, info
@ L ~, connected component

a, 1, 19, info, 0) current time=19/
Ec 1,5 infO)) Branch 1\(%)7 Of detapage D1

(d, 1, 2,info) " 'key range of D1={a, d]
(d, 1, 3info)

Figure 8: Data page D1 is full at this point.

Di[(a1 1infe) | D2|(a 1,20 info) i T
(a 1, 4, info) (c, 1,5, info) & 0 (@ 29) current i me=21
: (d, 1, 3, info) Branch ?
(a 1, 19, info) i o N
(c.1,5 i'nfo) connected component connected component
(d, 1, 2, info) of datapage D1 of data page D2
(d, 1, 3info) key range of D1=[a, d] key range of D2=[a, d]

Figure 9: In order to insert a new record variant (a,1,20,info), data page D1 has to be version split. Data page D2 is
generated.

V1-20: connected component of data page D2. key range of D2=[a, d]

D1 (a, 1, 1, info) D2 | (a, 1, 20, info) N —-- 7 BN
(a, 1, 4, info) (a, 2, 60, info) Branch (; 1, 29) - /(1, ;5) ‘(1, 40) current time:83\\‘
(a, 1, 19, info) (a, 3, 80, info) o . |
(c 1,5, info) (a, 3, 83, info) V1.0 connected, Branch 28ranch 3 (3,80) \
(d, 1, 2, info) (c.1,5,info) | component of data page b1 !
(d, 1, 3 info) (d, 1, 3, info) key range of D1=[a, d] (2, 60))/

Figure 10: Branch 2 and 3 are created and new record variants are inserted into data page D2 causing it to become full
at time 83.

D1 (a 1,1, info) D2 | (a 1, 20, info) D3| (a 3, 83, info) D4 | (c, 1, 5, info)
(a 1, 4, info) (a 2, 60, info) (b, 3, 85, info) (d, 1, 3, info)
(a 1,19, info) (a, 3, 80, info)
(c, 1,5, info) (a, 3, 83, info)
(d, 1, 2, info) (c, 1,5, info)
(d, 1, 3info) (d, 1, 3, info)

connected component of data page D2. key range of D2=[a, d]

(;L 0) @, 2@) (1 $5) (& 40) current time=86’ |

g connected component
(3,80) (3,85).- . of datapageD3and D4
. " key range of D3=[a, b]
=+~ ---" key range of D4=[c, d]

Branch 1

z

connected component \\
of data page D1
key range of D1=[a, d]

Figure 11: Data page D2 is version-and-key split at (3,85) as new record variant (b,3,85,info) is attempted to be
inserted into data page D2.

I I I (20
(1, 20) (1, 20)
/ 0\ / 0\ D1 (3,85
D1 D1 D2 D1 D2 / \
b2 A&
D3 D4
(a) (b) (c) (d)

Figure 12: The evolution of index page I corresponding to data pages in (a) Figure 8; (b) Figure 9; (c) Figure 10; (d)
Figure 11. The connected component of index page I is the entire version tree and the key range of index page I is [a, d].

D4, leaves D3 and D4 in the sh-tree in Figure 12 (d) are
alive at (3,90). However (3,90) is not in the connected
component of version trees corresponding to D1 and D2,
hence leaves D1 and D2 are not alive at (3,90).

If there are too many alive children found when splitting
an index page, a key split is also made. Split information is
posted to the parent as usual. When a root page is split, a
new root page is allocated to hold the split information, as
in the BT-tree. Root-page splits thus increase the height
of the BT-tree.

When we version split an index page, the new index page
has a sh-tree which only has ksh nodes. The algorithm for
BT-tree index-page split (split an index page at version
(B,T) (T is current time)) is in Figure 14. The effect of
this algorithm is to obtain one (in case of version-split) or
two (in case of version-and-key-split) binary search tree(s)
on key only referring only to the alive children.

1. Start at the root of the sh-tree of the full index page.
2. Ifavsh (B’,T") is encountered, do not copy the vsh.
(a) If (B',T") € Ancestor(B,T), go right.
(b) Otherwise, go left.

