
Query Suggestion by Constructing Term-Transition Graphs

Yang Song, Dengyong Zhou, Li-wei He

Microsoft Research,
One Microsoft Way,

Redmond, WA 98052, USA
{yangsong, denzho, lhe}@microsoft.com

ABSTRACT
Query suggestion is an interactive approach for search en-
gines to better understand users information need. In this
paper, we propose a novel query suggestion framework which
leverages user re-query feedbacks from search engine logs.
Specifically, we mined user query reformulation activities
where the user only modifies part of the query by (1) adding
terms after the query, (2) deleting terms within the query,
or (3) modifying terms to new terms. We build a term-
transition graph based on the mined data. Two models
are proposed which address topic-level and term-level query
suggestions, respectively. In the first topic-based unsuper-
vised Pagerank model, we perform random walk on each
of the topic-based term-transition graph and calculate the
Pagerank for each term within a topic. Given a new query,
we suggest relevant queries based on its topic distribution
and term-transition probability within each topic. Our sec-
ond model resembles the supervised learning-to-rank (L-
TR) framework, in which term modifications are treated as
documents so that each query reformulation is treated as a
training instance. A rich set of features are constructed for
each (query, document) pair from Pagerank, Wikipedia, N-
gram, ODP and so on. This supervised model is capable of
suggesting new queries on a term level which addresses the
limitation of previous methods. Experiments are conducted
on a large data set from a commercial search engine. By
comparing the with state-of-the-art query suggestion meth-
ods [4, 2], our proposals exhibit significant performance in-
crease for all categories of queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval - Search process

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’12, February 8–12, 2012, Seattle, Washingtion, USA.
Copyright 2012 ACM 978-1-4503-0747-5/12/02 ...$10.00.

Keywords
query suggestion, page rank, learning to rank

1. INTRODUCTION
While more and more sophisticated algorithms have been

applied to web search engines to increase user search ex-
periences, it is still admittedly difficult for search engines
to fully understand user’s search intent in many scenarios.
Consequently, many researches have been focused on inter-
action with users to find out what the users really want [12,
13]. Among all, query suggestion [5, 23] has established as
one of the most promising interactive techniques as we have
witnessed its wide usage in most commercial web search en-
gines. Generally speaking, query suggestion techniques aim
at recommending a list of relevant queries to user’s input,
by mining correlated queries from previous knowledge, e.g.,
search engine logs. Indeed, the quality of query suggestion
can be affected by many factors. For example, depending on
the underlying algorithms, query suggestion techniques can
be categorized into graph-based models (e.g., random walk
on click graphs)[16, 7] and probabilistic models (e.g., lan-
guage models)[24, 11]. Moreover, depending on the length
of suggested queries, we can further divide existing query
suggestion techniques into query expansion [17, 6], query
reduction [12] and query reformulation [24, 8].

Among all existing techniques, random walk-based mod-
els [16, 7, 23] have exhibited their superiority over others
on both efficiency and effectiveness. Due to its simplicity
and mathematically-proven fast convergence, random walk-
based query suggestion models are capable of scaling up
to large data sets for commercial search engines. Essen-
tially, most models in this category construct a bipartite
graph of queries and clicked URLs by assuming the good-
ness of clicked URLs. Queries are treated relevant to each
other if they share common clicks. While both theoretical-
ly sound and empirically usable, this approach appears to
have a drawback that needs attention. To be specific, ran-
dom walk models only focus on query and clicks but ignore
the rich information which is embedded in the entire us-
er session. For example, considering four user activities in a
session: {q1, URL1, q2, URL2}. The user clicked URL1 after
issuing q1. Not satisfied by the result, the user immediately
reformulates the query to q2 and clicked URL2. Apparently,
URL1 is not as a good click as URL2, which is unfortunately
treated equally in random walk models.

In this paper, we try to address two fundamental ques-
tions in query suggestion research. (1) How to extract high-
quality user clicks in the user session and use the clicks prop-

erly? Since the quality of the clicks directly affects the rec-
ommendation performance of models which leverage clicks
as signals, it is critical to accurately infer user intent by ex-
amining the entire user search session. (2) Given a specific
query, which query suggestion method should be used? e.g.,
can query reduction method be applied to short queries? Is
query expansion always better than query reformulation? In
our opinion, answers to these questions are non-trivial. And
in practice, it usually depends on each individual queries as
well as the user intent at that moment.

To briefly answer these questions, we first derive high-
quality user clicks by extracting specific user activity pat-
terns which conveys implicit user preferences. Secondly,
instead of using the clicks directly, we construct a term-
transition graph model from the data. We use random walk
as a guideline to find user preferences within each topic and
choose the best suggestion method according to our model.

To be concrete, we propose a framework that combines the
strength of graph-based models and probabilistic models.
Our model naturally unifies the advantages of query expan-
sion, reduction and reformulation techniques while success-
fully avoids their relative shortcomings. More specifically,
we make the following contributions in this paper:

• From the search engine session logs, we mine a large
amount of user preference data. We consider the fol-
lowing tuple {q1, q2, u} where a user abandoned a query
q1 and immediately reformulated it into q2 then made
a click on URL u, during the same session. These ac-
tivities strongly indicate a user’s preference on query
q2 over q1, which often differs by only a few terms.

• We construct a term-preference graph from the above
data where each node is a term in the query and each
directed edge a preference. We then train a topic-
biased Pagerank model for each of the query topics by
extracting topics from clicked URLs. Given a query,
this model guides the decision of (1) expanding rele-
vant terms to the original query, (2) removing terms
from the original query, or (3) replacing existing terms
with relevant terms. This unsupervised model learns
the user preference from the log which does not require
any specific user labels.

