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Abstract

In this paper we introduce a real-time system for action
detection. The system uses a small set of robust features
extracted from 3D skeleton data. Features are effectively
described based on the probability distribution of skeleton
data. The descriptor computes a pyramid of sample covari-
ance matrices and mean vectors to encode the relationship
between the features. For handling the intra-class varia-
tions of actions, such as action temporal scale variations,
the descriptor is computed using different window scales
for each action. Discriminative elements of the descriptor
are mined using feature selection. The system achieves ac-
curate detection results on difficult unsegmented sequences.
Experiments on MSRC-12 and G3D datasets show that the
proposed system outperforms the state-of-the-art in detec-
tion accuracy with very low latency. To the best of our
knowledge, we are the first to propose using multi-scale de-
scription in action detection from 3D skeleton data.

1. Introduction

Robust action detection remains a very challenging com-
puter vision task. Action detection entails the localization
problem which is much more challenging than action recog-
nition on temporally segmented sequences. The ability to
detect human actions in real-time is fundamental to sev-
eral applications such as surveillance, gaming, and sign lan-
guage detection. These applications demand accurate and
robust detection of actions at low latencies.

Action detection requires highly distinctive features to
identify specific actions among many alternatives. The fea-
tures must be invariant to common action variations such
as temporal scale, translation, and illumination conditions.
With the availability of body movement sensing technol-
ogy, such as Microsoft kinect, it is now possible to perform
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Figure 1. Overview of the action detection approach proposed in
this paper.

pose estimation and capture the 3D skeleton data in real-
time [21]. Compared to RGB images, 3D skeleton data is
insensitive to changes in lighting conditions. In addition,
features extracted from 3D joint positions of human skele-
ton are distinctive and can be used effectively for action de-
tection.

In this paper, we present a novel method to detect human
actions in 3D skeleton sequences (Figure 1). Our objective
is not only to recognize the human action, but also to lo-
calize the recognized action in the video sequence. Specif-
ically, we extract features from the 3D skeleton data and
utilize multivariate statistical methods for encoding the re-
lationship between the extracted features. A temporal pyra-
mid of sample covariance matrices and sample mean vec-
tors for the extracted features is used as a discriminative
descriptor for each action.

We use a Support Vector Machine (SVM) classifier [8]
with a linear kernel to perform action detection. Due to the



high dimensionality of our descriptor, we use the Recursive
Feature Elimination algorithm (SVM-RFE) [13] for select-
ing the most discriminative set of features. Our experiments
show that only a small subset of the features are sufficient
to outperform the state-of-the-art. Feature selection ensures
that the action detection task can be performed in real-time.
Previous approaches to action detection lacked invari-
ance to temporal action scales. For handling the variations
in temporal scales, we propose a multi-scale action detec-
tor (Figure 2). Instead of using a sliding window of fixed
scale, our detector takes a sequence of frames at different
scales (i.e. different window sizes) and returns a probabil-
ity confidence score for each action detected. The detector
performs multi-scale detection and handles the necessary
non-maximum suppression for merging nearby detections.
We emphasize our main contributions over prior work:

1. Action Detection: We address the problem of action
detection, i.e. localizing and recognizing the class of
an action in a video stream. This is different from the
problem of action recognition, in which a wizard local-
izes the action and the problem reduces to recognizing
its class. In the detection problem, the location of the
action is marked by its action point, which is the point
in time at which the application should react to the per-
formance of the action.

2. Real-time operation: Typically, sliding window
search is deployed over multiple scales, which man-
dates real-time performance of the detection algo-
rithm. Our algorithm achieves 1140 fps. This is suf-
ficient to apply an exhaustive sliding window search
with up to 40 different scales in real-time.

3. Multi-scale Detection: Our detector accommodates
for variations in action temporal scale by computing
the descriptor for different window scales suitable for
each action.

2. Related Work

In this section, we review recent related work for
skeleton-based action detection and recognition as well as
feature selection. The reader is referred to [1] and [20] for
a more comprehensive analysis.

Skeleton-based Action Detection and Recognition We
distinguish between the research on the two different prob-
lems: action detection and action recognition. Most of the
literature focused on the action recognition problem. In
action recognition, the video sequences are pre-segmented
and the start and end of each action is pre-defined. On the
other hand, the action detection problem requires the much
more difficult task of localizing the detected action in an
unsegmented stream of video frames.