3. If a ksh is encountered, copy the ksh to the new
index page and process both subtrees recursively.

4. When a new sh-tree is constructed in the new index
page, the key ranges and their corresponding disk
addresses are known. Construct a balanced sh-tree
with these key ranges. If two such trees are needed,
for two new sh-tree index pages, split at the middle
key range and construct two balanced sh-trees, one
for each new sh-tree index page.

Figure 14: Algorithm for splitting a BT-tree index page
at version (B, T) (T is current time.)

Figure 15 illustrates the resulting index page I, evolved
from the index page I shown in Figure 12(d), after page D2
had a version split at version (2,88), and page D3 had a
version-and-key split at version (3,95) and key b. Assume
that index page I is about full at this point. At time
98, branch 3 inserts or updates a record variant in data
page D4 causing it version-and-key split at version (3,98)
and key d. While attempting to post the sh-tree shown
in Figure 15 to index page I, the index page I overflows.
Therefore index page I is version split at version (3,98), as
shown in Figure 16, creating a new index page with four
children. Vsh node (3,98) is posted up to the new root
page created.

| (1, 20) connected component of index
N : - :
Dl/ (3785) page | isenti reversion tree
-~ key range of | is[a, d]
PN " A Aoy ™
D2 D5 (3,95 D4+--J (3,98) "~
/N) 4/ ~ \ post here
D3 b | |
e \
D6 D7 ~_ D8 D9

Figure 15: This is the index page I, shown in Figure 12(d),
after D2 had a version split at version (2,88) and page
D3 had a version-and-key split at (3,95) and key b. Now
data page D4 are having a version-and-key split at version
(3,98) and key d. When attempting to post the vsh node
and the ksh node up to index page I, we find that the page
is full.

new root (3,98) connected component of new root
PR isentire version tree
| I’ key range of | is[a, d]

| (1, 20) I’
/ S~ C
3, 85
Dl(2 88% \)C\ Y Ny
¢ N/

O~
D2 D5 (3,95 D4
D6 D7D8 D9

/
D3

\(L,0) (1, 35) (1, 40) current time =98, connected
*0

! L -~ component
Branch 1 Branch 2 \Branch 3,80 (3 9?): <1 of index pageyl’
) (2, 60) -~ keyrangeof |

1
v

. ., is[ad]

connected component of index page I, key range of | is[a, d]

Figure 16: Version split index page I at version (3,98)
creating new page I'. A new root is created and vsh node
(3,98) is posted.

2.7 Discontinued Record Variants

Record variants are never physically deleted. When the
most recent record variant with a given key is to be dis-
continued, a new record variant is inserted with the key, the
branch id, say B, of the branch in which the record vari-
ant is deleted, the time stamp, say 7', of the delete, and
a delete marker indicating it is marking the end time
of the most recent previous variant within certain branch.
Delete marker record variants are necessary in data pages
which include the key in their key range and include the
version (B, T) in the corresponding connected component
of version tree. This is the only way to tell that a record
variant has been discontinued by branch B at time T, i.e.
that its prior record variant is no longer alive. That is, the
delete marker record variant bounds the time interval of
the preceding record variant existing in a specific branch.

If a page where a delete marker record variant is version-
split, we can choose to treat the delete marker record
variant like any other record variant and copy it to the
new page. This permits us easily to answer queries about
the history of record variants with a given key. However,
if deletes are common, this dilutes the number of actual
record variants that a page can hold. Hence, here we choose
not to copy the record variants with delete markers. Ver-
sion queries will still be correct. Say a record variant with
key value k is deleted at version (B,T). We have a data
page D that every version within the connected component
of version tree corresponded to data page D is a descendent
of version (B,T). The absence of a record variant with key
value k in such a page indicates that the record is not alive
at that time within version B.

2.8 Page Consolidation

When a version query finds only a small number of record
variants satisfying the query in each visited data page,
query performance is poor. Low density of correct vari-
ants for a given version is caused by deletion. Consoli-
dation guarantees good version query performance for the
BT-tree.