• We further propose a supervised learning-to-rank mod-
el to interpret user preference at term level. This
model leverages a set of rich features, which includes
N-gram features, external knowledge (e.g., Wikipedi-
a, ODP) as well as the topic-biased Pagerank features
learnt in the previous model. No human labeling was
conducted. Instead, we automatically infer the train-
ing labels from the logs by leveraging a sophisticated
probabilistic preference model.

To summarize, our system provides a principled formu-
lation that is capable of addressing both topic and term-
level suggestions. Both of our methods exhibit much bet-
ter recommendation performance than the state-of-the-art
methods [16, 7] on a real-world large data set mined from a
commercial search engine.

2. RELATED WORK
The complexity of dealing with query suggestion related

problems has led to a myriad of proposals of methods in

literature. In general, this problem has been addressed by
different techniques including query reduction, query expan-
sion, query reformulation and query suggestion using search
engine logs [22, 12, 17, 4, 19].

In [12], the authors proposed to reduce long queries into
shorter ones by removing redundant terms and extract key
phrases. Three methods for selecting sub-queries were in-
troduced: mutual information, maximum spanning tree and
extracting named entities. Results indicated that with user
interaction, the precision of retrieval improved. However,
this method is only useful for long queries. When applying
to short queries, it only exhibits marginal improvement.

Automatic query expansion was first proposed in [17],
where the authors leveraged term correlations in documents
as a metric to recommend similar terms. Similarly, authors
in [6] measured the difference between the distribution of
terms in relevant documents and in collections to score sim-
ilar terms. In general, query expansion techniques were able
to introduce useful terms while also bring in unhelpful terms.

Differing from the above two approaches, query reformula-
tion replaces the existing terms in the query by more relevant
ones. Essentially, it tries to map the query language model
into document language model with term replacement. In
[24], the authors used context distribution to extract term
associations from the logs. Given a new query, their method
replaced the terms with new terms of higher matching prob-
ability in the context. Similarly, using anchor text as the
context for reformulation was recently studied [8].

The three approaches mentioned above primarily focused
on improving retrieval relevance. On the other hand, query
suggestion aims at interaction with users to improve search
experience by showing relevant queries on the search engine
result pages (SERP) and allowing users to decide whether
to click or not. Among all related techniques for query sug-
gestion, log-based random walk methods have shown good
results [7, 16, 9]. Most random walk models are performed
on query-document bipartite graphs. For example, in [7], the
authors introduced a backward random walk model which
alleviates the bias towards documents with more clicks. The
model normalizes the correlation matrix on the document
clicks rather than query counts, which is why the transition
from a document to query is not biased to popular queries.
In [16], a parameter-free random walk model is proposed
which addressed the efficiency of random walk. The mod-
el constructed a subset of query-url nodes in the bipartite
graph and performed depth-first search for relevant queries.
By estimating the transition probabilities between queries
using similarity-based method, this model was capable of
suggesting semantically related queries. In [4], the authors
proposed a query-flow graph that calculates the probabili-
ty of going from one query to another, by leveraging a set
of features. This approach can be treated a special case
of random walk on the query-URL graph where the URLs
are removed but used to calculate the transition probabili-
ty. Although looks similar to our method, it only considered
query-level transition while our model deals with much finer
granularity by addressing term level transitions.

Recently, the authors in [23] introduced an optimal way of
query suggestion using random walk. The authors addressed
two important factors in the paper. First, how to tune the
jumping parameter in the random walk model and second,
how to optimally combine the clicked and skipped URLs in
the log for relevance estimation. The authors proposed to

perform two random walks on click graph and skip graph
respectively, and optimally combine the results by minimiz-
ing the categorization error on the URL correlations, which
was estimated using ODP data. Experimental results indi-
cated a significant improvement over previous random walk
models.

3. GET USER PREFERENCE FROM LOG
In this section we describe how we acquire a large col-

lection of user preference data from the logs. The primary
source of data used in this paper is from logs of a widely-
distributed browser toolbar, where a large sample of users
opted-in for providing their online browsing activities. The
logs are anonymized so that no user personal information is
recorded. A typical log entry contains the following fields:
a unique user identification number generated by a one-way
hash function, the URL that the user visited, the timestamp
of the visit, and the total dwell time on that URL. Since we
are interested in the user queries when visiting search en-
gines, we also post-processed the data to generate the user
queries and the name of the search engine. The logs are
organized based on sessions, where each session contains a
series of URL visits from a particular user, ordered by the
timestamp. If the user becomes inactive for more than 30
minutes, that session ends.

We are particularly interested in spontaneous query re-
finement behaviors by the users, which can be summarized
in a sequence of three activities:

1. A user enters a query q1 to a search engine.

2. After examining the search result page, the user did
not get the right information, so he/she refines the
query to be q2.

3. This time the user is satisfied with the results and
clicked one of the URLs, therefore ends the search ses-
sion.

For example, the user first issued “nyc traffic cameras” and
refined the query by adding one term at the end “nyc traf-
fic cameras live”, followed by a click on the satisfied result.
This sequence of activities conveys two important pieces of
information: first, the user prefers the query q2 to q1 since
he performed no click after issuing q1 but then becomes pos-
itive about the results after q2. Second, the user chooses to
refine the query rather than clicking the suggested queries
by the search engine, which may indicate poor suggestion
quality for that particular query.

Although the users may refine the queries in whatever way
they want, our statistics have shown that more than 76% of
times users only modify one of the terms in the queries.
It has also shown the users are much more likely to revise
the last term in the query, which covers more than 80%
of all cases1. Consequently, we only focus on mining user
preferences that fall into these two categories in this paper,
although the proposed methods can be easily generalized to
handle more complex scenarios.