In the context of action recognition, skeleton-based ap-
proaches have become widely used as Shotton et al. [21]
proposed a real-time method to extract 3D positions of body
joints from depth maps. Several descriptors in the literature
proved how the position, motion, and orientation of joints
could be excellent descriptors for human actions. Among
these descriptors is the work of Ofli ef al. [19] who com-
puted a Sequence of Most Informative Joints (SM1J) based
on measures like the mean and variance of joint angles and
the maximum angular velocity of body joints. Another
work is done by Gowayyed et al. [11] where a descriptor
named Histogram of Oriented Displacements (HOD) was
introduced. Each displacement in the trajectory votes with
its length in a histogram of orientation angles. Wang et
al. [24] used relative skeleton position and local patterns to
model the human-object interaction; an actionlet ensemble
was used to model each action. More recently, [26] intro-
duced a novel descriptor that is based on 3D kinematics in
the joints motion. A mere drawback of using such descrip-
tors is the high dimensionality in the descriptor to thousands
of features.

Aside from the recent work in building efficient descrip-
tors, there are efforts in using these descriptors in a learn-
ing framework to improve the accuracy. An example is the
work by [17] where a sparse coding approach was applied to
learn dictionaries for the action classes. Also the Ensemble
work by Wang et al. [24] used ensemble learning.

Although the approaches mentioned above proved to be
effective in regard to the action recognition problem, they
haven’t been extended to tackle the detection problem yet.

On the other hand, recent research focused on the action
detection problem. Some approaches merely focused on de-
tecting the start and the end points for the action without
indicating the exact point in time where the action was per-
formed. More advanced approaches perform accurate and
real-time detection for actions. This is particularly useful in
applications such as interactive gaming and sign language
detection.

As an example for detecting the start and end points
for an action, [26] proposed a non-parametric Moving Pose
(MP) framework for action recognition. A moving pose de-
scriptor that considers both pose information as well as dif-
ferential quantities of the human body joints is computed.
The authors extended the approach to solve the action de-
tection problem on unsegmented video sequences. Another
example is the work presented by [27], where they proposed
a feature extraction method that uses a dynamic matching
approach to construct a feature vector for each frame. The
constructed feature vectors are used for detecting the start
and end points for actions. However, both [26, 27] require
providing a label for every frame during training and test-
ing.

Fothergill e al. [10] was the first to introduce the no-



tion of an action point: a single time instance at which the
presence of the action is clear. Action points allow a very
accurate and fine-grained detection for the actions. In [10],
a fixed sliding window approach of 35 frames was used
for performing the action detection task. However, this ap-
proach fails to accommodate for actions of different tempo-
ral scales. Recently the action point notation was used in
the work of [2] where they provided an annotation to the
G3D dataset [3].

Thus, the approach we propose for action detection uses
action points and provides a solution to the multi-scale
problem. Additionally we perform feature selection to re-
duce the size for extracted features.

Feature Selection The existing algorithms can be
grouped into three categories: filter methods, wrapper
methods and embedded methods. Filter methods [12] select
important features by measuring the correlation between the
features and the classifier output. Wrapper methods [13, 6]
rely on a learning algorithm to decide a subset of important
features. Embedded methods [4, 5] embed the feature selec-
tion process into the classifier learning process. The SVM-
RFE [13] algorithm is a wrapper method for performing
feature selection. Due to its successful use in selecting in-
formative genes for cancer classification, SVM-RFE gained
great popularity [13, 22, 9]. Compared with other feature
selection methods, SVM-RFE is an efficient and scalable
wrapper method for performing feature selection.

3. Action Description

In this section, we explain the descriptor used to repre-
sent a sequence of frames containing an action. In the fol-
lowing section, we will explain how action detection is per-
formed using a classifier trained on the descriptor outlined
here. The steps of descriptor construction are illustrated in
Figure 1.