A data page is sparse at version (B,T) when the

space occupied by alive variants at version (B,T'), not in-
cluding delete marker variants, falls below a threshold. To
consolidate a page P sparse at (B, T), both P and a sibling
page are version split at (B,T). (A consolidating sibling
must be a page whose corresponding segment of the ver-
sion tree contains (B, T') and which has the same parent as
P and an adjacent key range.') Copies of the alive record
variants at version (B, T') from both the sparse page and its
consolidating sibling are combined in a new page or, should
that result in an over-full page, we then key-split the new
consolidated page. This is similar to consolidation in [5].
Since more copies are made, page consolidation degrades
space utilization in order to improve query performance.
A page consolidation threshold of ¢ “guarantees” that the
space occupied by record variants alive at any given query
version in any given data page will not fall below ¢.2

Non-root index pages can also be consolidated. This
can be done when posting information about a lower level
consolidation at version (B,T) results in the index page
having too few alive children in the same version. The
index page is version split at (B,T) and combined with
a sh-tree copy resulting from a version split of one of its
siblings at (B,T).

3 Performance

We present the results of our performance study on the
BT-tree. The parameters of the system are described first.
Graphs and explanations follow.

3.1 System Parameters

We assume all record variants, including delete marker
record variants, have the same size. A transaction is ei-
ther an insertion of a record variant with a new key, an
update of an existing record variant or a delete of an old
record variant (in one branch and with current time).

The database system starts up with only one branch.
Other branches are created gradually after a number of
transactions occurred in the first branch. Transactions are
randomly assigned to existing branches.

Let the number of branches in the system be denoted
“B”. The maximum number of variants per page is b. In
our case, b is 35. R is the total number of non-redundant
record variants, including delete marker record variants. R
includes different variants of records with the same key. R
is 50,000 here. K (i) is the number of record variants alive
at version (¢,7) (T is current time.) K does not include
records that have been deleted. Let IV be the total number
of data pages in the BT-tree and let N.(7) be the number
of data pages containing record variants alive at version
(4,T) (T is current time) in this BT-tree.

We measure total space cost by multiversion total
utilization(MVTU). Keeping every distinct record vari-
ant (including delete marker record variants) is needed
to support arbitrary version slice queries and historical

n the case that the key range of the parent equals the key
range of the child, a page has no consolidating sibling, making
page consolidation impossible. This does not impact search cor-
rectness as page consolidation is needed only for performance.

2Disregarding the case when page consolidation is impossible.

queries. MVTU measures the fraction of the total data
space occupied by distinct record variants.

R

MVTU:Nxb

Every version was once the current version in a branch
and every version query will access only those data pages,
which were current at that time in that branch. Hence,
version query cost is captured by single version cur-
rent utilization for branch ¢ (SVCU(i)) (the fraction
of a branch’s data pages containing record variants alive at
version (i, T) (T is current time) occupied by these alive
record variants).

K(i

The value of SVCU may vary from one branch to an-
other. Average SVCU (SVCU) is the average SVCU
value across different branches. SV CU measures the aver-
age version slice query efficiency.

©E SVCU(i)

SVCU = B

The horizontal query current utilization (HQCU)
and the vertical query current utilization (VQCU)
are also defined to measure the horizontal query efficiency
and the vertical query efficiency. Because of space limita-
tion, the definitions and the performance results on HQCU
and VQCU are not detailed in this section.

3.2 Performance Results

In order to study the performance of the system under dif-
ferent circumstances, three sets of experiments were carried
out. The first set of experiments measures performance as
the number of branches increase. The second set of ex-
periments measures performance as the ratio of updates
version insertion varies (no deletes are allowed) The third
set of experiments allows deletes and examine the effect of
consolidation. Because of space limitation, we only present
the second set of experiments.

The number of branches are fixed to be 10. All branches
other than the first are randomly created between the
10,000th and 20,000th transaction with a randomly se-
lected ancestor version (other branch creation profiles were
also implemented, but since their results were similar, they
are not presented here.) The key range of the first branch
is [0,800,000). All other branches are allowed to modify
versioned records in key range [0,600,000). We vary the
fraction of updates versus insertions. No deletes are al-
lowed. The tree height for the BT-tree is always 3 in this
experiment.