Formally, given a word vocabulary W = {ǫ, w1, ...wn}
where ǫ is used to denote the empty string, we define three
cases of user query refinements as follows:

1These statistics are drawn from one month search logs from
a commercial search engine with over 100 million queries

Type User Activity Pattern
Modification 1. q:{single ladies song} song→lyrics

2. q:{single ladies lyrics}
3. URL click

Expansion 1. q:{sports illustrated} ǫ→2010
2. q:{sports illustrated 2010}
3. URL click

Deletion 1. q:{ebay auction} auction → ǫ
2. q:{ebay}
3. URL click

Table 1: Three types of user refinement examples.

• Modification: user modifies the last term of the query:
{wi1, ...wim} → {wi1, ...w

′
im}, e.g., “single ladies song”

→ “single ladies lyrics”.

• Expansion: user adds one term to the end of the query:
{wi1, ...wim} → {wi1, ...wim, wi(m+1)}, e.g., “sports il-
lustrated”→ “sports illustrated 2010”.

• Deletion: user removes the last term of the query:
{wi1, ...wi(m−1), wim} → {wi1, ...wi(m−1)}, e.g., “ebay
auction”→ “ebay”.

Table 1 summarizes the three types of refinements used in
this paper. Overall, we extracted the aforementioned infor-
mation from 3-month Toolbar logs between May 2010 and
August 2010. In total, over 4 million user refinement activ-
ities were discovered in the log. By aggregating the refine-
ments, a total of 350,000 pairs of refinements were found.
Table 2 summarizes the top user refinements in each case.

Next, we show how these implicit user feedbacks can be
leveraged for query suggestion in our models.

4. MODEL 1: AN UNSUPERVISED APPROACH
Given the pair-wise transition between each pair of terms,

we represent the transitions between all terms into a direct-
ed graph. Since every transition from ti to tj indicates a
preference of tj over ti, we assume this is an analogy of web-
page inlinks and outlinks, where in general the more inlinks
a webpage has, the higher its authority score is. The most
famous algorithm for calculating such kind of score is the
Pagerank algorithm [18], which is widely used in commer-
cial search engines for webpage static rank estimation. In

Modification Expansion Deletion
login→home ǫ→free the→ǫ
2009→2010 ǫ→2010 search→ǫ

facebook→myspace ǫ→online mail→ǫ
lyrics→video ǫ→download 2→ǫ
google→yahoo ǫ→lyrics facebook→ǫ
music→songs ǫ→video scam→ǫ
earth→maps ǫ→login best→ǫ
check→access ǫ→pictures cheats→ǫ

jobs→employment ǫ→games cheap→ǫ
depot→max ǫ→reviews wiki→ǫ

Table 2: Summary of top user query refined queries
in each category.

our scenario, we assume that terms exhibit different level
of importance in a set of pre-defined topics. In what fol-
lows, we describe a topic-based Pagerank approach which is
inspired by [10].

The Pagerank is a random walk-like algorithm where high-
er Pagerank is assigned to pages with greater importance. In
the Pagerank algorithm, the rank of each page can be esti-
mated iteratively. Specifically, at the t+1 step, the Pagerank
is updated as follows:

Rank(t+1) = (1− α)M ×Rank(t) + αp, (1)

where M is a stochastic matrix where Mij = 1/N(j) if
there is a transition from node j to node i, with N(j) be-
ing the total number of outlinks of node j. At each step,
the random walk has a probability of α ∈ (0, 1) that jumps
to an arbitrary node. In the original Pagerank algorithm,
p = [1

N
]N×1 so that the probability of jumping to any node

is the same.
In our topic-based Pagerank model, for each topic tj , the

jumping vector p is calculated as follows:

pji =

{ 1
|Uj |

if i ∈ Uj

0 otherwise

where Uj is the set of terms belonging to topic j. Given
t topics, this approach essentially constructs t topic graphs
where each graph Gj only contains nodes which is catego-
rized in topic j.

Figure 1 illustrates an example of such graph that contains
9 nodes (our actual graph is much bigger). After Pagerank
algorithm converges, each term w is assigned with a vector
of scores denoting its Pagerank score in all t topics.

home

apartment
page

online

house

login

email

com

senate

Figure 1: An illustration of graph construction from
the term transition data. Each arrow indicates a
user preference, e.g., page → home.

4.1 Extracting Topics from Clicks
Recall that in our definition, a query refinement essen-

tially contains three elements: {q1, q2, clickurl}. Since get-
ting the topics directly from query is difficult, we propose
to infer the topics from the clicked webpage which nat-
urally reflects the query intent. In this paper, we lever-
age a sophisticated content-based classifier that categorizes
webpages into ODP categories [3]. The ODP categories
are organized hierarchically where higher level topics are
more abstract. For example, www.microsoft.com belongs
to “Computers”→“Companies” category. We leverage the 14
top-level categories from ODP and construct 14 topic graphs

in our models. Note that it is common for a transition to
appear in more than one category according to the URLs
clicked. For example, coupon→free happens very often in
both Computers and Shopping categories. Table 3 shows
the top-ranked terms in several categories after running the
topic-based Pagerank model.

4.2 Query Suggestion
After calculating topic-based Pagerank, the next step is

to suggest query-dependent terms when a new query comes.
Given a query qi with m terms {wi1, ..., wij , ..., wim}, we
want to suggest a set of related queries by reformulating the
query using modification, expansion or deletion methods.
Although for training we only consider the modification of
the last term in the query, it should be noted that at query
suggestion time, our model can be adapted to make modifi-
cations for any terms in the query.