3.1. Feature Extraction from 3D Skeleton Data

The body skeleton returned from a depth sensor consists
of 3D coordinates of body joints (20 joints returned from
the Kinect sensor). These coordinates are represented in
the camera coordinate system. Therefore, they vary with
the rotation and translation of the body with respect to the
camera. To make our action descriptor relatively invariant
to body rotation and translation, we use joint angles and
angular velocities, which are derived from 3D joint coordi-
nates. Particularly, we use the same 35 angles used in [18].
Twenty three of these angles are made by 3 different joints
of the skeleton. The 12 remaining angles are made by 2
joints from the skeleton, and the camera itself, where the
camera here can be seen as a virtual joint placed at the ori-
gin of the camera coordinate system.

To summarize, the 3D skeleton returned for the it frame
is represented by a feature vector x; = [x;1, Ti2, ..., Ti 2k ] T

)

where K is the number of joint angles, which is 35 in our
case. The first K elements of x; are joint angles, and the
last K elements are the corresponding angular velocities.

3.2. Descriptor Construction

Given N feature vectors, xi1,Xo,...,Xy, representing a
sequence of N frames, a descriptor for the action (if any)
performed in the sequence has to be constructed. The de-
scriptor should be representative for the action, and should
have a fixed length, regardless of the number of frames, V.

The proposed descriptor is built from the parameters of
the joint probability distribution of the feature vectors. Par-
ticularly, the feature vectors of the frame sequence are as-
sumed to be independently drawn samples from some un-
known probability distribution p(x). The sample mean vec-
tor, f1, and covariance matrix, 3, of p are computed from
this random sample. In addition to the representativeness of
these parameters to the performed action, the size of both
parameters depends only on the number of features, not the
number of frames. Hence, these parameters make a viable
choice for action description.

The joint probability distribution of skeleton features in a
sequence does not capture the temporal information, which
is sometimes crucial in action recognition. To solve this
issue, we adopt a temporal pyramid construction, which
is commonly used in the literature. Particularly, a se-
quence of N frames is divided into possibly-overlapping
sub-sequences of lengths N/2, N/4, .... Generally, the
[th level of the pyramid contains sub-sequences of length
N/2!=1 frames, and consecutive sub-sequences in the level
are separated by a constant step. In our experiments, we
compare two modes of the descriptor construction: the
no-overlapping mode, and overlapping mode. For the no-
overlapping mode, the I*" level of the pyramid contains 2!
non-overlapping sub-sequences. In the overlapping mode,
the It" level contains 211 — 1 sub-sequences, in which case,
the step separating two consecutive sub-sequences equals
half of the sub-sequence’s length.

After the mean vectors and covariance matrices are esti-
mated for the entire sequence and all sub-sequences in the
temporal pyramid, a single vector is assembled by stacking
elements from all vectors and matrices into one long feature
vector. Due to the symmetry of covariance matrices, only
elements from the upper or the lower triangle are included.

The descriptor, as presented so far, contains elements
that differ significantly in their typical ranges of values.
For example, the range of an angle’s mean may differ sig-
nificantly from the corresponding angular velocity’s mean.
Also, the ranges of covariance and mean elements may be
significantly different. Before training a classifier on the ex-
tracted descriptors, they have to be properly normalized so
that the classifier can make effective use of all the elements.
In our case, the descriptor is normalized such that each el-



Estimate Action Smooth Estimated
Probabilities USing puumemmmg  Probabilities Using
Linear SVM Classifier Gaussian Filter

Probability Before Smoothing Probability After Smoothing
1 1

Detect Peaks and
Perform Non-Max.
Suppression

Interpolate Action
Location as the average
of Detected Peaks

Non-Max. Suppression

Interpolation of Action Location
1

s Sl = 24 rames m— Scale = 24 frames| mm— Scale = 24 frames| mm— Scale = 24 frames|
= Scale =32 frames mm— Scale = 32 frames| mm— Scale = 32 frames| m— Scale = 32 frames
s Scale = 40 frames m— Scale = 40 frames] m— Scale = 40 frames] m— Scale = 40 frames}

>‘0.8 >.0.8! memm Threshold >‘O.BL mwmm Threshold S 08f mwmm Threshold

x = = b=

3 3 F i

NO'G T 06 ] 06 o 06

o] o] o] ]

: : 0 :

ﬂ.0'4 o 0.4 o 04 o 04

02 0.2 02 02
0 y v - 0 - L v v 0 - y v - 0 - y v -
5 10 _15 20 25 3 5 0 _15 20 25 3 5 10 _15 20 25 30 5 10 _15 20 25 30
Time Time Time Time

Figure 2. Overview of the multi-scale action detection approach proposed in this paper. The three curves in the figure are prediction

probabilities for a single action class at three different scales.

ement of the final descriptor has a zero sample mean and
unit sample standard deviation over the training samples.
The mapping used to achieve this effect is then applied to
the testing samples before evaluation.