Figure 17 shows the MVTU curves for early branch cre-
ation profile. We first remark on the general property of the
BT-tree MVTU curves. As the update rate increases, the
MVTU value of the BT-tree increases. In other words, the
total amount of space occupied by 50,000 records decreases.
The reason is as follows. when the update rate increases,
we have more transactions update existing record variants
instead of inserting new record variants with different key
values. Therefore, considering one data page, there will be
a smaller number of distinct key values as the update rate

MVTU

50 60 70 80 %0

0 10 20 30 40
Update rate

Figure 17: No Deletes: MVTU for early branch creation.

Average SVCU

50 60 70 80 %0

0 10 20 30 40
Update rate

Figure 18: No Deletes: SV CU for early branch creation.
increases. Consequently, when this data page is full and
split, there will be fewer record variants copied to the new
page. When the total number of record variants copied is
less, the MVTU value is higher.

The space needed is at worst three times the minimal
amount when the update rate is low, i.e. mostly inser-
tions of record variants with new keys, and at best about
twice the minimal amount when there are mostly updates
of existing record variants.

Figure 18 shows the SV CU curve. As the update rate
increases, the SV CU value decreases. The reason is as fol-
lows. When the update rate increases, distinct key values
in a data page decrease. Therefore record variants alive at
current versions are not compactly clustered, making the
version slice query less efficient. The percent of the found
data pages which is occupied by answers to the version
slice query is at worst near 50% when there is a high up-
date rate. In this case, much of the other space is occupied
by record variants which are not alive in the query version.
At best, it is around 65% when the update rate is 0.

4 Conclusions

There are many database applications that require the sup-
port of branched and temporal data. Since branched and
temporal data increases in size as time proceeds, efficient
indexing is important.

In this paper, we have presented the BT-tree, a new
paginated method for storing and accessing branched and
temporal data. Each data page and index page in BT-tree
corresponds to a connected component of the version tree
and a key range. At each level of the tree, the pages par-
tition the version-data space so that each point (K, B,T)
(key, branch, time stamp) is in exactly one page. Perfor-
mance results show that the BT-tree provides a reasonable
trade off between space and access time.

References

[1] Bruno Becker, Stephan Gschwind, Thomas Ohler,
Bernhard Seeger, and Peter Widmayer. On optimal
multiversion access structures. In Porc. Symp. on
Large Spatial Databases, in Lecture Notes in Com-
puter Science, Vol. 692, pages 123-141, Singapore,
1993.

[2] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and
Robert E. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences, 38, pages
86-124, 1989.

[3] M. C. Easton. Key-sequence data sets on indelible
storage. IBM J. Res. Development, 30(3):230-241,
1986.

[4] Gad M. Landau, Jeanette P. Schmidt, and Vassilis J.
Tsotras. Historical queries along multiple lines of time
evolution. VLDB Journal, 4, pages 703-726, 1995.

[6] Sitaram Lanka and Eric Mays. Fully persistent B+-
trees. In Proceedings of the ACM SIGMOD conference
on Management of Data, Denver, CO, 1991.

[6] David Lomet and Betty Salzberg. The performance
of a multiversion access method. In Proceedings of the
ACM SIGMOD conference on Management of Data,
pages 354-363, 1990.

[7] Peter Muth, Patrick O’neil, Achim Pick, and Ger-
hard Weikum. Design, implementation, and perfor-
mance on the LHAM log-structured history data ac-
cess method. In Proceedings of the 24th VLDB Con-
ference, pages 452-463, New York, 1998.

[8] Betty Salzberg and Vassilis J. Tsotras. A comparison
of access methods for time evolving data. Computing
Surveys, March 1999.

[9] R. Snodgrass and I. Ahn. Temporal databases. IEEE
computer, pages Vol. 19, No. 9, pp 35—-42, 1986.

[10] Vassilis J. Tsotras and Nickolas Kangelaris. The snap-
shot index: An I/O-optimal access method for times-
lice queries. Information Systems 20(3), pages 237—
260, 1995.