Overall, any term can be either modified or deleted from
the query. The query itself in the meanwhile can be expand-
ed where the expanded term is considered to be appended at
the end. Specifically, for any term wij , the term refinement
probability is defined as

P (wij → w′
ij |qi) =

∑

k

P (wij → w′
ij |Tk)P (Tk|qi),

w′
ij ∈ W = {ǫ, w1, ...wn}, j ∈ 1, ..., m. (2)

Here P (wij → w′
ij |Tk) is a query-dependent score, i.e.,

the most likely transition in topic Tk given wij , which is
estimated by controlling the jumping factor in Pagerank:

pji =

{

1 if i ∈ Uj

0 otherwise

Meanwhile, P (Tk|qi) denotes the topic distribution of the
new query. For simplicity, we leverage the pseudo-relevance
feedback from the search engine [21, 25] which assumes that
the top-returned results are usually relevant. We thus clas-
sify the top-10 URLs returned by a search engine into ODP
categories and treat it as the topic distribution of qi. Table
5 shows examples of the most possible transitions.

To choose the best candidates among all refinements for
all terms in the query, we leverage the Pagerank of the terms
to rank the refinements:

P (q′i|qi) = argmaxP (wij)P (wij → w′
ij |qi), (3)

where q′i equals to qi except for term j being replaced: wij →
w′

ij .
In addition, query qi has the following probability to be

expanded by adding a new term w′, according to our model,

P (w′|qi) =
∑

k

P (w′|Tk)P (Tk|qi), (4)

where P (w′|Tk) is the static Pagerank of term w′ in topic
Tj .

The results from term refinement and query expansion
are then combined to suggest new queries based on the de-
scending order of their probabilities. Table 4 shows a con-
crete example for the query “stanford university map”. The
final winners are “stanford university location”, “stanford u-
niversity address”, “stanford university”, “harvard university
map” and “yale university map”. In this case, suggestions
from using expansion gets a very low score hence are not
suggested, indicate that our model is capable of suggesting
queries that are different from a syntactic point of view.

Computers Health Home Science Shopping Sports Business
download symptoms recipes channel walmart sports jobs

free hospital recipe zoo parts espn bank
verizon treatment coupons salary furniture games ashley
wireless pain cooking coupons store results dmv
software diet food weather buy schedule locations
iphone health baby ohio accessories news free
email calculator network calculator shoes soccer calculator

microsoft surgery easy craigslist supplies cup continental
windows doctor reviews toyota target rumors america
support dosage grilled jetblue clothing nba chase

Table 3: Top-ranked terms in each category by the topic-biased Pagerank method. A total of 14 ODP
categories are assigned to queries.

Query Prob(expansion)
stanford university map stanford university map online (0.0005)

stanford university map download (0.0003)
stanford university map printable (0.0001)

Term Pagerank Score Prob(replacement) Prob(deletion)
stanford 0.04 harvard (0.03), yale (0.02), columbia (0.02) 0.005
university 0.04 college (0.02), school (0.01), institute (0.002) 0.01

map 0.05 location (0.04), address (0.03), history (0.005) 0.015

Final Suggestions Source Score
stanford university location replacement 0.04
stanford university address replacement 0.03

stanford university deletion 0.015
harvard university map replacement 0.03

stanford university map online expansion 0.0005
stanford university map download expansion 0.0003

Table 4: Examples of query suggestion for “stanford university map”. Top: query level expansion probability.
Bottom: term level replacement and deletion probabilities for each term in the query. The final suggestion
is the highest-scored queries from both models. Candidates from expansion are not suggested in this case.

Walmart Microsoft Steelers Weather
target msn penguins hurricane
sears office pirates radar
costco hp panthers zoo

wal-mart microsoft.com hurricanes news
walgreens live ravens earthquake

Table 5: Some examples of the most relevant terms
given specific terms. Calculated using term-specific
Pagerank algorithm.

5. MODEL 2: A SUPERVISED APPROACH
The Pagerank-based query suggestion model presents a

novel way to efficiently reformulate queries on the topic level.
Nevertheless, the model ignores the underlying relationship
between the query and the suggested term after it aggre-
gates the term transitions into topics. Indeed, within the
same topic the term transition probability still varies from
queries. In this section, we propose a query-level learning-
to-rank approach which leverages a set of language-modeling
features to address the limitation of the previous model.

We briefly introduce the idea of learning-to-rank here. For
a better understanding of learning-to-rank, we refer readers

to [15]. Given a set of queries and URLs as well as labeled
relevance score (usually in 5-scale) for each query-URL pair,
learning-to-rank tries to optimize for the ranking loss for all
queries in the training set. Generally, three sets of features
are often used during training, (1) query features (e.g., query
frequency), (2) URL features (e.g., the Pagerank score of the
URL), and (3) query-URL features (e.g., BM25 [20]). In our
model, we mimic these principles and construct three sets
of features for each triplet of transition: {q1, q2, click}. To
be specific, the common part of q1 and q2 are extracted to
represent the query part, whereas the refinement is treated
similar as the URL role. For example, for the first example
shown in Table 1, “single ladies” is the query, while “song”
and “lyrics” are treated as refinements.

5.1 Feature Construction
For each of the query-refinement pair, we construct three

sets of features as shown in Table 7.
The query features generally fall into two categories. The

first category is related to Wikipedia. We dumped over 8
million Wikipedia articles in English, which contains the Ti-
tle, Body content and Category information. In total, the
corpus contains 7,181,315 titles and 10,170,187 articles. We
match the query to the Title, Body and Category to estimate
its popularity in the Wikipedia corpus. Secondly, we con-

struct N-gram language modeling features from a publicly
available N-gram services built from Billions of documents
[1]. The N-gram contains four streams: title, body, anchor
and query streams, available in unigram, bigram, trigram,
N-gram with N = 4, 5. For each query, each stream returns
an N-gram probability for the query within that stream.