3.3. Feature Selection with SVM-RFE

Feature selection is performed using SVM-RFE [13].
Selecting a subset of feature leads to a lower computation
cost and enables the system to perform exhaustive sliding
window search without compromising the real-time opera-
tion of the system.

4. Multi-scale Action Detection

Most of the previous approaches to action detection
lacked handling of different action scales. In [10], a fixed
sliding window of 35 frames is used for action detection.
Also, in [26], a fixed sliding window size (W) was learned
using cross-validation and used for action detection on un-
segmented sequences. Even though good results are re-
ported using this fixed window approach, better perfor-
mance could be achieved by using an action detector that
accommodates for different action scales. Different action
classes typically have different scales. Even for a single
action class, different subjects could perform it at different
scales due to inter-subject differences in style and speed.

To address the aforementioned problem and for handling
the variations in action scales, we propose a multi-scale ac-
tion detector (Figure 2). Instead of using a sliding window
of a fixed scale, our detector processes a sequence of frames
at different scales (i.e. different window sizes), which de-
pend on the action class.

Hussein et al. [14] provided ground truth annotations for
the start and end frames of each action in the MSRC-12
dataset. Using these annotations, we analyzed the distribu-
tion of action scales. The scale is measured as the number
of frames from the start of the action until the action point,
which is the frame at which the action should be detected
(details in Section 5.3). From this analysis, we select three
scales for each action class: small (5 percentile), medium
(50" percentile), and large (90*" percentile). When creat-
ing descriptors for the training data, the scale of each train-
ing sample is approximated to the closest of the three se-
lected scales for the sample’s action class while using the
action point as the ending frame of the sample.

At testing time, at each frame ¢ of the test sequence, for
each action class and scale, a descriptor is constructed for
the range of frames from ¢ —o; + 1 to t, where o; is the ith
selected scale for action class c. Descriptors are passed to
the trained multi-class classifier, which returns a probability
confidence score for each action class at each scale.

Because the returned probability scores are noisy, the
raw probability scores are smoothed by being convolved
with a Gaussian filter. To maintain the on-line operation
of our approach, probability scores beyond the allowed ob-
servation latency (A) are not included in the convolution.
Peaks of the smoothed probability scores that exceed a
given threshold are detected. Then, non-maximum suppres-
sion is performed within the detection tolerance window
(A). This is done separately for each action class and each
scale. Finally, if multiple detections from multiple scales of
the same action class are found within the detection toler-
ance window (A), their locations are averaged to find the
final detected action location.



Fothergill et al. [10] | Single Scale (20L) 1 Level 2 Level - Overlap | 3 Levels - No Overlap
Video - Text 0.679 £ 0.035 0.671 +£0.129 0.677 £0.096 | 0.704 £ 0.146 0.713 £ 0.105
Image - Text 0.563 £ 0.045 0.652 £0.119 0.594 +£0.106 | 0.670 £ 0.105 0.656 + 0.122
Text 0.479 £ 0.104 0.508 £ 0.121 0.513 £0.075 | 0.516 £+ 0.092 0.521 £ 0.072
Video 0.627 £ 0.052 0.686 £ 0.087 0.592 £0.075 | 0.637 = 0.055 0.635 £ 0.075
Image 0.549 £ 0.102 0.583 £+ 0.086 0.5424+0.092 | 0.579 £ 0.098 0.596 £+ 0.103
Overall 0.579 0.620 0.584 0.621 0.624

Table 1. Results for MSRC-12 dataset. We report F-Score at A = 333ms. We show the average and standard deviations over ten leave-
persons-out runs. SVM-RFE algorithm is used to select 200 features only for the 1 level and 2 levels. For the 3 levels we use the 200
selected from the 2 levels with overlap settings and replicate them to have the descriptor size of 3 levels without overlap = 200 x 7.