The term features are quite similar to URL/document fea-
tures in information retrieval systems. The Pagerank scores
of the terms are directly calculated from previous model
with different jumping rates from 0.55 to 0.85. The entropy
of the Pagerank score is calculated as −

∑

i
P (ti) logP (ti)

for term ti, which estimates the term’s specificity across al-
l topics. In addition, a good indicator of term importance
is the number of times users expand the original query by
adding the term, which is specified as “# of times derived
from EMPTY node”.

Finally, the query-term features consist of Wikipedia, N-
gram and several other features. The N-gram conditional
probability measures P (term|N-gram) where the N-gram e-
quals to all phrases (N up to 5) in the original query. e.g., for
query“stanford university map”and term“online”, there are
three probability scores: P (online|stanford university map),
P (online|university map) and P (online|map). Meanwhile,
the KL Divergence score measures the closeness of two prob-
ability distributions: ODP-topic distribution for the query
and for the term. Additionally, the inverted query frequency
also measures the specificity of the term given a query, de-
fined as logN(ti)/N(ti|qj), where N(ti) is the total number
of appearances of term ti and N(ti|qj) measures how many
times ti is used to modify query qj .

Overall, we constructed 30 features for each training in-
stance. The importance of individual features will be dis-
cussed in the experiment section.

5.2 Inferring Training Labels from Log
The next step is to generate ranking labels for each group

of query refinements. Instead of asking human judgers to
manually label a large set of training data, we infer train-
ing labels automatically from implicit user feedbacks in the
log. For each of the training instance, we extract its total
number of appearances (impressions) and total number of
user clicks from the log. In literature, it is quite common to
use either the total clicks or the click through rate (defined
as clicks/impressions) to approximate the labels. Neverthe-
less, these two metrics sometimes conflict with each other
(as shown in the following examples). Instead, we use a
more principled way to derive rankings. Since in our train-
ing tuple {q1, q2, clickurl}, we consider both clicks and skips
(impressions-clicks) as good signals, it is important to find a
model that takes both numbers into consideration. Specif-
ically, given a refined query q′ for the original query q, we
model its probability of click distribution using a function
Φ(α, β) where α corresponds to the total clicks and β is
the total skips. In our model, we fit this distribution using
a Beta function by following [14], i.e., Beta(α, β). Conse-
quently, to compare two query refinements qi and qj , it has
been shown in [14] that the probability of qj better than qi
can be computed as

P (qj ≻ qi) =

∫ 1

0

Betaj(Rj)Φi(Rj)dRj , (5)

where Ri and Rj corresponds to the ranking of qi and qj
respectively, Φi the cumulative distribution function of Ri.

Numerical integration is used to estimate the solution. The
rankings of the refined queries are then derived directly from
the probabilities which show the pair-wise comparison re-
sults. Figure 2 shows an example of comparing two cases.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

X

P
(X

)

pdf(19,12)
cdf(20,25)

q
i

q
j

Prob(q
i
>q

j
)= 0.92

Figure 2: An example of compare two query refine-
ments qi:(19, 12) and qj :(20, 25). Although qi has
less clicks than qj (19 vs. 20), it has a very high
probability (0.92) of being a better refinement due
to its significantly less number of skips (12 vs. 25).

More specifically, table 6 shows two examples from our
log. Using our model, we show that

P (stanford admission > stanford map) = 0.61

P (stanford map > stanford history) = 0.08

The query “stanford admission” is a clear winner over “stan-
ford map”with higher number of clicks and relative less num-
ber of skips. On the other hand, “stanford map” is ranked
lower than “stanford history”. According to our method,
the former query has more clicks but also significantly more
skips that the latter, thus “map” should be treated as a less
relevant term than “history” for the query “stanford”.

Query Term # of clicks # of skips rank
stanford admission 1913 1235 1

map 568 438 4
history 324 148 2

employment 1273 934 3
microsoft career 2274 1589 2

office 1089 222 1
jobs 1748 1733 3
games 523 670 4

Table 6: Two examples of constructing query-term
training data. Each query consists of a list of terms
with their statistics. Labels are assigned according
to the probability from eq.(5).

5.2.1 Online Query Suggestion
Given a new query q that contains k terms: {t1, ..., tk},

we first create a candidate set of queries by removing one
terms from the original query. e.g., for query with terms
{t1, t2, t3}, the candidate set contains {t1, t2}, {t1, t3} and
{t2, t3}, as well as the query itself. Then for each query in the
candidate set, we construct features for all terms available
in our training set and calculate its score using our model.
The highest scored terms are suggested for the query. In
practice, since the potential number of candidate suggestions
is quite big (n suggested terms for each candidate, where n
is the number of unique terms in the training data), we pre-
filtered candidates by using ODP categories, where only the

Query Features Is the query a Wikipedia title? ∈ {0, 1}
Is the query a Wikipedia category? ∈ {0, 1}

of times query contains in Wikipedia title ∈ R

of times query contains in Wikipedia body ∈ R

N-gram probabilities in the title, body, anchor and query streams ∈ {0 ∼ 1}
Term Features Pagerank score of the term

of inlinks & outlinks
entropy of Pagerank score in 16 ODP topics: −

∑

i
P (ti) logP (ti)

of times derived from EMPTY node
Query-Term Features All Wikipedia features from query features

N-gram conditional probabilities, p(wn|wn−m+1, ..., wn−1)
KL Divergence of query and term probability distributions

Inverted Query Frequency: logN(ti)/N(ti|qj)

Table 7: Some of the features used in the learning-to-rank method.

terms within the same category as the candidate query are
considered.

6. EXPERIMENTS
In this section, we describe the evaluation methods. Our

experiments consist of primarily two steps. During the first
step, we compare the performance of the two proposed mod-
els based on the labels we derived from the log. We also
calibrate the parameters of our methods according to the
labels. During the second step, we conduct user study and
ask judgers to evaluate the query suggestion performance of
our proposals as well as several state-of-the-art methods.

6.1 Parameter Tuning
This section describes how to calibrate the parameters

in our algorithms. For the Pagerank algorithm, we only
need to tune one parameter which is the jumping rate α.
Since we use the SVM-rank package2 for our learning-to-
rank approach, we calibrate the c parameter which specifies
the trade-off between training error and the margin3.

For evaluation, we use two well-known metrics: normal-
ized discounted cumulative gain (NDCG) and zero/one-error.

NDCG is widely used in information retrieval systems. In
our study, we treat the training labels as the golden stan-
dard. We use the top-5 suggested queries for evaluation.
From the training label, we use a five-scale relevance score
(rel): Perfect (5), Excellent (4), Good (3), Fair (2) and Poor
(1). The Ideal DCG (IDCG) is calculated from the training
set itself. For the suggestions, if the query is in top 5 of the
training data, we assign the score according to its original
position or 0 otherwise. The NDCG is calculated as:

NDCG(q) =

∑

i
(reli)/ log(i+ 1)

IDCG(q)
. (6)

The NDCG of the test set is averaged over all queries.
The zero/one-error metric, on the other hand, is a more

rigorous metric. It calculates the fraction of perfectly correct
rankings between training set and test result. The output is
binary for each ranking and averaged over all queries.

Figure 3 depicts the results of two metric according to
different jumping rates of Pagerank algorithm. The two
horizontal lines correspond to the learning-to-rank approach

2http://www.cs.cornell.edu/People/tj/svm light/svm rank.html
3We used linear kernel in our experiments. Due to the data
size, all other kernels reported out-of-memory errors.

which is not affected by α. It can be noticed that when
(1 − α) increases, Pagerank generally performs better and
better. The best NDCG score is achieved at 0.85 for Pager-
ank with the value of 0.61, whereas learning-to-rank achieves
0.82 NDCG — a 25% better performance. Similarly, Pager-
ank has the best zero/one loss score of 0.52, comparing to
0.75 for learning-to-rank algorithm.

In Figure 4, we show the results of the Pagerank algo-
rithm across 14 ODP topics. Comparatively, our algorithm
achieves the best performance in the business category, a
0.7 NDCG score. The news category, on the other hand,
exhibits the worst performance, which has only 0.47 NDCG
and 0.35 zero/one loss scores.

Next, we split the training data into different proportions
and examine the performance of the learning-to-rank ap-
proach. Figure 5 shows the results of two metrics with
training data ranging from 20% to 90%. Even with only
20% of training data, the learning-to-rank method is capa-
ble of achieving 0.63 NDCG score. The highest NDCG score
is around 0.82 when most of the data is used for training.

Finally, we performed a 5-fold cross validation to select
the optimal parameter c in SVM-rank in the range of [-3, 3].
The performance generally increases when c becomes larger.
The optimal performance was found when c equals 2.8.

Figure 6 lists the top-weighted features used in learning-
to-rank model. The Wikipedia title feature indicates crit-
ical importance which is top-ranked. The Pagerank score
with 0.85 jumping rate also shows superiority which predicts
the term relevance well. 4 of the N-gram features made to
the top-10 feature list where the uni-gram feature ranks the
highest among them.

6.2 User Study
After calibrating the parameters for our models, we con-

ducted a user study by comparing our methods to others.
Since the user study is unable to cover all queries in our data
set, we applied a similar approach as in [7, 23] by randomly
selecting 450 queries from the search log for judgment.

To compare with state-of-the-art algorithms, we imple-
mented two random walk algorithms which have shown good
performance in literature. The first algorithm involves us-
ing pseudo relevance feedback [23] which builds the query-url
bipartite graph by considering all top URLs returned by a
search engine as relevant (RW-Pseudo). This algorithm has
shown significantly better performance than the tradition-
al random walk method. The second algorithm considered

0.55 0.6 0.65 0.7 0.75 0.8 0.85
0.4

0.5

0.6

0.7

0.8

0.9

1

(1−α)

S
c
o

re
s

Pagerank NDCG
Learning−To−Rank NDCG
Pagerank Zero/One Loss
Learning−To−Rank Zero/One Loss

Figure 3: The NDCG & zero/one loss scores affected
by the jumping rate α.

arts business computers games health home kids&teens news recreation reference science shopping society sports
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Top−ODP Categories

S
co

re
s

Pagerank NDCG
Pagerank Zero/One Loss

Figure 4: The performance of Pagerank algorithm
in all top-14 ODP categories in the training set.

is a backward random walk model [7](RW-Back), which ad-
dresses the bias towards URLs with more clicks in traditional
forward walk models. This model assumes a uniform prior
on all URLs by normalizing the graph on URL clicks instead
of query counts, which turns out to be much more efficient
in retrieval relevant queries and URLs.

To be more convincing, we also compare with a recently
developed query-flow approach [4] that represents the tran-
sition between queries into directed graphs and learns the
edge weight from a set of features. For query suggestion,
we use one of their methods which also leveraged random
walk that shown better performance than maximum weight
and history-based methods. Furthermore, we compare with
an optimized model of the query-flow approach that is de-

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Percentage of Training data

S
co

re
s

Learning−To−Rank Zero/One Loss
Learning−To−Rank NDCG

Figure 5: The performance of learning-to-rank algo-
rithm given different portion of training data.

Figure 6: Top-ranked features from SVM-rank used
in learning-to-rank model.

scribed in [2], which introduced query-recommendation links
that improve the quality of the random walk model.