5. Experimental Results
5.1. Evaluation Datasets

We evaluate our approach on two challenging datasets:
MSRC-12 [10], and G3D [3].

The Microsoft Research Cambridge-12 dataset provides
sequences of skeleton data, represented as 20 joint loca-
tions. The body poses were captured using the Kinect de-
vice at a sampling rate of 30 fps. The dataset contains 30
subjects performing 12 different gestures. The gestures are
categorized into two categories: iconic and metaphoric ges-
tures. The dataset was collected using five different types of
instruction modalities: images, text, video, images + text,
and video + text.

The G3D dataset contains a range of gaming actions
captured with Microsoft Kinect. This dataset contains 10
subjects performing 20 gaming actions. These actions are
grouped into seven categories: fighting, golf, tennis, bowl-
ing, FPS, driving, and miscellaneous actions.

5.2. Experimental Setup

The experiments were performed on both the MSRC-12
and the G3D datasets. We followed the same experiment
setup as in [10], we used a “leave-persons out” protocol.
For the MSRC-12 dataset, for each instruction modality, we
remove a set of people from the full dataset to obtain the
minimum test set that contains performances of all gestures.
The remaining larger set is used for training. This is re-
peated ten times and the average test performance over the
ten runs represents a good estimator of the generalization
performance of the trained system. For the G3D dataset,
all actors perform all the actions. We remove one subject
from the full dataset to construct the test set and the larger
remaining set of videos is used for training. This process is
repeated 10 times with different subjects to obtain the gen-
eral performance. We used a linear SVM classifier trained
using the LIBSVM software [7].

5.3. Evaluation Metrics

Our proposed descriptor was evaluated using perfor-
mance metrics designed for the task of real-time action de-

tection. We followed the notion of “action points” as de-
fined by [18]: “a single time instance at which the presence
of the action is clear and that can be uniquely identified for
all instances of the action”. Action points enable latency-
aware training and evaluation of real-time human action de-
tection systems. Action point annotations are available for
both the MSRC-12 as well as the G3D dataset.

The performance of the system is measured in terms of
precision, recall, and latency. Precision indicates how often
the gesture is actually present when the system claims it is.
Recall measures how many true gestures are recognized by
the system. The system latency shows how large the delay
between the true action point and the system prediction is.

We follow the experimental setup used in [10] and [2]:
for a specified latency tolerance (Ams) we measure the
precision and recall for each action a € A. Where A is the
set that contains all the different actions in the dataset. We
combine both measures to calculate a single F-score [18]

rece (N).recg (AN
defined as: F-score(a,A\) = QW. Because

the system detects multiple actions, we used the mean
F-score over all action: F-score(4,A) = ﬁ > acaF-
score(a, N)

5.4. Real-time Action Detection Experiment

Human action recognition for pre-segmented video se-
quences is very useful for understanding the baseline per-
formance for the recognition system. However, our main
goal is to perform online action detection in real-time with
low latency. Instead of determining the start and the end for
each action sequence, we focus on the problem of detecting
the action points within the video sequence.

An action point is detected by computing the probabil-
ity for each class on each frame in the video sequence as
presented in Figure 1 and comparing each probability to a
threshold T. We used probability estimates from linear SVM
classifier. To minimize computational latency, we used the
SVM-RFE feature selection algorithm to find a subset of
features that achieve the best possible performance. Multi-
scale action detection is performed as described in section 4.



Action Type | Our Approach | Bloom et al. [2]
Fighting 0.937 0.919

Table 2. Results for G3D [3] dataset, We report F-Score at A =
333ms. We show the average over ten leave-one-out runs.

5.4.1 Action Detection on MSRC-12 Dataset

The MSRC-12 Kinect Gesture dataset is designed to make
the consideration of latency in human action detection pos-
sible. As described earlier, a specific amount of toler-
ated latency (Ams) is selected, and the experiment mea-
sures whether the system can correctly recognize the ges-
ture within a window of Ams before and after the ges-
ture’s action point. Table 1 shows the results for our pro-
posed descriptor using different configurations. The results
show that our descriptor outperforms the state-of-the-art-
results [10] for all the five modalities used for collecting the
dataset. The overall relative improvements reached up to
7.7% when compared to [10]. For “image and text” instruc-
tion modality relative improvements reached up to 16.5%
and 8.8% for “text” modality.