Finally, we implemented a baseline model. This simplified
model only takes query frequency into consideration. Specif-
ically, for any query q, this model recommends q′ which ap-
pears most frequently after users issued q, and leads to a
successful click in the session.

Following [7, 23], we conducted the user study approach
as follows. For each sampled query, the four algorithms in
comparison independently generate top-5 suggested queries.
We then mixed the suggestions by removing the duplicates
and randomly sort the remaining, which helps eliminating
the positional bias during user study. The suggestions, along
with the original query, are given to judgers to evaluation.
We asked the judgers to evaluate whether each suggestion is
(1) relevant, (2) irrelevant or (3) no opinion (hard to judge).
Every query is triple-judged by three different judgers and
the majority vote is used as the final label. During the user
study, we also give the judgers some context by showing the
results from search engine besides the queries, for a better
understanding of what the query means.

Since the responses from judgers are binary, the NDCG
metric used in previous section no longer applies. Instead,
we evaluate by using Precision at rank N (P@N) and Mean
Average Precision (MAP). The precision at rank N for a
specific query is defined as the percentage of relevant queries:

P (N) =
rel. queries

N
. (7)

P@N is defined as the aggregated precision for all queries,

P@N =

∑

P (N)

total queries
. (8)

While P@N addresses the precision, MAP takes both pre-
cision and recall into consideration. Specifically, for each
query qi

AverageP (qi) =

∑

j
(P (j) · I(j))

rel. queries
,

MAP =
1

K

∑

k

AverageP (qk), (9)

where P (j) is the precision at rank j as defined in eq.(7) and
I equals 1 when query at j is relevant and 0 otherwise.

Query Pagerank Learning-to-Rank
battlefield bad company 2 battlefield bad company 1 battlefield bad company 2 price

battlefield bad company 2 ringtones battlefield bad company 1
battlefield bad company 2 slots battlefield bad company 2 download
battlefield bad company 2 realms battlefield bad company 2 walkthrough
battlefield bad company 2 games battlefield bad company 2 games

best exercise for abs best exercise for abs workout best exercise for abs home
best exercise for abs exercise best exercise for abs six
best exercise for abs lower best exercise for abs workouts

best exercise for abs exercises best exercise for abs cardio
best exercise for abs workouts best exercise for abs diet

dante’s inferno xbox360 dante’s inferno xbox360 wiki dante’s inferno xbox360 wiki
dante’s inferno ps3 dante’s inferno xbox360 video

dante’s inferno xbox360 cheats dante’s inferno xbox360 walkthrough
dante’s inferno xbox360 walkthrough dante’s inferno xbox360 cheats

dante’s inferno dante’s inferno xbox360 guide

Table 8: Examples of query suggestions by Pagerank and learning-to-rank methods. Our methods work best
for short and medium queries in most scenarios.

Algorithm MAP P@5 P@1
LTR 0.6709452 0.6346841 0.668909

Pagerank 0.6483460 0.600000 0.630982
RW-Back [7] 0.5805054 0.5480981 0.57902

RW-Pseudo [23] 0.5789023 0.5408738 0.573906
Baseline 0.458293 0.428911 0.452865

Query-Flow [4] 0.570428 0.539200 0.609072
Query-Flow-Opt [2] 0.583297 0.543886 0.570965

Table 9: Overall scores of the seven algorithms in
MAP, P@5 and P@1. LTR performs the best in all
metrics. Query-Flow is the second worst for P@5
after the Baseline. Query-Flow-Opt shows marginal
improvement over Query-Flow but not significantly.

6.2.1 The Results
Table 9 summarizes the overall performance of the four

algorithms in terms of MAP, P@5 and P@1. The learning-
to-rank and Pagerank approaches significantly outperformed
random walk methods in all three metrics. Comparatively,
LTR improves 2.2% of MAP, 2.4 % P@5 and 3.8% P@1
upon the Pagerank algorithm, which shows the usefulness
of the Wikipedia and N-gram features in addition to the
Pagerank features. Note the query-flow approach perform-
s better than both random walk models (but worse than
both of ours) for P@1, but the performance significantly
decreased for precision at 5. We looked into the data and
figured out the reason. Since the query-flow method ag-
gregates node at query level, the graph loses the power of
distinguishing ambiguous queries with different user inten-
t. Therefore lots of noises are introduced to random walk
which also gradually increases with the length of the walk.
On the other hand, the optimization framework proposed
in [2] only achieves marginal improvement over the query-
flow method. Both query-flow approaches are significantly
worse than our proposals, which supports the importance of
topical-level term-transition graph.

Figure 7 presents the P@5 scores in different ODP cat-
egories. Learning-to-rank outperforms other approaches in
almost all categories except for the business and games cate-

Deletion Modification Expansion
Pagerank LTR Pagerank LTR Pagerank LTR

S 0.47 0.56 0.59 0.62 0.64 0.68
M 0.54 0.61 0.57 0.6 0.63 0.66
L 0.47 0.57 0.54 0.56 0.63 0.67

Avg 0.5 0.58 0.58 0.6 0.63 0.67

Table 10: Comparison of Pagerank and LTR in
terms of suggested methods: deletion, modification
and expansion. Results are broken down into query
lengths. Short: ≤ 2, medium: [3, 5] and long: ≥ 6.

gories. On the other hand, Pagerank exhibits better perfor-
mance than random walks and query-flow graphs in 8 out of
13 categories. In general, the home and kids&teens are the
most difficult categories to make query suggestions, while
games and computers are relatively easier than others.

Furthermore, we analysis the effectiveness of our algo-
rithms by breaking down the queries into different query
lengths as well as the three techniques (term deletion, mod-
ification and expansion) in terms of P@5. As shown in Ta-
ble 10, long queries are generally the most difficult to make
suggestions. While for short and medium queries, the ex-
pansion technique indicates better suggestion performance
than deletion and modification. The Pagerank algorithm
exhibits relatively poor performance for long queries since
it is usually harder to accurately infer the topics from long
queries, which justifies the superiority of term-level sugges-
tion method over the topic-level method.

Table 8 shows four randomly-selected queries and the sug-
gestions by our algorithms. As it can be seen, most of the
suggestions are quite relevant to the query itself yet some
of the irrelevant ones are suggested due to the ambiguity of
the query itself (e.g., “eclipse” in the query “eclipse 2010”).

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel query suggestion frame-

work which extracted user preference data from user ses-
sions in search engine logs. We then used the user pat-

arts business computers games health home kids&teens recreation reference science shopping society sports
0

0.2

0.4

0.6

0.8

1

Top−ODP Categories

P
@

5

Baseline
Query−Flow [4]
Query−Flow−Opt [2]
RW−Pseudo [23]
RW−Back [7]
Pagerank
LTR

Figure 7: Breakdown of P@5 for 13-ODP categories in the testing set consisting of 450 queries.

terns to build two suggestion models. The first model was
a topic-based Pagerank model where the suggested terms
were treated as nodes in directed graphs. Pagerank algo-
rithm was used to calculate the relative importance of each
term within a topic. The model suggested new queries to
the original query by using one of the three techniques: term
deletion, term expansion and term modification. The second
model was meant to address the limitation of the topic-based
model, which constructed features from Wikipedia, N-gram,
Pagerank and other resources, and performed query-level
suggestions by training a learning-to-rank model.

Our models were compared with two state-of-the-art ran-
dom walk methods and query-flow models on randomly-
sampled queries. A rigorous user study was conducted where
all queries are triple-judged by human judgers. Experimen-
tal results indicated significant improvement on our models.
We also broke down the queries into different ODP cate-
gories as well as query lengths. It was shown that our models
worked the best for short and medium-length queries.

There is a rich body of work to be extended. As a prelim-
inary study, our model only considered changing one term
from the queries. It would be interesting to see how the
performance will increase/decrease by leveraging a more so-
phisticated user preference extraction model which could
consider multi-term alteration. In our topic-biased Pager-
ank model, only the first-level ODP categories are used to
classify queries, while suggesting queries in a lower-level of
category which further narrows down user intent, might be
more relevant than queries on the same topic category.

8. REFERENCES
[1] Microsoft web n-gram services.

http://research.microsoft.com/en-
us/collaboration/focus/cs/web-ngram.aspx.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, and
A. Gionis. An optimization framework for query
recommendation. In WSDM ’10, pages 161–170, 2010.

[3] P. N. Bennett and N. Nguyen. Refined experts: improving
classification in large taxonomies. In SIGIR ’09, pages
11–18, New York, NY, USA, 2009. ACM.

[4] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and
S. Vigna. The query-flow graph: model and applications. In
Procs of CIKM, 2008.

[5] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and
H. Li. Context-aware query suggestion by mining
click-through and session data. In KDD ’08, 2008.

[6] K. Collins-Thompson and J. Callan. Query expansion using
random walk models. In CIKM ’05, pages 704–711.

[7] N. Craswell and M. Szummer. Random walks on the click
graph. In SIGIR ’07, pages 239–246, 2007.

[8] V. Dang and B. W. Croft. Query reformulation using
anchor text. In WSDM ’10, pages 41–50, 2010.

[9] H. Deng, I. King, and M. R. Lyu. Entropy-biased models
for query representation on the click graph. In SIGIR ’09,
pages 339–346, 2009.

[10] T. H. Haveliwala. Topic-sensitive pagerank. In WWW ’02,
pages 517–526, 2002.

[11] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
query substitutions. In WWW ’06, pages 387–396, 2006.

[12] G. Kumaran and J. Allan. A case for shorter queries, and
helping users create them. In Human Language
Technologies 2007, pages 220–227, April 2007.

[13] G. Kumaran and J. Allan. Effective and efficient user
interaction for long queries. In SIGIR ’08, pages 11–18,
New York, NY, USA, 2008. ACM.

[14] C. Liu, M. Li, and Y.-M. Wang. Post-rank reordering:
resolving preference misalignments between search engines
and end users. In CIKM ’09, pages 641–650, 2009.

[15] T.-Y. Liu. Learning to Rank for Information Retrieval.
Now Publisher, 2009.

[16] Q. Mei, D. Zhou, and K. Church. Query suggestion using
hitting time. In CIKM ’08, pages 469–478, 2008.

[17] M. Mitra, A. Singhal, and C. Buckley. Improving automatic
query expansion. In SIGIR ’98, pages 206–214, 1998.

[18] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab, 1999.

[19] F. Radlinski and T. Joachims. Query chains: learning to
rank from implicit feedback. In KDD ’05, pages 239–248.

[20] S. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu,
and M. Gatford. Okapi at trec-3. pages 109–126, 1996.

[21] J. Rocchio. Relevance Feedback in Information Retrieval,
pages 313–323. 1971.

[22] F. Silvestri. Mining query logs: Turning search usage data
into knowledge. Foundations and Trends in Information
Retrieval, 4(1-2):1–174, 2010.

[23] Y. Song and L. He. Optimal rare query suggestion with
implicit user feedback. In WWW ’10, pages 901–910.

[24] X. Wang and C. Zhai. Mining term association patterns
from search logs for effective query reformulation. In CIKM
’08, pages 479–488, 2008.

[25] C. Zhai and J. Lafferty. Model-based feedback in the
language modeling approach to information retrieval. In
CIKM ’01, pages 403–410. ACM, 2001.