To illustrate the importance of multi-scale action detec-
tion, we’ve also performed the detection experiment using a
single scale of 35 frames (the same scale used by Fothergill
et al. [10]). We used a 2 level descriptor with overlapping
configuration. As show in table 1, using multi-scale de-
tection outperforms the single scale approach. However,
the improvement is not significant in the MSRC-12 dataset.
This is justified since the scale statistics on this dataset re-
vealed that most of the sequences had an average length of
35 frames.

5.4.2 Action Detection on G3D Dataset

Table 2 shows the results for the action detection experiment
on the G3D dataset. Results show that we are able to out-
perform the state-of-the-art for action detection on the G3D
dataset [3]. Results in [2] were reported for the “Fighting”
action sequences only, however, we list our results for all
seven action sequences in the supplementary materials. Re-
sults are reported using 200 features selected using SVM-
RFE of 10220 features by using 2 Levels with overlap.

5.4.3 Action Recognition on Action3D Dataset

The MSR-Action3D dataset [15] consists of 557 segmented
video sequences. 20 different action classes are performed
by 10 subjects. The dataset focuses on action recognition
on pre-segmented video sequences and is not suitable for
the problem of real-time action detection on unsegmented
videos. However, we’re reporting the recognition results
on the MSR-Action3D dataset to illustrate the discrimina-
tive power of our proposed descriptor used in the detection

Method Accuracy

Eigenjoints [25] 82.3%

Random Occupy Pattern [23] 86.2%

Actionlets Ensemble [24] 88.2%

Covariance Descriptor [14] 90.5%
Group Sparsity and Geometry

Constrained Dictionary Learning [16] 96.7%

Our Approach 91.1%

Table 3. Comparative results on the MSR-Action3D dataset.

problem. We used a 3 level descriptor with overlapping con-
figuration.

We compare our approach with the state-of-the-art-
methods on the cross subject test setting [15]. Results are
illustrated in table 3. As the results show, the only approach
that outperforms ours is the “Group Sparsity and Geometry
Constrain Dictionary Learning” [16]. However, we have to
point out that this approach hasn’t been extended for real-
time action detection yet.

5.5. Role of feature selection in the proposed ap-
proach

We put emphasis on the role of the feature selection on
the obtained results. We base our analysis on the Video+text
modality on MSRC-12 dataset using our 2 levels with over-
lap configuration and only 200 features are selected out of
10220 features in our descriptor (Table 5 shows the Linear
SVM action detection performance for different number of
best selected features using SVM-RFE algorithm). The de-
scriptor has 4 concatenated components (1 from level 1 and
3 from level2) each of them has 2555 dimensions'. The se-
lected features can be analyzed based on different factors.
First, every feature is either a mean variable or an entry in
the covariance matrix. Second, the features are either com-
ing from angles or angular velocities or both. Third, using
2 levels and overlapping the features selected might come
from different levels and/or different intervals. Analyzing
these factors gives justifications and interpretations of our
proposed approach.

Table 4 shows the different weights for the aforemen-
tioned factors. We can see the mean variables are consis-
tently selected which is an important justification of using
the mean variables in our descriptor. There are 102 features
selected which is roughly half of the 200 selected features.
Whereas only 98 covariance variables are selected from co-
variance variables in our descriptor. We can see that 149
of the 200 selected variables are from the second level in
the pyramid which assures the importance of adding more
levels to the temporal pyramid defined in our descriptor.

'Out of every 2555 dimensions there are 70 dimensions for the mean
vector in that interval and 2485 dimensions for the covariance between the
70 different angles/angular velocities variables



Thirdly an interesting point is that only 46 variables are co-
variances between angles and angular velocities. This actu-
ally means that the more important entries in the covariance
matrices in our descriptor are the on-diagonal blocks.

Figure 3 shows that some variables of the 70 an-
gles/angular velocity that we used to design our descrip-
tors happened to occur more frequently in the selected fea-
tures. Also there are few variables that are never selected.
The most selected angles are (WristLeft, ShoulderCenter,
WristRight), (ShoulderRight, ElbowRight, WristRight),
(ShoulderLeft, ElbowLeft, WristLeft). They occurred 23,
21, and 21 times respectively. The most selected an-
gular velocity (ElbowRight, WristRight,HandRight), (Shoul-
derRight, ElbowRight, WristRight), (ElbowLeft, WristLeft
,HandLeft). They occurred 16, 15, and 13 times respec-
tively. Actually this shows the importance of the feature
selection step in our approach. The more important angles/
angular velocities are repeatedly selected and some other
variables are not. This gives insight why the results of the
feature selection in table 5 is better than that of our descrip-
tor without feature selection.?

Table 1 shows that it is preferable to include more lev-
els in the temporal pyramid. However, computational re-
sources are limiting the real-time performance in that case.
The original descriptor size for 3 levels without overlap-
ping intervals will grow up to be 17885 dimensions which
will hinder the real time processing. Such descriptor size
of 17885 prohibited us from training our classifiers because
we had memory limitations with such huge descriptor size.
To handle this issue, we used the features selected on the
two levels so that we can generalize the selection on the de-
scriptor of 3 levels. The 200 selected features are repeatedly
chosen on all sub-intervals of the descriptor which reduced
the total size to 1400 features when we use 3 levels without
overlapping. As expected the three levels produced the best
results and this can be seen in Table 1.

5.6. Real-time Operation

There are two main factors affecting the running time for
our online human action detection framework: computing
the proposed descriptor and then using the SVM classifier
for predicting the performed action in the video sequence.
Training the SVM classifier and selecting the most infor-
mative features steps are done offline, thus, they don’t con-
tribute in the computation latency.

Table 6 shows the average processing time of the pro-
posed detection system for different number of selected fea-
tures using SVM-RFE algorithm. This is reported on the
video+text modality with 2 Levels and overlapping. Ad-
vantages of using the feature selection are clear. The speed
up is about 5 times when compared to the original descrip-

2Sample file for the 200 selected features can be found in the supple-
mental material with the angles/angular velocity description
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Figure 3. Top: The most selected angles and angular velocities.
Bottom: Frequency of occurrence of different angles/angular ve-
locities in the 200 selected features. Zoom is needed to best view
the figure.

Feature Source Selected Features | Percentage
Mean 102 51%
Covariance 98 49%
Angles only 83 41.5%
Angular Velocity only 71 35.5%
Angles and Angular

Velocity 46 23%
Level 1 51 25.5%
Level 2, Subinterval 1 54 27%
Level2, Subinterval 2 44 22%
Level 2, Subinterval 3 51 25.5%

Table 4. The 200 Selected features are distributed according to
their source from our descriptor.

tor without feature selection. Moreover the descriptor size
which is originally 10220 dimensions is effectively reduced.
The machine used to generate the table has memory of 16
GB 1600 MHz DDR3 and 2.8 GHz Intel quad-core Core i7
processor.



Features | 100 | 200 | 300 | AllFeatures
Text 0.535 | 0.547 | 0.525 0.521
Image 0.601 | 0.582 | 0.576 0.540
Video 0.648 | 0.652 | 0.664 0.622
Image + Text | 0.623 | 0.648 | 0.630 0.622
Video + Text | 0.694 | 0.686 | 0.702 0.705

Table 5. Linear SVM action detection performance for different
number of best selected features using SVM-RFE algorithm

Selected Features average processing time (ms)
100 2.63
200 2.704
300 2.779
All Features (10220) 11.908

Table 6. Average processing time per frame in milliseconds of the
proposed detection system for different number of selected fea-
tures using SVM-RFE algorithm. Video+Text Modality , 2 Levels
and Overlap

6. Conclusion

The main contribution of our work is a new approach
for real-time multi-scale action detection using a descriptor
derived from angles and angular velocities of the 3D joint
data extracted from depth sensors. A multi-scale action de-
tection approach is introduced to accommodate for varia-
tions in action scales. To achieve real-time performance we
used feature selection to reduce the dimensionality of our
proposed descriptor. Experiments showed that the accuracy
of our descriptor outperformed state-of-the-art methods for
real-time action detection [10]. Furthermore an effective
feature selection algorithm was applied to reduce the feature
size which had a great impact on the computational latency
while maintaining or even improving the reported results.
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